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Abstract

Poppy is a compact and expressive object-oriented language.  The type system for Poppy is 
based on the second-order theory of F-bounds, rather than a first order theory of subtyping.  
Classes are treated as parametric polymorphic families of types, possessing at least a given 
interface.  While the formal treatment of polymorphism would normally require the use of 
type parameters, Poppy hides this in its surface syntax, using systematic type substitutions on 
class identifiers to describe the propagation of new types into variables, when these are bound 
to more specific objects.  This is most apparent during inheritance, where the self-type 
evolves automatically.  The type system checks that each method invocation is correctly typed 
in the calling context, by propagating specific types into general variables.  As a result, Poppy 
naturally supports second-order classes, whose methods are recursively closed over each new 
class, avoiding the problems associated with covariant argument restriction in type systems 
based on first-order subtyping. 

Disclaimer

Readers should note that this document is a work in progress.  It is being extended and 
modified as the design of the Poppy language is worked out.  Certain sections of this 
manifesto may be incomplete.
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1. Language Syntax

This section introduces the syntax of the Poppy language.  Programs are constructed out of 
classes, which are defined in separate textual units.  A class defines a family of data types, 
which possess a common set of attributes and methods (variables and functions).  Classes are 
organised according to their similarities and differences in a classification hierarchy.

1.1 Class Definition

The concrete syntax of the Poppy language is designed to be similar to that of other popular 
object-oriented languages, such as Java, C# and C++, while the encapsulation policy is 
influenced more by Eiffel.  Poppy adopts certain standard conventions on the visibility and 
allocation of attributes and methods, reducing the number of explicit keywords needed to 
indicate private or public, abstract or concrete, and shared (static) or replicated elements.  To 
this extent, Poppy strives for minimalism in its syntax.

However, certain kinds of declaration are made more explicitly than in other languages.  The 
standard form of a class definition begins:

class (ClassName self) {
…

}

in which both the ClassName and the self-referential variable standing for the current 
object are declared explicitly.  This mimics the style of variable declaration elsewhere in the 
language and is a point of consistency.  The self-reference is unbound and may be 
redirected onto instances of this class, or of descendant classes.  Likewise, the ClassName is 
treated as the polymorphic self-type of the current class, within the class definition, and may 
be subsequently adapted to descendant types.  In this sense, it behaves more like a type 
parameter than a simple type.1  The body of a class defines a collection of attributes and 
methods, collectively known as features.

Poppy supports multiple and overlapping classification.  The basic notion is that a class is 
compatible with any superclass, whose method interface it extends, after unification of the 
self-types and corresponding feature-types (the types of their attributes and methods).  Type 
matching is structural, according to the shapes of the interfaces.  A longer interface is 
compatible with a shorter one, so long as a similar relationship is satisfied recursively by the 
feature-types.  A subclass is defined by specialising one or more superclasses and adding 
extra features.  Poppy supports the multiple inheritance of type and implementation (with a 
conflict-resolution strategy) and does not distinguish the separate syntactic notion of an 
interface (as found in Java) from the regular notion of a class.  An abstract class in Poppy is 
the same thing as an interface (having method signatures, but no implementations).2

                                                

1 A class definition is formally treated as a double functional over two recursion variables, standing for the self-
type and self-value.  When an instance of the class is created, the resulting object and its type are the fixpoints of 
the respective functionals.

2 This reflects the identical formal treatment of interfaces and abstract classes in the theory of F-bounds.  The 
syntactic distinction between these notions in Java is motivated more by the single-inheritance model.
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Where a class inherits from another, this is shown using the extends keyword (as in Java):

class (Child self) extends (Parent super) {
…

}

in which both the Parent class name and super-reference to a parent object are declared 
explicitly.  Technically, super refers to the inherited part of the current object self.  This 
allows an overriding method in the Child to invoke the same-named method on super, to
access the last implementation known to Parent, and supports a method combination 
strategy, in which methods may extend inherited methods.  Apart from this, when Child
inherits Parent’s methods, the types of these are specialised to refer to the Child, wherever 
they previously referred to the Parent.  

The explicit naming of all the self-referential variables is most useful in cases of multiple 
inheritance, in which the child class is able to determine how multiple implementations of the 
same-named method are to be combined.  For example, the following redefines the equal
method of the child:

class (Child self) extends (Mother mother, Father father) {
…
Boolean equal (Child other) {

mother.equal(other).and(father.equal(other))
}

}

simply by combining the results of the equal methods inherited from the mother and 
father parts of itself using logical and.  The same approach may be used to prefer the left-
or right-hand implementation, or combine implementations in some other way.  Other conflict 
resolution rules support the automatic merging of the same implementation that was inherited 
from the same ancestor class via multiple parents (the “fork-join” scenario).  The typing 
issues in method combination are complex; and a full discussion of these is deferred.

1.2 Attribute Definition

The main body of a class definition consists of attribute and method definitions, sometimes 
collectively known as the features of a class (as in Eiffel).  The attributes declare the variable 
storage allocated to instances of the class.  If a class inherits from other classes, the locally 
declared attributes are added to those declared for the class’s ancestors (and attributes 
inherited multiple times from the same ancestor, via different parents, are merged).  Attributes 
cannot be redefined, but may be retyped (implicitly, by binding to more specific values).  
Sample attribute declaration styles are indicated by:

String forename;
String forename, surname;
Integer months := 12;

where the attribute’s declared class is given first, then its name.  For convenience, multiple 
attributes of the same class may be declared in a single expression, in which case the 
attributes are comma-separated.  Optionally, an initialisation expression may be given as part 
of the declaration.  Each declaration is separated from the following declaration by a 
semicolon.  (Technically, the semicolon character is a statement separator in Poppy, rather 
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than a terminator.  It is provided to allow compilers to attempt error-recovery after a syntax 
fault is detected in a single statement.  Compilers are also expected to be lenient in the way 
they process empty statements inserted accidentally at the ends of blocks).

By default, attributes declare variable storage that will be allocated in each individual 
instance.  However, if an attribute is initialised as part of its definition, then it is a shared 
attribute, automatically allocated once for the whole class.  This removes the need for any 
keyword such as static to denote the kind of allocation required.  Further examples of 
attributes declared in the context of their owning class are indicated by:

class (Circle self) {
Decimal pi := 3.1415926;
Point centre;
Integer radius;
…

}

where pi is a shared class attribute (since it is intialised in the definition) and centre and 
radius are instance attributes, allocated in every instance of Circle.  The values for these 
instance attributes will be supplied at object construction time, using constructors.  

Attributes are typed using class names, referring to classes defined elsewhere.  At the time of 
declaration, these are polymorphic class-types, until bound to values of a specific type.  For 
example, though the centre is delcared to be of the Point class, it could be initialised to an 
instance of some descendant of Point.

By default, attributes have read-only public access and can be invoked exactly like simple 
access methods to return their value.  This avoids having to write many trivial access methods 
and dispenses with the usual name-clashes when seeking to distinguish the names of attributes 
and their associated access methods.  Attributes may only be updated by the owning object, 
which can be any object within the declaring class (including more specific objects of 
descendant class types).  The following illustrates legal and illegal attempts to access an 
attribute:

Circle circle := Circle(Point(3, 4), 5);
Integer rad := circle.radius; // OK, read-access allowed
circle.radius := 10; // Error, remote assignment

in which it is legal to access the value of a circle’s radius externally, but illegal to attempt 
to modify this attribute through remote assignment.  This is similar to the read-only policy in 
Eiffel, which achieves a good balance between encapsulation and succinctness.

1.3 Method Definition

The main body of a class definition also contains method definitions.  Methods are the 
functions and procedures owned by a class, and implement the behaviour shared by all 
instances of the class.  Each class may define its “own methods” for achieving similar goals, 
or delivering particular services.  Methods are automatically allocated once for the whole 
class (like initialised attributes).  If a class inherits from other classes, the locally declared 
methods are added to those declared for the class’s ancestors (and methods inherited multiple 
times are merged).  Methods can be redefined, in which case the new version overrides the 
inherited version; but the new version may also choose to incorporate the old version (known 
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as method combination).  Methods may be retyped (both implicitly, by rebinding, or 
explicitly, by redefinition).  Sample method definition styles are indicated by:

Decimal area {
pi.times(radius.times(radius).toDecimal) 

}

Circle moveTo (Point position) {
centre := position;
self

}

The area method is in the style of a function, which computes the area of the owning 
Circle object from its (locally stored) radius and (shared) value of pi.  The moveTo
method is in the style of a procedure, which updates the centre of the owning Circle
object.  Methods declare the result type first, then the method name, followed by any further 
parameters in parentheses.  The parentheses are only required if the method actually has 
further parameters – and are otherwise forbidden.  This simplifies the defining and calling 
syntax for simple methods, which need not have empty parentheses.  The area method above 
is invoked in exactly the same style as the radius attribute, to access a simple property of the 
Circle.  This syntactic fusion is deliberate (similar to Eiffel).

Where methods have multiple parameters, there are two styles for supplying these.  The 
following examples illustrate:

PhoneBook add (String name, Natural number) {
contacts.addAt(name, number);
self

}

Point moveTo (Integer newX, newY) {
x := newX;
y := newY;
self

}

The add method of the PhoneBook class accepts two comma-separated parameters of 
different classes.  In this case, each parameter name must be prefixed by its own class.  Where 
a method accepts multiple parameters of the same class, they need only be prefixed once by 
the class name, as in the moveTo method of the Point.  Mixtures of these styles may be used 
if methods accept some parameters of the same type, and others of different types.

The body of a method is an expression, enclosed in braces, which has a value, the result of the 
method.  The body expression may either be a single statement, or a compound statement, 
consisting of single statements separated by semicolons.  The semicolon is really provided to 
allow compilers to attempt error-recovery after malformed statements are encountered.  
Compilers are expected to be lenient in the way they process empty statements accidentally 
inserted at the ends of blocks.

By convention, all Poppy methods return a result, which is always the value of the last 
statement in the body (or, in the case of branching constructions, the value of the last 
statement in each branch).  Poppy deliberately has no return keyword, to encourage clean 
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programming styles and prevent early exit by jumping out of a method.  Procedural methods 
usually return self by convention, referring to the owning object.  

An alternative convention for simple update methods is to return the new updated value, 
which follows naturally from the result returned by an assignment expression, which is the 
assigned value:

Natural deposit (Natural amount) {
balance := balance.plus(amount)

}

The choice of style is up to the programmer; the former style supports writing a sequence of 
updates to the same object (in the style of Smalltalk), whereas the latter supports nested 
actions on the assigned value.

Sometimes, the body of a method may be empty, in which case the method is abstract, that is, 
having a signature, but no implementation.  The abstract Shape superclass of all geometric 
figures Circle, Square and Rectangle could define an abstract area method, to indicate 
that all its concrete descendants will eventually supply suitable implementations:

Decimal area {}

The difference between this syntax for abstract methods and the attribute definition syntax is 
in the use of empty braces.  The difference between this syntax and the syntax for a default 
method with a trivial implementation (a nullop) is that a concrete, or executable method must 
always return some trivial value:

Decimal area { 0.0 }

Abstract methods must eventually be replaced by concrete methods in descendant classes.  
Alternatively, some descendants may choose to implement the abstract method by an 
attribute, providing access to storage, rather than computing the result.  This policy aims to 
give designers complete freedom regarding how services will eventually be provided.

A compiler may warn if an abstract method has not been supplied with a concrete definition, 
in a context that expects all methods to be properly defined.  A class may be partly abstract, if 
it has at least one abstract method, or wholly abstract, if all of its methods are abstract.  A 
wholly abstract class is the equivalent of an interface in other languages.

1.4 Operator Syntax

In Poppy, all operations are fundamentally considered to be the methods of classes.  Even 
basic operations, such as arithmetic, are styled as the methods of the numeric classes, for the 
sake of uniformity.  So, for example, the usual Integer operations are officially defined in 
the following style (omitting the details of the method bodies):

class (Integer self) extends (SignedNumber number, …) {
Integer plus (Integer other) { … }
Integer minus (Integer other) { … }
Integer times (Integer other) { … }
Integer divide (Integer other) { … }
…

}
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For convenience’s sake, the usual mathematical operators are also provided as shorthand for 
these, and similar methods.  The operator syntax is always understood to be convertible into 
the canonical method invocation syntax:

a + b           a.plus(b)
a – b           a.minus(b)
a + b * c       a.plus(b.times(c))
a * b + c       a.times(b).plus(c)
a := b := c     a.assign(b.assign(c))

The later examples also illustrate how certain rules of precedence and associativity are 
observed in the order of evaluation of operators.  It is expected that ‘/’ and ‘*’ should be 
evaluated before ‘+’ and ‘-’ according to the usual mathematical order of precedence; 
likewise it is expected that nested assignments are evaluated from right-to-left, rather than 
left-to-right.  This is achieved by declaring the precedence of an operator explicitly, along 
with its associativity and fixity.  Any character symbol or symbol sequence can be declared as 
an operator, using the following declaration syntax:

operator[60] (a + b) a.plus(b);
operator[70] (a * b) a.times(b);
operator[-90] (! a) a.not;
operator[-10] (a := b) a.assign(b);
operator[50] (a == b) a.identical(b);

The operator keyword introduces an operator declaration, which includes a positive or 
negative integer value in square brackets.  The absolute value of this number denotes the 
operator precedence, such that 1 is the lowest, and higher values give operators a higher 
precedence (they will be evaluated sooner).  The sign of this number denotes the associativity, 
where positive stands for forward (left-to-right) and negative stands for backward (right-to-
left) evaluation.  Immediately following this is a pattern expression in parentheses, denoting 
the infix, prefix or suffix pattern of the operator.  Pattern expressions may contain simple 
variables, standing for the operands.  The following translation expression denotes the 
equivalent translation of the operator pattern expression into the regular method invocation 
syntax.  The same variables are repeated in the translation expression.

Any class can declare operators, so long as the translation expression refers to known 
methods.  Operators can also be declared for construction expressions, such as the range 
constructor:

operator[50] (a .. b) Range(a, b);

which creates a Range object, whose values range from the lower bound a to the upper bound 
b, inclusively.  Ranges are used frequently in deterministic loops.

1.5 Control Structures

The flow of control within methods may be directed using familiar control structures, offering
single- and multiple branching, multiple case selection and looping using conditional or 
deterministic loops.  Many of these are syntactically similar to control structures in other 
languages, like Java and C++, except that the programmer should remember that control 
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statements, like other expressions, have return values.  Poppy treats deterministic loops as a 
special case of deterministic iteration over collections.  

The single- and binary-branching if statement accepts a Boolean-valued condition in 
parentheses and each branch returns a value, which should be of a common, or related type 
(formally, the class of the if-statement is the least upper bound class of the types returned by 
each branch):

Boolean withdraw (Natural amount) {
if (amount.moreThan(balance))

false
else {

balance := balance.minus(amount);
true

}
}

Each branch may contain a simple, or compound statement, and the else-branch may be 
omitted if no alternative action is required.  If the if-statement has a single branch, the absent 
branch returns null.  Multiple branching on conditions is established by using nested if-
statements.  However, where a multibranch selection is made on the basis of a scalar value, 
the more efficient case statement may be used.  This behaves more like Pascal’s case
statement than like C’s switch statement, which has unfortunate fall-through behaviour.

String weekDay (Natural days) {
case (startDay.plus(days).modulo(7)) {
  0 : “Sunday”;
  1 : “Monday”;
  2 : “Tuesday”;
  3 : “Wednesday”;
  4 : “Thursday”;
  5 : “Friday”
}
else 

“Saturday”
}

The scalar expression is evaluated and if the result is equal to one of the case labels, then the 
following simple or compound statement is executed (without fall-through to the remaining 
statements).  If none of the case labels matches, an optional else expression is evaluated.  
The result of the case statement is the result of one of its branches, each of which should 
return a common, or related type.  If no case labels match and no else-expression is 
provided, the result is null.

Looping is provided through conditional and deterministic looping constructs.  The 
conditional while loop evaluates a condition, then repeats a simple or compound statement 
for as long as the condition remains true.  The deterministic for loop iterates a single variable 
over a predetermined range of values, repeating a simple or compound statement once for 
each value in the range.  When treated as expressions, all looping constructs are considered to 
have a null value.  The following examples illustrate:
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Integer[] array := Integer[10];

Natural index := 0;
while (index < array.size) {

array[index] := index.toInteger * 2;
index := index + 1;

}

for (Natural index : array.firstIndex .. array.lastIndex)
array[index] := array[index] / 2;

for (Integer element : array) {
output.print(“Array element: ”);
output.printLine(element)

}

Primitive arrays are indexed from zero to one less than the array length and have standard 
methods size, firstIndex, lastIndex and the subscript [] operator.  The first example 
is a while-loop that initialises an array of 10 Integer values, until the increasing index
reaches the size of the array.  Normally, while-loops are reserved for nondeterministic 
conditions, unlike this example, since the bounds of the iteration are known.  The second 
example is a deterministic for-loop, which introduces a local index variable (hiding the 
index variable in the next outer scope).  The index automatically ranges over every value in 
the declared Range, which can be any scalar subrange, and is inclusive of the first and last 
value in the range.  The for-loop can accept a variable of any element-type, which ranges 
over the collection supplied as the other argument.  The third example shows an even simpler 
style for accessing the elements stored in the array, by iterating over the elements directly, 
rather than using an index.  This style could not be used to update the contents of the array, 
but only to visit each element.

By default, a Range is assumed to be monotonically increasing (other iteration styles are 
discussed below).  If the first and last elements are the same, a deterministic loop will be 
executed once.  If the first element comes after the last, the loop will be skipped.  A Range is 
really like a collection of values, but computes its elements on demand.  

1.6 Construction and Destruction

When variables are first declared, their values are formally undefined, although the language 
should ensure that a standard blank initialisation is performed (setting bytes to zero).  The 
following declarations:

Person john;
Integer age;

should result in john having the blank value corresponding to null, and age having the 
blank value corresponding to 0.  Variables may be initialised with values as they are declared, 
using a construction expression:

Person john := Person(“John”, 35, ‘m’);
Integer age := Integer(35);
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Poppy deliberately blurs the distinction between initialising value-types and allocating 
reference-types on the heap by not having an explicit new operator.  So, while the Person
constructor above will typically allocate a new instance on the heap, the Integer 
constructor might store the value directly in the variable.  (In fact, since 35 is the literal 
representation of an Integer, the constructor is strictly unnecessary).  So long as everything 
appears to behave like an object, the implementation can choose to make such optimisations.

Every class in Poppy has a single constructor, whose name is identical to the class’s name.  
Invoking the name of a class without arguments creates a blank object, a clean instance of the 
class, whose attributes are not initialised.  So, in the following expression:

Person john := Person;

the variable john is initialised with a blank instance of Person  (viz. the value of john is not 
null, but refers to a Person object, whose attributes are blank).  This is the standard form of 
construction, which is understood to allocate the object, but not initialise it.  This strategy was 
chosen because it simplifies object construction, for example, when restoring objects from 
files, where objects must be created before they can be initialised.

When a constructor is followed by parentheses surrounding further initialisation values, this is 
treated as shorthand for invoking a copy method to initialise the blank instance.  So, the 
following expressions are equivalent, constructing a blank Person then initialising it:

Person john := Person(“John”, 35, ‘m’);
Person john := Person.copy(“John”, 35, ‘m’);

By default, every class has two overloaded copy methods, one that copies another object like 
itself, and the other that initialises all the declared attributes of the object from a tuple of 
parameters.  The 3-tuple above assumes that the Person class was defined with three 
attributes in the given order:

class (Person self) {
String name;
Integer age;
Character sex;
…

}

A standard copy-method will be supplied that is capable of initialising all of these attributes, 
in the order they were declared.  If it is desired to control in finer detail how objects are 
initialised, the programmer may write explicit overloaded copy methods accepting different 
numbers or types of argument.  For example, the Circle class may provide a copy method 
accepting only the radius, which then allows construction of Circle objects at default 
origin locations:

Circle copy (Integer radius) {
copy(Point(0, 0), radius)

}

Circle circle := Circle(5);

The special copy method calls one of the default copy methods, which returns self.
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Unused objects are reclaimed by automatic garbage collection.  Any suitable policy, such as 
mark-and-sweep, reference counting or generation scavenging may be used.  In general, a 
memory management system can be relied upon to reclaim all unused objects eventually.  
However, there are circumstances in which objects obtain other resources, which they must 
release explicitly.  For this reason, a class may define a tidy method, so its instances may 
perform clean-up actions automatically as they are deleted.  By default, the Object class 
defines a trivial method:

Object tidy { self }

which returns the reference to be reclaimed.  Other classes may redefine this, so that their 
clean-up actions are always performed, before they are deleted.  For example:

Reader tidy {
input.close;
super.tidy // inherited clean-up

}

ensures that the input file stream owned by a Reader object is always closed, if the Reader
object is deleted in normal, or abnormal circumstances.  Unlike Java’s finalize method, which 
is not called reliably for all objects, tidy is automatically called for every reclaimed object.

1.7 Encapsulation and Visibility

Poppy supports the encapsulation of attributes and methods in a different way from most 
other object-oriented languages, enforcing encapsulation at an object-level rather than a class-
level.  The chief distinction is between features that are public, if they are intended for use 
by external clients of an object, and those that are private, if they are intended for use 
internally by the object itself.  Public visibility (the default) grants read-only access to the 
feature (method, or attribute) in question;  attributes are therefore always protected from 
external modification by remote assignment.  Private visibility indicates that the feature can 
only be accessed by the owning object, rather than by any instance of the same class.

Poppy maintains a strong theoretical position that inheritance is merely shorthand for defining 
a class by extension from another.  Subclasses defined incrementally using inheritance should 
be exactly equivalent to classes that were defined from scratch.  This rules out treating 
inheritance as a modularisation mechanism, by which features declared in the parent are kept 
secret from the child.  Poppy therefore makes no distinction between private and protected
visibility; and Poppy’s private is more like the protected visibility of Java, or the secret
export status of Eiffel.  Poppy’s private features can be accessed in instances of the 
declaring class, and in instances of all descendant classes.  This is more liberal than the 
private visibility of Java and C++.  On the other hand, encapsulating at an object-level is also 
more restrictive.  Whereas declaring a feature private in C++ allows one instance (of the 
declaring class) to access this feature in another instance of the same class, this is prohibited 
in Poppy.

Attribute and method declarations may be prefixed by the private or public keywords, to 
indicate the visibility granted to that feature.  However, since the default is public visibility 
granting read-only access, most attributes and methods may be declared without further 
qualification.  Methods are only ever accessed (for invocation) and are never reassigned, so 
read-only access is operationally equivalent to public method access in other object-oriented 
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languages.  For attributes, the default visibility grants efficient read-only access to stored data 
and also prevents external modification by remote assignment.  This removes the tedious 
burden of writing of many simple public access methods to return the values of private 
attributes in other object-oriented languages.  To update the value of an attribute, a class must 
provide a method that explicitly allows this.  Internally, the method may refer to the attribute 
by its short name and assign the new value.  

The other advantage of permitting read-only access to attributes is that there is no distinction, 
in the Poppy syntax, between invoking a simple method that computes a result, and accessing 
the value of an attribute directly.  Software designers may choose to replace one strategy by 
the other one, as the class hierarchy evolves.

1.8 Exception Handling

Poppy supports exception handling through the unwinding of the execution stack.  Any 
method may raise an exception using the throw keyword, typically followed by an 
expression constructing an Exception object of some kind, which encapsulates the data 
relating to the reported failure.  Handlers are indicated by special catch blocks, which may 
appear after any standard block.  There is no need to wrap checked portions of code with a 
special try{…} construct, nor is there any need to declare in advance which exceptions can 
be thrown by a method (as in Java).  It is assumed that the compiler may detect statically 
which exceptions are thrown, or caught, within a given block scope, such that the usual 
binding mechanism may be relied upon to propagate uncaught exceptions to the next outer 
scope.  A compiler may warn that certain exceptions are raised.

For example, a Stack class may raise exceptions when the preconditions of its operations are 
violated, expecting these to be handled by the caller (or not at all):

Stack pop {
if (count == 0) throw EmptyCollection(“pop”);
count := count – 1;
self

}

Element top {
if (count == 0) throw EmptyCollection(“top”);
array[count – 1]

}

Any uncaught exceptions propagate up through the program execution stack.  As this 
unwinds, suitable handlers may be found at any level.  If so, they get to deal with the 
exception; otherwise, it may eventually propagate up to the top level, where a backtrace 
should be reported.

Exception handlers are sensitive to the kind exception raised.  A series of handlers may be 
placed after a block, each seeking to handle a specific class of exceptions.  Poppy’s run-time 
type analysis mechanism is used to select the first handler matching the type of an exception.  
Typically, handlers are ordered from specific to general, to allow the more specific handlers 
to deal with the exception first, up to the most general Exception handler, which will catch 
all remaining exceptions.  For example:
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{
// … block in which exceptions are raised

}
catch (IOFailure ex) {

ex.file.close; // ex wrapped the open file
output.println(ex)

}
catch (Exception any)

output.println(“Some other failure”);

Here, the first handler to be tried is IOFailure.  If the thrown exception is at least of the 
IOFailure class, then ex will be bound to this exception and that catch-block will execute, 
after which control returns to the next outer scope.  Otherwise, the exception will match the 
Exception class, whose catch-block simply prints a general message.  A handler may 
partly clean up the failure and throw another exception.  In this case, control returns to the 
next outer scope (the other handlers in the current scope do not deal with a re-thrown 
exception).
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2. Type System

One of the more original features of Poppy is its type system and associated type-checking 
algorithm.  Poppy is quite unlike other object-oriented languages in the way it treats the 
notions of class and type.  In most other object-oriented languages, a class is treated as though 
it were a simple type.  In Poppy, a class is a family of types.  These two notions are formally 
distinct.

2.1 Class and Type

Poppy supports a second-order notion of class, which is distinct from the usual first-order 
notion of type.  However, this aspect is hidden in the surface syntax of the language, to keep 
Poppy as simple and elegant as possible.  Class names are used both in type declarations and 
as constructors.  These two uses are disambiguated by their context.

When a class name is used in a type expression, to declare the class of some variable, this is 
not understood as the exact (simple, first-order) type of this variable, but as an upper bound 
on a polymorphic family of types.  For example:

Number num;

declares num to be a polymorphic variable of the Number class3.  A value of any numerical 
type within this class may be assigned to this variable.  For example:

num := Integer(25);

num := Complex(3.0, 2.5i);

are both valid assignments, assuming that the constructed Integer and Complex objects 
belong to types within the family of the Number class.  When a simply typed value is bound 
to a polymorphic variable, a type check verifies that the assignment is type correct4.  The 
binding forces the types to unify, such that afterwards, num is understood to have the same 
type as the bound value, for the duration of the enclosing scope.  

This means that a polymorphic variable may not be bound to two differently typed values 
within the same scope.  The two assignments above must happen in separate scopes, or upon 
re-entry to the same scope on another occasion.  This binding of types causes a kind of type 
propagation to occur, whereby the original Number type is replaced by the substituted type 
(Integer, or Complex) for the duration of the enclosing scope.  This is the heart of Poppy’s 
type substitution mechanism.

                                                

3 In the theory of F-bounds, num has the polymorphic type t <: F-Number[t], where F-Number is a type 
function, parameterised by the self-type, describing the interface of the Number class.

4 In the theory of F-bounds, the constraints:  Integer <: F-Number[Integer] and Complex <: F-
Number[Complex] will both hold, if Integer and Complex extend the interface of Number.
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When a class name is used as a constructor, to create an object, this is understood to return an 
object of the exact, simple type requested5.  So, the constructed Integer and Complex
objects above each have an exact type, but may be bound to a variable of the polymorphic 
Number class.  This is the distinction between the notions of class and type in Poppy.  Where 
these terms are used in a formal sense, type denotes a simple, first-order construct and class
denotes a polymorphic, second-order construction.

Poppy naturally supports the nesting, by inclusion, of recursively-closed classes, that is, 
nested classes and subclasses, whose methods accept arguments, or return results of the same 
kind (viz. of the same class).  This follows intuitive notions of classification, but is something 
that cannot be expressed in other object-oriented languages, where the notion of classification 
is approximated by first-order types and subtyping.  For example, in Poppy the Integer
class is a natural subclass of the Number class:

class (Number self) … {
Number plus (Number other) {}
Number minus (Number other) {}
Number times (Number other) {}
Number divide (Number other) {}
…

}

class (Integer self) extends (Number number, …) {
Integer plus (Integer other) { … }
Integer minus (Integer other) { … }
Integer times (Integer other) { … }
Integer divide (Integer other) { … }
…

}

This would be impossible to express in C++ or Java, where it would be illegal to redefine the 
types of the methods6.  The usual rules of subtyping allow a redefined method to have a more 
restricted result type, but do not allow a more restricted argument type.  The reason why this 
is possible in Poppy is due to the way in which classes are second-order constructs, rather 
than first-order types.  Subclassing is determined only after the self-types have been unified7

(by type substitution – see below).  The uniform specialisation would not be type-safe in a 
first-order type system.  However, since Poppy supports a second-order type system, the 
nesting of the classes Number and Integer is sound.  Type errors are trapped statically by 
the type checking mechanism, which is based on type substitution.

                                                

5 Construction takes a double fixpoint, binding the self-type and the self-reference recursively.  This fixes the 
self-type to refer to a simple type, and fixes the self-reference to refer recursively to an instance of this type. 

6 In first-order subtyping, these redefined methods would violate the rule of contravariance, according to which 
redefined function arguments must be of the same, or a larger type.

7 The notion of subclassing in Poppy is formally based on pointwise inclusion.  In the theory of F-bounds, a class 
S is a subclass of T if t . FS[t] <: FT[t], where FS, FT are the functionals (type functions) describing the 
respective class interfaces.
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2.2 Unification and Type Substitution

It is as though a class definition were treated like a parameterised signature.  The class 
identifier (e.g. Number, above) is treated more like a type parameter than a simple type.  A 
subclass is therefore like an extended parameterised signature, with different variables 
standing for self and the self-type (e.g. Integer, above).  The two signatures can only be 
compared after the respective occurrences of self and the self-type have been unified.  Then, 
occurrences of self in Integer and Number refer to the same object; and the parametric 
identifiers Integer and Number are also unified, referring to the same class.  

Unification on two class identifiers always preserves the greatest lower bound of the two 
classes8.  Whereas in parametric schemes, the unification would be achieved by a common 
substitution for the two type variables, in Poppy this is handled by a superficially simpler 
syntactic mechanism called type substitution.  Type substitutions occur implicitly when a 
subclass inherits from a superclass, or when values of more specific types are bound to 
variables of general class-types.  Type substitutions may also be requested explicitly by the 
programmer, in a style analogous to template instantiation in generic programming.

Let us first consider inheritance.  During the resolution of single inheritance, it is always the 
case that unifying a subclass with a superclass will preserve the bound of the subclass.  So, 
when unifying the self-types Number and Integer, the resulting class is Integer, since this 
is the greatest lower bound (viz. all types in the Integer class are also in the Number class, 
but not vice-versa).  It is as though all occurrences of the identifier Number inherited from the 
superclass were replaced by Integer (after the merger of features) in the subclass.  

A slightly more complicated case occurs during the resolution of multiple inheritance, where 
a child class may inherit from several parents.  Merging the parent classes computes a type 
intersection, since it preserves the greatest lower bound of all the parents.  The self-type of the 
child unifies with the self-type of each of its parents, merging all the classes.  Occurrences of 
the self-type and self in methods inherited from a parent class will eventually refer to the 
child subclass and objects of this kind, since this is more specific than any parent class.

Let us now consider binding.  Whenever a variable binding occurs, either as a result of 
parameter passing, or as a result of assignment, then a type substitution occurs for the 
duration of the scope in which the binding lasts.  So, if a method accepting arguments of the 
Number class receives an object of the exact Integer type, then for the duration of the 
method invocation, the substitution of Integer for Number, which we write in the usual 
logical style: {Integer / Number}, is considered to apply in the method body.  Likewise, if a 
polymorphic variable receives a value of a specific type by assignment (e.g. num receiving a 
Complex value), then for the duration of that scope, the substitution {Complex / Number} is 
considered to apply.  Type substitution therefore requires a kind of type propagation
throughout the enclosing scope, to ensure that no other incompatible type bindings are 
requested.

Type substitution must always be done uniformly.  If, during the resolution of inheritance, the 
compiler detects a non-uniform substitution, this will be reported as a static type error.  For 

                                                

8 Pierce has referred to this as a type intersection, because the set of types belonging to the resultant class is the 
intersection of the sets of types belonging to the two classes individually, before unification.
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example, it should not be possible to specialise an Imaginary subclass out of the Number
class, having the following method signatures:

class (Imaginary self) extends (Number number, …) {
Imaginary plus (Imaginary other) { … }
Imaginary minus (Imaginary other) { … }
Decimal times (Imaginary other) { … } // type error!
Decimal divide (Imaginary other) { … }// type error!
…

}

This is because the times and divide methods have a Decimal return type (as you would 
expect); yet this would require the conflicting substitutions: {Imaginary / Number, 
Decimal / Number} which will not be accepted by the type checker.  (If Decimal and 
Imaginary numbers are treated as distinct classes, we need several overloaded methods for 
multiplication and division, to handle the different classes of argument and result).  Similarly, 
it is illegal to bind the same polymorphic variable to two different types, within the same 
scope.

Finally, since merging classes computes a greatest lower bound, type substitutions can also 
propagate in both directions.  For example, if a Pair class containing first : Number, 
second : Complex unifies with another class containing first : Integer, second : 
Number then the resultant must be the merged class containing first : Integer, 
second : Complex, in which the following right-to-left and left-to-right substitutions 
{Integer / Number, Complex / Number} have taken place.  This is the same algorithm as 
used in logic programming, when computing a most general unifier (MGU) for two 
expressions.

2.3 Generic Programming

In Poppy, every class definition is potentially generic, since all variables are declared to be of 
some polymorphic class, which can later be bound to an exact type, or restricted to some more 
specific class by unification with another class.  Therefore, it was considered superfluous to 
introduce a wholly distinct parametric mechanism for generic programming, as found in other 
object-oriented languages.  Instead, generic programming is potentially available for every 
polymorphic variable.  Consider the familiar circumstance of rebinding the Object element-
class of a List explicitly to the more restricted Integer class:

class (List self) extends (Sequence super) {
List add (Object item) { … }
List remove (Object item) { … }
Object first { … }

}

List<Object := Integer> intList;
…

The List type-expression uses the angle bracket notation <…> to enclose a set of more 
specific type bindings.  In general, several comma-separated bindings are allowed.  Here, the 
type declaration explicitly rebinds the element-class {Integer/Object} throughout the 
scope of the List class declaration.  All elements declared of the Object class within the 
scope of the List class are thereby restricted to the Integer class.  Note that it was not 
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necessary to specify in advance that List was parameterised by its element-type, as in other 
languages; rather this rebinding mechanism is generally available, so long as substitutions are 
performed uniformly and systematically.  Note also that explicitly rebinding any element-type 
of a class causes an implicit rebinding of the self-type at the same time, such that the methods 
add and remove return the specialised class List<Object:=Integer>, rather than the 
original List.

While polymorphic variables may be restricted, as above, it is more typical to apply the 
restriction to constructor expressions, and then allow the usual binding rule of assignment to 
propagate the specific type into the general variable:

List intList = List<Object := Integer>;
intList.add(3).add(5).add(7);
Integer elem := intList.first;

Because this is a creation expression, the result has an exact type.  The result of construction 
is assigned to intList, which has the effect of propagating the exact type into the 
polymorphic class.  Therefore, when an element is later extracted using first, it is known to 
be of the exact Integer type.

Type substitution offers a much simpler surface syntax than the usual generic programming 
style, in which explicit type parameters must be declared up-front for all the polymorphic 
types.  Since every class-declaration in Poppy is polymorphic, this would require an 
abundance of type parameters, if the standard approach were adopted.  Type substitution 
largely removes the need for explicit type parameters.  However, there is a cost.  Type 
substitution is strictly less expressive than full generic programming, because it fails to 
distinguish different occurrences of the substituted class-identifier, within a given scope.  In 
the above example, all occurrences of Object were substituted by Integer, within the 
scope of the List declaration.

While this is sufficient for most practical uses of explicit rebinding and restriction, there are 
circumstances in which it would be desirable to distinguish different occurrences of the same 
class identifier, where different parallel substitutions were anticipated.  For example, in the 
Pair class, you might specialise the first and second projections separately, even though 
these are of the same Object class.  In this case, Poppy permits new class names to be 
declared internally:

class (Pair self) extends … {
class First renames Object;
class Second renames Object;
First first;
Second second;

}

Pair<First := String, Second := Integer> strIntPair;

Here, the local class names First and Second are declared as distinct synonyms for the 
Object class.  Internally, the identifiers First and Second may be used to prefix any 
variable declarations, and are understood to have the same class-constraint as Object.  
Technically, First and Second refer to trivial extensions of Object, whose local names 
are accessible in Pair, according to the usual rules of visibility.  This allows us to treat the 



Poppy Language Manifesto, version 19/11/2008 page 18

introduction of new names in the same formal framework as subclasses.  Practically, First
and Second can be considered as distinct synonyms for Object, within the scope of Pair, 
but with the advantage that they are distinguished as far as type substitution is concerned.  
This restores the full expressive power of parametric polymorphism.

Local class names are subject to the same bound as the class they rename.  So, any type 
instantiating First or Second must be at least of the type Object, and is likely to be of 
some more specific type.  Local class names may be restricted further by redefinition in 
subclasses.  For example, it would be possible to declare:

class First renames PartialOrder;
class Second renames Number;

in some subclass of the Pair class.  In this case, any type instantiating First must be at least 
some kind of PartialOrder; likewise any type instantiating Second must at least be some 
kind of Number.  Local class names that are re-declared unify with their predecessors; and as 
before, the greatest lower bound is always preserved.

2.4 Run-time Type Analysis

All of the above generic styles support the homogeneous instantiation (or specialisation) of 
each type parameter at compile time.  Type information is propagated into the structures that 
were specialised, such that any extracted elements are known at compile-time to have more 
specialised types.  Sometimes it is desirable to defer the binding of types until run-time.  This 
supports a heterogeneous style of programming.  For example, one usage of the List class 
above might define a list containing elements of mixed type:

List<Object := Object?> objList;

Appending a question mark “?” to a class name denotes deferring the exact type binding until 
run-time.  This tells the compiler to expect elements of different types, unknown at compile 
time, but all of which belong to the Object class.  The element-type may also be restricted at 
the same time as being declared heterogeneous, using the syntax:

List<Object := Shape?> shapeList;

This substitutes the heterogeneous Shape? class for the Object element class, restricting the 
List to contain elements of mixed types, which are all at least some kind of Shape.  Where 
heterogeneous styles are adopted, it is also usually necessary to recapture the most specific 
class of objects that were inserted into a heterogeneous collection.  In most languages, this 
would require some kind of type cast, checked at run-time to ensure that the dynamic type of 
the object was compatible with the static type of the target variable.

In Poppy, no separate syntax is required for a type cast.  In the context of run-time recapture, 
the following expression is considered to be an assignment attempt, rather than a regular 
assignment, because the right-hand expression is known to be heterogeneous:

Square square := shapeList.first;

While it is known that the target variable is of the more specific Square class than the 
expression’s upper bound, the compiler also knows that the expression is a heterogeneous 
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Shape? and could return a value satisfying Square.  The attempt either succeeds, in which 
case square acquires a valid object reference, or it fails, in which case square is set to 
null.  The program may check for null and continue accordingly.  However, repeatedly 
assigning and checking variables could be slightly heavy-handed.  So, the following type-
selection mechanism may be used:

type (shapeList.first) {
  (Square square) :

… // do something with square
  (Circle circle) :

… // do something with circle
}
else

… // report failure

This works in a similar way to the case statement, but selects on the type of the expression, 
rather than the value.  A hetereogeneous expression is evaluated, and if the resulting object 
has a type that matches one of the class-specifiers, which are tried in sequential order, then a 
variable of that type is bound to the object and may be referred to in the following simple, or 
compound expression.  Only one branch may be executed.  If none of the class-specifiers 
matches, an optional else expression is evaluated.  The result of the type statement is the 
result of one of its branches, each of which should return a common, or related type.  If no 
case labels match and no else-expression is provided, the result is null.

Generally speaking, it is not considered good programming style to have to perform lots of 
runtime type recapture, since this kind of code is fragile, subject to modification every time a 
new subclass is invented.  A better approach is to define a general interface supported by all 
of the types in the heterogeneous class and rely on the usual dynamic binding mechanism.

2.5 Type Binding Rules

The Poppy type-checker works by propagating exact types into class type parameters, and by 
unifying type parameters and calculating their greatest lower bound.  All typing judgements 
are made within a particular scope.  A new scope is introduced by each class definition or 
method body.  Control constructs that introduce new code blocks (delimited by braces {}) 
also introduce new scopes.  Within a given scope, type bindings may occur, in which more 
specific types propagate into parameters through assignment and argument passing (including 
the returning of the result from a method).

Consider first an example of assignment to a polymorphic variable, which binds an exact type 
to a class parameter:

{ Shape shape; // Variable shape has the class Shape
…
shape := Square(Point(3,5), 5);
… // Shape now has the exact type Square
shape := Circle(Point(3,4), 5);

// Type error – rebinding to type Circle
}
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Here, the shape variable is initially declared to have the polymorphic class Shape (which 
behaves like a parameter).  It is bound, in the given scope, to an exact instance of Square.  
This is only valid if the type Square belongs to the class Shape.  The type checker can 
determine this by a static analysis of the class hierarchy.  Because of the assignment, the exact 
type Square is propagated into the variable’s class parameter, resulting in the local type 
substitution {Square / Shape} in the current scope.  Because of this, the subsequent 
assignment of a new Circle instance fails, because this would require the conflicting 
substitution {Circle / Shape} in the same scope.

Consider now an example of method invocation, in which the polymorphic class of self and 
the method argument other are both rebound to more specific types:

class (TotalOrder self) extends (PartialOrder super) {
…
class Other renames TotalOrder;
…
TotalOrder minimum (TotalOrder other) {

if (self.lessThan(other)) self else other
}

Boolean lessThan (Other other) {}
}

Here, the method minimum expects self and other both to be of the same TotalOrder
class (since the result, also a TotalOrder, is either one or the other).  The general algorithm 
for minimum is expressed in terms of the abstract method lessThan, which is defined in 
subclasses.  Now, this is interesting, because lessThan allows its argument to be of a 
different class, Other, than the self-class TotalOrder.  In general, lessThan could 
compare two things of different types9.

However, within the context of the minimum method, lessThan is invoked on two objects of 
the same type.  This results in a type unification of the two class parameters:  Other :=
TotalOrder for the duration of the scope of lessThan.  The type checker can verify that 
minimum needs a version of lessThan accepting two objects of the same type, within the 
TotalOrder family.

Now, when the minimum method is applied to some Integer values:

Integer target := 5;
Integer argument := 9;
Integer result := target.minimum(argument);

// type substitution

the exact Integer type of the target 5 and the argument 9 is propagated into the 
parameter TotalOrder.  Likewise, the same Integer type is propagated into the 
lessThan method, resulting in the type substitution: {Integer / TotalOrder} for the 
duration of the scope of minimum.  It is as if minimum temporarily had the exact type:

                                                

9 For example, when testing the subset relationship between two different set-types having different 
implementation policies, but a common abstract algorithm for determining subsets.
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Integer minimum (Integer other) {
if (self.lessThan(other)) self else other

}

and the body of this method is only well-typed if there exists a lessThan method which 
accepts two Integers for its target and argument.  The variable c receiving the result of 
minimum expects this to be of the Integer class.  This could only be type safe, if the method 
returned a result within the Integer class, which is more restricted than the declared result 
type:  TotalOrder.  However, as a consequence of type substitution, we know that the 
result is of the exact Integer type, which is suitable.  So, we see that a number of different 
type unifications and checks are performed during method invocation.

2.6 Type Checking Rules

Poppy overcomes the lack of expressiveness in other object-oriented languages, by allowing 
the definition of recursively-closed classes and subclasses, whose methods accept arguments 
and return results of the same type as the self-type.  This traditionally causes problems for 
type checkers based on simple types and subtyping, which forbid the retyping of any methods 
closed over the self-type.

Consider an example of generic addition.  The base class Number defines addition with the 
signature: Number plus (Number other).  This is retyped in the Integer class to have 
the signature: Integer plus (Integer other), which would conventionally violate the 
rule of contravariance10 in a subtyping scheme.  However, in Poppy, we can safely invoke the 
Integer version of addition through a polymorphic variable of the Number class, without 
risk of type failure, because of the constraint that type substitution brings:

Number target := 5;
Number argument := 7;
Number result := target.plus(argument);

In the above, a type substitution {Integer / Number} occurs during the assignment of the 
first target variable.  Likewise, a similar substitution occurs during the assignment of the 
second argument variable.  By the time target.plus(argument) is evaluated, we know 
that we are invoking the version of plus that is closed over the exact Integer type (this is 
determined by static type analysis, and need not appeal to dynamic binding).  The result of 
this type-adapted version of plus has the Integer type, which is also the type expected at 
the call-site.

If we try to break the type system, by performing addition over two different numerical types, 
we can show how this is prevented by the type checker, even though the numerical types are 
both kinds of Number:

Number target := 5;
Number argument := Complex(3.71, 2.94);
Number result := target.plus(argument); // type error!

                                                

10 Contravariance: the type rule stating that, in a subtype method, the argument type should be the same, or of a 
more general type, than the corresponding argument in the supertype method.
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The first assignment causes the type substitution {Integer / Number}.  The second 
assignment causes the substitution {Complex / Number}.  By the time plus is invoked on 
the target, the type checker can determine what overloaded method signatures exist for 
plus in the class Integer.  If we assume that there is only one suitable method, with the 
type signature: Integer plus (Integer other), then attempting to pass an argument of 
the Complex type is immediately detected as a type error.

The difference between this and the usual typechecking algorithm applied in schemes based 
on simple types and subtyping is that, in Poppy, type substitutions are carried out before the 
types of method invocations are checked.  In a standard type-checking scheme, the invocation 
of plus on a variable of the type Number would be checked statically, but only up to the base 
type Number.  The above call would be considered statically valid (assuming Integer and 
Complex were subtypes of Number), but would give rise to a dynamic type failure, when 
Integer’s plus method was invoked dynamically through the target variable and 
received an argument of the Complex type11.

2.7 Type Conversions

On the whole, Poppy does not favour automatic type conversions between the different 
Number subclasses.  In languages like C++, a complicated set of precedence rules apply to 
arithmetical expressions of mixed type, resulting in automatic promotions to the common 
base types, or secret conversions using constructors, as the compiler tries to find a route from 
one type to the other.  We believe this gives rise to faults, particularly in the lossy conversions 
(truncation, or loss of precision).

However, Poppy allows explicit type conversion, where this is desired.  For example, the 
Integer and Natural number classes provide the explicit conversion method toDecimal
to convert an integral number to its corresponding double-precision floating point 
representation.  

It would also be permissible to define multiple versions of the same method, overloaded on 
disjoint classes of argument.  So, as well as the closed version of plus described above, it 
would be possible for Integer to support mixed-type versions of plus, which invoked the 
explicit conversion methods internally:

class (Integer self) extends … {
Decimal plus (Decimal other) {

other.plus(self.toDecimal)
}
…

}

This would use a technique called double-dispatch for determining the type conversion most 
acceptable to both classes of argument.  In practice, the library Integer class does not 
provide this and programmers are expected to use explicit type conversions.

                                                

11 This kind of example was used by William Cook in his famous paper on type failure in object-oriented 
languages, which allowed covariant specialisation of method arguments as well as results:  W R Cook, “A 
proposal for making Eiffel type safe”, Proc. European Conf. Obj.-Oriented Progr., ed. S Cook (Cambridge : 
CUP, 1989), 57-70.
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3. Programming Idioms

Poppy strives to provide a small and efficient kernel of classes, while supporting a rich lattice 
of overlapping reusable concepts.  The overall root of the class hierarchy is called Top, which 
is a vacuous abstract class with no behaviour.  The only subclass of Top is called Object, 
which defines the basic notion of identity.  The notion of equality is first introduced in 
PartialOrder, specialised by TotalOrder.  Number is the abstract ancestor of numerical 
types, which may be either totally-ordered (such as Natural) or partially-ordered (such as 
Complex).  A hierarchy of Collection classes also appear under PartialOrder, for 
which the notion of being less than another collection translates smoothly into set-inclusion, 
or bag-inclusion.  Certain collections are Sequences and the usual String class is in fact a 
sequence of Character elements.  One totally-ordered subclass is the Constant class, 
ancestor of all enumerated constants.

In this way, Poppy supports a greater natural generalisation among data type concepts and 
abstract operations than found in many other object-oriented languages12.  This means that 
common programming goals should be achieved by adhering to the natural architectural styles 
supported by Poppy, rather than by reimplementing from scratch.  Some of the distinctive 
programming idioms are described in this section.

3.1 Symbolic Constants

Poppy supports the definition of classes that have a finite set of symbolic instances.  Such 
classes inherit from the kernel class Constant and declare shared attributes naming all of 
the symbolic instances of the class.  Such constant-classes have no further dynamically-
created instances, but may define methods that act upon their constant instances.

Poppy has no separate syntax for enumerations.  Instead, all classes, which declare shared 
attributes having the same self-type as the owning class, are treated as constant-classes.  The 
names of the shared attributes are treated as the enumerated constants.  The programmer may 
refer to constant names in an unqualified way, where the binding context is unambiguous.  
For example, the Boolean class enumerates two distinguished instances, false and true:

class (Boolean self) extends (Logic logic, Constant const) {
Boolean false := 0;
Boolean true := 1;
…

}

and it is possible to refer to the simple constant names without further qualification, for 
example, when assigning false or true values to Boolean variables, in which binding 
context the compiler can resolve from which class the constants are selected:

Boolean propositionA := true;
Boolean propositionB := false;

                                                

12 For example, in Java the String class is not a Collection; there is no partially-ordered counterpart to 
the totally-ordered Comparable class; and there is no relationship between inclusion among the collections 
and the usual inequality ordering relationships.
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In this way, symbolic constants are implicitly selected from their class, rather than explicitly, 
like other shared attributes (there is no object from which the constants could reasonably be 
selected).  The Poppy compiler is sensitive to constant declarations, as described above, and 
so will support this style of implicit selection.

In other ways, symbolic constants are exactly like shared attributes:  they are initialised as 
part of their declaration to a given value.  However, the initial value must always be a unique 
Natural number; and this is expected by the Constant parent class, which provides support 
for translating between symbolic constants, unique natural numbers and printable strings.  For 
example, the constant class Choice declares three symbolic options cancel, no and yes: 

class (Choice self ) extends (Constant super) {
Choice cancel := 0;
Choice no := 1;
Choice yes := 2;

}

Since these shared attributes are of the same Choice class, they are recognised as symbolic 
constants.  Each Choice option is initialised to a unique Natural number.  This actually 
invokes the copy constructor inherited from Constant to initialise an attribute called the 
index, which is used to identify each constant uniquely, within their class.  

All Constants are totally ordered (within their class) and must be efficiently coercible into 
small Natural numbers, so that they may be used as the labels in case-statements, or as the 
logical values {0, 1} in if-statements.  All Constants also have a printed form, which is a 
String representation of their symbolic name.  To support this, the Constant class defines 
the methods toNatural and toString.  Conversely, it must be possible to construct a 
constant from its Natural index number and from its String representation.  The 
Constant class defines two copy constructors for this purpose.  

The conversions to and from strings depend on a private toString(Natural) method, 
which is abstract in Constant and defined by each constant-subclass.  An example of this for 
the Boolean class is:

String toString (Natural index) {
case (index) {

0 : “false”;
1 : “true”

}
else throw UnknownConstant(index)

}

In this way, the programmer may control the printed representation of constants.  As shown 
here, the method must always raise an UnknownConstant exception for out-of-range 
constant indices.

3.2 Object Comparison

Poppy supports object comparison on the basis of identity and equality.  The Object class 
provides the methods identity, which returns a Natural number that is unique for each 
object in the current runtime, identical, which compares two objects according to their 
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identity, and the complementary notIdentical.  Subclasses of Object may redefine 
identity to take into account other concerns, such as object persistence across multiple 
runtimes, or duplicate occurrences of the same logical object.  

A feature of all comparison methods is that they compare mixed types of object.  The Object
class declares a local class Other (also a kind of Object) for the other argument of the 
identical method, which is independent of the self-type:

class (Object self) extends (Top super) {
class Other renames Object;
…
Boolean identical (Other other) {

self.identity.equal(other.identity) 
}
operator[50] (a == b) a.identical(b);

}

This allows any two objects to be compared by their identity, not just two objects of the same 
type.  A similar policy is followed for the other comparison methods.

While Object is the ancestor of all objects, most classes are either descendants of 
PartialOrder, or of its subclass TotalOrder, which define the comparison methods 
equal, notEqual, lessThan, moreThan, lessEqual and moreEqual13, all of which
compare the states of two objects.  (Two objects may be equal, without being identical).  

All of the binary inequalities are initially defined out of a fundamental compare method, 
which compares two PartialOrder objects and returns a symbolic Ranking expressing the 
ordered relationship (if any) between the two objects.  For example, the equal method is first 
defined in PartialOrder as a comparison yielding the symbolic value equal:

class Other renames PartialOrder;
…
Boolean equal (Other other) {

self.compare(other) == equal
}

This is one possible Ranking from the set:  {less, equal, more, meet, none}.  The first 
three values stand for the ordered relationships less than, equal to, or greater than (the other).  
The last two values stand for the incomparable relationships overlapping with, and disjoint 
with (the other).  Partially ordered classes are expected to define their own implementation of 
compare, on the basis of which all the other inherited inequalities will work.  

The generic compare method is useful in certain contexts, where it is not known whether an 
ordered relationship exists.  Partially ordered comparisons are not often supported in other 
object-oriented languages, but Poppy may compare two Complex numbers:

                                                

13 Not a reference to Orwell, but rather a succinct name, chosen in preference to some verbose style mimicking 
Java: greaterThanOrEquals .  Similarly, we chose equal by symmetry with identical, rather 
than equals as used in Java.
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Complex cx1 := Complex(3.2, 0.7i);
Complex cx2 := Complex(2.6, 4.3i);
Ranking rank := cx1.compare(cx2); // rank == meet

Here, neither number is lesser or greater (in the Cartesian sense) because the real and 
imaginary parts vary in opposite directions.  So, the incomparable result is meet, denoting an 
overlap, or an intersection (in the ordering).

Many commonly used types, such as numbers, characters or logical values, belong to the 
subclass TotalOrder, whose elements are strictly comparable.  The implementation policy 
is reversed in TotalOrder, which defines all other comparison methods (including 
compare) out of the lessThan operation.  This is because all basic types provide efficient 
primitive implementations of lessThan (and also equal).  All other inequalities are 
obtained by reversing the operands, or negating the result, of lessThan (similar to the 
strategy of the C++ standard library).  

When applied to the Collection classes, comparison methods take on a new significance, 
describing element inclusion.  For two Set objects, lessThan denotes the strict subset 
relationship;  while lessEqual denotes the inclusive subset relationship (the opposite 
relationships denote strict and inclusive supersets).  Furthermore, by inspecting the result of 
compare, we may determine whether one set subsumes (more), or is subsumed by (less) or 
only intersects with (meet), or is completely disjoint with (none) another.  So, the notion of 
comparison is truly general; and this obviates the need for any special operations with names 
like “subset” or “superset”, which are not provided.

Implementations of compare vary in efficiency, ranging from versions that perform two-
sided element subtraction (in the class Bag, where the cardinality of each element must be 
respected), to one-sided inclusion tests and fast-failing versions (in the class OrderedSet, 
which respects the element-order in both sets).

3.3 The Collections

Poppy provides a hierarchy of multiobjects, rooted in the ancestor class Collection. 

[More to follow here]


