
Chapter 3

Discovery in Principle

This chapter gives a flavour of the Discovery Method, describing its
principles and how it works, compared to other approaches.

Four Principles of Discovery

Chapter 1 described some of the ideas that originally motivated the
creation of the Discovery Method. Over the years, these ideas have
been refined into a set of principles, which set the Discovery Method
apart from other less guided approaches to object-oriented analysis
and design. In fact, these principles are what any self-respecting
analysis and design method should have, if it is to succeed as a bona
fide method. There are four guiding principles, which are bound
together by two overarching themes. The four principles are:
direction, selectivity, transformation and engagement.

The Principle of Direction

The Discovery Method is a directed method, in the sense that it
describes rational sequences of steps for apprentice developers to
follow during analysis and design. This contrasts with unguided or
round-trip approaches, which do not prescribe any particular order of
development, but make general suggestions about suitable activities
and otherwise rely on the discretion and skill of the designer. In the
Discovery Method, the sense of direction is provided in several ways,
by the method’s harnessing of the bias in human perception, by its
rule-based discovery procedures and by its sequencing of activities.

The Discovery Method is so-called because every activity is codified
as a discovery procedure, that is, a rule-based technique that is
designed to uncover more information, given what is already known.
Every discovery procedure has an initial trigger, a feedback loop and
a completion criterion. The initial trigger may be the presence of
particular information, the completion of an earlier model, or the
selection of a particular architectural policy. The feedback loop is

The desirable
properties of
any method
were sketched
in Chapter 1.

Harnessing
cognitive bias
is introduced
later in this
Chapter.

First examples
of “discovery
procedures”
appear in
Chapter 6.

22 THE PRELUDE

designed in such a way as to be self-reinforcing, generating more of
the required information until a completion condition is met. In this
way, the developer knows when the activity is finished.

Each activity may generate a diagram, a text form or actual software.
These products are generically known as deliverables. Different
activities are linked on the basis of common deliverables. The
outputs of one activity serve as inputs to subsequent activities.
Partial orderings of activities emerge, leading to different discovery
paths leading from one development phase to the next. There may
indeed be more than one path through certain phases, which helps to
reinforce the conclusions reached when the paths converge on a
common result.

The Principle of Selectivity

The Discovery Method is a selective method, in the sense that it
chooses its techniques and notations carefully from all those on offer,
based on each technique’s fitness-for-purpose and the notation’s
ability to direct the developer’s mind towards a particular productive
view of the system. This contrasts with eclectic methods, which are
characterised by their uncritical borrowing of diagrams and
techniques from diverse approaches, whose analytical principles may
even stand in mutual conflict. In the Discovery Method, every
technique is critically appraised, to determine its purpose and effect
in the original context for which it was developed; and every diagram
is ruthlessly purged of divergent notational elements until it presents
a single, consistent view of the system.

As an example of the kind of problem that can be caused by
eclecticism, consider the UML class diagram. This subsumes a
number of different modelling perspectives, drawn from different
schools of design. Its attribute lists and simple associations model
the same things that used to be called entities and relationships in
entity-relationship modelling (ERM)1. On the other hand, its lists of
methods and directed associations model the same kind of functional
dependency graph that used to be called a collaboration graph in
responsibility-driven design (RDD)2. The first of these diagrams is
intended to support database design, by a process of minimising
data dependency. The second of these diagrams is intended to
support modular subsystem identification, by minimising functional
dependencies.

Now, if developers are presented with a class diagram that gives a
mixed message about the connections between the classes, how are
they expected to perform the next design step? The diagram
simultaneously portrays two conflicting perspectives of the system,
held in unresolved tension. The developers can neither see one
view, nor the other view clearly. As a result, they will be inhibited
from performing a suitable design transformation. Should they

The eclectic
generation of
methods is
described in
Chapter xx in
Part V.

Further cases
of eclecticism
in UML are
described in
an analysis of
the UML
notations in
Chapter xx in
Part V.

CHAPTER 3: DISCOVERY IN PRINCIPLE 23

minimise the data dependencies? Should they minimise the
functional dependencies? Most often, they will not even be able to
perceive that the system would benefit from a design transformation,
since the need for it is not readily apparent in the diagram. In the
end, diagrams are simply drawn and then never further analysed to
improve the quality of the design, a condition sometimes known as
“analysis paralysis” (sic).

In the Discovery Method, the data model is a distinct diagram from
the collaboration graph. Each uses a selected subset of the UML
class diagram notations, to portray a single, consistent viewpoint.
Each diagram is intended to support the particular activity for which it
was originally devised. So, attributes and simple associations play a
part in the activity that minimises data dependency during database
design, whereas collaborations (directed associations) and methods
play a part in the activity that minimises functional dependency
during subsystem design. To counter the weakening effects of
eclecticism, the Discovery Method emphasises each technique’s
fitness-for-purpose and restricts the use of each diagram to the
original focus for which it was intended.

The Principle of Transformation

The Discovery Method is a transforming method, in the sense that it
expects the final design models to look radically different from the
initial analysis models, as a result of structural and functional
transformations. This contrasts with elaborating methods, which
view the process of design as the gradual addition of concrete details
to initial analysis models, in the spirit of the seamless transition
hypothesis. The Discovery Method rejects the idea that design is
simply the further elaboration of analysis models and asserts that
analysis and design are separate concerns. Properly speaking,
analysis is discovery, whereas design is invention; and these
activities need not even be carried out within the same modelling
paradigm. In the Discovery Method, analysis is task-oriented and
design is object-oriented.

Pressing analysis models into designs results in poorly coupled
systems and inflexible designs. As an example of this, consider the
following fragment of a system developed for an estate agent
(realtor) using the “think of an object” approach. From the real world,
the developer plucks the object concepts: House, Purchaser and
Vendor. These interact in the following ways: the Vendor puts the
House up for sale; the Purchaser pays a deposit on the House; the
Vendor agrees with the Purchaser on a sale date; the Purchaser
pays the balance on the House; and the House transfers its
ownership from the Vendor to the Purchaser. This forms a tightly knit
ring of collaborations, which would require mutual references from
each of these concepts to the other, in order to support the kinds of
messages sent between them.

The “seamless
transition”
hypothesis
was described
in Chapter 1.

24 THE PRELUDE

This design is poor for a number of reasons. Firstly, it is hard to
establish the correct order of construction for these objects. The
program would need special set-up methods to initialise the various
mutually-recursive and cyclic connections in this model. Secondly, it
is difficult to see where the flow of control originates. In this model,
each of the object concepts appears to be responsible for initiating
some of the actions. In fact, the flow of control should probably
originate outside this group, in a so-far undiscovered object. Finally,
the object concepts are so tied to this particular application, that they
cannot be used elsewhere. The House object may contain
references to its Purchaser and Vendor; however these are incidental
and not intrinsic properties of a House, which properly describe such
things as its location, its building style, its size, its age and its value.
This means that House cannot be reused in other contexts that have
no Purchaser or Vendor.

In the Discovery Method, the design for the same system fragment
would end up looking quite different. None of Purchaser, Vendor or
House would contain references to the other. A mediator object,
called Sale, would link the three concepts for the duration of the
transaction and the flow of control would emanate from Sale, which
monitored the progress of the transaction. There would not exist
separate Purchaser and Vendor objects, but these would be
interfaces to a single Client object, with the advantage that the same
Client may participate in multiple Sales, selling one House and
buying a different one. The House concept could be reused in
applications that had nothing to do with real-estate transactions,
since it would model only the intrinsic properties of the building. The
structure and control flow in this design may look nothing like the
textual analysis of the process described two paragraphs above. But
this design will be traceable back to the requirements, by a process
of systematic transformations.

The Principle of Engagement

The Discovery Method is an engaging method, in the sense that it
supports high-bandwidth communication among the stakeholders
and the developers and constantly directs the focus of attention of all
the participants back onto the important issues that matter. This
contrasts with disengaged methods in which the only consultation
occurs at the start, when the analyst meets the customer to draw up
a requirements document, after which the developers produce the
software independently, in isolation from the creative pressures that
shaped the requirements. Engagement really covers several aspects
of human interaction, including participation, communication and self-
awareness.

Agile methods, such as Extreme Programming (XP), have recently
re-emphasised the importance of continuous customer involvement3.
This makes a lot of sense, because complex or subtle requirements

Techniques for
generating this
kind of design
are described
in Part III –
System
Modelling.

CHAPTER 3: DISCOVERY IN PRINCIPLE 25

take time to uncover and make explicit. As the developers produce
more systematic models of the customer’s requirements, they will
discover logical gaps in their understanding that need clarification.
Furthermore, the requirements may change, as the customer’s own
understanding grows of how the system’s capabilities might meet the
needs of the business. For this, it is essential to ensure the
continuous participation of the customer. To encourage this, the
Discovery Method actively promotes ways in which the customer can
feel involved in the process of development.

A key element of this is clear communication. The Discovery Method
promotes a continuous dialogue with the customer through early
opportunities for feedback and the use of diagrams and forms to
visualise and describe the evolving structure of the business model.
The clarity engineered through the use of simple, user-friendly
diagramming techniques fosters the desired high-bandwidth
communication in the customer’s own language. The customer is
able to propose changes and the developers are able to propose
rationalisations of the business process, in ways that both parties
understand. The need for clear communication also exists within the
developer team. Decisions about the direction in which a design
should go are easier to make when the focus of each diagram is a
single view of the system and the elements of the notation all have a
clearly defined and consistent semantics.

Engagement means more than just clear communication, however.
It also means raising self-awareness, so that the developers
understand why they are doing what they do. Developers should
never follow a method slavishly, but should engage constantly with it,
questioning why a particular diagram or technique is useful in the
current context. One of the benefits of the Discovery Method is that it
makes apprentice developers self-consciously aware of the rationale
behind the design activities they undertake, which is the first step in
becoming an expert.

Two Overarching Themes

In addition to the four guiding principles, two overarching themes
exert a more pervasive influence on the way in which the Discovery
Method is practised. It seems better to refer to these as linking
themes, rather than separate principles, because their effects can be
seen in many of the principles. The two overarching themes are:
cognition and responsiveness.

The Theme of Cognition

The Discovery Method tries to be sensitive to the way in which the
human mind perceives and manages information. According to
Gestalt theories of perception and cognition, the human mind is

Task Structure
and Task Flow
models are
used in Part I
– Business
Modelling.

They are first
introduced in
Chapter 7.

26 THE PRELUDE

constantly trying to reduce the volume of raw information presented
to it by the senses. It does this by abstracting over chunks of raw
data and labelling these chunks, so that it need only process the
labels. What is interesting is how these chunks are formed. The
Gestalt psychologists identified some important grouping rules4:

 similarity – if the next fragment of data seems much like the
last, assume it is part of the same larger, static phenomenon;

 common fate – if the next fragment of data forms some kind of
moving pattern with the last, assume it is part of the same
dynamic phenomenon;

 common onset – if a number of fragments of data seem to
begin at the same moment, assume they are part of the same
parallel phenomenon;

Figure 3-1: An Experiment in Perception5

These and other principles explain how we perceive visual images,
for example. A computer image is made up of raw pixels of different
colours. By the first grouping rule, we identify neighbouring pixels
that have the same colour as belonging to the same coloured patch.
By the second grouping rule, we identify chains of pixels that
describe straight and curving lines. By the third grouping rule, we
identify more complex textures, such as crosshatched shading. In
the end, we do not perceive the raw pixels, but instead perceive the
shapes and outlines. The “figure-ground effect”6 describes how
certain coherent shapes become detached from the background.
This is the process of visual abstraction. Look at the image of a
woman in figure 3-1 and see how these grouping principles apply, in

The Gestalt
theory of
cognition was
introduced in
Chapter 1.

CHAPTER 3: DISCOVERY IN PRINCIPLE 27

the way your mind naturally and subconsciously creates patches,
lines and textures out of raw pixel data.

While this grouping is absolutely necessary to simplify and interpret
the raw input, it also introduces a bias, forming certain abstractions
and ruling out other ones. All human perception inevitably introduces
some kind of bias. This is demonstrated by the way in which we can
be fooled into making categorical judgements about ambiguous raw
input. This was investigated by the early Gestalt psychologists, who
used ambiguous images (optical illusions) to see what their test
subjects perceived in them. The image of a woman in figure 3-1 is in
fact a famous ambiguous image. Stare at this again for a moment
and decide how old you think this lady is, before continuing to read
the following paragraphs.

You have just conducted an experiment in visual perception, with
yourself as the test subject! Most people, when staring at this image,
see one of two possible pictures:

 a pretty young lady, looking over her right shoulder;

 an ugly old woman, looking ahead and downwards.

Which of these did you see? The reasons why you may have seen
one and not the other have to do with low-level grouping decisions.
Now go back and see if you can perceive the opposite interpretation
of the image. With prompting, some people can see both the old and
young woman, but others cannot, since they are locked into their first
perception of the image, as Gestalt theory predicts.

In both images, the woman appears to be wearing a thick fur stole
and a headscarf, with a feather in her hair. However, if you focus on
the area of the face, the same areas can be perceived as a chin and
exposed neck in one interpretation, or as a hooked nose and
angular, sunken chin in the other interpretation. The near-horizontal
line in the bottom half of the image can be interpreted either as a
necklace on the young lady, or as the thin pressed lips of the old
woman. The rather indeterminate shape just below the hairline in the
centre of the image can be interpreted as the downcast left eye of the
old woman, or the left ear of the young lady.

The categorical perception of the whole image is based on early
subconscious interpretations of its parts. If you thought the line was
a mouth, you would tend to see the old woman. If you thought the
centre shape was an ear, you would tend to see the young lady.
Other parts of the image tend to reinforce one or other view. For
example, the set of the shoulders tends to reinforce the sunken face
of the old woman. However, the backward curl of the feather tends
to reinforce the turned away face of the young lady. These
influences come from the overall sense of perspective, which itself is
a higher-level mental construction.

28 THE PRELUDE

From this, we learn that our initial low-level interpretations form the
building blocks for all higher-level interpretations and so bias all
subsequent perception. Once our minds have established a
framework, this has a filtering effect on how new data is perceived.
Our minds therefore tend quite naturally to jump to early conclusions,
which tend to persist. According to Gestalt theory, it is difficult to
undo a first perception, because this requires more mental effort,
rather like swimming upstream against the current. The human mind
prefers to go with the flow, because this conserves mental resources.

The Discovery Method seeks to be sensitive to the natural bias and
limitations of the human mind in the way ideas are formed and
processed. As an example of this, the Discovery Method explicitly
advises against creating an object model from the concepts found in
the business domain during the analysis phase. This is because
fixing early object abstractions is dangerous, establishing certain
concepts and precluding others. The method seeks to delay the
fixing of object abstractions, emphasising the plasticity of concepts
until these can be properly evaluated. At other points, the method
deliberately seeds certain productive concepts, rather like the seed
crystal in a crystal-growing kit, around which a whole framework of
objects will eventually grow. Generally, the method seeks actively to
direct the focus of attention in all of its techniques.

The Theme of Responsiveness

The Discovery Method strives to be responsive to different situations,
accepting change as a natural fact of life. Other agile methods have
highlighted the importance of embracing change7. In Extreme
Programming, this refers to maintaining a positive attitude in the face
of constantly shifting customer requirements. Rather than resist late
modifications to the specification, the XP method accepts that such
change is inevitable and responds by allowing constant modification
of the code-base, supported by a rigorous retesting policy.

The ability to adapt to changing requirements is also important in the
Discovery Method. However, this is handled in a slightly different
way. One of the advantages of following a task-oriented approach in
analysis is that changes in system requirements usually come in
task-sized chunks, each based around a single business function.
The customer may ask at a late stage to have new tasks supported
by the system. This is accommodated in the architectural design,
which anticipates the addition, removal and modification of major
business functions (which typically access common data services).
The early modularisation of business functions allows each task to be
developed separately, possibly by different teams. The main delivery
model is incremental, also in terms of tasks.

Elsewhere, the Discovery Method seeks to remove obvious barriers
to change. One of the biggest, but least recognised problems in

Seeding object
concepts is
described in
Chapter xx in
Part II.

CHAPTER 3: DISCOVERY IN PRINCIPLE 29

UML-based methods is the way in which the diagrams themselves
pose obstacles to change and so inhibit progress. If developers
invest great effort in large diagrams with complex annotations, they
will be reluctant to change these when alternative concepts are
proposed. For example, the UML sequence diagram is one of the
most fragile models, which has to be redrawn every time a new
object is invented, or it is realised that the flow of control proceeds in
a slightly different order. Large, complex and fragile kinds of diagram
should be avoided. Small, simple and local diagrams should be
promoted instead. It should always be possible to throw a diagram
away without losing the system.

The Discovery Method is responsive in another way, in that it adapts
to different software engineering processes and in-house styles of
organisation. A single person, a developer team, or several teams
working semi-independently may all benefit from following the
Discovery Method. The method can be applied within lightweight
agile processes having almost no overheads, or within more heavily
monitored software engineering processes. It adapts readily to any
of the waterfall, spiral or fountain software lifecycle models. The
reason why it can do this is because it has no monolithic global
process of its own. Rather, the method consists of sets of discovery
procedures, which connect at common deliverables. Users of the
method are free to pick different elements of the method, so long as
a consistent subset of connected activities and deliverables is used.

The Discovery Method is therefore more flexible than XP in the ways
in which it can be adopted. As a kind of process, the main weakness
of XP is that its component parts are critically interdependent. If one
practice is omitted, the whole edifice collapses; and this is supported
by anecdotes from programmers working in projects where XP was
only partly adopted8. The problem is that XP rigidly prescribes the
organisational process, but organisations usually want to be more
flexible. On the other hand, XP is very flexible about the logical
process, trusting that a suitable design will emerge, whereas this
should be agreed and prescribed up-front, even if it undergoes some
change during development.

Finally, the Discovery Method adapts to different contexts of usage
and the nature of the systems engineering problem. Altogether there
are more than sixty different techniques described in the Discovery
Method, this does not mean that every project should use all of them.
Some will be more appropriate and others less so, according to the
needs of the project.

Review Exercises

1. In software engineering methods, why do designers produce
diagrams? (Moderate)

Software
engineering
processes are
discussed in
Chapter xx in
Part V.

The practices
of XP are
shown to be
self-supporting
in Chapter xx
in Part V.

30 THE PRELUDE

2. What is analysis paralysis? (Easy)

3. How does an awareness of cognitive bias permeate the two
principles of selectivity and engagement? (Hard)

4. “The Discovery Method and XP take opposing views on the
organisational and design processes”. Discuss. (Moderate)

5. What is the proper role of an initial requirements document in
the Discovery Method? (Hard)

Bibliographic Notes
1 Peter Chen devised the Entity-Relationship Modelling technique for

normalising sets of data (Chen, 19xx). Entities grouped together sets
of indivisible attributes. Relationships could be binary, ternary or
higher and showed the multiplicity of entities at each end.

2 Rebecca Wirfs-Brock and her colleagues devised the Responsibility-
Driven Design technique for identifying and restructuring object
concepts (Wirfs-Brock et al., 1990). A collaboration was a directed
relationship between one class and another. A collaborator was a
class that provided services to another client class.

3 One of the famous practices of XP, this tenet used to be known as
the “on-site customer”. In reality, it is often hard to keep your
customer on-site, as he has his own job to do (Beck, 2000).

4 These principles were first identified by the early Gestalt
psychologists investigating visual perception (Koffka, 1930). They
have since been found to apply to auditory perception and general
human cognition.

5 This particular image appears in a number of different sources.
6 The figure-ground effect was a term coined by the early Gestalt

psychologists (Koffka, 1930) to describe our ability to detach objects
from the background in visual perception.

7 The inability of conventional methods to accept late changes in
requirements is one of the driving forces behind agile methods. The
call to “embrace change” is another tenet of XP (Beck, 2000).

8 See Matt Stevens and Doug Rosenberg’s detailed critique of XP in
their book, Extreme Programming Refactored: the Case Against XP
(Stevens and Rosenberg, 2002).

