
The Service Specification Guide, v1.0 

 

 

 

Anthony J H Simons <a.j.simons@sheffield.ac.uk> 

Department of Computer Science, University of Sheffield, 

Regent Court, 211 Portobello, Sheffield S1 4DP, UK. 

Abstract 
This document describes how to develop a cloud service specification using the XML specification 

language and supporting tools developed for the EU FP7 Broker@Cloud Project.  A specification 

describes the interface and semantic behaviour of a software service in an abstract way, using 

simple mathematical datatypes to model the service.  A specification is constructed in stages, by 

considering firstly the finite state machine (FSM) of the service, and secondly the detailed behaviour 

of each operation, in terms of its inputs, outputs, preconditions and effects (IOPE) on the memory of 

the service.  A specification should be checked using tools provided on the Cloud Service Quality 

Control website, before generating tests from the specification. 

  



Table of Contents 
Abstract ................................................................................................................................................... 1 

1. Introduction .................................................................................................................................... 3 

2. Model-based Specification.............................................................................................................. 4 

2.1 The Finite State Machine ........................................................................................................ 4 

2.2 The IOPE Protocol ................................................................................................................... 5 

2.3  The Memory and Binding ....................................................................................................... 6 

3. The Expression Language ................................................................................................................ 9 

3.1 Constants ................................................................................................................................ 9 

3.2 Other Parameters ................................................................................................................. 10 

3.3 Assignment ............................................................................................................................ 11 

3.4 Arithmetic ............................................................................................................................. 11 

3.4 Projection .............................................................................................................................. 12 

3.5 Manipulation ......................................................................................................................... 12 

3.5.1 List Manipulation .......................................................................................................... 13 

3.5.2 Set Manipulation ........................................................................................................... 13 

3.5.3 Map Manipulation ........................................................................................................ 13 

3.6 Comparison ........................................................................................................................... 14 

3.7 Membership .......................................................................................................................... 14 

3.8 Proposition ............................................................................................................................ 15 

4. Creating a Specification ................................................................................................................ 16 

4.1 Service Outline Skeleton ....................................................................................................... 16 

4.2 Finite State Machine ............................................................................................................. 16 

4.3 Protocol Operations .............................................................................................................. 17 

4.4 Operation Scenarios .............................................................................................................. 17 

4.5 Variables and Constants........................................................................................................ 18 

4.6 Update Effects ....................................................................................................................... 19 

4.7 Initial Binding ........................................................................................................................ 21 

4.8 Refining Scenarios ................................................................................................................. 22 

Appendix A: Reference ...................................................................................................................... 24 

Appendix B: Screenshots ................................................................................................................... 25 

  

  



1. Introduction  
The Broker@Cloud Service Specification Language is a simple mathematical specification language, 

expressed in XML.  It was designed to overcome the limitations of other XML service description 

languages, particularly WSDL, and other RDF service description languages, such as Linked USDL-

Core and MSM (Minimal Service Model), which focus on describing syntactic interfaces.  The new 

specification language also describes the semantic behaviour of a service, which is necessary when 

reasoning about sequences of interactions, such as when testing the service. 

The Service Specification Language (SSL) captures behaviour using two popular semantic models:  

Finite State Machines (FSM), used to describe the coarse-grained state-based behaviour of the 

service; and the Input, Output, Precondition and Effect (IOPE) paradigm, which is used to describe 

the fine-grained behaviour of the service’s operations and their effect upon memory.  The two 

models are linked through the labels used on the transitions of the state machine, which correspond 

exactly to the labels used for each scenario of an operation (roughly, each distinct branching path 

within that operation). 

The SSL has notations for describing an FSM with states and transitions.  It has notations for 

describing the protocol of the service, with its operation signatures, inputs and outputs, 

preconditions and effects.  It has a mathematical language of simple datatypes used to model the 

memory of the service, including integers, strings, lists, sets and maps, with all attendant functions 

for manipulating these datatypes.  The SSL is defined by the XML Schema: 

http://staffwww.dcs.shef.ac.uk/people/A.Simons/broker/ServiceSchema.xsd 

This schema and several example instances of services described in the specification language are 

available at the Cloud Service Quality Control website: 

http://staffwww.dcs.shef.ac.uk/people/A.Simons/broker/ 

  



2. Model-based Specification 
Why go to the trouble of developing a quasi-formal specification of a software service?  The reason 

is that it is possible to generate very strong and complete test suites from compact specifications, 

which are more effective than developer-based tests.  It is well known that handwritten developer 

tests may be good for revealing whether a system exhibits (some of) its expected behaviour, but are 

quite bad at anticipating all the ways in which a system might be abused.  For this, model-based test 

generation is more effective, since it covers all the different test cases automatically, by exhaustive 

algorithm.  However, first you need a model specification. 

2.1 The Finite State Machine 
The FSM part of the specification allows you to specify the high-level states of a service, that is, the 

different responsive modes in which different subsets of its operations are enabled, or disabled.  The 

FSM is created to show explicitly which operations are allowed in which states, and by implication, 

which operations should be ignored in certain states (the designer only has to specify the expected 

transitions; missing transitions represent ignored operations). 

 

Fig. 1:  Visualising the states and transitions of a holiday booking service. 

A correctly specified FSM consists of a number of states that are linked by transitions, as visualised in 

fig. 1 (rendered as a diagram, rather than the actual XML).  Exactly one state must be the initial state 

(shown by the initial arrow to the state View Days in fig. 1).  The transitions are all labelled with the 

names of actions available in that state.  More precisely, each transition label consists of two parts:  

the request and the response, in the format:  request/response.  Examples of these include:  

bookDays/ok, which denotes the successful scenario of the bookDays operation (which has only one 

scenario); and select/error, which denotes the error-handling scenario of the select operation (which 

has three scenarios altogether).  The specification of operations with multiple scenarios is described 

in more detail in section 2.2 below. 



The simple app depicted in fig. 1 exists in three states:  {ViewDays, BookDays, DeleteDays}.  In the 

state ViewDays, it is possible to attempt only the two operations:  {bookDays, select}.  Whereas the 

operation bookDays has a single scenario bookDays/ok, the select operation has multiple scenarios, 

described by the three transitions: {select/error, select/high, select/low}, which are triggered 

according to the underlying memory state of the service.  Each of these transitions describes a 

different kind of branching behaviour within the select operation.   

From fig. 1, it is also apparent that no transitions are specified in the state ViewDays for the 

operations {back, choose, save, delete}, so all of these operations are implicitly ignored in this state.  

When exploring the specification, the tools will automatically add transitions with names like:  

save/ignore, choose/ignore etc. to complete the state machine.  Ignored transitions represent null 

operations that loop back to the same state. 

2.2 The IOPE Protocol  
The IOPE Protocol part of the specification allows you to specify the behaviour of individual service 

operations in more detail.  The protocol is both a syntactic description of the service’s interface, and 

also a semantic description of how operations behave under different input and memory conditions, 

stating what outputs should be observed, and what updates should be performed on the memory, 

which is an abstraction of the implemented service’s variables. 

In more detail, the protocol consists of a description of memory, in terms of the (abstract) constants 

and variables used by the service, followed by a description of each operation, with its inputs, 

outputs, preconditions and effects.  Each operation is broken down into a number of scenarios, 

which each describe one distinct path through the operation1.  A scenario is triggered by a condition 

on inputs and memory.  All the scenarios of an operation must have conditions which are mutually 

exclusive (they don’t overlap) and exhaustive (together they cover all possible inputs and memory).  

This property is checked by the tools.  A scenario may also specify a side-effect that it has upon the 

system, in terms of assignments to memory variables, and how the outputs are bound. 

Operation withdraw 

  input: amount : Integer 

  output: result : Boolean 

      Scenario withdraw/ok 

  condition: amount > zero and amount <= balance 

  effect: balance := balance - amount, result := true 

       Scenario withdraw/blocked 

 condition: amount > zero and amount > balance 

  effect: result := false 

       Scenario withdraw/error 

 condition: amount <= zero 

  effect: result := false 

Fig. 2:  Visualising the specification of the withdraw operation (incomplete). 

                                                           
1
 Note: there is a subtle distinction between the notion of a code branch and a scenario.  Sometimes a designer 

needs to specify more scenarios than a programmer would naturally create branches for an operation; this is 
in order to force the selection of certain data in paths that eventually cause different parts of the service to be 
exercised.  The notion is quite close to the UML notion of scenario in the use case model. 



Fig. 2 visualises an operation specification (in pretty syntax, rather than the actual XML.  See also fig. 

4).  This is the withdraw operation, taken from a banking service.  The operation accepts an amount 

as input and produces a Boolean result.  It has three scenarios, of which the first, withdraw/ok, 

describes the successful withdrawal case and is triggered by a two-fold condition on the input 

amount (which must be greater than zero) and the memory variable balance (which must be greater 

than, or equal to the amount) and has a two-fold effect: the balance is decremented by amount, and 

the result is set to true.  The second scenario, withdraw/blocked, describes the unsuccessful case, 

showing how no withdrawal can be made if the requested amount is greater than the balance.  The 

final scenario, withdraw/error, describes an attempt to withdraw an invalid zero or negative amount 

(a failed precondition). The error response is typically reserved to signal failed preconditions. 

Notice how the three conditions cover all possible values of the input amount and the memory 

balance (exhaustive requirement); and none of them overlaps with any of the other conditions 

(mutually exclusive requirement).  If any conditions overlapped, the operation would be non-

deterministic (the system could behave arbitrarily); and if the conditions did not cover the whole 

input and memory space, then the operation would be blocking (for some input and memory, the 

system would crash).  The verification tool will check this. 

An operation may define zero-to-many inputs; and also zero-to-many outputs.  In the case of many 

outputs, the implemented system may return a list, or an array of results; or the SOAP or JSON 

response may wrap many outputs.  It is legal for an operation to have no inputs (e.g. if it acts only on 

memory variables).  It is legal for an operation to have no outputs (e.g. if it only updates memory 

variables).  It is only legal for an operation to have no condition, if it consists of exactly one 

universally-executed scenario.  It is only legal for an operation to have no effect, if it has no outputs, 

failures or updates to memory. 

In the above, certain transitions were styled as error responses.  This is the usual way to handle 

broken preconditions in a fail-safe way.  In this example, the failure was handled as part of the 

normal logic, by returning the result false.  This contrasts with an alternative approach, in which 

failures are treated as exceptions on the server-side.  In this case, it is possible to bind a special 

failure output, to indicate that the server has raised an exception (c.f. Not Found, or Not Authorized 

HTTP errors).  Finally, error-responses (for handling broken preconditions) contrast with implicit 

ignore-responses (for temporarily disabled operations), which are always null-operations. 

2.3  The Memory and Binding 
The Memory describes the constants and variables used to model the more detailed states of the 

system.  Note that these variables are still abstract, and do not have to follow exactly the 

implementation of the system, so long as they are sufficient to describe and model the conditions 

and effects of operations.  Symbolic constants must be declared for every constant value used 

elsewhere in the specification.  Variables may be declared to represent as much detailed structure as 

is needed to capture the desired specification.  All constants and variables are declared with a name 

given in “camelCase”, and a type given in “CapitalCase”. 

The expression language supports simple types:  Integer, String, Double, Boolean, Character, Long, 

Short, Float, Byte and Void; and also generic mathematical datatypes:  List[T], Set[T], Map[K, V] and 

Pair[K, V], where square brackets are used to enclose generic parameters.  In usage, the generics will 



be replaced by actual types, for example:  List[Integer], Set[String], Map[String, Integer], or 

Map[String, List[Integer]].  This last example shows a nested generic type.  It is possible to have 

arbitrarily nested generic constructions. 

Furthermore, it is possible for users to declare their own types, such as:  Customer, Product or 

Vehicle, but these types are uninterpreted, in that they exist, but nothing else is known about them.  

Instances of such types have unique ids.  They can be compared for equality; and so they can be 

associated with other values in map constructions. 

Memory is declared at the head of the Protocol.  It typically consists of a number of constant 

declarations, followed by a number of variable declarations, followed by an initial binding of the 

variables to constant values.  The Memory for the banking example is visualised in Fig. 3 (rendered in 

pretty syntax, rather than the actual XML):  

Memory 

  constant zero : Integer == 0 

  constant emptyString : String == “” 

  variable balance : Integer 

  variable holder : String 

  binding:  balance := zero, 

   holder := emptyString 

Fig. 3:  Visualising the declaration of memory and binding 

Constants are always declared with their constant values (see 3.1 below), whereas variables are not 

given values.  However, the binding clause declares how memory variables should be initialised (or 

re-initialised, when the system is reset).  A binding is simply a list of assignments, which execute in 

the order of declaration. 

If an operation has inputs, each scenario will also have a binding clause, to bind the inputs of an 

operation to suitable values that would typically trigger the condition of that scenario.  In this case, 

the binding clause is inserted before the condition, visualised in fig. 4: 

Operation withdraw 

  input:  amount : Integer 

  output:  result : Boolean 

      Scenario withdraw/ok 

  binding: amount :> zero 

  condition: amount > zero and amount <= balance 

  effect:  balance := balance - amount, result := true 

       Scenario withdraw/blocked 

 binding: amount :> zero 

 condition: amount > zero and amount > balance 

  effect: result := false 

       Scenario withdraw/error 

 binding: amount := zero 

 condition: amount <= zero 

  effect: result := false 

Fig. 4:  Visualising the specification of the withdraw operation (complete). 



Note that binding can assign in a relative way:  amount :> zero assigns “just more than zero”; as well 

assign in an exact way:  amount := 0.  The tools interpret such relational binding according to the 

different types (see section 3.6, below).  Above, we said that a binding should typically trigger the 

scenario, because sometimes the memory may not be in a suitable state.  In fig. 4, if the balance is 

zero, no input will trigger withdraw/ok, which is fine in this case.  The binding must be chosen so 

that the scenario will eventually be triggered, when memory is in a suitable state. 

If an operation modifies variables, or has outputs or failures, then it will have an effect clause that 

binds the posterior value of these parameters.  The effect clause is essentially a posterior binding, in 

that it consists of a series of assignments that are executed in the declared order.  The effect clause 

is always inserted after the condition, as shown in fig. 4.  The effect must typically bind all outputs, 

or bind a single failure to some error-message String. 

Binding a failure is equivalent to raising an exception, so is best used to indicate serious abuse by the 

client (c.f. 400-series HTTP errors), or inability of the server to deliver due to some internal fault (c.f. 

500-series HTTP errors).  When tests are generated from specifications with failures, these will 

expect to raise exceptions at the appropriate point (testing must check that the exception is raised).  



3. The Expression Language 
Conditions and effects contain expressions written in the expression language subset (EL) of the 

Service Specification Language (SSL).  The concepts of the EL correspond to familiar programming 

language constructions.  The kinds of expression are classified according to the meta-model of fig. 5: 

Expression  (all expressions) 

  Parameter  (atomic expressions) 

   Constant  (immutable constants) 

   Variable  (memory variables) 

   Input  (operation inputs) 

   Output  (operation outputs) 

   Failure  (operation exceptions) 

  Function  (compound expressions) 

  Assignment  (update operations) 

   Arithmetic  (arithmetic operations) 

   Projection  (pairs and projections) 

  Manipulation  (set-theoretic manipulations) 

  Predicate  (logical operations) 

   Comparison  (totally ordered comparison) 

    Membership  (set-theoretic relations) 

    Proposition  (compound Boolean logic) 

Fig. 5:  Meta-model hierarchy of the different kinds of expression. 

All expressions are either parameters, or functions.  The terminal nodes highlighted in bold font are 

the only ones used directly in specifications.  Each node models a family of related operations, for 

example, the Arithmetic node models the set of arithmetic operations:  {plus, minus, times, divide, 

modulo, negate}, whereas the Comparison node models the set of predicates:  {equals, notEquals, 

lessThan, moreThan, notLessThan, notMoreThan}.  The predicate hierarchy is elaborated in more 

detail, due to the tools’ need to reason about different kinds of predicate. 

Expressions are constructed by enclosing XML terms inside other XML terms.  The outer terms are 

functions acting on the inner terms, which should be the expected operands of the function, and 

could themselves be either nested functions or parameters.  In parameters, the name-attribute is 

the name of that parameter.  In functions, the name-attribute stores the specific operator-name 

(see above for examples) of the function to be invoked.  Names should be unique within the global 

and local scope.  For example, if an operation has an input that was inadvertently given the same 

name as a global variable, the latter will be hidden inside the operation’s scope. 

3.1 Constants 
All parameters are declared with a name and a type.  Constant parameters usually have a value, but 

if declared without a value, default initialisation rules bind the constant to a default initial value, 

corresponding to zero, false, null or empty, depending on its type.  The following XML declarations 

are therefore equivalent: 

<Constant name=”zero” type=”Integer”>0</Constant> 

<Constant name=”zero” type=”Integer”/> 



Constants play a significant part in a specification, in that they are used to set up the memory, 

defining sets of values that will become useful later during testing.  For example, the holiday booking 

specification of fig. 1 pre-defined some dates as constants, which were later used in scenario binding 

expressions to book different periods of holiday: 

<!--  some predefined dates to choose  --> 

<Constant name="twelfth" type="Integer">12</Constant> 

<Constant name="sixteenth" type="Integer">16</Constant> 

Designers are encouraged to use constants when picking out the desired input values to be used for 

different test-cases, for example, a pair of names where the second is the invalid empty String: 

<Constant name=”validName” type=”String”>John Smith</Constant> 

<Constant name=”invalidName” type=”String”/> 

Constants can also be declared of the compound types.  All the types List, Set, Map and Pair have a 

literal representation based on the natural Java printed representation of those datatypes2, using 

square brackets to surround lists and sets of values, and curly braces to surround maplet pairs, 

where the key and value parts of a pair are separated using the equals-sign.  The element separator 

in collections is always comma-space, and no other extraneous space is permitted (the parser will 

currently reject literal values that contain extra space): 

<Constant name=”emptySet” type=”Set[String]”/> 

<Constant name=”drinkSet” type=”Set[String]”>[wine, beer, schnapps]</Constant> 

<Constant name=”scores” type=”List[Integer]”>[3, 7, 12, 6]</Constant> 

<Constant name=”drinkStock” type=”Map[String, Integer]”>{wine=60, beer=350}</Constant> 

Constants of uninterpreted types are declared with some kind of value serving as the identifier for 

that instance, for example, the constant below named actionFilm refers to an instance of a user-

defined uninterpreted type called Dvd, and the instance has the unique id “dvd1”: 

<Constant name=”actionFilm” type=”Dvd”>dvd1</Constant> 

<Constant name=”romanceFilm” type=”Dvd”>dvd2</Constant> 

By convention, the ids of uninterpreted types are the first three letters of the type name, in lower 

case, followed by a unique digit, incrementing from 1.  Constant names are used to refer to these 

constants elsewhere in the specification; the id values are used to distinguish different instances 

when comparing for equality (or hashing into sets or maps). 

3.2 Other Parameters 
Variables, inputs, outputs and failures are all declared in a similar way, but without initial values: 

<Input name=”amount” type=”Integer”/> 

<Output name=”holder” type=”String”/> 

<Failure name=”error” type=”String”/> 

                                                           
2
 The tools currently use the standard Java types:  ArrayList, HashSet, HashMap to model the set-theoretic 

collection types, and the public class SimpleEntry to model the pair-type.  The latter shadows the inner type 
AbstractMap.SimpleEntry, which is not amenable to marshalling in certain web services. 



These kinds of parameter are only bound during the simulation of the specification, by the action of 

binding and effect clauses.  When a specification is parsed by the tools, name resolution is 

performed on all parameters, to ensure that all occurrences of the same name refer to the same 

parameter, wherever it occurs in the specification.  If a specification references a name that was not 

properly declared, the tools report an error.  All constants and variables are global and must be 

declared in the Memory clause; whereas all inputs, outputs and failures are local and must be 

declared in the specific Operation clause to which they belong.   

When first declared, these parameters must state their type.  Later occurrences of the same 

parameter may choose to omit the type (it is optional, and can be inferred): 

<Input name=”amount” type=”Integer”/>   <!-- first declaration --> 

<Input name=”amount”/>  <!-- later usage --> 

The two occurrences of amount above will be resolved to the same input node in the model. 

3.3 Assignment 
Assignment is the only function which causes side-effects.  All other functions have pure-functional 

semantics, constructing a new result from their inputs.  Assignment is “a kind of function” with no 

result (of type Void), which has the side-effect of binding the first parameter argument to the value 

of the second expression argument.  The legal operator-names used to perform assignment are:  

{equals, moreThan, lessThan}, explained below.  Examples of assignment include: 

<Assignment name=”equals”> 

  <Variable name=”balance”/> 

  <Constant name=”zero”/> 

</Assignment> 

<Assignment name=”moreThan”> 

  <Input name=”amount”/> 

  <Constant name=”zero”/> 

</Assignment> 

<Assignment name=”lessThan”> 

  <Variable name=”counter”/> 

</Assignment> 

The first assigns the exact value zero to a variable named balance.  The second assigns “just more 

than” zero to the input named amount.  The interpretation of this depends on the type being 

modified:  for an Integer, this is a unit increment; for a Double, a decimal fraction just greater than 

zero is assigned; for a String, a lexicographically later String value is assigned; for a Boolean, the 

truth-value is flipped.  The third assignment example is different again, in that it only has a single 

operand.   The operators {moreThan, lessThan} may be used with single Integer parameters to 

perform unit increment, or decrement.  Excluding constants, all other kinds of parameter may be re-

assigned values.  It is a semantic error to try to assign to any other kind of expression. 

3.4 Arithmetic 
Arithmetic is a kind of function describing arithmetic expressions.  The legal types used in arithmetic 

are the numeric types:  {Integer, Double, Long, Short, Float, Byte}.  The legal operator-names used to 



perform arithmetic are:  {plus, minus, times, divide, modulo, negate}.  All except negate are binary 

operators expecting two arguments, whereas negate is unary, expecting a single operand.  If not 

given explicitly, the result type of Arithmetic may be inferred from its operands. 

For example, the following sum might be used as part of the update effect in the deposit/ok scenario 

of the banking service: 

<Arithmetic name=”plus”> 

  <Variable name=”balance”/> 

  <Input name=”amount”/> 

</Arithmetic> 

This expresses the sum of the balance and amount (and this sum would have to be re-assigned to 

balance for the result to persist).  The precise meaning of each operator may also be affected by the 

type of operand.  The operator divide computes the integer quotient for Integer, but the floating 

point division for Double.  The operator named modulo computes the remainder for all types; 

similarly the operator negate reverses the sign for all types. 

3.4 Projection 
Projection is the node describing pair-construction and deconstruction.  Pairs are used to associate 

two values, such as a search key and an associated value.  Pairs are the natural elements of Maps.  

The legal operator-names used to create and manipulate pairs are:  {pair, first, second}.  For any pair 

of the type Pair[K, V] containing two objects respectively of the types K, V, the legal operand and 

result types used with a Projection are given below (expressed in pretty syntax): 

pair (key : K, value : V) : Pair[K, V] 

first (pair : Pair[K, V]) : K 

second (pair : Pair[K, V]) : V 

That is, the pair operator expects two operands and constructs a Pair instance; whereas first and 

second project out the first or second elements of a pair.  An example in XML is: 

<Projection name=”pair”> 

  <Variable name=”holder” type=”String”/> 

  <Input name=”balance” type=”Integer”/> 

</Projection> 

This constructs a new pair, of the type Pair[String, Integer], associating a balance with an account 

holder.  The result of this function, the pair-instance, could be passed to some enclosing outer 

expression, to insert the pair into a map, or to assign it to a variable, etc.  If not given explicitly, the 

result type of Projection may be inferred from its operands. 

3.5 Manipulation 
Manipulation is the node describing set-theoretic operations on collection data structures, such as 

Set, List and Map objects.  The legal operator-names for manipulating such data structures are:  

{size, insert, remove, insertAll, removeAll, searchAt, replaceAt, insertAt, removeAt}.  These apply in a 

polymorphic way to objects of the different collection types.  All manipulation operations are 

functionally pure, that is, all updates return new instances of the collection type.  For all collections, 



the operator size returns the element-count.  If not given explicitly, the result type of Manipulation 

may be inferred from its operands. 

3.5.1 List Manipulation 

For all lists of the type List[T] containing elements of the type T, the legal signatures for expressions 

manipulating list instances are given below (in pretty syntax): 

size (list : List[T]) : Integer 

insert (list : List[T], elem : T) : List[T] 

remove (list : List[T], elem : T) : List[T] 

insertAll (list : List[T], extra : List[T]) : List[T] 

removeAll (list : List[T], togo : List[T]) : List[T] 

searchAt (list : List[T], index : Integer) : T 

replaceAt (list : List[T], index : Integer, value : T) : List[T] 

insertAt (list : List[T], index : Integer, value : T) : List[T] 

removeAt (list : List[T], index : Integer) : List[T] 

These perform the obvious manipulations on a List.  Fetching and storing at indices is performed 

using {searchAt, replaceAt}.  Insertion and removal at indices is performed using {insertAt, 

removeAt}.  Basic appending is performed using {insert, insertAll} and bag-deletion and bag-

difference are performed using {remove, removeAll}. 

Note:  In common with the Z formal specification notation, the indexing of lists runs from 1..n, rather 

than the programming language convention, 0..n-1.  This means that implementations may need to 

translate index values carefully. 

3.5.2 Set Manipulation 

For all sets of the type Set[T] containing elements of the type T, the legal signatures for expressions 

manipulating set instances are given below (in pretty syntax): 

size (set : Set[T]) : Integer 

insert (set : Set[T], elem : T) : Set[T] 

remove (set : Set[T], elem : T) : Set[T] 

insertAll (set : Set[T], extra : Set[T]) : Set[T] 

removeAll (set : Set[T], togo : Set[T]) : Set[T] 

These perform the obvious manipulations on a Set that contains unique elements.  Basic insertion 

and set-union is performed using {insert, insertAll} and basic removal and set-difference are 

performed using {remove, removeAll}.  The operations involving an index are illegal if applied to a Set 

(and raise exceptions in the model). 

3.5.3 Map Manipulation 

For all maps of the type Map[K, V] containing keys of type K and values of type V, the legal 

signatures for expressions manipulating map instances are given below (in pretty syntax): 

size (map : Map[K, V]) : Integer 

insert (map : Map[K, V], pair : Pair[K, V]) : Map[K, V] 

remove (map : Map[K, V], pair : Pair[K, V]) : Map[K, V] 

insertAll (map : Map[K, V], extra : Map[K, V]) : Map[K, V] 

removeAll (map : Map[K, V], togo : Map[K, V]) : Map[K, V] 



searchAt (map : Map[K, V], key : K) : T 

replaceAt (map : Map[K, V], key : K, value : T) : Map[K, V] 

insertAt (map : Map[K, V], key : K, value : T) : Map[K, V] 

removeAt (map : Map[K, V], key : K) : Map[K, V] 

These perform the obvious manipulations on a Map.  Fetching and storing at keys is performed using 

{searchAt, replaceAt}.  Insertion and removal at keys is performed using {insertAt, removeAt}.  

Inclusion and deletion of Pair-elements are performed using {insert, remove} and map-union-with-

override and map-difference are performed using {insertAll, removeAll}.  To all intents and purposes, 

replaceAt has the same meaning as insertAt when applied to a Map, since both create a new key-

value mapping if one is not present, and both replace an old mapping with the same key. 

3.6 Comparison 
Comparison is the predicate node for performing ordered comparisons.  The legal types for the 

operands of comparison include all the ordered simple types:  {Integer, String, Double, Boolean, 

Character, Long, Short, Float, Byte}.  The legal operator-names for comparing two values of the same 

types are:  {equals, notEquals, lessThan, moreThan, notLessThan, notMoreThan}.  The operator 

notLessThan has the meaning of “greater than, or equal to”; and the operator notMoreThan has the 

meaning of “less than, or equal to”.  An example in XML is the following: 

<Comparison name=”moreThan”> 

  <Variable name=”balance”/> 

  <Input name=”amount”/> 

</Comparison> 

Comparison is polymorphic and applies to two operands of the same type.  In addition to comparing 

ordered simple types, two of the comparison operators {equals, notEquals} may be applied to a pair 

of objects of any common type.  The result-type of Comparison is always Boolean; this may be 

inferred. 

3.7 Membership 
Membership is the predicate node for performing set-theoretic relational comparisons.  The legal 

types for the operands of membership relations are the collections:  {List[T], Set[T], Map[K, V]} and 

their related generic element types {T, K, V, Pair[K, V]}.  The legal operator-names for membership 

relations are:  {isEmpty, notEmpty, includes, excludes, includesAll, excludesAll, includesKey, 

excludesKey}.  These operators are polymorphic and have the following meanings. 

The predicates {isEmpty, notEmpty} report respectively whether the collection has no elements, or 

has at least one element.  The predicates {includes, excludes} report respectively whether a 

collection contains, or does not contain a specified element.  In the case of maps, a map element is a 

pair of the type Pair[K, V], where K and V are the key and value types of the Map[K, V].  The 

predicates {includesAll, excludesAll} report respectively whether a collection contains all elements of, 

or contains no element of, another collection.  In the case of lists, element order is not significant.  In 

the case of maps, the equality of pairs is based on the whole pair, not just the key.  The predicates 

{includesKey, excludesKey} report respectively whether an indexed List or keyed Map contains, or 

does not contain, the specified index or key. 



The expected numbers of arguments to each are illustrated in the following examples (in pretty 

syntax, rather than full XML).  The same operations are applicable to more types than those shown 

here, as described in the polymorphic scheme above. 

isEmpty (list : List[T]) : Boolean 

notEmpty (map : Map[K, V]) : Boolean 

includes (set : Set[T], elem : T) : Boolean 

excludes (list : List[T], elem : T) : Boolean 

includesAll (set : Set[T], subset : Set[T]) : Boolean 

excludesAll (list : List[T], bag : List[T]) : Boolean 

includesKey (map : Map[K, V], key : K) : Boolean 

excludesKey (list : List[T], index : Integer) : Boolean 

These operations are in some cases slightly more general than the usual programming language 

predicates, for example, a List may also be viewed as a keyed collection, whose keys are the indices.  

The result type of a Membership is always Boolean; this may be inferred. 

3.8 Proposition 
Proposition is the predicate node for performing full propositional logic, that is, for expressing 

compound Boolean expressions.  These are often needed in conditions, which have multiple-part 

conditions, usually a logical conjunction, but sometimes a logical disjunction.  The legal operands for 

a proposition must have the type Boolean, and may be other predicates, or Boolean-valued 

parameters.  The legal operand-names for constructing compound propositions are:  {not, and, or, 

implies, equals}, which have the usual logical meanings. 

Two examples of complementary usage (in pretty syntax) include the following compound Boolean 

expressions, which describe a single successful case and single unsuccessful case, in conditions prior 

to withdrawing an amount from a given bank balance: 

and(moreThan(amount, zero), notMoreThan(amount, balance)) 

or(notMoreThan(amount, zero), moreThan(amount, balance)) 

These two compound expressions are the logical complement of each other, and cover the whole 

space of inputs and memory.  This illustrates the usefulness of the duality between {moreThan, 

notMoreThan} and likewise between {lessThan, notLessThan}.  The complement of a conjoined 

predicate (with and) is always a disjoined predicate (with or).  The result type of a Proposition is 

always Boolean; this may be inferred. 

Note:  Fig. 5 deliberately omits a secret internal Predicate subclass called Atomic.  This is a wrapper 

that the tools automatically place around Boolean parameters, so that these may be treated as 

nested predicates inside Propositions.  The user need not be concerned with this; it is a work-around 

to allow the tools to reason about Boolean Parameters as though they were Predicates. 

  



4. Creating a Specification 
The best way to create a specification is in stages.  We suggest the following procedure to create a 

simple ShoppingCart service specification. 

4.1 Service Outline Skeleton  
We recommend producing the outline skeleton specification first, then filling in sub-parts as needed.  

You start by picking a name for the service: this will affect the type names generated for the service 

client, and for the test-driver, so you may need to consider this. 

<?xml version=”1.0” encoding=”UTF-8”?> 

<Service name=”ShoppingCart”> 

  <Protocol name=”ShoppingCart”> 

    <Memory name=”ShoppingCart”> 

    </Memory> 

  </Protocol> 

  <Machine name=”ShoppingCart”> 

  </Machine> 

</Service> 

Note that the name-attributes of the Service, Protocol, Machine and Memory nodes must be 

consistent with each other.  The service name ShoppingCart will be used during test grounding; for 

example in the JAX-WS grounding, this will produce a Java service client called:  ShoppingCartService, 

and an API to access this client called:  ShoppingCartInterface.  The grounding will also generate a 

JUnit test-driver called:  ShoppingCartTest. 

4.2 Finite State Machine 
Next, you should sketch out the stateful behaviour of the UI, by introducing the states that you 

desire, then designing the transitions that reach other states.  At this stage, you will consider names 

for the transitions, using the request/response notation.  The following is the Machine-part of the 

above specification: 

<Machine name=”ShoppingCart”> 

  <State name=”Initial” initial=”true”> 

    <Transition name=”enterShop/ok” source=”Initial” target=”Shopping”/> 

    <Transition name=”exitShop/ok” source=”Initial” target=”Final”/> 

  </State> 

  <State name=”Shopping”> 

    <Transition name=”addItem/ok” source=”Shopping” target=”Shopping”/> 

    <Transition name=”addItem/error” source=”Shopping” target=”Shopping”/> 

    <Transition name=”removeItem/ok” source=”Shopping” target=”Shopping”/> 

    <Transition name=”removeItem/error” source=”Shopping” target=”Shopping”/> 

    <Transition name=”checkout/ok” source=”Shopping” target=”Checkout”/> 

    <Transition name=”checkout/error” source=”Shopping” target=”Shopping”/> 

    <Transition name=”clearItems/ok” source=”Shopping” target=”Shopping”/> 

    <Transition name=”exitShop/ok” source=”Shopping” target=”Final”/> 

  </State> 

  <State name=”Checkout”> 

    <Transition name="payBill/ok" source="Checkout" target="Final"/> 

    <Transition name="payBill/error" source="Checkout" target="Checkout"/> 

    <Transition name="enterShop/ok" source="Checkout" target="Shopping"/> 

    <Transition name="exitShop/ok" source="Checkout" target="Final"/> 

  </State> 

  <State name=”Final”/> 

</Machine> 



This FSM has the states:  {Initial, Shopping, Checkout, Final}.  The Initial state is also identified as 

such:  initial=true.  Every transition has a label, a source and a target state.  The captured business 

logic says that:  you can enter the shop from the Initial and Checkout states; you can exit the shop 

from any state; you can add and remove items only in the Shopping state; and you can pay your bill 

only in the Checkout state. 

Once this stage is complete, you may submit the specification to the validation tool, to check 

whether you have missed any transitions that you desire to handle explicitly. 

4.3 Protocol Operations 
Next, you should sketch out the operations in the protocol.  For each bundle of transitions having 

the same request-name, you will need an operation with that name.  For each operation, you decide 

what its inputs, outputs (and failures, if desired) should be.  The following is the Protocol-part of the 

above specification: 

<Protocol name=”ShoppingCart”> 

    <!-- memory still to be decided --> 

  <Memory name=”ShoppingCart”> 

  </Memory> 

    <!-- the interface to the service --> 

  <Operation name=”enterShop”/> 

  <Operation name=”exitShop”/> 

  <Operation name=”addItem”> 

    <Input name=”item” type=”Video”/> 

    <Output name=”quantity” type=”Integer”/> 

  </Operation> 

  <Operation name=”removeItem”> 

    <Input name=”item” type=”Video”/> 

    <Output name=”quantity” type=”Integer”/> 

  </Operation> 

  <Operation name=”clearItems”/> 

  <Operation name=”checkout”/> 

  <Operation name=”payBill”> 

    <Input name=”billingInfo” type=”String”/> 

    <Output name=”accepted” type=”Boolean”/> 

  </Operation> 

</Protocol> 

Here, we have identified seven distinct operations from the bundles of transitions that have the 

same request-name.  Of these, only {addItem, removeItem, payBill} have inputs and outputs.  The 

first two allow the user to add one item to, or remove one item from, their shopping cart and be told 

in response what quantity they have so far.  The type Video above is a user-defined type, not one of 

the standard types. 

4.4 Operation Scenarios 
Next, you determine how many scenarios each operation must have.  These are named according to 

the names of the transitions from the earlier bundles - there is a direct correspondence between 

transitions and scenarios.  Some operations may have one scenario, others may have many.  An 

example of an operation with only one scenario is enterShop, which succeeds with one path.  

Operations with solo scenarios do not require any condition; so the following is all you need to 

specify:   



<Operation name=”enterShop”> 

  <Scenario name=”enterShop/ok”/> 

</Operation> 

For each scenario in a group, you should then insert a condition satisfying the mutually exclusive and 

exhaustive requirements.  Each condition will contain a single predicate from the Expression 

Language.  The operation addItem has two scenarios {addItem/ok, addItem/error}, representing 

success and failure to pick an item.  We want success to mean when there is sufficient stock; and 

failure to mean when the item has run out of stock. 

<Operation name=”addItem”> 

  <Input name=”item” type=”Video”/> 

  <Output name=”quantity” type=”Integer”/> 

  <Scenario name=”addItem/ok”> 

    <!-- we have sufficient stock --> 

    <Condition> 

      <Comparison name=”moreThan”> 

        <Manipulation name=”searchAt”> 

          <Variable name=”currentStock”/> 

          <Input name=”item”/> 

        </Manipulation> 

        <Constant name=”zero”/> 

      </Comparison> 

    </Condition> 

  </Scenario> 

  <Scenario name=”addItem/error”> 

    <!-- we have no more stock --> 

    <Condition> 

      <Comparison name=”notMoreThan”> 

        <Manipulation name=”searchAt”> 

          <Variable name=”currentStock”/> 

          <Input name=”item”/> 

        </Manipulation> 

        <Constant name=”zero”/> 

      </Comparison> 

    </Condition> 

  </Scenario> 

</Operation> 

The complementary conditions test whether the available quantity of the input item is, or is not, 

more than zero.  The predicate used is a Comparison; it tests the result of a nested Manipulation, 

which searches a variable called currentStock (which is a map) for the quantity associated with item.   

The above expressions are not annotated with types: these can be added if desired, but may also be 

inferred from the declared types of their operands. 

4.5 Variables and Constants 
While writing conditions, which may test both inputs and variables, you will eventually need to 

introduce some variables to model system states.  These variables capture the detailed business 

logic, but are still more abstract than in any implementation.  Declare these variables in memory; 

and remember also to define a constant that may be used to initialise each variable.  

Above, we referred to the constant zero, an Integer, and also to a variable currentStock, which 

logically should be a map from videos to integers, therefore having the type:  Map[Video, Integer].  

We define these in memory: 



<Memory name=”ShoppingCart”> 

    <!-- far from complete --> 

  <Constant name=”zero” type=”Integer”/> 

  <Variable name=”currentStock” type=”Map[Video, Integer]”/> 

</Memory> 

We also need to work out what a suitable initial value for currentStock should be.  The most effective 

approach is to consider what test-cases we will need to trigger each condition above.  So we need an 

initStock with some items in large quantity, and some that are out of stock: 

<Memory name=”ShoppingCart”> 

    <!-- slightly better --> 

  <Constant name=”zero” type=”Integer”/> 

  <Constant name=”initStock” type=”Map[Video, Integer]”>{vid1=100, p2=0}</Constant> 

  <Variable name=”currentStock” type=”Map[Video, Integer]”/> 

</Memory> 

Below, we will find out that further constants and variables are needed, such as a variable to hold 

the state of the shopping cart.  This is also a map, which has an initial value that is all empty: 

<Memory name=”ShoppingCart”> 

    <!-- slightly better again --> 

  <Constant name=”zero” type=”Integer”/> 

  <Constant name=”initStock” type=”Map[Video, Integer]”>{vid1=100, 

vid2=0}</Constant> 

  <Constant name=”initCart” type=”Map[Video, Integer]”>{vid1=0, vid2=0}</Constant> 

  <Variable name=”currentStock” type=”Map[Video, Integer]”/> 

  <Variable name=”shoppingCart” type=”Map[Video, Integer]”/> 

</Memory> 

You will need to revisit the contents of memory many times.  For example, later you will find that 

you need some more constants vid1, vid2 to use as test arguments to the addItem method: 

<Memory name=”ShoppingCart”> 

    <!-- even better --> 

  <Constant name=”zero” type=”Integer”/> 

  <Constant name=”available” type=”Video”>vid1</Constant> 

  <Constant name=”unavailable” type=”Video”>vid2</Constant> 

  <Constant name=”initStock” type=”Map[Video, Integer]”> 

     {vid1=100, vid2=0}</Constant> 

  <Constant name=”initCart” type=”Map[Video, Integer]”>{vid1=0, vid2=0}</Constant> 

  <Variable name=”currentStock” type=”Map[Video, Integer]”/> 

  <Variable name=”shoppingCart” type=”Map[Video, Integer]”/> 

</Memory> 

Later, we shall return to the memory to add the initial binding of variables to constant values. 

4.6 Update Effects  
Once the scenario conditions are completed, the next step is to work out what effect each scenario 

will have.  Some scenarios will have no effect (especially ignored error-responses), but some will 

eventually bind outputs (or a failure) and update memory variables.  For this, you will create 

assignments that bind outputs and variables to their posterior values.  All assignments are executed 

serially, in the order declared.  This allows the designer to use (some) memory variables to store 

temporary results; however, each variable may only be updated once per effect (a security issue, to 

prevent designers from attempting to do complex programming in the effect-clause). 



The values to be assigned are constructed in the Expression Language, according to the operations 

needed to construct the required posterior values.  The following sketches the three-fold effect we 

want for the scenario addItem/ok:  

<Operation name=”addItem”> 

  <Input name=”item” type=”Video”/> 

  <Output name=”quantity” type=”Integer”/> 

  <Scenario name=”addItem/ok”> 

    <!-- we have sufficient stock --> 

    <Condition> 

      <Comparison name=”moreThan”> 

        <Manipulation name=”searchAt”> 

          <Variable name=”currentStock”/> 

          <Input name=”item”/> 

        </Manipulation> 

        <Constant name=”zero”/> 

      </Comparison> 

    </Condition> 

    <Effect> 

      <!-- subtract item from current stock --> 

      <!-- add this item to the shopping cart --> 

      <!-- return how many copies in the cart --> 

    </Effect> 

  </Scenario> 

  <Scenario name=”addItem/error”> 

    <!-- details omitted --> 

  </Scenario> 

</Operation> 

Each of the three updates produces quite a lot of XML in the Expression Language.  We show each of 

these steps below, first in pretty functional syntax, and then in full XML: 

currentStock := replaceAt(currentStock, item, minus(searchAt(currentStock, item), 1)) 

<Assignment name=”equals”> 

  <Variable name=”currentStock”/> 

  <Manipulation name=”replaceAt”> 

    <Variable name=”currentStock”/> 

    <Input name=”item”/> 

    <Arithmetic name=”minus”> 

      <Manipulation name=”searchAt”> 

        <Variable name=”currentStock”/> 

        <Input name=”item”/> 

      </Manipulation> 

      <Constant name=”one”/> 

    </Arithmetic> 

  </Manipulation> 

</Assignment> 

shoppingCart := replaceAt(shoppingCart, item, plus(searchAt(shoppingCart, item), 1)) 

<Assignment name=”equals”> 

  <Variable name=”shoppingCart”/> 

  <Manipulation name=”replaceAt”> 

    <Variable name=”shoppingCart”/> 

    <Input name=”item”/> 

    <Arithmetic name=”plus”> 

      <Manipulation name=”searchAt”> 



        <Variable name=”shoppingCart”/> 

        <Input name=”item”/> 

      </Manipulation> 

      <Constant name=”one”/> 

    </Arithmetic> 

  </Manipulation> 

</Assignment> 

quantity := searchAt(shoppingCart, item) 

<Assignment name=”equals”> 

  <Output name=”quantity”/> 

  <Manipulation name=”searchAt”> 

    <Variable name=”shoppingCart”/> 

    <Input name=”item”/> 

  </Manipulation> 

</Assignment> 

The first two of these update the two memory variables, currentStock and shoppingCart.  The last 

binds a value to the output quantity.  In general, if an operation has outputs, the effect should 

always bind each output to some value.  The only case where this is not necessary is when an 

Operation has a Failure node declared along with its Input and Output nodes.  This indicates that the 

operation throws an exception, to be handled by the client of the service.  Then, each scenario must 

either bind all of its outputs, or bind the Failure node to some error string constant. 

4.7 Initial Binding 
The final step is to create an initial binding for the memory variables; and to write a suggested 

binding for each scenario that has inputs.  We have only needed two memory variables in this 

example {currentStock, shoppingCart}, and these are bound as shown below: 

<Memory name=”ShoppingCart”> 

    <!-- simple constants --> 

  <Constant name=”zero” type=”Integer”/> 

  <Constant name=”one” type=”Integer”>1</Constant> 

    <!-- test values --> 

  <Constant name=”available” type=”Video”>vid1</Constant> 

  <Constant name=”unavailable” type=”Video”>vid2</Constant> 

    <!-- initial values --> 

  <Constant name=”initStock” type=”Map[Video, Integer]”>{vid1=100, 

vid2=0}</Constant> 

  <Constant name=”initCart” type=”Map[Video, Integer]”>{vid1=0, vid2=0}</Constant> 

    <!-- memory variables --> 

  <Variable name=”currentStock” type=”Map[Video, Integer]”/> 

  <Variable name=”shoppingCart” type=”Map[Video, Integer]”/> 

    <!-- the initial binding --> 

  <Binding> 

    <Assignment name=”equals”> 

      <Variable name=”currentStock”/> 

      <Constant name=”initStock”/> 

    </Assignment> 

    <Assignment name=”equals”> 

      <Variable name=”shoppingCart”/> 

      <Constant name=”initCart”/> 

    </Assignment> 

  </Binding> 

</Memory> 



This will ensure that the current stock and the shopping cart are always reset to their “clean state” 

initial values, whenever the specification is simulated and the system is reset to its initial state. 

We have three operations:  {addItem, removeItem, payBill} that require inputs.  Each of these 

consists of a pair of scenarios, representing a successful case, and an error case.  If we just consider 

for now the operation addItem, the following bindings will trigger the two scenarios: 

<Operation name=”addItem”> 

  <Input name=”item” type=”Video”/> 

  <Output name=”quantity” type=”Integer”/> 

  <Scenario name=”addItem/ok”> 

    <!-- we have sufficient stock --> 

    <Binding> 

      <Assignment name=”equals”> 

        <Input name=”item”> 

        <Constant name=”available”/> 

      </Assignment> 

    </Binding> 

    <Condition>…</Condition>    <!-- details elided --> 

    <Effect>…</Effect> 

  </Scenario> 

  <Scenario name=”addItem/error”> 

    <!-- we have no more stock --> 

    <Binding> 

      <Assignment name=”equals”> 

        <Input name=”item”> 

        <Constant name=”unavailable”/> 

      </Assignment> 

    </Binding> 

    <Condition>…</Condition>    <!-- details elided --> 

    <Effect>…</Effect> 

  </Scenario> 

</Operation> 

This is because we defined two Video constants in memory earlier:  {available, unavailable}; and 

their id-values {vid1, vid2} correspond to items in currentStock that respectively have 100 and 0 

copies in stock.  So, binding the input item to available value vid1 should trigger addItem/ok; 

conversely binding the input item to unavailable value vid2 should trigger addItem/error. 

Once this stage is complete, you may submit the specification to the verification tool, which will 

check that every variable and every input is correctly bound; and check that every specified 

operation is deterministic (does not block, or allow arbitrary choice). 

4.8 Refining Scenarios 
When generating tests using the testing tool, you may occasionally find that you have designed a 

specification in such a way that the current scenarios do not give you sufficient test cases to cover 

every state and transition of the FSM.  The test generator will suggest whether you need to increase 

the path length, or refine your scenarios.  Usually, increasing the maximum path length of generated 

test sequences is what is needed, so that the specification can exercise enough operations to set up 

the state of memory, so that every operation can eventually be triggered. 

Sometimes, however, you need to refine one of your scenarios.  This is appropriate, if you need to 

exercise more test scenarios than you have natural branches in your code, to ensure that all states of 



memory can be reached.  Refining a scenario is rather like taking a code branch, and splitting it up 

into two code branches that together cover the same original condition (but with two mutually-

exclusive conditions that cover the two parts of the original condition).  Each of the two new 

scenarios may bind its inputs differently, to help the system reach the desired memory state. 

As an example, consider the select operation in fig. 1.  Originally, the designer came up with two 

scenarios for the select operation:  {select/ok, select/error}, based on the idea that the ok response 

should happen when the user selects an in-range value (1..n) and the error response should happen 

when the user selects an out-of-range value (either 0, or greater than n). 

It was later found that the desired behaviour of the application depended on whether the user 

selected the high-index element in a list-box (in which case, the selection should disappear when 

that element is deleted), or a low-index element in a list-box (in which case, when that element is 

deleted, the selection should be transferred onto the next element).  So the specification was later 

adjusted to describe better how the application behaved. 

The original scenario select/error had a condition which tested for all invalid indices outside the valid 

selection range 1..rowCount (remembering that valid indices are in the range 1..n) 

or(notMoreThan(rowNumber, zero), moreThan(rowNumber, rowCount)) 

The original scenario select/ok had the complementary condition: 

and(moreThan(rowNumber, zero), notMoreThan(rowNumber, rowCount)) 

This could be triggered by any value in the range 1..rowCount.  Now, it so happens that the binding 

chosen to trigger this was the assignment:  rowNumber := 1 (the lowest value greater than zero).  So 

the select/ok scenario always tested a low-index selection.  When the testing tool discovered later 

that certain paths in the FSM were never covered, this was traced back to the low-index selection. 

To address the problem, the specification had to include a transition that would also test the high-

index selection case.  So, the select/ok transition was refined (and replaced) by two transitions:  

{select/low, select/high} to cover these cases.  The triggering conditions for these were respectively 

the following: 

and(moreThan(rowNumber, zero), lessThan(rowNumber, rowCount)) 

and(moreThan(rowNumber, zero), equals(rowNumber, rowCount)) 

It is clear that these two conditions partition completely the condition for the original select/ok case.  

The binding for the select/low case was still rowNumber :=1, but the appropriate triggering binding 

for the select/high case could now only be:  rowNumber := rowCount.  Afterwards, the test generator 

was used to simulate the specification again, and successfully covered all the states and transitions 

of the model. 

  



Appendix A: Reference 
 

Table 1:  Reserved function names for each expression language meta-type 

Assignment equals, lessThan, moreThan 

Arithmetic plus, minus, times, divide, modulo, negate 

Projection pair, first, second 

Manipulation size,  insert,  remove,  insertAll,  removeAll,  searchAt,  insertAt,  replaceAt 

Comparison equals,  moreThan,  lessThan,  notEquals,  notMoreThan,  notLessThan 

Membership isEmpty,  notEmpty,  includes,  excludes,  includesAll,  excludesAll,  
includesKey,  excludesKey 

Proposition not,  and,  or,  implies,  equals 

 

Table 2:  BNF of the expression language subset of the specification language 

Expression ::= Function | Parameter 

Function ::= Assignment | Arithmetic | Projection | Manipulation | Predicate 

Predicate ::= Comparison | Membership | Proposition 

Parameter ::= Constant |Mutable 

Mutable ::= Variable | Input | Output | Failure 

 

Number  Expression, having a numerical type (Integer, Double, Long, Short, Float, Byte) 

Collection  Expression, having a collection type (List, Set or Map) 

Boolean  Expression, having a Boolean type (Predicate, or Parameter with Boolean type) 

Index  Expression, having an indexing type (Integer or map key type) 

Ordinal  Expression, having an ordered type (Number or String) 

Pair  Expression, having a pair-type (map entry, or pair-construction) 

 

Assignment ::= equals(Mutable, Expression) | lessThan(Mutable, Expression) |  
                     moreThan(Mutable, Expression) 

Arithmetic ::= plus(Number, Number) | minus(Number, Number) | times(Number, Number) |  
                    divide(Number, Number) | modulo(Number, Number) | negate(Number) 

Projection ::= pair(Expression, Expression) | first(Pair) | second(Pair) 

Manipulation ::= size(Collection) | insert(Collection, Expression) | remove(Collection, Expression) | 
                     insertAll(Collection, Collection) | removeAll(Collection, Collection) |  
                     searchAt(Collection, Index) | insertAt(Collection, Index, Expression) |  
                     replaceAt(Collection, Index, Expression) 

Comparison ::= equals(Ordinal, Ordinal) | lessThan(Ordinal, Ordinal) | moreThan(Ordinal, Ordinal) | 
                     notEquals(Ordinal, Ordinal) | notLessThan(Ordinal, Ordinal) |  
                     notMoreThan(Ordinal, Ordinal) 

Membership ::= isEmpty(Collection) | notEmpty(Collection) | includes(Collection, Expression) | 
                     excludes(Collection, Expression) | includesAll(Collection, Collection) |  
                     excludesAll(Collection, Collection) | includesKey(Collection, Index) |  
                     excludesKey(Collection, Index) 

Proposition ::= not(Boolean) | and(Boolean, Boolean, …) | or(Boolean, Boolean, …) |  3 
                     implies(Boolean, Boolean) | equals(Boolean, Boolean) 

                                                           
3
 The predicates and() and or() may accept two or more Boolean arguments. 



Appendix B: Screenshots 
 

 

Fig. 6:  Home page for Cloud Service Quality Control 

 

 

Fig. 7:  State machine part of the HolidayBooking specification 



 

Fig. 8:  Fragment of the protocol part of the HolidayBooking specification 

 

 

Fig. 9:  Verification tool reporting a warning when non-determinism is detected 

 



 

Fig. 10:  Test generation tool generating multi-objective tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11:  Two views of the Java grounding, showing the generated JUnit test-driver  


