
Chapter 4

Discovery in a Nutshell

This chapter gives an overview of the Discovery Method, describing
the activities carried out in each of its four overlapping phases.

The Phases of Discovery

The activities of the Discovery Method cover the same stages in the
software lifecycle that are usually known as: requirements capture,
systems analysis, unit design, systems design, implementation,
testing and maintenance. However, it should not be assumed that
these activities are grouped into stages that are completed in a
strictly linear order. Indeed, different parts of the developing software
system may progress at different rates, and new elements may
always be added later to a working system prototype.

For this reason, we try to avoid referring to different “stages” of the
Discovery Method, as though these were the larger steps in some
overall process. Instead, the activities of the Discovery Method are
grouped into four phases, which focus on different aspects of the
lifecycle. The grouping relates to the purpose of the activity, not to
the timing of its execution, which is controlled by different criteria.

The four phases of the Discovery Method are: Business Modelling,
Object Modelling, System Modelling and Software Modelling, named
according to their main emphasis1.

The Business Modelling Phase

The Business Modelling phase is where a project is set in motion. It
is assumed that some external customer has approached a software
house, with a request to build a software system. The goal of
Business Modelling is to explore the customer’s requirements fully,
capturing not merely the initial narrow specification of the system’s
presumed operations, but a much broader structured model of the
business context in which the system will operate2. This allows later

The ordering
of discovery
procedures
was discussed
in Chapter 3.

Different
software
lifecycles are
discussed in
Chapter xx in
Part V.

Part I covers
Business
Modelling.

32 THE PRELUDE

negotiations to determine the scope of the eventual software system,
taking into account possible ways in which the customer’s business
could be restructured to operate more efficiently. Diagrams and text
documents are produced which capture the essential business
processes. The Business Modelling phase also generates a contract
for building the system and a plan for incremental delivery, ordered
by priority.

The protagonists are known as the developer and the customer. In
fact, there will often be many representatives of both sides, but it is
easier to think in terms of stereotypical roles. The developer and
customer enter into an initial discussion to establish the grounds for
wanting the software system. After this, a period of dialogue ensues
between the developer and customer, in which the nature of the
customer’s business is explored in detail. It is most common to
conduct this investigation through a series of interviews, but other
kinds of interaction are possible, including holding workshops.

Different styles of non-directive and goal-directed interviewing are
practised, triggered by signals in the discussion. It is extremely
important to allow the concerns of the customer to emerge naturally
and completely. It is considered very bad form for the developer to
indulge in presumptive guesswork and base questions on a partial, or
assumed understanding of the customer’s business. The dialogue
will eventually elicit:

 the critical concerns that require the software system

 what the various stakeholders want from the business

 a completely structured model of the business and workflow

 a rationale for why the business is conducted in this way

Descriptive terms use the customer’s preferred language. Much of
the early interviewing is spent learning this language and defining
terms that describe business tasks, business stakeholders and the
physical objects and documents used in the business. A dictionary
of terms is constructed, using a binary patterning model that
encourages tree-structured concept spaces.

At the same time, the developer performs a task-oriented analysis of
the business. In this, each major business function is modelled as a
task that involves one or more of the stakeholders and affects one or
more physical objects or documents used in the business3. The
stakeholders are modelled as actors and the documents as objects.
The purpose of this analysis is twofold. Firstly, it underpins one of
the more important goal-directed interviewing techniques and fosters
the complete exploration of the business. Secondly, it allows all
relationships between tasks, actors and external objects to be
established and expressed in structured models, collectively known
as task diagrams.

Interviewing
techniques are
described in
Chapter 6 in
Part I.

Task structure
and task flow
diagrams are
described in
Chapter xx in
Part I.

CHAPTER 4: DISCOVERY IN A NUTSHELL 33

Alongside the task diagrams, semi-formal textual descriptions, known
as narratives, are produced for each business task. Their primary
function is to relate how each business task is carried out, in the
preferred language of the customer, using agreed terms defined in
the dictionary. Their secondary function is to capture constraints on
the actors and objects involved, which affect the order in which tasks
may be carried out. Sets of tasks fall naturally into partial orders,
according to their pre- and postconditions. From this, different
possible orderings are constructed and evaluated.

Throughout the Business Modelling phase, the developer presents
task diagrams and narratives to the customer for comment. The
customer becomes self-consciously aware of the structure and
workflow of the business and prompts the developer to fill in gaps in
the models. Once it is agreed that all primary information has been
captured, the developer is free to propose logical rationalisations of
the customer’s business4. A process of negotiation ensues, in which
non-functional concerns may play a significant part. Task diagrams
are restructured, with the addition or deletion of tasks, so long as the
core business is preserved. Eventually, the scope of the system is
determined in the context of the revised business model. From this
point, the task and narrative models constitute a formal specification
for the system. They have a fully logical interpretation. They support
formal reasoning and the generation of tests.

The last issue to be decided is the schedule. Tasks are prioritised for
delivery in an incremental fashion, allowing the system to be built and
tested iteratively. The priority of each business task is decided using
a cost-benefit matrix5, which weights the customer’s and developer’s
contrasting concerns. The delivery schedule is so arranged as to
guarantee the completion of core components, while allowing some
flexibility for optional components.

The Object Modelling Phase

The Object Modelling phase is where the viewpoint gradually shifts
from task-oriented analysis to object-oriented design. The goal of
Object Modelling is to identify robust candidate object concepts from
the task descriptions and progressively refine these down to a
collaborating society of software components. Different viewpoints
are used to seed specific ideas for the front-end controller objects
and the back-end data managers, which can be imposed top-down
by architectural decision, if required. Further seeding for the middle
tier of objects comes from catalogues of frequently used kinds of
object and ideas for local collaborating clusters of objects are taken
from the design patterns catalogue. The list of nouns from the
dictionary of terms also provides a rich set of business metaphors
that might be turned into objects. All of these are submitted to the
general object modelling approach, which uses responsibility-driven

Narratives are
described in
Chapter xx in
Part I.

The formal
semantics of
the models
used in the
Discovery
Method are
described in
Chapter xx in
Part VI.

Drawing up a
contract is
described in
Chapter xx in
Part I.

Part II covers
Object
Modelling.

34 THE PRELUDE

design (RDD) to identify productive object concepts in a bottom-up
rule governed style6.

The input to Object Modelling is a set of task specifications. This set
may change as the customer’s requirements evolve, so it is important
to establish a suitable open-ended architecture for the system, into
which new tasks may be plugged at a later stage. The architecture
of the system is designed around the roles of the business
stakeholders who carry out the various business tasks. Initially, the
interfaces used by particular actors are isolated and the tasks carried
out by each actor are modularised, using the Command design
pattern. Alternatively, if the nature of the business is highly modal,
such that it is desirable to restrict the order in which tasks may be
selected, then the State design pattern is used instead. The most
commonly-occurring architecture in business information systems is
one in which the top layer is characterised by command-objects and
the next layer down is populated by objects that model the particular
business domain, which function as gatekeepers, granting or denying
permission for the top-level tasks to execute.

This middle tier of objects encodes the business logic of the system.
Seed object concepts come from the actors and objects named in the
narratives; however, these concepts are often transformed later into
more abstract components by the rules of RDD. If an actor or object
is named in the preconditions for a narrative, this is strong evidence
that the concept is a gatekeeper, since it can enable or prevent the
execution of a task. For each such gatekeeper, a task flow diagram
is found which describes the order in which this object naturally
participates in the complete set of tasks that affect it. A deterministic
procedure then converts the flow diagram into a state diagram for the
object, by precisely inverting the nodes and arcs of the flow diagram.
Gatekeeper state diagrams model important states of the business
process, which enable or prevent transactions. Eventually, a coding
idiom will translate these diagrams into software.

The focus of attention now shifts to the data services supported by
the system. Not all systems need detailed data modelling, especially
if they are single-user systems, or handle only small amounts of data.
For this, the object persistence mechanisms (such as Java’s object
serialisation) provided by the programming language may suffice.
However, most business information systems rely on large amounts
of data, recording the customers and suppliers of the business,
together with details of contracts, sales and invoicing. All this
information is usually stored in sets of data tables, where each table
corresponds to a collection of objects of the same type. All of the
business tasks typically access common data services, so a common
interface to these is usually required.

The kinds of data to be stored are determined. Gatekeeper-objects
are prime candidates for data storage, since they hold the state of

User interface
modelling and
the top-level
command
structure are
described in
Chapter xx in
Part II.

Business logic
modelling and
gatekeeper
objects with
state are
described in
Chapter xx in
Part II.

CHAPTER 4: DISCOVERY IN A NUTSHELL 35

the business process. Other data storage concepts come from the
physical documents used in the business and also from the actors,
about which the system may need to record information. There is no
simple one-to-one correspondence between physical objects and
software data concepts. A business document may contain multiple
or repeated groups of data that would be split over several database
tables, for example.

The data model may be constructed following two quite different
approaches, using either object-association modelling (OAM), or
event-driven design (EDD), which also establishes a particular
pattern of communication among the objects. Both approaches seek
to reduce the data to a set of tables in (at least) third normal form. In
OAM, associations between objects are manipulated to reduce the
dependency between them and the data model is progressively
normalised. In EDD, an object-event table is used to coordinate
groups of objects affected by the same events, and the data model is
constructed in normal form.

The output from Object Modelling is a fine-grained collection of
candidate objects, which each perform a limited function and rely on
other collaborator objects to help them fulfil their responsibilities. The
reason for driving down the size of object components is twofold:

 they individually perform an obvious function;

 they are not strongly tied to their original context.

Responsibility-driven design is used to break down object concepts
until they reach this optimum granularity. Candidate objects are
proposed and named according to the roles they play in the system.
Object roles are merged and split according to a detailed set of rules,
until each concept manages a coherent set of responsibilities. The
rules require that an object bear some responsibility for knowing,
performing or enforcing in the system. There is a tendency for data
objects to manage information, while control objects perform tasks
and gatekeeper objects enforce constraints, although these roles
overlap in certain objects. Each object should manage between two
and seven responsibilities and larger objects are split up in different
ways, according to a judgement about internal cohesion. The key
metaphor of subcontracting is used to establish channels of
communication with collaborator objects.

Candidate objects are logged on object role cards, which list the
responsibilities, collaborators and data attributes of the concept. The
advantage of doing this, over drawing some kind of communication
diagram, is that the developer has a much greater freedom to insert,
delete or replace objects, since the impact of each modification is
relatively small. This is vital during the early stages of object
identification, when concepts are plastic and the overall shape of the

Data models
and the
normalisation
of databases
are described
in Chapter xx
in Part II.

Responsibility-
driven design
is described in
Chapter xx in
Part II.

Object role
cards are
described in
Chapter xx in
Part II.

36 THE PRELUDE

system is still fluid. The graph of inter-object communications can
always be inferred dynamically from the current set of object role
cards. Later, during the system layering activity, transformations will
introduce further new objects and modify the flow of control. The
object role cards also provide a valuable resource against which the
functional specification expressed in the narratives can be compared.
The current model of the system can be simulated by role-play, to
check that all the business functionality has been captured and
faithfully distributed over the set of objects. The narratives provide
stories to execute and these are tested against the responsibilities
owned by objects.

The System Modelling Phase

The System Modelling phase is where the viewpoint shifts from the
design of small-scale components to the optimisation of large-scale
systems. The goal of System Modelling is twofold: to modularise the
current design, identifying natural layers and subsystems; and to
maintain a longer-term software investment, known as a framework.
System layering techniques transform the strongly coupled graph of
object roles into a weakly coupled and hierarchically layered system
of classes. At the same time, the design for the current system is
merged with any pre-existing software framework, which may result
in modifications to the system design or to the framework. When the
current design settles, the existing software framework is refactored
to incorporate generic structures from the new system that have a
longer-term value and useful components are also harvested.

The input to System Modelling is a set of object roles, which are
linked by collaboration to other roles. Each object role represents an
aspect of some prototypical object in one of its system interactions.
It is not initially clear whether each role will eventually become a
class, or an interface representing part of the behaviour of a class.
The collaborations between object roles are typically dense, due to
the earlier sharing out of responsibility. The next few activities
manipulate the graph of object roles, now viewed as candidate
classes, in order to decouple some of the more strongly connected
parts of the graph.

One of the first activities establishes an overall picture of functional
dependency between the candidate classes. This is a kind of class
diagram called a collaboration diagram7, in which each candidate
class is linked by an arrow to those on which it depends for some of
its behaviour. That is, an arrow is drawn from each candidate class
to each collaborator that was listed on the corresponding object role
card. The meaning of the arrow is a functional dependency, that is,
the connection is motivated by the needs of instances of one class to
invoke methods on instances of the other class. If nothing more

Part III covers
System
Modelling.

Collaboration
diagrams are
described in
Chapter xx in
Part III.

CHAPTER 4: DISCOVERY IN A NUTSHELL 37

were done, each arrow would be converted into a class reference in
the code and into an object pointer at runtime.

The next activity is called system layering. It applies three kinds of
design transformation8. With each modification, the flow of control
changes and the set of object role cards is also updated. The first is
the aggregation transformation, which seeks out strongly coupled
groups of classes and closed rings in the collaboration graph. A
mediator-class is invented to manage the collaboration among the
closed group and connections between the members of this group
are deleted. The second transformation is server generalisation, in
which classes offering overlapping services are generalised, creating
(possibly abstract) superclasses. The third and most difficult
transformation is client generalisation, in which classes invoking
similar sets of services are generalised, creating superclasses with
generic algorithms. The latter two transformations merge sets of
paths between classes, and so reduce the overall coupling.

During this activity, it is often found that functional dependency and
data dependency exercise conflicting design forces. The optimised
collaboration graph may have more connections than strictly allowed
in the data model. To avoid breaking with third normal form, a novel
Query Set design pattern is applied to support collaborations that run
in a direction counter to that required by data normalisation, without
increasing the overall coupling.

All of these transformations greatly reduce the number of direct
collaborations, by identifying new intermediate abstractions, which
eventually have a useful role to play in the system. The resulting
system design is found to contain numerous instances of design
patterns, such as the Mediator, Template Method, Command, Chain
of Responsibility and Composite patterns, indicating the decoupled
and generic quality of the design. The design has the structure of a
white-box framework, that is, a hierarchically layered system of
classes with many intermediate points that can be specialised by
inheritance, to adapt it for similar kinds of application. Elements of
this framework and other components are harvested for reuse.

A software framework typically starts to stabilise after three or more
systems of the same kind have been built. Before this point is
reached, the developer has to decide whether the current system
should be adapted to the existing framework, or whether it is better to
deliver the system according to its optimal design and schedule the
immature framework for maintenance at the end of the project.
Various rules and heuristics are provided to estimate the costs of
different kinds of refactoring, using measures similar to those for
estimating algorithmic complexity. Some examples are given of how
the particular functions of a specific business may become more
abstract and general operations in a longer-term framework.

System
layering is
described in
Chapter xx in
Part III.

Merging with
the data model
is described in
Chapter xx in
Part III.

Frameworks
are described
in Chapter xx
in Part III.

38 THE PRELUDE

A framework starts life as a white-box framework with points at which
it may be specialised by subclassing, called its hot spots. When a
framework is still evolving, this is the most productive architecture,
since it allows new levels of generalisation and specialisation to
emerge. Each hot spot is a partially abstract class, which expects to
be specialised by overriding certain outline methods in subclasses.
Such adaptation requires a detailed knowledge of the flow of control
within the framework (hence the term white-box) and carries the risk
of accidentally replacing the wrong methods. For this reason, once a
framework has stabilised, it is usual to transform it into a black-box
framework, by converting all the hot spots into strongly typed
interfaces. The black-box framework is specialised more safely by
inserting components with the expected methods.

The Software Modelling Phase

The Software Modelling phase is where the viewpoint shifts from
system-level design to actual coding and testing. The goal of the
Software Modelling phase is to translate the optimal design faithfully
into program code structures in one of the many popular object-
oriented languages, such as Java, C++, Smalltalk, or Eiffel.
Particular translations of some design concepts are presented as
coding idioms. These may be specific to a particular programming
language. The semantics of operations are enforced through
assertions and testing is carried out at different levels as code
modules are completed.

The choice of programming language is considered. Non-functional
requirements may dictate that the system be delivered for a particular
platform. Otherwise, concerns such as the availability of existing
frameworks and components may play a part. Some languages
provide uniform reference semantics for their objects; some provide a
mixture of reference and value semantics. Some provide automatic
memory-management and others require the programmer to allocate
and free blocks of memory. Issues of safety and maintainability are
also considered, along with the need to interoperate with other
systems, such as a database or a web browser.

The classes and interfaces of the final design are translated into
code outlines. While the translation of classes and attributes into
code is quite straightforward, some extra consideration is given to the
semantics of the inter-class references9. Long-term connections
should remain as references, but short-term connections could be
made available through method arguments. Exclusive references
can be represented differently in languages with value semantics.
Shared references need special treatment in languages without
memory management. The order of construction for each class can
be determined by examining the lifetimes of instances, to see
whether these overlap, or wholly contain each other. If event-driven

Part IV covers
Software
Modelling.

Translation of
references is
considered in
Chapter xx in
Part IV.

CHAPTER 4: DISCOVERY IN A NUTSHELL 39

design (EDD) was used earlier, this information is already available.
The length of object lifetimes also determines whether a class has
responsibility for creating and deleting instances of other classes, or
whether it simply receives them as construction arguments.

Methods are implemented for each class. Each responsibility will be
refined into possibly several methods dealing with the same theme.
For example, “knowing my name” may be refined into a constructor
that initialises the name and an access method that allows clients to
see the name. Method arguments are determined according to the
earlier judgement about permanent and temporary references.
Methods should be documented, preferably using a commenting
style from which automatic documentation may be extracted. Third
party maintainers may require complete end-to-end communication
diagrams once the code has stabilised. Good documentation should
describe the overall design rationale behind the software, not just
document the usage of each method.

To preserve the semantics of operations, the pre- and postconditions
in the narratives are converted into executable assertions. Likewise,
the data invariants expressed on the object role cards are encoded.
These assertions may be tested always, or conditionally. A key
metaphor is programming by contract10, which requires a method to
deliver a valid result if it was called with valid arguments. Clear rules
for checking assertions, raising and handling exceptions are
suggested by this metaphor.

Three kinds of testing are possible with diagrams used in the
Discovery Method. Protocol testing is a kind of class unit testing that
robustly validates sequences of method invocations, using the state
diagrams as specifications. Flowgraph testing exercises all branches
of major business functions, using either the narratives, or
communication diagrams as specifications. Acceptance testing
allows the customer to review early prototypes of the user interface,
as well as the final delivered system. Tests are conducted against
the narratives, as specifications.

Review Exercises

1. Why are object role cards the best way to record object
concepts in the Discovery Method? (Easy)

2. In an interview, the developer asks the customer, a librarian:
“Tell me how you borrow and return books in your library”.
Why is this a bad move? (Moderate)

3. What system layering transformations might have been used
to correct the ill-structured estate agent (realtor) example in
Chapter 3? (Hard)

Translation of
methods is
described in
Chapter xx in
Part IV.

Programming
by contract is
described in
Chapter xx in
Part IV.

Testing
methods are
described in
Chapter xx in
Part IV.

40 THE PRELUDE

4. In a theatre seat booking system, identify a command object
and a gatekeeper object. (Moderate)

5. Is identifying responsible object concepts bottom-up in conflict,
or in harmony with the top-down imposition of command and
data objects? (Hard)

Bibliographic Notes
1 In earlier versions of the Discovery Method, these were known as

Task Modelling, Object Modelling, System Modelling and Language
Modelling (Simons, 1998a; 1998b). The revised names hit the target
concept spaces more centrally.

2 Ivar Jacobson emphasised the importance of modelling the business
context in his Business Process Reengineering (Jacobson, 1996).

3 This description may sound initially similar to UML’s use cases, but
the Discovery Method’s tasks are completely compositional, more like
the tasks in SOMA (Graham, 1994).

4 In this respect, the Discovery Method adopts the forgotten wisdom of
older structured methods, such as SSADM (Downes et al., 198x),
which spend some time on logical restructuring.

5 This uses a spreadsheet-based technique similar to Tom Gilb’s
impact estimation charts (Gilb, 199x).

6 This includes Kent Beck and Ward Cunningham’s CRC-card
modelling technique (Beck and Cunningham, 1989) and Rebecca
Wirfs-Brock’s focus on identifying objects as agents with responsibility
(Wirfs-Brock and Wiener, 1989).

7 This is the original sense in which RDD used the term collaboration
diagram, that is, a graph linking classes to their collaborators (Wirfs-
Brock et al., 1990). UML later hijacked this term to refer instead to a
snapshot of a group of object instances and the messages sent
between them (Booch et al., 1998). The UML2.0 specification now
refers to such snapshots as communication diagrams, which frees up
the term collaboration diagram again.

8 These design transformations are adaptations of transformations
originally used in the later part of RDD (Wirfs-Brock et al, 1990).
Much of this early wisdom has gone unnoticed, until now.

9 This semantic analysis of references was first suggested in the
Fusion method (Coleman et al., 1994).

10 Programming by contract was first realised in the Eiffel language by
its designer, Bertrand Meyer (Meyer, 1988; 1996).

