Understanding the Types of Information Humans Associate with Geographic Objects

Ahmet Aker
University of Sheffield
a.aker@dcs.shef.ac.uk

Robert Gaizauskas
University of Sheffield
r.gaizauskas@sheffield.ac.uk

ABSTRACT
In this paper we investigate what sorts of information humans request about geographical objects of the same type. For example, Edinburgh Castle and the Bodiam Castle are two objects of the same type — castle. The question is whether specific information is requested for the object type castle and how this information differs for objects of other types, e.g. church, museum or lake. We aim to answer this question using an online survey. In the survey we showed 184 participants 200 images pertaining to urban and rural objects and asked them to write questions for which they would like to know the answers when seeing those objects. Our analysis of 7644 questions collected in the survey shows that humans have shared ideas of what to ask about geographical objects. When the object types resemble each other (e.g. church, temple) the requested information is similar for the objects of these types. Otherwise, the information is specific to an object type. Our results can guide tasks involving automatic generation of templates for image descriptions, and their assessment, as well as image indexing and organization.

Categories and Subject Descriptors
IR [Language technologies for IR]: [NLP, IE, Summarization, QA]; IR [Evaluation, Test collections, Crowdsourcing for IR]: [Mechanical Turk]

General Terms
NLP, Summarization, Image Description Generation

Keywords
Geographical object description

1. INTRODUCTION
In every day life we see and categorize things in our built or natural environment. For instance, if we look at different churches, we see that each of them has different style, different look, different size, some of them are newer than the others, etc., but still we are able to categorize all of them as churches. For categorization purposes visual attributes such as the style and the size of a church might be enough; however, to report about each church separately we need more attributes whose values make each church distinguishable from others.

Knowing what sets of attributes people use to describe geographical objects has several applications. Text summarization employed to automatically generate descriptions of geographical objects can be improved by incorporating human preferences into the output summaries. Template based summarization methods, for example, have been used successfully for news event summarization [2, 3]. The same strategy can be applied to the task of generation of descriptions for geographical objects, e.g. for purposes of generating descriptions for images of these objects. Templates can be derived from the set of attributes relevant to humans to bias the summarization system towards the text units containing the values for these attributes. Furthermore, the attributes could be used in a guided summarization task as organized by the Document Understanding Conferences (DUC)\(^1\) and the Text Analysis Conference (TAC).\(^2\) Additionally, the attributes can be used to evaluate the output of an automatic summarization system by testing whether highly relevant attributes are covered in the output summary. Furthermore, the attributes supply a guide for what to index for images pertaining to locations. If information highly relevant for humans is used for indexing, this could lead to better retrieval and organization of those images.

For such applications it is relevant to know whether there is a general set of attributes that people use to describe any geographical object. Or, given that humans categorize objects into types (e.g. church, museum, etc.), are the sets of attributes specific to single object types, or perhaps shared between types that are subtypes of a common higher level type (e.g. church and temple are both religious buildings)?

In this paper we aim to address these questions. Specifically, we ask: For what attributes related to geographic objects would people like to know the values when seeing such an object? And: Is this set of attributes specific to a particular object type (e.g. church) or shared between different object types?

We aim to answer these questions using an online survey conducted on Mechanical Turk. In the experiment we show the participants different images of objects from around the world. Our set of images contains only images of static fea-

\(^1\)http://duc.nist.gov/
\(^2\)http://www.nist.gov/tac/
2. EXPERIMENTAL SETTING

2.1 Experiment

In the experiment we showed the participants an image pertaining to a particular object or place. We also presented the participants with the name of the place (e.g. Eiffel Tower) and its object type (e.g. tower). The participants were asked to take the role of a tourist and provide ten questions for which they would like to know the answers when seeing each image. We collected 7644 questions from 184 participants. The results of our analysis reveal that people share ideas as to what to ask about geographical objects in general. When the object types resemble each other, the requested information is similar. Otherwise, this information is specific to a specific type.

In this paper we first present the experimental setting of our survey and outline the preprocessing process of the data (Section 2). In Section 3 we present our analysis and report and discuss the results. We conclude the paper in Section 4.

3. ANALYSIS

3.1 Is there a set of attributes that people generally associate with geographic objects?

In Table 3 the 51 attributes are given. The left column of the table shows the very frequent addressed attributes (top ten). More than 65% of the questions can be categorized by these ten attributes. This means that people do share ideas as to what types of information are required about a place, and the set of top ten attributes captures the majority of these information types. However, although these attributes occur for many object types, their popularity is not the same for all the object types with which they are associated.

We define the popularity of an attribute for an object type as the number of questions categorized under this attribute for that particular object type. Attribute popularity indicates how important the type of information represented by the attribute is for the particular object type.

For instance, the attribute visiting is the most popular attribute (has the maximum number of 52 questions) in the object type museum (see Table 4). This indicates that it is most important for people to know how much the entry to the museum costs or when the museum opens. This information is more relevant than, e.g. knowing when the museum was built. However, if we look at the object type house, we can see that the same attribute visiting is not the most popular one. It occurs at position five with only 11 questions. For this object type people seem to be interested most in knowing the design of the house and less in information related to visiting.

The remaining 35% of the questions are spread over the remaining 44 attributes as shown in the right column (below top ten) of Table 3. From this list we can observe that there

<table>
<thead>
<tr>
<th>Urban types</th>
<th>Rural types</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbey, aquarium, avenue, basilica, boulevard, building, cathedral, cemetery, church, gallery, house, monument, museum, opera house, palace, parliament, prison, railway, railway station, residence, square, stadium, temple, tower, university, zoo</td>
<td>beach, canal, cave, garden, glacier, island, lake, mountain, park, peak, river, ski resort, village, volcano</td>
</tr>
</tbody>
</table>

Table 1: Objects types used in the experiment.

| location | where is garwood glacier?, where exactly is edmonton?, where it's located? |
| foundationyear | when was it built?, which year was this zoo opened?, when it was established? |

Table 2: Example attributes related questions.
are some specific attributes which are likely to be present only in a specific object type or in very few object types. For instance, as shown in Table 4 the attribute eruption info is associated only with the object type volcano. This attribute contains questions related to the eruption of different volcanos. From Table 4 we can see that this attribute is also the most popular for the volcano object type, while information related to visiting, location, etc., which is generally most frequently asked for, comes after eruption info. From this we can conclude that even though object types share the top ten attributes, the differences in attribute popularity indicate that these are not equally important for all object types. Therefore, the question arises as to whether each object type has an associated specific set of attributes, or whether the attributes relevant to it are shared between several object types. This is our second research question.

3.2 Is each set of attributes specific to a particular object type or shared between several object types?

To address this question we compare different object types and investigate the degree of similarity between them. We assume, if two object types are similar, then they will not only share a set of attributes, but the attributes within this set will also have similar popularity ranking.

We use Kendall's Tau rank correlation coefficient as a metric which indicates similarity between object types, while considering the attribute popularity ranking in their attribute sets. Kendall’s Tau correlation coefficient is equal or close to 1 if two events are highly correlated in rankings and close to 0 if there exists little or no correlation between the ranks of the two events.

The attributes are ranked according to their popularity, i.e., the number of questions contained under each attribute. If attributes of two different object types have similar rankings, this is an indication that these attributes are of similar importance for both object types. Kendall’s Tau for these object types will return a high correlation for the pair, and we will refer to such object types as similar. A difference in attribute rankings between different object types indicates that these attribute sets are more specific to the one object type and not shared by the other(s). In this case Kendall’s Tau will return a low correlation, and we will refer to such object types as dissimilar.

In our analysis we report comparisons based on three different sets of attributes: all, top ten and below top ten. All is the entire set of attributes shown in Table 3 (attributes from columns top ten and below top ten). The top ten attributes include the top ten attributes which are shared between most of the object types and thus more likely to render similarity. The below top ten set contains all remaining attributes which are as we assume above rather object type specific.

3.2.1 Results

If all attributes are taken, there is in general a correlation between object types in both urban and rural categories. On average the urban object types correlate with 0.55 (median 0.57) and the rural types with 0.53 (median 0.53). The mean and median correlation coefficient lie close to each other, which indicates that the distribution of highly correlating object types is similar to that of object types with low correlation. To analyse this result further, we aim to identify the object types whose correlation coefficient is higher than the mean correlation and those which are correlated with a coefficient lower than the mean. We also aim to understand whether there are object types which are only highly correlated when top ten most frequent attributes are considered and whose correlation potentially drops for the remaining set of attributes.

Table 5 shows three groups of object type pairs in rural and urban areas. In the first column the object type pairs whose correlation coefficient is higher than the mean for all attributes are shown. The second column shows the object type pairs whose correlation coefficient is higher than the mean in the top ten attributes, but drops below the mean for the below top ten attributes. Finally, in the third column the pairs which are correlated with the coefficient lower than the mean for all attributes are presented.

From Table 5 we can see that high correlation in attributes is always present when the object types have e.g., the same look, design or the same purpose. For the urban areas we have object types such as cathedral, basilica, abbey, monastery, church, opera house, museum, zoo, travelcost, waterinfo, travelling, firstclimber, tributaries, prayertime, personinmonument, snowinformation, firstfounder, designer, construction, travelcost, waterinfo, travelling, firstclimber, tributaries, prayertime, personinmonument, snowinformation, firstfounder, and investigating the degree of similarity between them. We assume, if two object types are similar, then they will not only share a set of attributes, but the attributes within this set will also have similar popularity ranking.

We use Kendall’s Tau rank correlation coefficient as a metric which indicates similarity between object types, while considering the attribute popularity ranking in their attribute sets. Kendall’s Tau correlation coefficient is equal or close to 1 if two events are highly correlated in rankings and close to 0 if there exists little or no correlation between the ranks of the two events.

The attributes are ranked according to their popularity, i.e., the number of questions contained under each attribute. If attributes of two different object types have similar rankings, this is an indication that these attributes are of similar importance for both object types. Kendall’s Tau for these object types will return a high correlation for the pair, and we will refer to such object types as similar. A difference in attribute rankings between different object types indicates that these attribute sets are more specific to the one object type and not shared by the other(s). In this case Kendall’s Tau will return a low correlation, and we will refer to such object types as dissimilar.

In our analysis we report comparisons based on three different sets of attributes: all, top ten and below top ten. All is the entire set of attributes shown in Table 3 (attributes from columns top ten and below top ten). The top ten attributes include the top ten attributes which are shared between most of the object types and thus more likely to render similarity. The below top ten set contains all remaining attributes which are as we assume above rather object type specific.

Table 3: Attributes used to categorize the questions.

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cathedral</td>
<td>location(30), visiting(23), foundationyear(16), history(12), founder(9), size(8), design(8), purpose(6)</td>
</tr>
<tr>
<td>house</td>
<td>location(22), foundationyear(16), owner(13), visiting(11), history(10), mostattraction(10), size(10), surrounding(10)</td>
</tr>
<tr>
<td>opera house</td>
<td>visiting(33), foundationyear(20), location(17), events(17), mostattraction(10), surrounding(10), designer(9), owner(8)</td>
</tr>
<tr>
<td>volcano</td>
<td>eruptioninfo(42), visiting(40), location(21), mostattraction(20), size(15), foundationyear(7), height(3), surrounding(5), owner(6)</td>
</tr>
<tr>
<td>zoo</td>
<td>visiting(41), features(34), location(19), foundationyear(14), size(10), mostattraction(8), surrounding(5), owner(5)</td>
</tr>
</tbody>
</table>

Table 4: List of attributes (eight most frequent) for example object types. The numbers within the brackets attached to each attribute indicate how many questions were categorized by that attribute.

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cathedral</td>
<td>location(30), visiting(23), foundationyear(16), history(12), founder(9), size(8), design(8), purpose(6)</td>
</tr>
<tr>
<td>house</td>
<td>location(22), foundationyear(16), owner(13), visiting(11), history(10), mostattraction(10), size(10), surrounding(10)</td>
</tr>
<tr>
<td>opera house</td>
<td>visiting(33), foundationyear(20), location(17), events(17), mostattraction(10), surrounding(10), designer(9), owner(8)</td>
</tr>
<tr>
<td>volcano</td>
<td>eruptioninfo(42), visiting(40), location(21), mostattraction(20), size(15), foundationyear(7), height(3), surrounding(5), owner(6)</td>
</tr>
<tr>
<td>zoo</td>
<td>visiting(41), features(34), location(19), foundationyear(14), size(10), mostattraction(8), surrounding(5), owner(5)</td>
</tr>
</tbody>
</table>
High Correlation in Top Ten and Low Correlation in Below Top Ten Attributes

<table>
<thead>
<tr>
<th>Always High Correlation</th>
<th>High Correlation in Top Ten and Low Correlation in Below Top Ten Attributes</th>
<th>Always low correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>church, temple, abbey, temple, building, tower, building, residence, abbey, basilica, house, residence, abbey, church, basilica, temple, basilica, cathedral, museum, opera house, house, palace, gallery, museum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mountain, volcano, mountain, ski resort, mountain, peak, peak, volcano, peak, glacier, mountain, glacier, glacier, ski resort, park, garden, lake, canal, canal, river</td>
<td></td>
<td></td>
</tr>
<tr>
<td>village, river, lake, island, canal, volcano, island, river, mountain, river, peak, lake, island, garden, canal, glacier, ski resort, garden, mountain, canal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>house, prison, museum, railway, basilica, railway, university, cathedral, monastery, prison, palace, prison, cathedral, cemetery, aquarium, railway station, cathedral, cathedral, temple, railway, parliament, opera house, railway, parliament, railway, abbey, railway, tower, railway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lake, volcano, canal, island, lake, glacier, glacier, river, canal, village, lake, garden, island, garden, glacier, ski resort, island, temple, rail way station, cathedral, cathedral, temple, railway, railway, parliament, opera house, railway, parliament, railway, abbey, railway, tower, railway</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Change of correlation between object types when different sets of attributes are taken for comparison.

and temple which correlate with a coefficient higher than the mean of 0.55 when all attributes are considered. A similar picture can be drawn for other urban object types such as house-residence, building-residence or museum-opera house. In rural areas, object types related to mountainous areas (e.g. glacier, mountain, peak, volcano, ski resort etc.) are correlated above the mean of 0.53. The same is valid for water bodies like canal, lake, river, etc.

All these object types clearly share features like look, design, purpose, etc. The correlation coefficient is always low for object types which do not share these aspects such as the ones shown in the third column of Table 5. This indicates that aspects used for categorizing objects into object types also play a role in deciding which object types are similar for purposes of describing them.

However, the second column of the tables also highlights the importance of shared ideas of what information is relevant for describing geographic objects for object type similarity (Section 3.1). The object types shown in the second column of the tables are correlated above the mean for top ten attributes and their correlation drops below the mean when below top ten attributes are used.

3.3 Discussion

Our analyses have shown that people taking the role of a tourist do share ideas as to what information is relevant for describing geographic objects, and we identified a set of information types that reflects these ideas. However, although we could say that there are clearly several information types which people like to know when seeing any geographic object, it was also clear that not every type of information is equally relevant for each object type. Based on the importance ranking of these object types, we were able to identify similar object types.

In our earlier work we extracted the information types which humans associate with geographic objects from existing text resources describing locations around the world and used them to automatically generate image descriptions [1]. One of our future works will be to compare the information types we identified in this paper with the ones extracted from these existing text resources. If these correlate with the set of attributes obtained through our user survey, we could regard the text descriptions containing these attributes as conceptual models of geographic objects of the same type.

4. CONCLUSION

In this paper we investigated which information types (attributes) humans associate with geographic objects from urban and rural landscapes. We identified a set of attributes which were relevant for any geographic object type, but also found that an appreciable proportion of attributes is object type specific. Even in the set of shared information types, not all information types were equally important for each object type. Based on the importance ranking of information types for each object type, we were able to identify similar object types.

5. REFERENCES