

ReMoDeL Data
Refinement

Data Transformations in
ReMoDeL, Part 1
Technical Report

Revision: 1.0

Date: 25 July 2022

Anthony J H Simons
Department of Computer Science
University of Sheffield

2

Contents
1. Introduction .. 4

1.1 Software Engineering Models ... 4

1.2 Transformation Chains .. 4

1.3 Data Refinement .. 5

2. UML Class Diagram ... 6

2.1 Class Attributes and Operations .. 6

2.2 Class Semantic Relationships.. 7

2.3 Class Diagram Examples .. 8

2.4 Metamodel for a Class Diagram .. 9

2.5 Cycle Shop Example Model .. 12

2.6 Student Records Example Model .. 13

2.7 UML Dependency Semantics .. 15

3. Entity-Relationship Diagram .. 16

3.1 Primary and Dependent Attributes .. 16

3.2 Relationship Cardinality and Optionality .. 17

3.3 Strong and Weak Entities .. 18

3.4 Entity-Relationship Diagram Examples .. 19

3.5 Metamodel for an Entity Relationship Diagram ... 21

3.6 The Cycle Shop Example Model .. 23

3.7 The Student Records Example Model ... 25

4. UML to ERM Transformation .. 28

4.1 Mapping of Types ... 28

4.2 Mapping of Relationships ... 28

4.3 Mapping of Attributes and Identifiers ... 29

4.4 Alternative Mappings for Generalisation .. 29

4.5 The ReMoDeL Transformation UML to ERM ... 30

4.6 UML to ERM Examples ... 34

5. ERM To Normal Transformation ... 35

5.1 Mapping of Types ... 35

5.2 Mapping of Relationships ... 35

5.3 Mapping of Attributes and Identifiers ... 36

5.4 The ReMoDeL ERM to Normal Transformation .. 37

3

5.5 The Normal Cycle Shop Example ... 41

5.6 The Normal Student Records Example ... 43

5.7 Interim Conclusion .. 45

6. References .. 46

4

1. Introduction
This document describes the first part of a chain of model transformations applied to the task
of data refinement, using ReMoDeL v3, a high-level syntax for defining models and model
transformations. It assumes the reader is familiar with the ReMoDeL metamodel language
and transformation language [1]. It also assumes prior knowledge of data modelling
notations, including the UML Class Diagram [2], the “Crow’s Foot” Entity Relationship
Diagram [3] and the SQL Data Definition Language [4].

1.1 Software Engineering Models

Model-Driven Engineering (MDE) is a general strategy in software engineering that creates
and manipulates software designs at a high level using abstract models. Model-Driven
Development (MDD) is the subfield which focuses specifically on generating executable
software systems from high level designs. To do this, there must exist suitable design models
that capture relevant views of the intended software system. Each view offers a quasi-
independent perspective, an abstraction, or simplification, of some aspect of the system.

Computer Aided Software Engineering (CASE) tools have traditionally supported three main
views, constructing models that highlight data, process and time:

• The data view is usually expressed in different kinds of structural data model, such as an
Entity-Relationship Diagram [3], a simple kind of information model; or a UML Class
Diagram [2], which captures more semantic relationships.

• The process view can be expressed using a Dataflow Diagram [5] describing processes
with their inputs and outputs; or UML Activity Diagram [2] which also describes the
sequencing of processes; or a Jackson Structured Program chart [6], which describes the
detailed program block structure.

• The time view can be expressed using a traditional flowchart [7], a UML Activity
Diagram [2] or State Machine Diagram [2], both of which express ordering constraints; or
the UML Sequence Diagram [2] or Communication Diagram [2] which describe a more
detailed call-graph.

A diagram is a graphical representation of an underlying model, which captures certain
logical information. A model is constructed from elements, typically vertices, edges and
attributes, that are taken from a metamodel. Each model element is an instance of some type
defined in the metamodel. In this sense, a metamodel is “the type of” a model [1].

1.2 Transformation Chains

A model transformation is a collection of rules for transforming the elements of a source
model into the elements of a target model. A transformation may be endogenous, meaning
that the source and target models have the same metamodel type, or exogenous, meaning that
the source and target metamodels are distinct and the transformation performs a translation
from one type to the other [1].

Where the target type of one transformation is the source type for another, it is possible to
construct transformation chains. Several transformations may then be applied consecutively,
where the output of one transformation is used as the input for the next one in the sequence.
Transformation chains are employed in MDD, in which high-level abstract models are
progressively refined, via intermediate model representations, into concrete models that are

5

closer to executable code. Building such transformation chains is in fact the goal of MDD,
which seeks to find suitable refinement rules and model representations.

In a declarative transformation language, like that of ReMoDeL, each transformation is a
functional mapping from a source to a target. Therefore, when two transformations are
chained together, this is equivalent to function composition. This provides a mathematical
basis for reasoning about transformation chains. A transformation may be a simple mapping,
with one source and target, or a more complex merging, with multiple sources and one target.
A chain of mapping transformations is a linear function composition. A chain of merging
transformations is a hierarchical function composition.

1.3 Data Refinement

The general problem of combining the different high-level views of a software system has not
yet been solved. Here, we focus on the more tractable sub-problem of data refinement, the
transformation of a high-level and semantically rich data model given by the UML Class
Diagram [2], via an intermediate representation of data offered by the Entity-Relationship
Diagram [3], to a low-level model corresponding to the SQL Data Definition Language used
to define a relational database [4].

The data refinement problem is one of the better-understood problems in MDD, due to the
existence of well-known methods for normalising a data model. The chain of transformations
to be considered altogether includes the following:

• Class Diagram to ER Diagram: this first transformation maps each UML class to an
entity. Some of these are strong and others weak, if they depend on related entities
for identification. The UML semantic relationships: association, aggregation,
generalisation and composition, are mapped to simpler relationships, in which the
direction of dependency is correctly established.

• ER Diagram to Normal ER Diagram: this second transformation converts the ER
Diagram to at least third normal form (3NF+). It merges one-to-one relationships,
and splits many-to-many relationships by introducing an intermediate linker entity.
Every entity has a natural, derived, or surrogate identifier.

• Normal ER Diagram to Existence Dependency Graph: this third transformation
orders the entities by existence dependency and converts relationships into directed
references owned by the entities. These form the basis for foreign keys.

• Existence Dependency Graph to Database Schema: this fourth transformation
converts entities to tables, attributes to columns with database types, identifiers to
primary keys and references to additional columns and foreign keys. Column names
are transformed to prevent name clashes. Data deletion semantics are identified.

• Database Schema to SQL Data Definition Language: the final code generation step is
a simple translation of the Database Model to SQL. It uses a bespoke code generator
written in Java, designed according to the Visitor Pattern [8].

This document (part 1 of 2) covers the first half of the above transformation chain, from the
UML Class Diagram to the Normal ER Diagram. Partly, this is due to the need to introduce
each of the modelling notations and their ReMoDeL encodings, before explaining the various
mapping rules involved in the first two transformations.

6

2. UML Class Diagram
The UML Class Diagram is a well-known notation for modelling classes and relationships in
object-oriented programming [2]. The diagram can be used at many stages in the software
engineering lifecycle, from initial conceptual sketches to detailed documentation of code.
Here, we are interested in the early use of this diagram in information modelling, to capture
entities, attributes and semantic relationships. This is assumed to be the entry point to data
analysis, where the designer records initial information about data.

2.1 Class Attributes and Operations

When the UML Class Diagram is used in information modelling, the emphasis is on data,
rather than behaviour. The diagram consists of classes, each containing a number of named
attributes and operations (collectively known as features). Figure 1 illustrates the notation.

Figure 1: UML notation for class, attribute, operation

The attributes have basic types, such as Integer, Real or String. They are assigned to a class
on the basis of attribute dependency, viz. the attribute's value is logically determined by the
given class instance in question.

For example, the number of an Account depends directly on the Account instance in
question, so should be assigned as an attribute of Account. By contrast, the forename
of the Account's holder should not be assigned as an attribute of Account, since the
value of this is not determined directly by the Account.

A class may optionally contain operations, specified as signatures, annotated with argument
and result types. When present, these may identify high-level business operations owned by
the class, or derived features of the class, viz. whose values can be calculated from other
attributes.

For example, if the dateOfBirth is an attribute of a Person, then the age of a Person is
derived, since it can be calculated from the dateOfBirth and the current date.

UML also uses the syntax /age (with a prefix slash) to indicate a derived attribute, which we
take as being equivalent to an operation age() returning the same result. Operations play no
further part in data analysis, since they are not stored as data.

Class features may be annotated with markers to indicate private, protected, public or
package visibility. We take the view that this is not a concern of analysis. These may be
added later during design, according to rules of encapsulation. Visibility plays no further part
in data analysis, which is only concerned with stored (non-derived) attributes.

7

2.2 Class Semantic Relationships

Classes enter into semantic relationships. There are six principal relationships, and two
variants of the association relationship, illustrated in figure 2. All of these are binary
relationships relating a source class to a target class.

Figure 2: UML notation for semantic relationships

The first four relationships are directly relevant to an analysis of data dependency:

• Generalisation: relates a more specific subclass to a more general superclass. This
describes an inheritance relationship, in which the subclass inherits all the features of
the superclass. This also describes a type-compatibility relationship in which a
subclass may be substituted where the superclass was expected.

• Aggregation: relates a component part class to an assembled whole class. This
describes a whole-parts relationship, in which the parts exist independently, but may
be included as part of the whole assembly.

• Composition: relates a constituent part class to a composite whole class. This
describes a whole-parts relationship, in which the parts cannot exist independently
from the whole, which is indivisible.

• Association: relates one class to another class, with a multiplicity marker at each end.
This describes an associative relationship, in which each class is related to a specific
multiple of the class at the other end of the association.

UML regards composition and aggregation as special cases of association, since both may
have multiplicity markers at their ends. Generalisation does not show multiplicity, but this is
implicit. All of these relationships have implications for data dependency.

Two of the remaining semantic relationships describe functional dependency, rather than data
dependency.

• Realisation: relates a concrete class to an abstract interface. This indicates a type-
compatibility between the class and the interface, such that the class may be
substituted where the interface was expected.

• Dependency: relates one class to another on which it functionally depends in some
way that is not already captured by other semantic relationships. This is a catch-all
relationship, used where no other relationship is appropriate.

Realisation is similar to generalisation in its type-compatibility sense, but has no further
consequences for data, since an interface is abstract. Dependency is used to denote functional
dependency, where one class uses another class passed as an argument to an operation. This
relates to behavioural coupling and has no further bearing on data analysis.

The final two relationships are variants of association, which should properly be used only
during design, since they make concrete decisions about implementation strategy:

8

• Directed association: is an association, in which it is possible to navigate efficiently
from the source class to the target class. This expresses a coding requirement, which
could be, but need not be, implemented through a direct reference.

• Owned association: is an association, in which the source class owns a direct
reference to the target class. This expresses a structural data dependency.

We take the view that these should not be the concern of analysis. Data analysis is able to
resolve the direction of data dependency; and if it turns out that this conflicts with any
premature decision specified using these relationships, then the model is inconsistent.

2.3 Class Diagram Examples

We shall develop two case studies in the rest of this document, to illustrate the different UML
notations and how these affect the process of data analysis. Figure 3 shows the information
model for a cycle shop that sells custom-built bicycles to its customers.

Figure 3: UML Class Diagram for the Cycle Shop

This case study contains examples of all the semantic relationships. Generalisation is used to
show that Bicycle, FrameSet, Handlebar and Wheel are all kinds of Product sold in the shop.
Aggregation is used to show that a Bicycle is assembled from a FrameSet, a Handlebar and
two Wheels. Composition is used to show that an Order consists of multiple Lines.
Association is used to show that every Order is for one Customer (but a Customer may place
many Orders); likewise to show that every Customer lives at one Address (which may hold
many Customers).

Some of the classes contain attributes marked with the UML constraint {id}, to indicate that
they are identifiers. We take the view that where many attributes are so marked, they will
form a compound identifier (rather than alternative candidate keys). Where no identifiers are
listed, the data transformation process must later generate a surrogate key.

9

The diagram in figure 3 leaves a number of specifications implicit. We assume that UML
default interpretations will apply. None of the associations is named (this is optional in
UML). The ends of the associations sometimes contain multiplicity markers, and otherwise
we assume that the multiplicity is 1 (the default in UML). The association end-roles are
mostly unnamed (apart from item) and we assume that end-role names may be synthesised
from the nearby adjoining type name.

Figure 4: UML Class Diagram for Student Records

Figure 4 shows the information model for a student records system. This mostly deals with
different kinds of association, which are mostly named. The holder association is one-to-one,
and the approval association is many-to-many, both of which require special treatment during
data normalisation. The study association is many-to-many and also has its own attributes,
represented by the Study association class. The focus of the model is on the Student record
with its dependent Session record that links to the programme of modules followed by the
student in a given academic session. Several classes have attributes with the same names,
such as name, code and number, which require special treatment in foreign key generation.

These two case studies will be created as models within ReMoDeL, that is, as instances of a
metamodel representing the types of element in a UML class diagram. The models will be
used as input to a chain of model transformations.

2.4 Metamodel for a Class Diagram

Figure 5, which extends over two pages, shows a metamodel for a UML Class Diagram,
suitably simplified for information modelling. It excludes certain features irrelevant to this
purpose (such as interfaces, realisation) but preserves operations.

Using the ReMoDeL textual syntax for metamodels [1], it describes Named things having a
name: String. Type is a kind of Named thing that is subdivided into BasicType and
ClassType. The Typed concept, a kind of Named thing, refers to a type: Type. Its derived
concepts include Variable (inheriting type), Operation (inheriting type, which declares a list

10

of Variable arguments), Attribute (whose type is specialised as a BasicType) and EndRole
(whose type is specialised as a ClassType).

metamodel UML {
 concept Named {
 attribute name : String
 }
 concept Type inherit Named {
 }
 concept BasicType inherit Type {
 }
 concept ClassType inherit Type {
 component attributes : Attribute{}
 component operations : Operation{}
 operation identifiers : Attribute{} {
 attributes.select(attrib | attrib.id)
 }
 operation dependents : Attribute{} {
 attributes.reject(attrib | attrib.id)
 }
 }
 concept Typed inherit Named {
 reference type : Type
 }
 concept Variable inherit Typed {
 }
 concept Attribute inherit Typed {
 reference type : BasicType
 attribute id : Boolean
 }
 concept Operation inherit Typed {
 attribute specification : Boolean
 component arguments : Variable[]
 }
 concept EndRole inherit Typed {
 reference type : ClassType
 attribute range : String
 operation isOne : Boolean {
 range = "" or range = "1" or range = "1..1"
 }
 operation isZeroOne : Boolean {
 range = "0..1"
 }
 operation isZeroMany : Boolean {
 range = "*" or range = "0..*"
 }
 operation isOneMany : Boolean {
 range = "1..*"
 }
 operation isMany : Boolean {
 not self.isOne
 }
 operation isOptional : Boolean {
 self.isZeroOne or self.isZeroMany
 }
 operation isMultiple : Boolean {
 not (self.isOne or self.isZeroOne)
 }
 operation getName : String {
 if name /= "" then name
 else type.name.asName
 }
 }
 concept Relationship inherit Named {
 component source : EndRole
 component target : EndRole
 operation isOneToOne : Boolean {

11

 source.isOne and target.isOne
 }
 operation isOneToMany : Boolean {
 source.isOne and target.isMany
 }
 operation isManyToOne : Boolean {
 source.isMany and target.isOne
 }
 operation isManyToMany : Boolean {
 source.isMany and target.isMany
 }
 }
 concept Generalisation inherit Relationship {
 operation getName : String {
 if name /= "" then name
 else source.type.name.concat("KindOf")
 .concat(target.type.name)
 }
 }
 concept Aggregation inherit Relationship {
 operation getName : String {
 if name /= "" then name
 else source.type.name.concat("MadeOf")
 .concat(target.type.name)
 }
 }
 concept Composition inherit Relationship {
 operation getName : String {
 if name /= "" then name
 else source.type.name.concat("PartOf")
 .concat(target.type.name)
 }
 }
 concept Association inherit Relationship {
 component type : ClassType
 operation getName : String {
 if name /= "" then name
 else if type /= null then type.name
 else (source.type.name).concat("To")
 .concat(target.type.name)
 }
 }
 concept Diagram inherit Named {
 component basicTypes : BasicType{}
 component classTypes : ClassType{}
 component generalisations : Generalisation{}
 component aggregations : Aggregation{}
 component compositions : Composition{}
 component associations : Association{}
 }
}

Figure 5: A metamodel for the UML Class Diagram

The EndRole concept plays a significant part in data analysis. It defines a range: String to
record the multiplicity marker, which in UML can be expressed in a variety of ways. To aid
in grouping the alternatives, a number of operations are defined. These in turn are the basis
for the operations isOne, isMany, isOptional, isMultiple, which later inform the translation.
If the EndRole is not explicitly named, a name may be synthesised from the related type (the
ReMoDeL operation asName converts type case to name case).

All semantic relationships are rooted in Relationship, which has a source EndRole and a
target EndRole. From this are derived Generalisation, Aggregation, Composition and
Association. These may specify explicit multiplicities in their EndRoles, or leave these

12

undefined (default assumptions are made later). An Association may optionally have a
component type: ClassType to indicate that it is a UML association class. Relationship plays
a useful part in data analysis by offering the operations oneToOne, oneToMany, manyToOne
and manyToMany, which in turn depend on the EndRole operations. If a Relationship is not
explicitly named, a suitable name is generated by operation.

Finally, a Diagram is the top-level enclosing concept in the metamodel, containing sets of the
other types of element. Basic types, class types and the four semantic relationships are stored
separately as components of the diagram.

We highlight a number of ReMoDeL syntax features. In this metamodel:

• inheritance is used to derive concepts from more general concepts;
• reference types may be specialised simply by redeclaring them;
• property access may be controlled using explicit access operations.

Since access expressions like: obj.prop are translated by the compiler into Java access
methods: obj.getProp(), it is possible to specialise property access by defining explicit
getProp() operations in subtype concepts. This is used to provide default name rules for
some concepts. The compiler redefines getProp() methods to retype references.

2.5 Cycle Shop Example Model

Figure 6 encodes the first example UML Class Diagram from figure 3 in the ReMoDeL
textual syntax for models [1]. This defines seven basic types (including the five standard
UML basic types, plus the two datatypes Date and Money) and nine class types.

model uml1 : UML {
 d1 : Diagram(name = "Cycle Shop", basicTypes = BasicType{
 b1 : BasicType(name = "Boolean"),
 b2 : BasicType(name = "Integer"),
 b3 : BasicType(name = "Natural"),
 b4 : BasicType(name = "Real"),
 b5 : BasicType(name = "String"),
 b6 : BasicType(name = "Date"),
 b7 : BasicType(name = "Money")
 }, classTypes = ClassType{
 c1 : ClassType(name = "Address", attributes = Attribute{
 a1 : Attribute(name = "house", type = b5, id = true),
 a2 : Attribute(name = "road", type = b5),
 a3 : Attribute(name = "city", type = b5),
 a4 : Attribute(name = "postcode", type = b5, id = true)
 }),
 c2 : ClassType(name = "Customer", attributes = Attribute{
 a5 : Attribute(name = "forename", type = b5),
 a6 : Attribute(name = "surname", type = b5)
 }),
 c3 : ClassType(name = "Order", attributes = Attribute{
 a7 : Attribute(name = "number", type = b2, id = true),
 a8 : Attribute(name = "date", type = b6)
 }, operations = Operation{
 o1 : Operation(name = "totalCost", type = b7)
 }),
 c4 : ClassType(name = "Line", attributes = Attribute{
 a9 : Attribute(name = "number", type = b2, id = true),
 a10 : Attribute(name = "quantity", type = b2),
 a11 : Attribute(name = "cost", type = b7)
 }),
 c5 : ClassType(name = "Product", attributes = Attribute{
 a12 : Attribute(name = "brand", type = b5, id = true),

13

 a13 : Attribute(name = "serial", type = b2, id = true),
 a14 : Attribute(name = "name", type = b5),
 a15 : Attribute(name = "price", type = b7)
 }),
 c6 : ClassType(name = "Bicycle"),
 c7 : ClassType(name = "FrameSet", attributes = Attribute{
 a16 : Attribute(name = "size", type = b2),
 a17 : Attribute(name = "shocks", type = b1)
 }),
 c8 : ClassType(name = "Handlebar", attributes = Attribute{
 a18 : Attribute(name = "style", type = b5)
 }),
 c9 : ClassType(name = "Wheel", attributes = Attribute{
 a19 : Attribute(name = "diameter", type = b2),
 a20 : Attribute(name = "tyre", type = b5)
 })
 }, generalisations = Generalisation{
 g1 : Generalisation(source =
 e1 : EndRole(type = c6), target =
 e2 : EndRole(type = c5)),
 g2 : Generalisation(source =
 e3 : EndRole(type = c7), target =
 e4 : EndRole(type = c5)),
 g3 : Generalisation(source =
 e5 : EndRole(type = c8), target =
 e6 : EndRole(type = c5)),
 g4 : Generalisation(source =
 e7 : EndRole(type = c9), target =
 e8 : EndRole(type = c5))
 }, aggregations = Aggregation{
 a21 : Aggregation(source =
 e9 : EndRole(type = c7), target =
 e10 : EndRole(type = c6)),
 a22 : Aggregation(source =
 e11 : EndRole(type = c8), target =
 e12 : EndRole(type = c6)),
 a23 : Aggregation(source =
 e13 : EndRole(type = c9, range = "2"), target =
 e14 : EndRole(type = c6))
 }, compositions = Composition{
 c10 : Composition(source =
 e15 : EndRole(type = c4, range = "1..*"), target =
 e16 : EndRole(type = c3))
 }, associations = Association{
 a22 : Association(source =
 e17 : EndRole(type = c1, range = "1"), target =
 e18 : EndRole(type = c2, range = "1..*")),
 a23 : Association(source =
 e19 : EndRole(type = c2, range = "1"), target =
 e20 : EndRole(type = c3, range = "0..*")),
 a24 : Association(source =
 e21 : EndRole(type = c4, range = "0..*"), target =
 e22 : EndRole(name = "item", type = c5, range = "1"))
 })
}

Figure 6: The model for the Cycle Shop in ReMoDeL syntax.

This example is chosen to include all of the UML semantic relationships (generalisation,
aggregation, composition, association), none of which are named. It offers a mix of single,
multiple and missing identifiers, which will be treated during data normalisation.

2.6 Student Records Example Model

Figure 7 encodes the second example UML Class Diagram from figure 4 in the ReMoDeL
textual syntax for models [1]. This defines eight basic types (including the five standard

14

UML basic types, plus the three datatypes Date, Time and Status) and seven class types with
one association class. The Status type enumerates {home, overseas} status.

model uml2 : UML {
 d1 : Diagram(name = "Student Records", basicTypes = BasicType{
 b1 : BasicType(name = "Boolean"),
 b2 : BasicType(name = "Integer"),
 b3 : BasicType(name = "Natural"),
 b4 : BasicType(name = "Real"),
 b5 : BasicType(name = "String"),
 b6 : BasicType(name = "Date"),
 b7 : BasicType(name = "Time"),
 b8 : BasicType(name = "Status")
 }, classTypes = ClassType{
 c1 : ClassType(name = "Department", attributes = Attribute{
 a1 : Attribute(name = "name", type = b5),
 a2 : Attribute(name = "code", type = b5, id = true)
 }),
 c2 : ClassType(name = "Degree", attributes = Attribute{
 a3 : Attribute(name = "name", type = b5),
 a4 : Attribute(name = "code", type = b5, id = true)
 }),
 c3 : ClassType(name = "Module", attributes = Attribute{
 a5 : Attribute(name = "name", type = b5),
 a6 : Attribute(name = "code", type = b5, id = true),
 a7 : Attribute(name = "credits", type = b2)
 }),
 c4 : ClassType(name = "Session", attributes = Attribute{
 a8 : Attribute(name = "year", type = b6, id = true),
 a9 : Attribute(name = "level", type = b2)
 }),
 c5 : ClassType(name = "Student", attributes = Attribute{
 a10 : Attribute(name = "title", type = b5),
 a11 : Attribute(name = "forename", type = b5),
 a12 : Attribute(name = "surname", type = b5),
 a13 : Attribute(name = "number", type = b2, id = true),
 a14 : Attribute(name = "status", type = b8)
 }),
 c6 : ClassType(name = "UCard", attributes = Attribute{
 a15 : Attribute(name = "number", type = b2, id = true),
 a16 : Attribute(name = "expiry", type = b6)
 }),
 c7 : ClassType(name = "LabLog", attributes = Attribute{
 a17 : Attribute(name = "date", type = b6, id = true),
 a18 : Attribute(name = "enter", type = b7, id = true),
 a19 : Attribute(name = "exit", type = b7)
 })
 }, compositions = Composition{
 c8 : Composition(name = "Enrol", source =
 e1 : EndRole(type = c4, range = "1..*"), target =
 e2 : EndRole(type = c5))
 }, associations = Association{
 a20 : Association(name = "Prospectus", source =
 e3 : EndRole(type = c1, range = "1"), target =
 e4 : EndRole(type = c2, range = "1..*")),
 a21 : Association(name = "Approval", source =
 e5 : EndRole(type = c3, range = "1..*"), target =
 e6 : EndRole(type = c2, range = "1..*")),
 a22 : Association(name = "Study", source =
 e7 : EndRole(type = c4, range = "0..*"), target =
 e8 : EndRole(type = c3, range = "0..*"), type =
 c9 : ClassType(name = "Study", attributes = Attribute{
 a23 : Attribute(name = "grade", type = b2),
 a24 : Attribute(name = "resit", type = b2)
 })),
 a25 : Association(name = "Register", source =
 e9 : EndRole(type = c5, range = "0..*"), target =

15

 e10 : EndRole(type = c2, range = "1")),
 a26 : Association(name = "Holder", source =
 e11 : EndRole(type = c5, range = "1"), target =
 e12 : EndRole(type = c6, range = "1")),
 a27 : Association(source =
 e13 : EndRole(type = c6, range = "1"), target =
 e14 : EndRole(type = c7, range = "0..*"))
 })
}

Figure 7: The model for the Student Records in ReMoDeL syntax.

This example is chosen to include many different kinds of association, having different
multiplicities at their ends, including one-to-one and many-to-many, which will be treated
specially during data normalisation. These associations are mostly named, to show how this
may be useful. One association has attributes, expressed using an association class.

2.7 UML Dependency Semantics

Throughout the transformation chain, we will seek to preserve UML dependency semantics.
Particular attention must be paid to:

• Composition – the parts are existence-dependent on the whole, so deleting the whole
must also delete the parts;

• Aggregation – the whole is dependent on the parts, which exist independently, so
deleting the whole must leave the parts intact; parts may also be exchanged, so
removing parts should not delete the whole;

• Generalisation – a subclass is existence-dependent on its superclass, so deleting the
superclass must also delete the subclass.

16

3. Entity-Relationship Diagram
The Entity-Relationship Diagram, also commonly known as the Entity-Relationship Model
(ERM) is an older notation for specifying information models. The original notation was due
to Chen [9], in which entities, attributes and relationships are represented as differently-styled
nodes linked in various ways. A slightly more compact notation, which lists attributes inside
the entity icons and shows relationships as lines with end adornments was originally due to
Everest [3] and became known as "Crow's Foot" notation. Variants of this were used in a
number of approaches, including SSADM [5], Barker's notation [10] and Information
Engineering [11].

Figure 8: Crow's Foot notation for entities, attributes and relationships

Figure 8 illustrates the Crow's Foot notation, in which entities are depicted as named
rectangles, each containing a list of attributes. The entities are connected by relationships
whose ends are annotated to indicate how many related entities exist at each end of a
relationship.

3.1 Primary and Dependent Attributes

The attributes have basic types, such as Integer, Real or String. They are assigned to an
entity on the basis of attribute dependency, viz. the attribute's value is logically determined
by the given entity instance in question.

Some attributes are underlined, indicating that they are (part of) the primary key for the entity
in question. The primary key consists of one or more attributes whose values, taken together,
uniquely identify that entity. Terminology about primary keys includes the following:

• Candidate key – is any attribute (or set of such) whose value uniquely identifies an
entity and could be chosen to serve as the primary key (but need not be).

• Natural key – is an attribute naturally occurring in the domain of discourse, which
uniquely identifies the entity, such as the isbn of a BookTitle.

• Surrogate key – is an artificially generated attribute, where no natural key exists,
whose value uniquely identifies the entity, such as the copyID of a BookCopy.

• Compound key – is a set of attributes, whose values taken together uniquely identify
the entity, such as the house and postcode of an Address.

• Primary key – is chosen from the candidate keys and may be a single natural key, a
surrogate key, or a compound key, which uniquely identifies the entity.

17

The attributes of an entity are divided into primary attributes (part of the primary key) and
dependent attributes, whose values depend on the entity, and hence on the primary key.
Attribute dependency can be re-cast as: every non-key attribute must depend wholly on the
primary key.

3.2 Relationship Cardinality and Optionality

Relationships express, at each end, a cardinality (maximum number of participating entities)
and an optionality (minimum number of participating entities). Sometimes these are simply
lumped together as the multiplicity. Figure 8 shows the adornments placed on the ends of a
relationship. Cardinality adornments are drawn next to the entity; optionality adornments are
drawn further away.

• Cardinality one – is shown as a stroke across the relationship, near the entity.
• Cardinality many – is shown as a crow's foot symbol, touching the entity.
• Optionality zero – is shown as a circle, next to the cardinality adornment.
• Optionality one – is shown as a stroke, next to the cardinality adornment.

Together, these can occur in four combinations, as shown in figure 8. We read relationships
in both directions; each entity at the source-end is related to a specified number of entities at
the target-end (where source, target are taken from the direction of reading).

• Mandatory – is at least one and at most one (exactly one). A Customer is related to
exactly one Address.

• Optional – is at least zero and at most one. A BookCopy is optionally related to a
Borrower (who loaned it).

• Zero-Many – is at least zero and at most many. A Borrower is related to zero or more
BookCopies (which were loaned).

• One-Many – is at least one and at most many. An Address is home to one or more
Customers.

Relationships may be characterised in a coarser way, according to the multiplicities at each
end. Fixed participation (mandatory) is classified as one and variable participation (optional,
zero-many, one-many) is classified as many. An alternative characterisation is possible, in
which single participation (mandatory, optional) is classified as one, and multiple
participation (zero-many, one-many) is classified as many.

The trade-off is: the first scheme will minimise foreign keys with null values, but requires
more associative entities (see section 3.3); and the second scheme requires foreign keys with
null values, but needs fewer associative entities. Proceeding with the first scheme, this gives
four possibilities, three of which are shown in figure 8:

• One-to-one – mandatory multiplicity at each end (not shown);
• One-to-many – e.g. the relationship between Address and Customer;
• Many-to-one – e.g. the relationship between Customer and Address;
• Many-to-many – e.g. the relationship between Borrower and BookCopy.

One-to-one and many-to-many relationships are symmetrical; the others are asymmetric:
one-to-many is the reflection of many-to-one. These are handled differently during data
normalisation.

18

3.3 Strong and Weak Entities

Entities coming directly from the domain of discourse represent primary information. We
refer to these as strong entities. Each of these must include (eventually) a primary key taken
from their listed attributes. If no natural key exists, a surrogate key is created. Otherwise, we
prefer to use natural keys or compound keys from the domain of discourse.

Some advocate creating a surrogate ID for every entity, especially when mapping a
UML class to an ERM entity. The argument for this is based on the idea that objects
have an identity (memory address) that is independent of their attribute values. This
means that naturally-unique attributes must be demoted to dependent attributes. We
advocate using natural keys where these are available. The arguments for this are that
this avoids bloating the data and avoids creating extra internal data dependencies.
The only argument for doing otherwise is where large compound keys (three or more
attributes) are used frequently in other entities as foreign keys.

Other dependent entities may be derived during the process of data analysis. These
secondary entities are known as weak entities in contrast to the strong entities. There are
three kinds of weak entity:

• Associative entity – this is an entity created to model a relationship between two
entities, also known as a linker entity.

• Detail entity – this is an entity created to model a dependent part of another entity,
which is known as the master entity.

• Subtype entity – this is an entity created to model an extension of another entity,
which is known as the supertype entity.

The property of weak entities is that they cannot be identified solely by a local primary key,
but must include the primary key of the entity (or entities) on which they depend.

For example, a Loan associative entity created to model the relationship between a
Borrower and a BookCopy must include the primary key of both the Borrower and
BookCopy as part of its own primary key (which may include other key attributes,
such as the issueDate).

For example, the Line detail entity, a component part of an Order master entity, must
include the primary key of the Order as part of its own primary key (which will also
include a local weak key attribute enumerating the line number, which is not sufficient
by itself).

For example, a StudentBorrower subtype entity of the Borrower entity must include
the primary key of Borrower as part of its own primary key (which may, but need not,
include local key attributes).

This kind of information is critical to data analysis and normalisation, but is not typically
captured in the popular Crow's Foot notation [3, 5, 10, 11]; although associative and (other)
weak entities are distinguished in Chen's original notation [9]. Some suggestions have
included:

• indicate an associative entity by marking the four corners with diagonal strokes
(derived from Chen's notation for an associative entity);

19

• indicate an associative entity using dashed outline and a dashed connection to the
many-to-many relationship (similar to the UML association class concept);

but there is no general agreement on how to depict weak entities in the Crow's Foot notation.
Instead, weak entities are drawn like strong entities, but with suitable attributes added by
hand to represent a copy of a remote primary key.

Our preference is to indicate weak entities visually and show the identifying relationships
through which they obtain (part of) their primary key. We do not wish to replicate key
attributes in weak entities at this stage, since entities may yet be merged, during
normalisation, and the attributes chosen for primary keys may change as a result.

3.4 Entity-Relationship Diagram Examples

We continue with the case studies introduced in section 2.3, to show how these would look in
our proposed ERM notation. Figure 9 illustrates the ERM conversion of the Cycle Shop case
study, first shown as a UML class diagram in figure 3.

Figure 9: Entity Relationship Diagram for the Cycle Shop

All UML classes have been converted into ERM entities. All strong entities have either a
simple, or a compound natural key, shown by the underlining of key attributes. Some entities
have been marked as weak entities, using a black triangle in the top left corner to indicate
this. A weak entity depends on another strong entity for part of its primary key. This is
shown by marking some relationships as identifying relationships, using a black triangle to
indicate the direction of dependency.

Both UML generalisation and UML composition have been converted into simpler ERM
relationships, each relating a weak and a strong entity. The detail entity Line is dependent on
the master entity Order; and the subtype entities Bicycle, FrameSet, Handlebar and Wheel
are dependent on the supertype Product. This preserves the required existence dependency
described in section 2.7. The detail entity Line provides a further weak key attribute number,

20

shown using dashed underlining. All key attributes of weak entities become weak key
attributes. The other subtype entities did not offer any further key attributes.

Both UML generalisation and UML composition have been converted into simpler ERM
relationships, each relating a weak and a strong entity. The detail entity Line is dependent on
the master entity Order; and the subtype entities Bicycle, FrameSet, Handlebar and Wheel
are dependent on the supertype Product. This preserves the required existence dependency
described in section 2.7. The detail entity Line provides a further weak key attribute number,
shown using dashed underlining. All key attributes of weak entities become weak key
attributes. The other subtype entities did not offer any further key attributes.

All UML associations have been converted into ERM relationships with suitable multiplicity
adornments at each end. These replace the ranges specified in UML. The UML aggregation,
describing a Bicycle as an assembly of parts, has been converted into an ERM relationship
with an automatic multiplicity of optional at the whole-end. This is to preserve the semantics
of aggregation described in section 2.7. The multiplicities at the part-end are translated from
the UML ranges (with the exact range of 2 becoming one-many). The UML generalisations
have been converted into ERM relationships with an automatic multiplicity of optional at the
subtype-end, and one at the supertype end (viz. capturing the fact that every Bicycle is always
a Product; but any Product may, or may not, be a Bicycle).

Figure 10: Entity Relationship Diagram for the Student Records

Figure 10 illustrates the ERM conversion of the Student Records case study, first shown as a
UML class diagram in figure 4. All UML classes have been converted into ERM entities,
including one weak detail entity Session. The weak associative entity Study is indicated
using a black triangle in the top-left corner. This entity is the conversion of the UML
association class, which qualified the association between Module and Session with some
attributes. Its dependency on both related entities is shown by marking these relationships as
identifying, using a black triangle to indicate the direction of dependency.

21

One point of subtlety is that Study depends (partly) on Session, which in turn depends on
Student. Eventually, Session will require a compound key (including the Student number and
the local year). Study will therefore have a compound key (Module code, Student number,
year). However, we do not copy these attributes across, while there are still unresolved
issues in data normalisation. A one-to-one relationship exists between UCard and Student,
which must be eliminated in 3NF (3rd Normal Form) by merging the two entities. This could
result in a different primary key being chosen for the merged result.

The UML to ERM transformation is complete once all concepts unique to UML have been
converted into suitable ERM concepts; but the resulting diagrams are not yet in 3rd Normal
Form. In figure 10, whereas the association class Study was promoted to an entity to resolve
the many-to-many relationship between Module and Session, the other many-to-many
relationship approval between Module and Degree has not yet been normalised. In figure 9,
the transformation of the aggregation relationship has left an optional-to-many relationship
between Bicycle and Wheel, which has not yet been normalised.

3.5 Metamodel for an Entity Relationship Diagram

Figure 11, which extends over three pages, shows a metamodel for an Entity-Relationship
Diagram. Using the ReMoDeL textual syntax for metamodels [1], it describes Named things
having a name: String. Type is a kind of Named thing that is subdivided into BasicType and
Entity. The Typed concept, a kind of Named thing, refers to a type: Type. Its derived
concepts include Attribute (whose type is specialised as a BasicType) and EndRole (whose
type is specialised as an Entity).

metamodel ERM {
 concept Named {
 attribute name : String
 }
 concept Type inherit Named {
 }
 concept BasicType inherit Type {
 }
 concept Entity inherit Type {
 attribute linker : Boolean
 attribute detail : Boolean
 attribute subtype : Boolean
 component attributes : Attribute{}
 operation identifiers : Attribute{} {
 attributes.select(attr | attr.id)
 }
 operation dependents : Attribute{} {
 attributes.reject(attr | attr.id)
 }
 operation weak : Boolean {
 linker or detail or subtype
 }
 operation weight : Integer {
 attributes.size
 }
 }
 concept Typed inherit Named {
 reference type : Type
 }
 concept Attribute inherit Typed {
 reference type : BasicType
 attribute id : Boolean
 operation surrogate : Boolean {
 name.endsWith("ID")
 }

22

 }
 concept EndRole inherit Typed {
 reference type : Entity
 attribute optional : Boolean
 attribute multiple : Boolean
 operation isOne : Boolean {
 not (optional or multiple)
 }
 operation isMany : Boolean {
 multiple or optional
 }
 operation isZeroOne : Boolean {
 optional and (not multiple)
 }
 operation isZeroMany : Boolean {
 optional and multiple
 }
 operation isOneMany : Boolean {
 (not optional) and multiple
 }
 operation getName : String {
 if name /= "" then name
 else type.name.asName
 }
 }
 concept Relationship inherit Named {
 attribute id : Boolean
 attribute kindOf : Boolean
 attribute partOf : Boolean
 attribute madeOf : Boolean
 component source : EndRole
 component target : EndRole
 operation isOneToOne : Boolean {
 source.isOne and target.isOne
 }
 operation isOneToMany : Boolean {
 source.isOne and target.isMany
 }
 operation isManyToOne : Boolean {
 source.isMany and target.isOne
 }
 operation isManyToMany : Boolean {
 source.isMany and target.isMany
 }
 operation majorType : Entity {
 if source.type.weight < target.type.weight
 then target.type
 else source.type
 }
 operation minorType : Entity {
 if source.type.weight < target.type.weight
 then source.type
 else target.type
 }
 operation refersTo(entity : Entity) : Boolean {
 source.type = entity or target.type = entity
 }
 operation getName : String {
 if name /= "" then name
 else if kindOf then source.type.name.concat("KindOf")
 .concat(target.type.name)
 else if partOf then source.type.name.concat("PartOf")
 .concat(target.type.name)
 else if madeOf then source.type.name.concat("MadeOf")
 .concat(target.type.name)
 else source.type.name.concat("To")
 .concat(target.type.name)
 }

23

 }
 concept Diagram inherit Named {
 component basicTypes : BasicType{}
 component entities : Entity{}
 component relationships : Relationship{}
 operation strongEntities : Entity{} {
 entities.reject(entity | entity.weak)
 }
 operation weakEntities : Entity{} {
 entities.select(entity | entity.weak)
 }
 operation oneToOne : Relationship{} {
 relationships.select(rel | rel.isOneToOne)
 }
 operation manyToMany : Relationship{} {
 relationships.select(rel | rel.isManyToMany)
 }
 operation oneToMany : Relationship{} {
 relationships.select(rel | rel.isOneToMany)
 }
 operation manyToOne : Relationship{} {
 relationships.select(rel | rel.isManyToOne)
 }
 }
}

Figure 11: A metamodel for the Entity Relationship Diagram

An Entity is weak if it is specified as a linker (associative), a detail, or a subtype entity; and is
strong otherwise. The attributes of an Entity can be filtered to find either identifiers or
dependents. They are surrogate if their name ends with "ID". The weight of an Entity is the
size of its attribute-set (a heuristic used later in normalisation).

An EndRole encodes directly whether it is multiple or optional, and from this, operations
derive whether it has one, many, zeroOne, zeroMany or oneMany multiplicity. A
Relationship contains source and target EndRoles and a Boolean attribute id specifies
whether it is identifying. A Relationship also records whether it was derived from a specific
UML semantic relationship: kindOf (subtype), partOf (detail) or madeOf (aggregate). A
Relationship derives from its EndRoles whether it is oneToOne, oneToMany, manyToOne or
manyToMany. It is possible to select the majorType or minorType (the Entity with greater or
lesser weight), and to determine whether the Relationship refers to a given Entity.

Finally, a Diagram allows selection of its BasicTypes, Entities and Relationships, and filtered
subsets of strong or weak Entities, and filtered subsets of the four kinds of Relationship.
Many concepts are named, and default names are generated for EndRole and Relationship,
even if these were not supplied.

3.6 The Cycle Shop Example Model

Figure 12 encodes the Entity Relationship Model from figure 9 in the ReMoDeL textual
syntax for models. This model was translated automatically from the equivalent UML model
by a transformation, to be presented below in section 4.

All named concepts have received an explicit name, as a result of being translated from UML
concepts which supplied synthesised names where no explicit name was given. The basic
types have been mapped to equivalent types, and the ClassType concepts have been mapped
to Entity concepts, some of which are weak and marked as detail or subtype entities.

24

model erm1 : ERM {
 d1 : Diagram(name = "Cycle Shop", basicTypes = BasicType{
 b1 : BasicType(name = "Boolean"),
 b2 : BasicType(name = "Integer"),
 b3 : BasicType(name = "Natural"),
 b4 : BasicType(name = "Real"),
 b5 : BasicType(name = "String"),
 b6 : BasicType(name = "Date"),
 b7 : BasicType(name = "Money")
 }, entities = Entity{
 e1 : Entity(name = "Address", attributes = Attribute{
 a1 : Attribute(name = "house", type = b5, id = true),
 a2 : Attribute(name = "postcode", type = b5, id = true),
 a3 : Attribute(name = "road", type = b5),
 a4 : Attribute(name = "city", type = b5)
 }),
 e2 : Entity(name = "Customer", attributes = Attribute{
 a5 : Attribute(name = "forename", type = b5),
 a6 : Attribute(name = "surname", type = b5)
 }),
 e3 : Entity(name = "Order", attributes = Attribute{
 a7 : Attribute(name = "number", type = b2, id = true),
 a8 : Attribute(name = "date", type = b6)
 }),
 e4 : Entity(name = "Line", detail = true, attributes = Attribute{
 a9 : Attribute(name = "number", type = b2, id = true),
 a10 : Attribute(name = "quantity", type = b2),
 a11 : Attribute(name = "cost", type = b7)
 }),
 e5 : Entity(name = "Product", attributes = Attribute{
 a12 : Attribute(name = "brand", type = b5, id = true),
 a13 : Attribute(name = "serial", type = b2, id = true),
 a14 : Attribute(name = "name", type = b5),
 a15 : Attribute(name = "price", type = b7)
 }),
 e6 : Entity(name = "Bicycle", subtype = true),
 e7 : Entity(name = "FrameSet", subtype = true,
 attributes = Attribute{
 a16 : Attribute(name = "size", type = b2),
 a17 : Attribute(name = "shocks", type = b1)
 }),
 e8 : Entity(name = "Handlebar", subtype = true,
 attributes = Attribute{
 a18 : Attribute(name = "style", type = b5)
 }),
 e9 : Entity(name = "Wheel", subtype = true, attributes = Attribute{
 a19 : Attribute(name = "diameter", type = b2),
 a20 : Attribute(name = "tyre", type = b5)
 })
 }, relationships = Relationship{
 r1 : Relationship(name = "BicycleKindOfProduct", id = true, kindOf = true,
 source = e10 : EndRole(name = "bicycle", type = e6, optional = true),
 target = e11 : EndRole(name = "product", type = e5)
),
 r2 : Relationship(name = "FrameSetKindOfProduct", id = true, kindOf = true,
 source = e12 : EndRole(name = "frameSet", type = e7, optional = true),
 target = e13 : EndRole(name = "product", type = e5)
),
 r3 : Relationship(name = "HandlebarKindOfProduct", id = true, kindOf = true,
 source = e14 : EndRole(name = "handlebar", type = e8, optional = true),
 target = e15 : EndRole(name = "product", type = e5)
),
 r4 : Relationship(name = "WheelKindOfProduct", id = true, kindOf = true,
 source = e16 : EndRole(name = "wheel", type = e9, optional = true),
 target = e17 : EndRole(name = "product", type = e5)
),

25

 r5 : Relationship(name = "LinePartOfOrder", id = true, partOf = true,
 source = e18 : EndRole(name = "line", type = e4, multiple = true),
 target = e19 : EndRole(name = "order", type = e3)
),
 r6 : Relationship(name = "BicycleMadeOfFrameSet", madeOf = true,
 source = e20 : EndRole(name = "bicycle", type = e6, optional = true),
 target = e21 : EndRole(name = "frameSet", type = e7)
),
 r7 : Relationship(name = "BicycleMadeOfHandlebar", madeOf = true,
 source = e22 : EndRole(name = "bicycle", type = e6, optional = true),
 target = e23 : EndRole(name = "handlebar", type = e8)
),
 r8 : Relationship(name = "BicycleMadeOfWheel", madeOf = true,
 source = e24 : EndRole(name = "bicycle", type = e6, optional = true),
 target = e25 : EndRole(name = "wheel", type = e9, multiple = true)
),
 r9 : Relationship(name = "AddressToCustomer",
 source = e26 : EndRole(name = "address", type = e1),
 target = e27 : EndRole(name = "customer", type = e2, multiple = true)
),
 r10 : Relationship(name = "CustomerToOrder",
 source = e28 : EndRole(name = "customer", type = e2),
 target = e29 : EndRole(name = "order", type = e3, optional = true,
 multiple = true)
),
 r11 : Relationship(name = "LineToProduct",
 source = e30 : EndRole(name = "line", type = e4, optional = true,
 multiple = true),
 target = e31 : EndRole(name = "item", type = e5)
)
 })
}

Figure 12: the Entity Relationship Model for the Cycle Shop

Certain attributes and relationships are marked with id, to indicate that they are identifying.
Most entities have natural identifiers; however, Customer does not. Since this model has not
yet been normalised, a surrogate key has not yet been synthesised for it. Each identifying
relationship is used to link a dependent weak entity with its associated strong entity.

Certain relationships are marked as being kindOf, partOf or madeOf relationships. This is
also reflected in the names (synthesised in the UML model, and assigned explicitly in this
model). This provides a kind of traceability back to the UML, but also helps to determine
whether cascading deletion is required in the database.

3.7 The Student Records Example Model

Figure 13 encodes the Entity Relationship Model from figure 10 in the ReMoDeL textual
syntax for models. This model was also translated automatically from the equivalent UML
model by a transformation, to be presented below in section 4. The treatment of entities,
attributes and relationships is similar to the previous case study. One difference is that many
relationships were explicitly named in this case study, so these names were preserved in the
translation from UML to ERM.

model erm2 : ERM {
 d1 : Diagram(name = "Student Records", basicTypes = BasicType{
 b1 : BasicType(name = "Boolean"),
 b2 : BasicType(name = "Integer"),
 b3 : BasicType(name = "Natural"),
 b4 : BasicType(name = "Real"),
 b5 : BasicType(name = "String"),
 b6 : BasicType(name = "Date"),

26

 b7 : BasicType(name = "Time"),
 b8 : BasicType(name = "Status")
 }, entities = Entity{
 e1 : Entity(name = "Department", attributes = Attribute{
 a1 : Attribute(name = "code", type = b5, id = true),
 a2 : Attribute(name = "name", type = b5)
 }),
 e2 : Entity(name = "Degree", attributes = Attribute{
 a3 : Attribute(name = "code", type = b5, id = true),
 a4 : Attribute(name = "name", type = b5)
 }),
 e3 : Entity(name = "Module", attributes = Attribute{
 a5 : Attribute(name = "code", type = b5, id = true),
 a6 : Attribute(name = "name", type = b5),
 a7 : Attribute(name = "credits", type = b2)
 }),
 e4 : Entity(name = "Session", detail = true, attributes = Attribute{
 a8 : Attribute(name = "year", type = b6, id = true),
 a9 : Attribute(name = "level", type = b2)
 }),
 e5 : Entity(name = "Student", attributes = Attribute{
 a10 : Attribute(name = "number", type = b2, id = true),
 a11 : Attribute(name = "title", type = b5),
 a12 : Attribute(name = "forename", type = b5),
 a13 : Attribute(name = "surname", type = b5),
 a14 : Attribute(name = "status", type = b8)
 }),
 e6 : Entity(name = "UCard", attributes = Attribute{
 a15 : Attribute(name = "number", type = b2, id = true),
 a16 : Attribute(name = "expiry", type = b6)
 }),
 e7 : Entity(name = "LabLog", attributes = Attribute{
 a17 : Attribute(name = "date", type = b6, id = true),
 a18 : Attribute(name = "enter", type = b7, id = true),
 a19 : Attribute(name = "exit", type = b7)
 }),
 e8 : Entity(name = "Study", linker = true, attributes = Attribute{
 a20 : Attribute(name = "grade", type = b2),
 a21 : Attribute(name = "resit", type = b2)
 })
 }, relationships = Relationship{
 r1 : Relationship(name = "Enrol", id = true, partOf = true, source =
 e9 : EndRole(name = "session", type = e4, multiple = true), target =
 e10 : EndRole(name = "student", type = e5)
),
 r2 : Relationship(name = "StudyToSession", id = true, source =
 e11 : EndRole(name = "study", type = e8, optional = true,
 multiple = true), target =
 e12 : EndRole(name = "session", type = e4)
),
 r3 : Relationship(name = "StudyToModule", id = true, source =
 e13 : EndRole(name = "study", type = e8, optional = true,
 multiple = true), target =
 e14 : EndRole(name = "module", type = e3)
),
 r4 : Relationship(name = "Prospectus", source =
 e15 : EndRole(name = "department", type = e1), target =
 e16 : EndRole(name = "degree", type = e2, multiple = true)
),
 r5 : Relationship(name = "Approval", source =
 e17 : EndRole(name = "module", type = e3, multiple = true), target =
 e18 : EndRole(name = "degree", type = e2, multiple = true)
),
 r6 : Relationship(name = "Register", source =
 e19 : EndRole(name = "student", type = e5, optional = true,
 multiple = true), target =
 e20 : EndRole(name = "degree", type = e2)
),

27

 r7 : Relationship(name = "Holder", source =
 e21 : EndRole(name = "student", type = e5), target =
 e22 : EndRole(name = "uCard", type = e6)
),
 r8 : Relationship(name = "UCardToLabLog", source =
 e23 : EndRole(name = "uCard", type = e6), target =
 e24 : EndRole(name = "labLog", type = e7, optional = true,
 multiple = true)
)
 })
}

Figure 13: the Entity Relationship Model for Student Records

The UML association class Study has been promoted to a weak entity of the same name,
marked as a linker, and storing the attributes of that association. As part of this, the many-to-
many association between Module and Session has also been converted into a pair of many-
to-one relationships, respectively linking the promoted Study to Module, and to Session. The
multiplicities at the ends of these relationships have been suitably translated, so that each
Study instance relates to exactly one Module and one Session.

Other relationships have so far not been normalised. These include the many-to-many
Approval relationship between Degree and Module; and the one-to-one Holder relationship
between Student and UCard. The normalisation of the ERM will be handled by a later
transformation.

28

4. UML to ERM Transformation
The transformation from UML to ERM must perform a number of mappings from the UML
metamodel to the ERM metamodel. This kind of transformation is exogeneous, also
described as a translation. We consider separately the mapping of types, the mapping of
relationships and the mapping of attributes and identifiers.

4.1 Mapping of Types

Every UML basic type must be mapped to a similar basic type in the ERM. We assume that
the basic types include the predefined UML basic types (Boolean, Integer, Real, String,
Natural); and UML data types that may be declared, such as Date, Money, Time; and also,
UML enumerated types, such as Status (in figure 10).

Every UML class must be mapped to an ERM entity, which is either strong or weak,
depending on the UML semantic relationships in which it participates. In particular, the
following map to some kind of weak entity:

• UML association class – is always mapped to a linker entity, since it describes
attributes of an association, and is promoted to an associative entity.

• UML subclass – is always mapped to a subtype entity, since it describes additional
attributes added to those of a superclass. A subclass is any class related by
generalisation to another class.

• UML detail class – is always mapped to a detail entity, which is existence dependent
on a master entity. A detail class is any class related by composition to another class.

All other classes map to strong entities. The aggregation relationship does not affect
strong/weak entity decisions.

4.2 Mapping of Relationships

All UML semantic relationships must be mapped to the simpler ERM relationship. The
multiplicities at the ends of each relationship are either derived from the UML end role
ranges, or they are dictated by the kind of UML semantic relationship. In particular:

• UML generalisation – is always mapped to an optional-to-one ERM relationship,
where the subtype is at the optional end. Every subtype instance has a corresponding
supertype, whereas every supertype instance may or may not be related to the given
subtype in question. This relationship is identifying.

• UML aggregation – is always mapped to an optional-to-one, or optional-to-many
relationship, where the aggregate class is at the optional end. Every aggregate is an
optional assembly of its parts, which may exist in isolation.

• UML composition – is always mapped to a many-to-one, or one-to-one relationship,
where the parts can only depend on one whole. The indivisible parts cannot exist
without the whole. This relationship is identifying.

UML associations may either be qualified (having an association class), or unqualified
(without any association class). They are transformed in different ways:

• UML unqualified association – is mapped directly to an ERM relationship with
similar multiplicities (derived from ranges). At this stage, all combinations of
multiplicity may be expected.

29

• UML qualified association - is split into two distinct ERM relationships connecting on
the source and target sides to the linker entity that was mapped from an association
class. Each of these relationships is identifying.

The rule for splitting associations must map the old source and target multiplicities carefully:

• The linker-to-source relationship has the old target multiplicity on the linker-side and
a multiplicity of exactly one on the source-side.

• The linker-to-target relationship has the old source multiplicity on the linker-side and
a multiplicity of exactly one on the target-side.

This reflects the fact that whereas the source mapped to M target instances, it now maps to M
linker instances; and whereas the target mapped to N source instances, it now maps to N
linker instances. Every linker instance maps to exactly one instance of each related entity.

4.3 Mapping of Attributes and Identifiers

The attributes of each UML class are mapped to attributes of the corresponding ERM entities.
UML attributes that were marked as {id} identifiers are mapped to identifying attributes (with
underlined names) in ERM; or to weak identifiers (with dashed underlining), if their owning
entity is a weak entity. The basic types of the UML attributes are mapped to corresponding
basic types in ERM.

If a strong, or detail entity has no identifying attribute, then a surrogate identifier must be
synthesised. The rule for this is to create an ERM attribute, whose name is formed by
concatenating the name-case version of the entity's name with the string "ID", and whose
type is found by mapping the UML basic Integer type. For example, a surrogate identifier for
the Customer entity will be customerID: Integer. Other weak entities (linker, subtype) do not
need surrogate identifiers (but may have identifying attributes).

Weak entities must eventually have one or more identifying relationships. That is, they will
be identified in part by the entity at the target of the relationship. Later, this will trigger the
copying of identifying attributes from the target entity back to the (weak) source entity.

• A subtype entity has one identifying relationship pointing to the supertype entity;
• A detail entity has one identifying relationship pointing to the master entity;
• A linker entity has two identifying relationships, each pointing to one of the linked

entities.

We delay copying identifying attributes until after the transformation to an existence
dependency graph, when all relationships have been converted into references.

4.4 Alternative Mappings for Generalisation

UML generalisations may be treated in more than one way, when converting a UML class
diagram to an ERM diagram. These have different advantages and disadvantages further
down the line for database implementation. The possible treatments are:

• Collapse all classes related by generalisation into a single monolithic class (the so-
called "fat superclass" approach).

• Copy all abstract superclass attributes into each of the concrete subclasses (the so-
called "disjoint subclass" approach).

30

• Map all classes to distinct entities, and map all generalisations to optional-to-one
relationships (the so-called "structure preserving" approach).

For example, a Person class (with forename, surname) has two subclasses Student (with a
unique registration) and Lecturer (with a unique employeeID). If any represented person
is either a lecturer, or a student, but not both, then the disjoint subclass approach may be
used. If the domain allows someone who can be both a student and a lecturer, viz. a
teaching assistant (TA), then one of the other approaches must be used. The fat
superclass approach will only normalise to 2NF (because Student attributes depend on
registration; Lecturer attributes depend on employeeID; and these eventually depend
transitively on a surrogate PersonID). The structure-preserving approach will create
related instances of each entity for a TA.

The "fat superclass" approach may be taken where generalisation is only used to indicate
small variations of a principal concrete class type. The superclass must have a primary key.
The merging of subclass attributes into the superclass results in an entity, some of whose
fields will be null in each instance. However, the gain is fewer database join operations
required to relate super- and subclass instances. If subclasses have their own key attributes,
the merged result only satisfies 2NF (transitive dependencies remain).

The "disjoint subclass" approach is used where generalisation is used to share an abstract
class's attributes with several concrete subclasses, and all instances belong exclusively either
to one, or other subclass. The subclasses may have distinct primary keys. The cost is in
duplicated superclass attributes, and having to replace each relationship to the superclass by
separate relationships to each subclass. The benefit is fewer database join operations to relate
super- and subclass instances.

The "structure preserving" approach is the most general transformation, converting each
super- and subclass into distinct entities. The superclass may also be concrete (instantiable),
and the subclasses may also be overlapping (viz. conceptually related instances may exist).
The cost is in more database joins, when relating super- and subclass instances. We have
adopted this approach.

4.5 The ReMoDeL Transformation UML to ERM

The ReMoDeL transformation for converting a UML class diagram to an ERM Diagram is
shown over the next few pages as figure 14. The transformation is called UmlToErm and
belongs to the transformation group UmlDB (UML and databases).

transform UmlToErm : UmlDB {
 metamodel source : UML
 metamodel target : ERM

 mapping classToErmDiagram(diagram : UML_Diagram) : ERM_Diagram {
 create ERM_Diagram(name := diagram.name,
 basicTypes := umlTypesToBasicTypes(diagram),
 entities := umlTypesToEntities(diagram),
 relationships := umlArrowsToRelationships(diagram)
 .union(umlAssocsToRelationships(diagram))
)
 }
 mapping umlTypesToBasicTypes(diagram : UML_Diagram) : ERM_BasicType{} {
 diagram.basicTypes.collect(type : UML_BasicType | basicToBasicType(type))
 }
 mapping umlTypesToEntities(diagram : UML_Diagram) : ERM_Entity{} {

31

 create ERM_Entity{}()
 .union(diagram.classTypes.collect(type : UML_ClassType |
 classTypeToEntity(type, diagram)))
 .union(diagram.associations.select(assoc : UML_Association |
 assoc.type /= null).collect(assoc : UML_Association |
 assocClassToEntity(assoc, diagram)))
 }
 mapping umlArrowsToRelationships(diagram : UML_Diagram) : ERM_Relationship{} {
 create ERM_Relationship{}()
 .union(diagram.generalisations.collect(gen : UML_Generalisation |
 genToRelationship(gen, diagram)))
 .union(diagram.compositions.collect(comp : UML_Composition |
 compToRelationship(comp, diagram)))
 .union(diagram.aggregations.collect(aggr : UML_Aggregation |
 aggrToRelationship(aggr, diagram)))
 }
 mapping umlAssocsToRelationships(diagram : UML_Diagram) : ERM_Relationship{} {
 create ERM_Relationship{}()
 .union(diagram.associations.select(assoc : UML_Association |
 assoc.type /= null).collate(assoc : UML_Association |
 assocToSplitRelationships(assoc, diagram)))
 .union(diagram.associations.select(assoc : UML_Association |
 assoc.type = null).collect(assoc : UML_Association |
 assocToRelationship(assoc, diagram)))
 }

 mapping basicToBasicType(type : UML_BasicType) : ERM_BasicType {
 create ERM_BasicType(name := type.name)
 }
 mapping classTypeToEntity(type : UML_ClassType,
 diagram : UML_Diagram) : ERM_Entity {
 create ERM_Entity(name := type.name,
 detail := diagram.compositions.exists(comp : UML_Composition |
 comp.source.type = type),
 subtype := diagram.generalisations.exists(gen : UML_Generalisation |
 gen.source.type = type),
 attributes := if type.identifiers.isEmpty and not
 diagram.generalisations.exists(gen : UML_Generalisation |
 gen.source.type = type)
 then classTypeToSurrogate(type, diagram).asSet
 .union(classTypeToAttributes(type))
 else classTypeToAttributes(type)
)
 }
 mapping assocClassToEntity(assoc : UML_Association,
 diagram : UML_Diagram) : ERM_Entity {
 create ERM_Entity(name := assoc.name,
 linker := true,
 attributes := classTypeToAttributes(assoc.type)
)
 }
 mapping classTypeToAttributes(type : UML_ClassType) : ERM_Attribute{} {
 create ERM_Attribute{}()
 .union(type.identifiers.collect(attr | attribToAttribute(attr)))
 .union(type.dependents.collect(attr | attribToAttribute(attr)))
 }
 mapping classTypeToSurrogate(type : UML_ClassType,
 diagram : UML_Diagram) : ERM_Attribute {
 create ERM_Attribute(
 name := type.name.asName.concat("ID"),
 type := basicToBasicType(diagram.basicTypes.detect(basic : UML_BasicType |
 basic.name = "Integer")),
 id := true
)
 }
 mapping attribToAttribute(attrib : UML_Attribute) : ERM_Attribute {
 create ERM_Attribute(
 name := attrib.name,

32

 type := basicToBasicType(attrib.type),
 id := attrib.id
)
 }
 mapping assocToRelationship(assoc : UML_Association,
 diagram : UML_Diagram) : ERM_Relationship {
 create ERM_Relationship(name := assoc.name,
 source := umlRoleToErmRole(assoc.source, diagram),
 target := umlRoleToErmRole(assoc.target, diagram)
)
 }
 mapping assocToSplitRelationships(assoc : UML_Association,
 diagram : UML_Diagram) : ERM_Relationship{} {
 create ERM_Relationship{}()
 .with(assocSourceToRelationship(assoc, diagram))
 .with(assocTargetToRelationship(assoc, diagram))
 }
 mapping assocSourceToRelationship(assoc : UML_Association,
 diagram : UML_Diagram) : ERM_Relationship {
 create ERM_Relationship(
 name := assoc.name.concat("To").concat(assoc.source.type.name),
 id := true,
 source := create ERM_EndRole(
 name := assoc.name.asName,
 type := assocClassToEntity(assoc, diagram),
 optional := assoc.target.isOptional or assoc.target.isZeroMany,
 multiple := assoc.target.isZeroMany or assoc.target.isOneMany
),
 target := create ERM_EndRole(
 name := assoc.source.name,
 type := classTypeToEntity(assoc.source.type, diagram)
)
)
 }
 mapping assocTargetToRelationship(assoc : UML_Association,
 diagram : UML_Diagram) : ERM_Relationship {
 create ERM_Relationship(
 name := assoc.name.concat("To").concat(assoc.target.type.name),
 id := true,
 source := create ERM_EndRole(
 name := assoc.name.asName,
 type := assocClassToEntity(assoc, diagram),
 optional := assoc.source.isOptional or assoc.source.isZeroMany,
 multiple := assoc.source.isZeroMany or assoc.source.isOneMany
),
 target := create ERM_EndRole(
 name := assoc.target.name,
 type := classTypeToEntity(assoc.target.type, diagram)
)
)
 }
 mapping umlRoleToErmRole(role : UML_EndRole,
 diagram : UML_Diagram) : ERM_EndRole {
 create ERM_EndRole(
 name := role.name,
 type := classTypeToEntity(role.type, diagram),
 optional := role.isOptional,
 multiple := role.isMultiple
)
 }
 mapping aggrToRelationship(aggr : UML_Aggregation,
 diagram : UML_Diagram) : ERM_Relationship {
 create ERM_Relationship(
 name := aggr.name,
 madeOf := true,
 source := create ERM_EndRole(
 name := aggr.target.name,
 type := classTypeToEntity(aggr.target.type, diagram),

33

 optional := true,
 multiple := aggr.target.isMultiple
),
 target := umlRoleToErmRole(aggr.source, diagram)
)
 }
 mapping compToRelationship(aggr : UML_Composition,
 diagram : UML_Diagram) : ERM_Relationship {
 create ERM_Relationship(
 name := comp.name,
 id := true,
 partOf := true,
 source := umlRoleToErmRole(comp.source, diagram),
 target := umlRoleToErmRole(comp.target, diagram)
)
 }
 mapping genToRelationship(gen : UML_Generalisation,
 diagram : UML_Diagram) : ERM_Relationship {
 create ERM_Relationship(
 name := gen.name,
 id := true,
 kindOf := true,
 source := create ERM_EndRole(
 name := gen.source.name,
 type := classTypeToEntity(gen.source.type, diagram),
 optional := true
),
 target := create ERM_EndRole(
 name := gen.target.name,
 type := classTypeToEntity(gen.target.type, diagram)
)
)
 }
}

Figure 14: the UmlToErm model transformation

The breakdown of this transformation is quite long, consisting of 18 separate mapping rules,
but may be summarised:

• To map the UML class diagram to an ERM diagram, you create a diagram with the
same name, map the UML basic types to corresponding ERM basic types; then map
all the UML class types and association classes to ERM entities; then map all the
UML special semantic relationships (generalisation, composition, aggregation) and
UML associations to ERM relationships.

• To map a UML class type to an entity, you create an entity with the same name, map
the UML class attributes to ERM attributes, preserving any identifiers and adding a
surrogate ID if needed. The entity is a detail, if there exists a UML composition with
the class at its source. The entity is a subtype, if there exists a UML generalisation
with the class at its source. To map a UML association class to an entity, you create a
linker entity with the name of the promoted association class, map all the UML
attributes to ERM attributes, preserving any identifiers.

• To map all UML semantic relationships to ERM relationships, you map all UML
generalisations, map all UML compositions, and map all UML aggregations to
corresponding relationships, also mapping their UML end-roles to ERM end-roles.
The rule for mapping generalisations ensures the relationship is identifying, kind-of
and optional-to-one. The rule for mapping compositions ensures the relationship is
identifying and part-of. The rule for mapping aggregations ensures the relationship is
made-of and optional at the whole-end.

34

• To map all UML associations to ERM relationships, you map all unqualified UML
associations (without any association class) to equivalent ERM relationships; but you
map all qualified UML associations (having an association class) to a pair of ERM
relationships, targeting the mapped linker entity and respectively the mapped source,
or target entity. You map all UML end-roles to ERM end-roles in each case.

• To map UML source and target end-roles to corresponding ERM source and target
end-roles, you create ERM end-roles that are similarly named and have multiplicities
derived from the UML end-role ranges, and refer to entities that were mapped from
the UML classes.

One aspect worth highlighting is the number of times that some of the rules are invoked (in
an idempotent fashion [1]), as part of other rules. The rule for mapping a UML class type is
invoked when creating the ERM entity, but also when mapping the types of UML end-roles
to corresponding ERM entity types. Similarly, the rule for mapping a UML basic type is
invoked when creating the ERM basic type, but also when mapping the types of UML
attributes to ERM types. This is handled efficiently.

Another aspect worth recalling is that mapping rules map one principal source object to a
target object. However, many of the transformation rules in figure 14 have more than one
source argument; and the second argument is usually the source diagram. This is required,
since the entire source model is indexed within the diagram, and some rules need to access
related source elements not directly reachable from the source object that is the principal
subject of the rule.

A third aspect worth mentioning is that the transformation work may be shared out in
different ways between the transformation rules, and the operations provided by the source
metamodel. In this example, the UML end roles provide useful operations that derive the
{optional, multiple} values to be stored in the ERM end roles. We could instead have
provided an extra layer of mapping rules to convert UML ranges to {multiple, optional} flags.
In this case, we preferred the first approach, since this also supported writing characterising
operations for UML associations.

4.6 UML to ERM Examples

We have already given examples of this transformation in use. Section 2.3 first introduced a
couple of UML examples, in the figures 4 (Cycle Shop) and 5 (Student Records). Section 3.4
introduced some equivalent ERM examples, in the figures 9 (Cycle Shop) and 10 (Student
Records).

Section 2.5 describes how figure 4, the Cycle Shop example, is encoded in the ReMoDeL
syntax for models, listed in figure 6. Executing the UmlToErm transformation on this source
model creates the target model listed in figure 12, in section 3.6. This may be visualised as
the ERM diagram shown as figure 9 in section 3.4.

Similarly, section 2.6 describes how figure 5, the Student Records example, is encoded in the
ReMoDeL syntax for models, listed in figure 7. Executing the UmlToErm transformation on
this source model creates the target model listed in figure 13, in section 3.7. This may be
visualised as the ERM diagram shown as figure 10 in section 3.4.

35

5. ERM To Normal Transformation
The ERM to normal ERM transformation performs several structural modifications to the
ERM metamodel, resulting in a model that is at least in 3NF (Third Normal Form). The
result could be in 4NF or higher; but to guarantee this is impossible without detailed domain
knowledge (e.g. to identify multivalued dependencies between sets of attributes). So, the
transformation is based solely on structural information. This kind of transformation is
endogenous, also described as a normalisation. We consider separately the mapping of types,
the mapping of relationships and the mapping of attributes and identifiers.

5.1 Mapping of Types

ERM basic types are left unchanged by normalisation. The normal set of entities may both
grow, if certain relationships give rise to new linker entities, and shrink, if sets of entities are
merged into one entity. Other entities are transferred unchanged.

ERM entities must be merged, if they are related by a one-to-one relationship. This is a more
difficult problem than is initially supposed, since in general, sets of entities could be related
by chains of such relationships, requiring all of them to be merged. Part of the problem
involves deciding what to call the merged entity; and another part involves deciding which
attributes to treat as identifiers. We take the following approach.

• Entities may be major or minor concepts in the domain, depending on their weight.
As a heuristic, we judge weight by a count of the attributes in the entity. A major
entity has more weight than a minor entity. We determine that minor entities should
be merged into the major entity; and the result takes the name of the major entity.

• When merging minor entities, their identifying attributes are now subordinate to the
identifier of the major entity with which they were merged. Accordingly, all
identifiers in merged entities must be demoted to dependent attributes.

A subsidiary issue is that when attributes are transferred from one entity to another, there is
the risk that name-clashes could occur. Therefore, a unique renaming scheme must be
adopted to ensure that local and merged attributes do not clash on their names.

5.2 Mapping of Relationships

ERM relationships are normalised by ensuring that the only kind of relationship remaining in
the model is a many-to-one relationship. Other kinds of relationship are specially treated, but
all relationships must be transformed:

• One-to-one: these relationships are eliminated, after merging the related entities.
• Many-to-one: the direction of dependency is good; but the source and target entities

must be normalised, in case of mergers.
• One-to-many: these relationships are reversed, so that the direction of dependency

runs from the many-side to the one-side; and the source and target entities are also
normalised.

• Many-to-many: these relationships are split into two many-to-one relationships, each
relating a linker entity (on the many-side) to one of the original source and target
entities (on the one-side), which are also normalised.

36

Normalising a relationship has a transitive obligation to normalise the end-roles and the
entities referred to by these end-roles. This may have the effect of transferring a relationship
end onto a different entity type, after mergers are considered. Otherwise, the special
properties of a relationship must be preserved, where appropriate.

• Many-to-one: after normalising, the identifying property is preserved; and the part-of,
kind-of, or made-of property is preserved;

• One-to-many: after reversing, the relationship cannot be identifying; and it has no
other semantic properties (since it cannot have been created from any UML semantic
relationship, but only as an association).

• Many-to-many: after splitting, if the original relationship was made-of (created from
a UML aggregation), each of the new split relationships must be part-of (strong
dependency of the linker on the related entities); and both split relationships are also
identifying.

We also provide default names for any unnamed relationships, generating conventional
names in the style: SourceToTarget, where Source, Target are the names of the related
entities.

5.3 Mapping of Attributes and Identifiers

When mapping attributes to normalised attributes, we re-order attributes such that identifying
attributes precede dependent attributes. Otherwise, the existing attributes of each ERM entity
are unchanged by normalisation, having the same names and types. However, all strong
entities must have at least one identifying attribute (this is also true for detail entities – see
below).

If a strong entity has no identifying attribute, then a surrogate identifier must be synthesised.
The rule for this is to create an attribute of the ERM Integer type, whose name is formed by
concatenating the name-case version of the entity's name with the string "ID". For example,
a surrogate identifier for the Customer entity may be named customerID.

Where attributes are transferred from a minor entity to a major entity during a merger, these
attributes must be renamed. The rule for this is to create a new ERM attribute, whose name is
formed by concatenating the name-case version of the minor entity's name with the type-case
version of the attribute's name. The attribute's type is preserved. Furthermore, if the merged
attribute was identifying, it is demoted to a dependent attribute, since the major entity already
has identifying attributes.

For example, if the minor entity UCard has an attribute number: Integer, when
UCard is merged with the major entity Student, this is mapped to a new attribute
uCardNumber: Integer. This avoids any possible name clash with other attributes
called number in Student. Furthermore, whereas this attribute was formerly an
identifier in UCard, it is demoted to a dependent attribute of Student.

Weak entities have identifying relationships which are preserved (see section 5.2) and may
also have further local identifiers. These are normalised in the following way:

• Linker entities – since these are partly, or wholly identifiable through their identifying
relationships, and may have additional local identifiers (only if carried over from a
UML association class), their attributes are unchanged by normalisation and any local
identifiers are preserved.

37

• Detail entities – since these are only partly identified through a part-of identifying
relationship, these must have at least one local weak identifier. If none exists, then a
surrogate identifier is added to the list of attributes, which otherwise are preserved
unchanged.

• Subtype entities – since these must already be wholly identifiable through a kind-of
relationship, there is no advantage to be gained by creating more complex compound
keys for subtypes including local identifiers. Therefore, any local identifiers are
demoted to dependent attributes and other attributes are preserved unchanged.

We preserve identifying relationships after normalisation, and delay copying identifying
attributes from the referenced entities until after the transformation of the ERM to an
existence dependency graph.

5.4 The ReMoDeL ERM to Normal Transformation

The ReMoDeL transformation for converting an ERM diagram to normal form is shown over
the next few pages as figure 15. The transformation is called ErmToNorm and belongs to the
transformation group UmlDB (UML and databases).

transform ErmToNorm : UmlDB {
 metamodel source : ERM
 metamodel target : ERM

 mapping ermToNormalDiagram(diagram : ERM_Diagram) : ERM_Diagram {
 create Erm_Diagram(name := diagram.name,
 basicTypes := diagram.basicTypes,
 entities := ermToNormalEntities(diagram),
 relationships := ermToNormalRelationships(diagram)
)
 }
 mapping ermToNormalEntities(diagram : ERM_Diagram) : ERM_Entity{} {
 create ERM_Entity{}()
 .union(diagram.entities.collect(entity |
 entityToNormalEntity(entity, diagram)))
 .union(diagram.manyToMany.collect(rel | relToLinkerEntity(rel, diagram)))
 }
 mapping ermToNormalRelationships(diagram : ERM_Diagram) : ERM_Relationship{} {
 create ERM_Relationship{}()
 .union(diagram.manyToOne.collect(rel |
 relToForwardRelationship(rel, diagram)))
 .union(diagram.oneToMany.collect(rel |
 relToReverseRelationship(rel, diagram)))
 .union(diagram.manyToMany.collate(rel |
 relToSplitRelationships(rel, diagram)))
 }
 mapping entityToNormalEntity(entity : ERM_Entity,
 diagram : ERM_Diagram) : ERM_Entity {
 if diagram.oneToOne.exists(rel | rel.refersTo(entity))
 then entityToMergedEntity(entity, diagram)
 else entityToIdentifiedEntity(entity, diagram)
 }
 mapping entityToIdentifiedEntity(entity : ERM_Entity,
 diagram : ERM_Diagram) : ERM_Entity {
 if entity.linker
 then entity
 else create ERM_Entity(name := entity.name,
 subtype := entity.subtype,
 detail := entity.detail,
 attributes := if entity.subtype
 then entityToDependentAttributes(entity, diagram)
 else entityToNormalAttributes(entity, diagram)

38

)
 }
 mapping entityToMergedEntity(entity : ERM_Entity,
 diagram : ERM_Diagram) : ERM_Entity {
 mergeEntities(
 findClosure(diagram.oneToOne.asList,
 diagram.oneToOne.select(rel | rel.refersTo(entity)).asList,
 create ERM_Relationship{}()),
 diagram
)
 }
 mapping mergeEntities(entities : ERM_Entity{},
 diagram : ERM_Diagram) : ERM_Entity {
 create ERM_Entity(name := majorEntity(entities).name,
 linker := majorEntity(entities).linker,
 subtype := majorEntity(entities).subtype,
 detail := majorEntity(entities).detail,
 attributes := entityToNormalAttributes(majorEntity(entities), diagram)
 .union(entities.without(majorEntity(entities))
 .collate(entity : ERM_Entity | entityToMergedAttributes(entity)))
)
 }
 mapping majorEntity(entities : ERM_Entity{}) : ERM_Entity {
 entities.combine(firstEntity, secondEntity : ERM_Entity |
 if firstEntity.weight < secondEntity.weight
 then secondEntity
 else firstEntity
)
 }
 function findClosure(oneToOne : ERM_Relationship[],
 open : ERM_Relationship[], closed : ERM_Relationship{}) : ERM_Entity{} {
 if open.isEmpty
 then closed.collate(rel |
 rel.source.type.asSet.with(rel.target.type))
 else if closed.has(open.first)
 then findClosure(oneToOne, open.rest, closed)
 else findClosure(oneToOne, open.rest.append(
 oneToOne.select(rel | rel.refersTo(open.first.source.type) or
 rel.refersTo(open.first.target.type))),
 closed.with(open.first)
)
 }
 mapping relToLinkerEntity(rel : ERM_Relationship,
 diagram : ERM_Diagram) : ERM_Entity {
 create ERM_Entity(name := rel.name, linker := true)
 }
 mapping entityToNormalAttributes(entity: ERM_Entity,
 diagram : ERM_Diagram) : ERM_Attribute{} {
 if entity.linker or entity.subtype
 then entity.attributes
 else entityToIdentifiers(entity, diagram).union(entity.dependents)
 }
 mapping entityToDependentAttributes(entity : ERM_Entity,
 diagram : ERM_Diagram) : ERM_Attribute{} {
 entity.attributes.collect(attrib : ERM_Attribute |
 create ERM_Attribute(name := attrib.name, type := attrib.type)
)
 }
 mapping entityToIdentifiers(entity: ERM_Entity,
 diagram : ERM_Diagram) : ERM_Attribute{} {
 if entity.identifiers.isEmpty
 then entityToSurrogate(entity, diagram).asSet
 else entity.identifiers
 }
 mapping entityToSurrogate(entity: ERM_Entity,
 diagram : ERM_Diagram) : ERM_Attribute {
 create ERM_Attribute(
 name := entity.name.asName.concat("ID"),

39

 type := diagram.basicTypes.detect(basic : ERM_BasicType |
 basic.name = "Integer"),
 id := true
)
 }
 mapping entityToMergedAttributes(entity: ERM_Entity,
 diagram : ERM_Diagram) : ERM_Attribute{} {
 entity.attributes.collect(attrib : ERM_Attribute |
 attribToMergedAttrib(attrib, entity))
 }
 mapping attribToMergedAttrib(attrib : ERM_Attribute,
 entity : ERM_Entity) : ERM_Attribute {
 create ERM_Attribute(
 name := if attrib.surrogate
 then attrib.name
 else entity.name.asName.concat(attrib.name.asType),
 type := attrib.type,
)
 }
 mapping relToForwardRelationship(rel : ERM_Relationship,
 diagram : ERM_Diagram) : ERM_Relationship {
 create ERM_Relationship(name := relToForwardRelName(rel, diagram),
 id := rel.id,
 kindOf := rel.kindOf,
 partOf := rel.partOf,
 madeOf := rel.madeOf,
 source := roleToNormalRole(rel.source, diagram),
 target := roleToNormalRole(rel.target, diagram)
)
 }
 mapping relToForwardRelName(rel : ERM_Relationship,
 diagram : ERM_Diagram) : String {
 if not rel.name.startsWith(rel.source.type.name)
 then rel.name
 else entityToNormalEntity(rel.source.type, diagram).name.concat("To")
 .concat(entityToNormalEntity(rel.target.type, diagram).name)
 }
 mapping relToReverseRelationship(rel : ERM_Relationship,
 diagram : ERM_Diagram) : ERM_Relationship {
 create ERM_Relationship(name := relToReverseRelName(rel, diagram),
 source := roleToNormalRole(rel.target, diagram),
 target := roleToNormalRole(rel.source, diagram)
)
 }
 mapping relToReverseRelName(rel : ERM_Relationship,
 diagram : ERM_Diagram) : String {
 if not rel.name.startsWith(rel.source.type.name)
 then rel.name
 else entityToNormalEntity(rel.target.type, diagram).name.concat("To")
 .concat(entityToNormalEntity(rel.source.type, diagram).name)
 }
 mapping relToSplitRelationships(rel : ERM_Relationship,
 diagram : ERM_Diagram) : ERM_Relationship{} {
 create ERM_Relationship{}()
 .with(relSourceToRelationship(rel, diagram))
 .with(relTargetToRelationship(rel, diagram))
 }
 mapping relSourceToRelationship(rel : ERM_Relationship,
 diagram : ERM_Diagram) : ERM_Relationship {
 create ERM_Relationship(
 name := rel.name.concat("To").concat(
 entityToNormalEntity(rel.source.type, diagram).name),
 id := true,
 partOf := rel.madeOf,
 source := create ERM_EndRole(
 name := rel.name.asName,
 type := relToLinkerEntity(rel, diagram),
 optional := rel.target.optional,

40

 multiple := rel.target.multiple
),
 target := create ERM_EndRole(
 name := roleToNormalRoleName(rel.source, diagram),
 type := entityToNormalEntity(rel.source.type, diagram)
)
)
 }
 mapping relTargetToRelationship(rel : ERM_Relationship,
 diagram : ERM_Diagram) : ERM_Relationship {
 create ERM_Relationship(
 name := rel.name.concat("To").concat(
 entityToNormalEntity(rel.target.type, diagram).name),
 id := true,
 partOf := rel.madeOf,
 source := create ERM_EndRole(
 name := rel.name.asName,
 type := relToLinkerEntity(rel, diagram),
 optional := rel.source.optional,
 multiple := rel.source.multiple
),
 target := create ERM_EndRole(
 name := roleToNormalRoleName(rel.target, diagram),
 type := entityToNormalEntity(rel.target.type, diagram)
)
)
 }
 mapping roleToNormalRole(role : ERM_EndRole,
 diagram : ERM_Diagram) : ERM_EndRole {
 create ERM_EndRole(
 name := roleToNormalRoleName(role, diagram),
 type := entityToNormalEntity(role.type, diagram),
 optional := role.optional,
 multiple := role.multiple
)
 }
 mapping roleToNormalRoleName(role : ERM_EndRole,
 diagram : ERM_Diagram) : String {
 if role.name /= role.type.name.asName then role.name
 else entityToNormalEntity(role.type, diagram).name.asName
 }
}

Figure 15: the ErmToNorm model transformation

The breakdown of this transformation is quite long, consisting of 24 separate mapping rules
and one auxiliary recursive function, but may be summarised:

• To map the ERM diagram to a normal ERM diagram, you create a diagram with the
same name, transfer the ERM basic types; then map all ERM entities to normal
entities and extend this set by mapping all many-to-many relationships to extra linker
entities; and then map all the ERM relationships to normal relationships, using
separate rules for one-to-many, many-to-one and many-to-many relationships.

• To map an ERM entity to a normal ERM entity, if the diagram contains any one-to-
one relationships referring to this entity, then create a merged entity; otherwise create
a suitably identified entity.

• To create a merged ERM entity, first find the transitive closure of one-to-one
relationships linking this entity with any others, project out the set of related entities,
find the largest major entity, then merge into this entity all the attributes of the
remaining entities, demoting any of their identifiers to dependent attributes.

• To create a suitably identified ERM entity, copy the entity and adjust its identifiers. If
it is a linker, copy it unchanged. If it is a subtype, demote any identifiers to dependent

41

attributes. If it is either a detail, or a strong entity, check whether it has at least one
identifying attribute, and if not, create a surrogate identifier.

• When merging attributes, if the attribute is already a surrogate (its name is prefixed by
the name of the owning entity), leave it unchanged; otherwise create a new attribute
having the same type, whose name is prefixed by the name of its old minor entity.

• When normalising relationships, map all the end-roles to normalised end-roles, in
case these refer to merged entities. Otherwise, preserve all the identifying and
semantic properties of many-to-one relationships, reverse all one-to-many
relationships (losing any such property) and split all many-to-many relationships into
a pair of identifying relationships, each joining a linker with one of the related entities,
and which must be part-of, if the original association was made-of.

• When normalising an end-role, if its old name was previously derived from the name
of the related type, then create a new name that is derived from the name of the
normalised, and possibly merged, entity type. The normalised end-role also refers to
the mapped normal type.

Perhaps the most difficult aspect of this transformation is dealing with mergers. Not only
does this result in the loss of certain entities, but it also requires redirection of every
relationship that referred to one of the lost entities. For this reason, the transformation must
trigger the rule entityToNormalEntity() for every entity referenced anywhere in the pre-
normal ERM, and this relies on the idempotence of rules to return the same entity.

Merging relies on computing a transitive closure. This is obtained by following chains of
one-to-one relationships. The function findClosure() is a classic breadth-first search function,
which starts with an open list of relationships to explore, and builds a closed set of visited
relationships. On each recursion, one relationship is removed from open to closed, and open
is expanded by adding any one-to-one relationships that are joined on common entities with
the removed relationship. Once open is exhausted, the set of related entities is projected from
the closed set of relationships.

The mergeEntities() rule uses a rule majorEntity() that performs a reduction on all the entities
in the set, returning the entity with the greatest weight. This will always yield the same major
entity, no matter in what order the set of entities is presented (due to rule idempotence). So,
no matter how many times majorEntity() is called, it always returns the same major entity
(even if two entities compete for greatest weight). Therefore mergeEntities() always returns
the same merged entity for all of the original one-to-one related entities.

5.5 The Normal Cycle Shop Example

Figure 16 illustrates the normalised ERM for the Cycle Shop case study. The only difference
between this and the pre-normal ERM from figure 12 is that the optional-to-many
relationship between Bicycle and Wheel has been transformed into a linker entity, with the
generated name BicycleMadeOfWheel. Other entities and relationships have not been
affected, since they were already in normal form.

Since the Bicycle was originally an aggregate assembly of its parts, we expect the domain to
support the deletion of the Bicycle, without deleting its parts. Where the Bicycle references a
single FrameSet or a single HandleBar, there is no issue in deleting a Bicycle. However, the
Bicycle originally referenced multiple Wheels, giving rise to the linker. Deleting the Bicycle
would cause the linker to contain a dangling reference to its Bicycle. For this reason, the

42

linker has been marked as existence dependent on the Bicycle, through the part-of annotation.
This annotation is used later to generate an automatic cascading deletion in the database.

This is the only case where a linker entity is also marked part-of. In other cases, we expect
the domain to support the deletion of linker entities (representing temporary relationships)
before the deletion of the related entities is required.

model norm1 : ERM {
 d1 : Diagram(name = "Cycle Shop", basicTypes = BasicType{
 b1 : BasicType(name = "Boolean"),
 b2 : BasicType(name = "Integer"),
 b3 : BasicType(name = "Natural"),
 b4 : BasicType(name = "Real"),
 b5 : BasicType(name = "String"),
 b6 : BasicType(name = "Date"),
 b7 : BasicType(name = "Money")
 }, entities = Entity{
 e1 : Entity(name = "Address", attributes = Attribute{
 a1 : Attribute(name = "house", type = b5, id = true),
 a2 : Attribute(name = "postcode", type = b5, id = true),
 a3 : Attribute(name = "road", type = b5),
 a4 : Attribute(name = "city", type = b5)
 }),
 e2 : Entity(name = "Customer", attributes = Attribute{
 a5 : Attribute(name = "customerID", type = b2, id = true),
 a6 : Attribute(name = "forename", type = b5),
 a7 : Attribute(name = "surname", type = b5)
 }),
 e3 : Entity(name = "Order", attributes = Attribute{
 a8 : Attribute(name = "number", type = b2, id = true),
 a9 : Attribute(name = "date", type = b6)
 }),
 e4 : Entity(name = "Line", detail = true, attributes = Attribute{
 a10 : Attribute(name = "number", type = b2, id = true),
 a11 : Attribute(name = "quantity", type = b2),
 a12 : Attribute(name = "cost", type = b7)
 }),
 e5 : Entity(name = "Product", attributes = Attribute{
 a13 : Attribute(name = "brand", type = b5, id = true),
 a14 : Attribute(name = "serial", type = b2, id = true),
 a15 : Attribute(name = "name", type = b5),
 a16 : Attribute(name = "price", type = b7)
 }),
 e6 : Entity(name = "Bicycle", subtype = true),
 e7 : Entity(name = "FrameSet", subtype = true, attributes = Attribute{
 a17 : Attribute(name = "size", type = b2),
 a18 : Attribute(name = "shocks", type = b1)
 }),
 e8 : Entity(name = "Handlebar", subtype = true, attributes = Attribute{
 a19 : Attribute(name = "style", type = b5)
 }),
 e9 : Entity(name = "Wheel", subtype = true, attributes = Attribute{
 a20 : Attribute(name = "diameter", type = b2),
 a21 : Attribute(name = "tyre", type = b5)
 }),
 e10 : Entity(name = "BicycleMadeOfWheel", linker = true)
 }, relationships = Relationship{
 r1 : Relationship(name = "BicycleToProduct", id = true, kindOf = true,
 source = e11 : EndRole(name = "bicycle", type = e6, optional = true),
 target = e12 : EndRole(name = "product", type = e5)
),
 r2 : Relationship(name = "FrameSetToProduct", id = true, kindOf = true,
 source = e13 : EndRole(name = "frameSet", type = e7, optional = true),
 target = e14 : EndRole(name = "product", type = e5)
),

43

 r3 : Relationship(name = "HandlebarToProduct", id = true, kindOf = true,
 source = e15 : EndRole(name = "handlebar", type = e8, optional = true),
 target = e16 : EndRole(name = "product", type = e5)
),
 r4 : Relationship(name = "WheelToProduct", id = true, kindOf = true,
 source = e17 : EndRole(name = "wheel", type = e9, optional = true),
 target = e18 : EndRole(name = "product", type = e5)
),
 r5 : Relationship(name = "LineToOrder", id = true, partOf = true,
 source = e19 : EndRole(name = "line", type = e4, multiple = true),
 target = e20 : EndRole(name = "order", type = e3)
),
 r6 : Relationship(name = "BicycleToFrameSet", madeOf = true,
 source = e21 : EndRole(name = "bicycle", type = e6, optional = true),
 target = e22 : EndRole(name = "frameSet", type = e7)
),
 r7 : Relationship(name = "BicycleToHandlebar", madeOf = true,
 source = e23 : EndRole(name = "bicycle", type = e6, optional = true),
 target = e24 : EndRole(name = "handlebar", type = e8)
),
 r8 : Relationship(name = "LineToProduct",
 source = e25 : EndRole(name = "line", type = e4, optional = true,
 multiple = true),
 target = e26 : EndRole(name = "item", type = e5)
),
 r9 : Relationship(name = "CustomerToAddress",
 source = e27 : EndRole(name = "customer", type = e2, multiple = true),
 target = e28 : EndRole(name = "address", type = e1)
),
 r10 : Relationship(name = "OrderToCustomer",
 source = e29 : EndRole(name = "order", type = e3, optional = true,
 multiple = true),
 target = e30 : EndRole(name = "customer", type = e2)
),
 r11 : Relationship(name = "BicycleMadeOfWheelToBicycle", id = true,
 partOf = true,
 source = e31 : EndRole(type = e10, multiple = true),
 target = e32 : EndRole(name = "bicycle", type = e6)
),
 r12 : Relationship(name = "BicycleMadeOfWheelToWheel", id = true,
 partOf = true,
 source = e33 : EndRole(type = e10, optional = true),
 target = e34 : EndRole(name = "wheel", type = e9)
)
 })
}

Figure 16: the normalised Cycle Shop example

5.6 The Normal Student Records Example

Figure 17 illustrates the normalised ERM for the Student Records case study. There are
several differences between this and the pre-normal ERM from figure 13.

The many-to-many relationship between Degree and Module has been promoted into a linker
entity Approval, with many-to-one relationships ApprovalToModule and ApprovalToDegree
linking this to their respective entities. This was the only remaining many-to-many
relationship in the model. The linker entity Study was derived previously from a UML
association class.

The one-to-one relationship between Student and UCard has been removed, and the attributes
of UCard have been merged into Student. The renaming rules proved useful here, since both
Student and UCard have an attribute called number. Student was determined to be the major

44

entity during the merger. When transferred to Student, the old attributes of UCard have been
renamed as: uCardNumber, uCardExpiry. The former identifying attribute number has been
demoted to the dependent attribute uCardNumber, which no longer clashes with Student's
identifying attribute number.

A consequence of merging one-to-one relationships is that the relationship from UCard to
LabLog has been replaced by a relationship between the merged entity Student and LabLog
(since UCard no longer exists). This is an example of transferring the types of end-roles.
Furthermore, this relationship has been reversed: formerly, it was a one-to-many relationship
called LabLogToUCard, and now it is a many-to-one relationship called StudentToLabLog.
This is an example of normalising all remaining relationships to many-to-one.

model norm2 : ERM {
 d1 : Diagram(name = "Student Records", basicTypes = BasicType{
 b1 : BasicType(name = "Boolean"),
 b2 : BasicType(name = "Integer"),
 b3 : BasicType(name = "Natural"),
 b4 : BasicType(name = "Real"),
 b5 : BasicType(name = "String"),
 b6 : BasicType(name = "Date"),
 b7 : BasicType(name = "Time"),
 b8 : BasicType(name = "Status")
 }, entities = Entity{
 e1 : Entity(name = "Department", attributes = Attribute{
 a1 : Attribute(name = "code", type = b5, id = true),
 a2 : Attribute(name = "name", type = b5)
 }),
 e2 : Entity(name = "Degree", attributes = Attribute{
 a3 : Attribute(name = "code", type = b5, id = true),
 a4 : Attribute(name = "name", type = b5)
 }),
 e3 : Entity(name = "Module", attributes = Attribute{
 a5 : Attribute(name = "code", type = b5, id = true),
 a6 : Attribute(name = "name", type = b5),
 a7 : Attribute(name = "credits", type = b2)
 }),
 e4 : Entity(name = "Session", detail = true, attributes = Attribute{
 a8 : Attribute(name = "year", type = b6, id = true),
 a9 : Attribute(name = "level", type = b2)
 }),
 e5 : Entity(name = "Student", attributes = Attribute{
 a10 : Attribute(name = "number", type = b2, id = true),
 a11 : Attribute(name = "title", type = b5),
 a12 : Attribute(name = "forename", type = b5),
 a13 : Attribute(name = "surname", type = b5),
 a14 : Attribute(name = "status", type = b8),
 a15 : Attribute(name = "uCardNumber", type = b2),
 a16 : Attribute(name = "uCardExpiry", type = b6)
 }),
 e6 : Entity(name = "LabLog", attributes = Attribute{
 a17 : Attribute(name = "date", type = b6, id = true),
 a18 : Attribute(name = "enter", type = b7, id = true),
 a19 : Attribute(name = "exit", type = b7)
 }),
 e7 : Entity(name = "Study", linker = true, attributes = Attribute{
 a20 : Attribute(name = "grade", type = b2),
 a21 : Attribute(name = "resit", type = b2)
 }),
 e8 : Entity(name = "Approval", linker = true)
 }, relationships = Relationship{
 r1 : Relationship(name = "Enrol", id = true, partOf = true,
 source = e9 : EndRole(name = "session", type = e4, multiple = true),
 target = e10 : EndRole(name = "student", type = e5)
),

45

 r2 : Relationship(name = "StudyToSession", id = true,
 source = e11 : EndRole(name = "study", type = e7,
 optional = true, multiple = true),
 target = e12 : EndRole(name = "session", type = e4)
),
 r3 : Relationship(name = "StudyToModule", id = true,
 source = e13 : EndRole(name = "study", type = e7,
 optional = true, multiple = true),
 target = e14 : EndRole(name = "module", type = e3)
),
 r4 : Relationship(name = "Register",
 source = e15 : EndRole(name = "student", type = e5,
 optional = true, multiple = true),
 target = e16 : EndRole(name = "degree", type = e2)
),
 r5 : Relationship(name = "Prospectus",
 source = e17 : EndRole(name = "degree", type = e2, multiple = true),
 target = e18 : EndRole(name = "department", type = e1)
),
 r6 : Relationship(name = "LabLogToStudent",
 source = e19 : EndRole(name = "labLog", type = e6,
 optional = true, multiple = true),
 target = e20 : EndRole(name = "student", type = e5)
),
 r7 : Relationship(name = "ApprovalToModule", id = true,
 source = e21 : EndRole(name = "approval", type = e8, multiple = true),
 target = e22 : EndRole(name = "module", type = e3)
),
 r8 : Relationship(name = "ApprovalToDegree", id = true,
 source = e23 : EndRole(name = "approval", type = e8, multiple = true),
 target = e24 : EndRole(name = "degree", type = e2)
)
 })
}

Figure 17: the normalised Student Records example

5.7 Interim Conclusion

This concludes the first two transformations, from UML to ERM and from ERM to a normal
ERM. The remaining transformations, and the final code-generation stage are described in
part 2 of this report [12].

46

6. References
[1] A J H Simons. ReMoDeL Explained (rev. 2.1): An Introduction to ReMoDeL by

Example. Technical Report, 12 July (University of Sheffield, 2022).

[2] M Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language,
3rd ed. (Addison-Wesley, 2003).

[3] G Everest. “Basic data structures explained with a common example”, Proc. 5th
Texas Conf. Computing Systems (1976), 39-46. Chapter 4 in: Database
Management: Objectives, System Functions, and Administration (McGraw-Hill,
1986).

[4] A Zhao. SQL Pocket Guide. A guide to SQL usage, 4th ed. (O’Reilly Media, 2021).

[5] E Downs, P Claire and I Coe. Structured Systems Analysis and Design Method:
Application and Context, 2nd Ed., (Prentice Hall, 1991).

[6] M A Jackson. Principles of Program Design, (Academic Press, 1975).

[7] H R Myler. “Flowcharts”, Chapter 2.3 in: Fundamentals of Engineering
Programming with C and Fortran, (Cambridge University Press, 1998), 32–36.

[8] E Gamma, R Helm, R Johnson and J Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software, (Addison-Wesley, 1994).

[9] P Chen. "The Entity-Relationship Model - Toward a Unified View of Data". ACM
Transactions on Database Systems. 1 (1): 9–36.

[10] R Barker. CASE Method: Entity Relationship Modelling, (Addison-Wesley
Professional, 1990).

[11] J Martin. Information Engineering (3 volumes). (Prentice Hall Inc., 1989).

[12] A J H Simons. ReMoDeL Data Refinement (rev. 1.0): Data Transformations in
Remodel, Part 2. Technical Report, 31 July (University of Sheffield, 2022).

	1. Introduction
	1.1 Software Engineering Models
	1.2 Transformation Chains
	1.3 Data Refinement

	2. UML Class Diagram
	2.1 Class Attributes and Operations
	2.2 Class Semantic Relationships
	2.3 Class Diagram Examples
	2.4 Metamodel for a Class Diagram
	2.5 Cycle Shop Example Model
	2.6 Student Records Example Model
	2.7 UML Dependency Semantics

	3. Entity-Relationship Diagram
	3.1 Primary and Dependent Attributes
	3.2 Relationship Cardinality and Optionality
	3.3 Strong and Weak Entities
	3.4 Entity-Relationship Diagram Examples
	3.5 Metamodel for an Entity Relationship Diagram
	3.6 The Cycle Shop Example Model
	3.7 The Student Records Example Model

	4. UML to ERM Transformation
	4.1 Mapping of Types
	4.2 Mapping of Relationships
	4.3 Mapping of Attributes and Identifiers
	4.4 Alternative Mappings for Generalisation
	4.5 The ReMoDeL Transformation UML to ERM
	4.6 UML to ERM Examples

	5. ERM To Normal Transformation
	5.1 Mapping of Types
	5.2 Mapping of Relationships
	5.3 Mapping of Attributes and Identifiers
	5.4 The ReMoDeL ERM to Normal Transformation
	5.5 The Normal Cycle Shop Example
	5.6 The Normal Student Records Example
	5.7 Interim Conclusion

	6. References

