
Transformation Language Design:
A Metamodelling Foundation

Tony Clark, Andy Evans, Paul Sammut, and James Willans

Xactium Limited
andy.evans@xactium.com

1 Introduction

With the advent of the Model-Driven Architecture (MDA) [3] there is signifi-
cant interest in the development and application of transformation languages.
MDA recognises that systems typically consist of multiple models (possibly ex-
pressed in different modelling languages and at different levels of abstraction)
that are precisely related. The relationship between these different models can
be described by transformations (or mappings).

An important emerging standard for transformations is QVT (Queries, Views,
Transformations). This standard, being developed by the Object Management
Group (OMG), aims to provide a language for expressing transformations be-
tween models that are instances of the MOF (Meta Object Facility) [2] meta-
model. The MOF is a standard language for expressing meta-data that is be-
ing used as the foundation for expressing language metamodels (models of lan-
guages). Because of the generic nature of MOF, it is also being used as the means
of expressing the QVT language itself.

When the QVT process began (over two years ago), the task initially seemed
quite straightforward. After all, many different transformation languages were
already described in the literature, and it was felt that it would be straight-
forward to design such a language for MOF. Unfortunately, this has not been
the case. Two key issues have made the task of designing such a language much
harder. In the remainder of this paper we will examine these issues and propose
a solution that is applicable across a wide variety of language definitions.

2 Design Issues

The first issue that impacts the design of a transformation language relates to
transformation languages themselves. In practise, it turns out that there are
many different flavours of transformation languages. Some of the choices of lan-
guage features include:

– Declarative vs. Imperative: at what level of abstraction should transforma-
tions be expressed? Declarative languages enable transformations to be ex-
pressed in a more concise fashion, yet may suffer from being inefficient (or
impossible) to implement.

H. Ehrig et al. (Eds.): ICGT 2004, LNCS 3256, pp. 13–21, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

14 Tony Clark et al.

– Compositionality: whilst a transformation language should ideally be com-
positional, this is more readily achieved by the use of more declarative prim-
itives, thus invoking the declarative vs imperative issue (above).

– Patterns vs. Actions : patterns are widely used as a declarative but exe-
cutable abstraction for describing transformations (XSLT is a good example
of this). Yet, should a transformation language be completely pattern based,
or should a mixed language with imperative actions permitted for practical-
ity?

– Unidirectional vs. Bi-directional : it is clear that there is a strong distinction
between one-stop, unidirectional transformations, and bi-directional map-
pings that keep two models in sync. Should both be accommodated?

These, and many other choices make the decision process a difficult one for
the designers of transformation languages. One approach to tackling the problem
is to attempt to mudpack all of the different features into a single language.
However, there is clearly a danger of producing an overly complex language. On
the other hand, choosing a subset of the features will clearly omit use cases of
the language that may be relevant to users of the language.

The second issue relates to MOF itself. During the QVT process, it has
become more apparent than ever that current metamodelling practice is too
weak. In particular, the standard approach to metamodelling, in which the main
focus is on capturing the static properties of a language (i.e. the abstract syntax)
does not enable two critical aspects of language design to be expressed: semantics
(what the language does and means) and concrete syntax (how the language is
represented). Thus, in order to describe these aspects, the design team must rely
on informal textual descriptions or bespoke implementations. In the latter case,
this often results in ‘analysis paralysis’, as there is insufficient information to
validate the correctness of the design.

Clearly, in the context of an international standardisation process, this is not
satisfactory. In particular, it will be difficult to ensure that implementations of
the standard are conformant as there will be gaps in the definition that will be
filled in by vendors in different ways.

3 The Way Forward

In order to fully address the needs of QVT and transformation language design
in general, it is clear to us that two key changes are required. Firstly, the bar
must be raised in the way in which we metamodel languages. Rather than just
capturing abstract syntax, the metamodelling language must be rich enough to
capture all aspects of a language, including concrete syntax, abstract syntax
and semantics. This information should be sufficient to rapidly generate tools
that implement the language and allow its properties to be fully explored and
validated.

Secondly, it must be recognised that there is no single, all encompassing
transformation language. Instead we must be prepared to embrace a diversity of
languages, each with specific features. Furthermore, the standard must have the
flexibility to accommodate this diversity in an interoperable manner, enabling
different features to be mixed and matched as required.

Transformation Language Design: A Metamodelling Foundation 15

At first, these proposals appear to be unconnected. Yet, they are in fact
closely related. In practice, we have found that the richer the capability for
expressing metamodels, the greater the flexibility and interoperability of the
resulting language designs. This occurs because the metamodels capture cohesive
language units that can be readily integrated within other languages.

4 XMF

We have constructed an approach (and associated tools) for language metamod-
elling that aims to realise these goals. This approach is based on what we call
an eXecutable Metamodelling Framework (XMF). The basic philosophy behind
XMF is that many different languages can be fully described via a metamodelling
architecture that supports the following:

– A platform independent virtual machine for executing metamodels.
– A small, precise, executable metamodelling language that is bootstrapped

independently of any implementation technology. This supports a generic
parsing and diagramming language, a compiler and interpreter, and a collec-
tion of core executable MOF modelling primitives called XOCL (eXecutable
OCL).

– A layered language definition architecture, in which increasingly richer lan-
guages and development technologies are defined in terms of more primitive
languages via operational definitions of their semantics or via compilation
to more primitive concepts.

– Support for the rapid deployment of metamodels into working tools. This
involves linking executing metamodels with appropriate user-interface tech-
nology.

Using this architecture we have implemented many different modelling lan-
guages and development technologies for industrial clients. We have used exactly
the same approach in the definition of transformation languages. Firstly, some
core transformation language abstractions were implemented. These included a
pattern matching language and synchronisation language. Two transformation
languages were then defined on top of these. The first, XMap, provides a language
for generative transformations based on pattern matching. XOCL is integrated
in the language, thus enabling mixed declarative and imperative mappings. The
second, XSync, supports the dynamic, bi-directional synchronisation of models,
this time using XOCL as a means of writing the synchronisation rules.

In the following sections, we firstly give an example of one the languages,
XMap, and then describe how the language is defined using a metamodel.

5 XMap Example

The example defines a mapping between two models: a simple model of state
machines, and a simple model of C++. The simple state machines model is
shown below:

16 Tony Clark et al.

Both states and transitions are labelled with a name. A transition relates a
source state to a target state.

The following model captures the basic features of C++. Note that the body
of an operation is a string. However, if necessary the expressions and statements
could also be modelled.

A mapping from the StateMachine model to the C++ model can now be
written. It maps a StateMachine to a C++ class, where each state in the state
machine is mapped to a value in an enumerated type called STATE. Each tran-
sition in the state machine is mapped to a C++ operation with the same name
and a body, which changes the state attribute to the target of the transition.

The mapping can be modelled in XMap as shown below. The arrows represent
mappings between elements of the two languages. The first mapping, SM2Class,
maps a state machine to a C++ class. The second mapping, Transition2Op,
maps a transition to an operation.

Transformation Language Design: A Metamodelling Foundation 17

In order to describe the details of the mapping, XMap uses a textual map-
ping language based on pattern matching. As an example, the definition of the
mapping between a transition and an operation is as follows:
context Transition2Op

@Clause Transition2Op
Trans i t i on

[name = N,
ta r g e t = T]

do
CPPOp

[name = N,
body = B]

where
B = ” s t a t e = ” + T. name

end
A mapping consists of a collection of clauses, which are pattern matches

between source and target objects. Whenever a source object is successfully
matched to the input of the mapping, the resulting object in the do expression
is generated. Variables can be used within clauses, and matched against values
of slots in objects. Because XMap builds on XOCL, XOCL expressions can be
used to capture complex relationships between variables.

In this example, whenever the mapping is given a Transition with a name
equal to the variable N and a target equal to T, it will generate an instance of
the class Operation, whose name is equal to N and whose body is equal to the
variable B. The where clause is used to define values of variables, and it is used
here to define the variable B to be concatenation of the text “state = ” with the
target state name. For instance, given a transition between the states “On” and
“Off”, the resulting operation will have the body “state = Off”.

6 XMap Metamodel

The architecture of the XMap language metamodel is described in the figure
below.

18 Tony Clark et al.

Syntax

Semantic
Domain

The syntax metamodel describes how the metamodel captures concrete syn-
tax representation of the mapping language. There are three ways this can be
achieved:

– A textual syntax can be defined for the language by constructing a grammar
that states how a textual representation of models written in XMap can be
parsed into an instance of the concepts represented in the syntax definition.
This is achieved in XMF using XBNF: an extended BNF grammar language
that provides information about how to turn textual elements into instance
of XMF elements.

– A graphical syntax can be defined by defining a mapping from a model of
the graphical syntax of the language to concepts in the syntax domain.

– A mixed approach can be used, in which both graphical and textual elements
are defined. This is the approach taken with the XMap language.

6.1 Textual Syntax Metamodel

As an example a textual syntax metamodel, the following fragment of XBNF
defines the rules for parsing a clause into an instance of a Clause class:

@Class Clause
@Grammar extends OCL: :OCL. grammar

Clause : : = name = Name
patte rns = ClausePatterns ‘ do ’ body = Exp {

Clause (name , patterns , body) } .
C lausePatterns : : = p = Pattern

ps = (’ , ’ Pattern) ∗ { Seq{p | ps } } .
ClauseBindings : : ‘ where ’ Bindings | { Seq {}} .

end
. . .

end

The grammar extends the OCL grammar with the concept of a Clause, where
a Clause is defined to be a name, followed by a collection of patterns, followed
by a ‘do’ and a body, which can be an expression, and an optional collection of
‘where’ bindings. The result of matching any textual input of this form:

Transformation Language Design: A Metamodelling Foundation 19

@Clause <name>
<patterns>
do
<body>
where
<bindings >

end

is to create an instance of a Clause(), passing it the definitions of name, patterns
and bindings. Of course, further XBNF definitions will be needed that define the
grammar rules for Pattern, Binding, etc. These are omitted for brevity.

6.2 Diagram Syntax Metamodel

As an example of a metamodel of diagrammatical syntax, the following diagram
describes a part of the syntax of XMap mapping diagrams. A mapping diagram
extends a class diagram with MapNodes (uni-directional arrows).

The relationship between a MapNode and a mapping (denoted here by the
class Map) is kept constantly in step via the MapXNode mapping. This body of
this mapping is written in XSync, thus synchronising the relevant aspect of the
two elements. For instance, the name of the Map and the MapNode must always
be kept in step.

6.3 Semantic Domain

The syntax of the language can be viewed as a syntactical sugar for concepts in
the semantic domain. A semantic domain expresses the meaning of the concepts
in terms of more primitive, but well-defined concepts. A semantics is thus defined
for XMap via a translation from the syntactical representation of a mapping into
a semantic domain model.

The semantic domain model for the XMap language is described by the
following model:

Here, a Map denotes a mapping. It is a subclass of the class Class and there-
fore inherits all the properties of the class Class. It can therefore be instantiated

20 Tony Clark et al.

and define operations that can be executed. In addition, a Map has a domain
and range, and a sequence of clauses.

The translation step that is performed is to translate each clause of a mapping
into a case statement belonging to a distinguished operation of the class Map.
Each case statement can contain an XOCL expression. Note that in this case,
XOCL has also been extended with patterns, thus enabling values to be matched
against other values.

As an example, consider a mapping with the following clauses:

@Clause Clause0
Trans i t i on

[name = ””]
do
CPPOp

[name = ”Empty”]
end

@Clause Clause1
Trans i t i on

[name = N]
do
CPPOp

[name = N]
end

This would be translated into the following operation of the class Map:

@Operation invoke () : Element
@Case o f

Transformation Language Design: A Metamodelling Foundation 21

Trans i t i on [name = N] do
CPPOp[name = N]

end
Trans i t i on [name = [” ”]] do

CPPOp[name = ”Empty”]
end
e l s e s e l f . e r r o r (”Mapping f a i l e d . ”)

end
end

Running this operation will thus execute the appropriate case statements
and perform the mapping.

The way in which the translation from syntax to semantic domain occurs is
a matter of choice. At the diagram level, the desugaring is maintained by the
synchronised mapping between the diagram and the semantic domain model. At
the syntax level, a desugar() operation can be added to the grammar to tell it
how to construct the appropriate case statement.

7 Conclusion

Our approach to defining transformation languages is to use rich metamodels
to capture all aspects of their definition, including syntax and semantics. A
key property is that definitions of existing languages and technologies (such as
XOCL) can be merged in with the new language, creating richer, more expressive
capabilities.

The result is a precise definition that is: platform independent (no reliance on
external technology), transparent (the entire definition, including its semantics
can be traced back through the metamodel architecture); extensible and inter-
operable (new features can be added by adding new language components), and
executable (enabling the language to be tested and validated).

There has been much recent interest in the design of domain specific lan-
guages [1], and the approach described in this paper offers a scalable solution
to the problem of how to generate new languages and tools that support those
languages in a generic fashion.

In summary, our position is that a crucial step in the design of transforma-
tions languages must be the adoption of more complete and semantically rich
approaches to metamodelling.

References

1. S. Cook. Domain-specific modeling and model driven architecture. MDA Jour-
nal, January 2004. http://www.bptrends.com/publicationfiles/01-04%20COL%

20Dom%20Spec%20Modeling%20Frankel-Cook.pdf.
2. Object Management Group. Meta-object facility. http://www.omg.org/mof.
3. Object Management Group. Model driven architecture. http://www.omg.org/mda.

	1 Introduction
	2 Design Issues
	3 TheWayForward
	4 XMF
	5 XMapExample
	6 XMap Metamodel
	6.1 Textual Syntax Metamodel
	6.2 Diagram Syntax Metamodel
	6.3 Semantic Domain

	7 Conclusion
	References

