
Transforming Models with ATL1

Frédéric Jouault, Ivan Kurtev

ATLAS Group (INRIA & LINA, University of Nantes)
{frederic.jouault | ivan.kurtev}@univ-nantes.fr

Abstract. This paper presents ATL (ATLAS Transformation Language): a
hybrid model transformation language that allows both declarative and
imperative constructs to be used in transformation definitions. The paper
describes the language syntax by using examples. Language semantics is
described in pseudo-code and various optimizations of transformation
executions are discussed. ATL is supported by a set of development tools such
as an editor, a compiler, a virtual machine, and a debugger. A case study shows
the applicability of the language constructs. Alternative ways for implementing
the case study are outlined. ATL language features are classified according to a
model that captures the commonalities and variabilities of the model
transformations domain.

1 Introduction

Model transformations play an important role in Model Driven Engineering (MDE)
approach. It is expected that writing model transformation definitions will become a
common task in software development. Software engineers should be supported in
performing this task by mature tools and techniques in the same way as they are
supported now by IDEs, compilers, and debuggers in their everyday work.

One direction for providing such a support is to develop domain-specific languages
designed to solve common model transformation tasks. Indeed, this is the approach
that has been taken recently by the research community and software industry. As a
result a number of transformation languages have been proposed. We observe that,
even though the problem domain of these languages is fixed, they still differ in the
employed programming paradigm. Current model transformation languages usually
expose a synthesis of paradigms already developed for programming languages
(declarative, functional, object-oriented, imperative, etc.). It is not clear if a single
approach will prevail in the future. A deeper understanding and more experience
based on real and non-trivial problems is still necessary. We believe that different
approaches are suitable for different types of tasks. One class of problems may be
easily solved by a declarative language, while another class is more amenable to an
imperative approach.

In this paper we describe a transformation language and present how different
programming styles allowed by this language may be applied to solve different types

1 Work partially supported by ModelWare, IST European project 511731.

of problems. The language is named ATL (ATLAS Transformation Language) and is
developed as a part of the AMMA (ATLAS Model Management Architecture)
platform [3]. ATL is a hybrid language, i.e. it is a mix of declarative and imperative
constructs.

We present the syntax and semantics of ATL by using a case study. Whenever
necessary a more formal description is provided. For some aspects of the case study
several solutions are discussed. This helps in identifying patterns and potential
obstacles in defining ATL transformations. Based on this knowledge a software
developer is aware of various possibilities for solving problems and their trade offs.

The paper is organized as follows. Section 2 gives an overview of the framework
in which ATL is used. Section 3 presents the language constructs on the base of
examples. Section 4 presents a case study that shows the applicability of ATL.
Section 5 describes the tool support available for ATL: the ATL virtual machine, the
ATL compiler, the IDE based on Eclipse, and the debugger. Section 6 presents an
evaluation of ATL. Section 7 presents a brief comparison with other approaches for
model transformations and outlines directions for future work. Section 8 gives
conclusions.

2 General Overview of the ATL Transformation Approach

ATL is applied in a transformational pattern shown in Figure 1. In this pattern a
source model Ma is transformed into a target model Mb. The transformation is driven
by a transformation definition (or a transformation program) mma2mmb.atl written in
the ATL language. The transformation definition is a model. The source and target
models and the transformation definition conform to their metamodels MMa, MMb,
and ATL respectively. The metamodels conform to the MOF metametamodel.

Figure 1 Overview of ATL transformational approach

conformsTo

transformation

MOF

MMa MMb

Ma Mb

mma2mmb.atl

ATL

source target

executes

ATL is a hybrid transformation language. It contains a mixture of declarative and
imperative constructs. We encourage a declarative style of specifying transformations.
However, it is sometimes difficult to provide a complete declarative solution for a
given transformational problem. In that case developers may resort to the imperative
features of the language.

ATL transformations are unidirectional, operating on read-only source models and
producing a write-only target model. During the execution of a transformation the
source model may be navigated but changes are not allowed. Target model cannot be
navigated. A bidirectional transformation is implemented as a couple of
transformations: one for each direction.

3 Presentation of ATL

In this section we present the features of ATL language. The syntax of the language is
presented based on examples (sections 3.1-3.4). Then in section 3.5 we describe the
execution semantics of ATL.

3.1 Overall Structure of Transformation Definition

Transformation definitions in ATL form modules. A module contains a mandatory
header section, import section, and a number of helpers and transformation rules.

Header section gives the name of a transformation module and declares the source
and target models. Below we give an example header section that will be used in the
transformation definition for our case study.

module SimpleClass2SimpleRDBMS;
create OUT : SimpleRDBMS from IN : SimpleClass;

The header section starts with the keyword module followed by the name of the

module. Then the source and target models are declared as variables typed by their
metamodels. The keyword create indicates the target model. The keyword from
indicates the source models. In our example the target model bound to the variable
OUT is created from the source model IN. The source and target models conform to
the metamodels SimpleClass and SimpleRDBMS respectively. In general more than
one source and target models may be enumerated in the header section.

Helpers and transformation rules are the constructs used to specify the
transformation functionality. They are explained in the next two sections.

3.2 Helpers

The term helper comes from the OCL specification ([12], section 7.4.4, p11), which
defines two kinds of helpers: operation and attribute helpers.

In ATL, a helper can only be specified on an OCL type or a source type (coming
from a source metamodel) since target models are not navigable. Operation helpers

can be used to specify operations in the context of a model element or in the context
of a module. The main purpose of operation helpers is to perform navigation over the
source models. Operation helpers can have input parameters and can use recursion.
Operation helpers defined in the context of model elements allow polymorphic calls.
Since navigation is only allowed on read-only source models, an operation always
returns the same value for a given context and set of arguments.

Attribute helpers are used to associate read-only named values to source model
elements. Similarly to operation helpers they have a name, a context, and a type. The
difference is that they cannot have input parameters. Their values are specified by an
OCL expression. Like operation helpers, attribute helpers can be recursively defined
with the same constraints about termination and cycles.

Attribute helpers are almost like derived features of MOF 1.4 [11] or Ecore [5] but
can be associated to a transformation and are not always attached to a metamodel.
Whereas in EMF [5] and MDR [10] they are implemented in Java, in ATL they can
be specified using OCL.

Attribute helpers can be considered as a means to decorate source models before
transformation execution. A decoration of a model element may depend on the
decoration of others. To illustrate the syntax of attribute helpers we consider an
example.

1. helper context SimpleClass!Class def :
2. allAttributes : Sequence(SimpleClass!Attribute) =
3. self.attrs->union(
4. if not self.parent.oclIsUndefined() then
5. self.parent.allAttributes->select(attr |
6. not self.attrs->exists(at | at.name = attr.name)
7.)
8. else Sequence {}
9. endif
10.)->flatten();

The attribute helper allAtributes is used to determine the set of all the attributes of

a given class including the defined and the inherited attributes. It is associated to
classes in the source model (indicated by the keyword context and the reference to the
type in the source metamodel SimpleClass!Class) and its values are sequences of
attributes (line 2). The OCL expression used to calculate value of the helper is given
after the ‘=’ symbol (lines 3-10).

This is an example of a recursive helper that uses the value of the same helper
associated to the parent of current context class (line 5). If the context class does not
have a parent then an empty sequence is used (line 8). This is the terminating case for
the recursion.

Attribute helpers can also be used to establish links between source models: the
type of an attribute helper can be a class in a metamodel different from its context
metamodel. This corresponds to a basic form of model composition.

3.3 Transformation Rules

Transformation rule is the basic construct in ATL used to express the transformation
logic. ATL rules may be specified either in a declarative style or in an imperative
style. In this section we focus on declarative rules. Section 3.4 describes the
imperative features of ATL.

Matched Rules
Declarative ATL rules are called matched rules. A matched rule is composed of a
source pattern and of a target pattern.

Rule source pattern specifies a set of source types (coming from source
metamodels and the set of collection types available in OCL) and a guard (as a
Boolean expression in OCL). A source pattern is evaluated to a set of matches in
source models.

The target pattern is composed of a set of elements. Each of these elements
specifies a target type (from the target metamodel) and a set of bindings. A binding
refers to a feature of the type (i.e. an attribute, a reference or association end) and
specifies an expression whose value is used to initialize the feature.

The following snippet shows a simple matched rule in ATL.

1. rule PersistentClass2Table{
2. from
3. c : SimpleClass!Class (
4. c.is_persistent and c.parent.oclIsUndefined()
5.)
6. to
7. t : SimpleRDBMS!Table (
8. name <- c.name
9.)
10.}

The rule name PersistentClass2Table is given after the keyword rule (line 1). The

rule source pattern specifies one variable of type Class (line 3). The guard (line 4)
specifies that only persistent classes without superclasses will be matched.

The target pattern contains one element of type Table (lines 7-9). This element has
one binding (line 8) that specifies an expression used to initialize the attribute name of
the table. The symbol ‘<-‘ is used to delimit the feature to be initialized (left-hand
side) from the initialization expression (right-hand side).

Execution Semantics of Matched Rules
Matched rules are executed over matches of their source pattern. Rule ordering is
concerned with triggering of rules. This mechanism is described further in this
section. Here we focus on the execution of a single rule over a single match.

For a given match the target elements of the specified types are created in the
target model and are initialized using the bindings. Executing a rule on a match
additionally creates a traceability link in the internal structures of the transformation
engine. This link relates three components: the rule, the match (i.e. source elements)

and the newly created target elements. Traceability links may be considered as a
model and serialized by an ATL engine as an additional product of the execution.

Actual feature initialization uses a specific value resolution algorithm, called ATL
resolve algorithm. After the expression of a binding has been evaluated, the resulting
value is first resolved before being assigned to the corresponding target feature.
Resolution depends on the type of the value. If the type is primitive, then the value is
simply assigned to the corresponding feature. If its type is a metamodel type there are
two possibilities:

• when the value is a target element it is simply assigned to the feature;
• when the value is a source element it is first resolved into a target

element using traceability links. The resolution results in an element from
the target model, which is assigned to the feature. This algorithm uses
traceability links to identify the target elements created from a given
source element as a result of application of a transformation rule.

Thanks to this algorithm, target elements can be effectively linked together using
source model navigation only. Finding the appropriate target elements is left to ATL
execution engine.

Kinds of Matched Rules
There are several kinds of matched rules differing in the way how they are triggered.

• Standard rules are applied once for every match that can be found in
source models;

• Lazy rules are triggered by other rules. They are applied on a match as
many times as it is referred to by other rules. This means that a lazy rule
may be applied multiple times on a single match, each time producing a
new set of target elements;

• Unique lazy rules are also triggered by other rules. They are applied only
once for a given match. If a unique lazy rule is triggered later on the same
match the already created target elements are used.

Examples of standard and unique lazy rules are given in the case study. The ATL
resolution algorithm describe above takes care of triggering lazy and unique lazy rules
when a source element is referred to within an initialization expression.

Rule Inheritance
In ATL rule inheritance can be used as a code reuse mechanism and also as a
mechanism for specifying polymorphic rules.

A rule (called subrule) may inherit from another rule (parent rule). A subrule
matches a subset of what its parent rule matches. This implies a number of constraints
on source patterns of subrules, which can be summarized in: “a subrule cannot change
source pattern structure”. Source pattern types of the subrule must thus be either left
unchanged or replaced by subtypes of those used in its parent. A subrule guard filters
out elements that already match its parent guard. The actual guard of the subrule is the
conjunction of both guards.

A subrule target pattern extends its parent target pattern using any combination of
the following: by subtyping target types, by adding bindings, by replacing bindings,
and by adding new target elements. Note that a binding cannot be simply extended, it

must be fully replaced. However, if the expression of a parent binding needs to be
reused then it may be referred to using super keyword.

3.4 Imperative Features of ATL

The declarative style of transformation specification has a number of advantages. It is
usually based on specifying relations between source and target patterns and thus
tends to be closer to the way how the developers intuitively perceive a transformation.
This style stresses on encoding these relations and hides the details related to selection
of source elements, rule triggering and ordering, dealing with traceability, etc.
Therefore, it can hide model transformation specific complex algorithms behind a
simple syntax.

However, in some cases, other complex source-domain or target-domain specific
algorithms may be required (e.g. matrix diagonalization) and it may be difficult to
specify a pure declarative solution for them. There are several possible approaches to
this issue:

• allow native operation calls. This solution has the drawback that it
moves the control flow out of the transformation language semantics;

• offer an imperative part in the transformation language. In that way the
control flow remains in the transformation language semantics but the
developer must encode this control flow explicitly. There are potential
problems with efficiency and optimization of such transformation
specifications. Nonetheless, the developer can perform manual
optimizations, even when an optimizing engine is not available;

• extract data that needs processing from the models to a domain-specific
tool and then inject the result as models. A drawback of this approach is
that it requires a heavyweight mechanism, but it offers large flexibility in
the processing.

The third option is available in ATL since it is not a matter of model
transformation. The first two options have one common drawback: what is executed
out of the reach of the execution engine (either totally, from native code or partially,
by imperative constructs) restricts declarative advantages. They seem, however,
necessary as using them requires less work than using the third one. ATL therefore
has an imperative part, based on two main constructs:

• called rules. A called rule is basically a procedure: it is invoked by its
name and may take arguments. Its implementation can be native or
specified in ATL (e.g. as a target pattern without source pattern since no
match is needed).

• action block. An action block is a sequence of imperative statements and
can be used instead of or in a combination with a target pattern in matched
or called rules. The imperative statements available in ATL are the well
known constructs for specifying control flow such as conditions, loops,
assignments, etc. We do not give their syntax in this paper.

If either a called rule or an action block is used in an ATL program, this program is
no longer fully declarative.

3.5 Execution of Transformation Definitions

In this section we discuss various aspects related to execution of ATL transformation
definitions. First we present a pseudo code algorithm for execution of
transformations. Then we discuss some optimization issues and provide information
about the termination and determinism of ATL transformations.

Algorithm for Executing ATL Transformations
The following algorithm presents the basics of the procedural semantics of ATL
language. This algorithm is used by the ATL transformation engine. We assume that
transformation definitions can contain both matched and called rules. The algorithm
presents only the execution of rules. Handling of helpers is not included. Moreover,
ATL resolve algorithm was already described in section 3.3 and is not detailed here.

execute called rule marked as entrypoint
-- This results in a traditional imperative control flow.

-- Match standard matched rules:
ForEach standard rule R {
 ForEach candidate pattern C of R {

-- a candidate pattern is a set of elements matching the
-- types of the source pattern of a rule

evaluate the guard of R on C

 If guard is true Then
 create target elements in target pattern of R
 create TraceLink for R, C, and target elements
 Else
 discard C
 EndIf
 }
}

-- Apply standard matched rules:
ForEach TraceLink T {
 R = the rule associated to T
 C = the matched source pattern of T
 P = the created target pattern of T

 -- Initialize elements in the target pattern:
 ForEach target element E of P {
 -- Initialize each feature of E:
 ForEach binding B declared for E {
 expression = initialization expression of B
 value = evaluate expression in the context of C
 featureValue = resolve value
 set featureValue to corresponding feature of B
 }
 }
 execute action block of R in the context of C and T
 -- Imperative blocks can perform any navigation in C or T and

-- any action on T. It is the programmer's responsibility
-- to perform only valid operations.

}

execute called rule marked as endpoint
-- We have again an imperative control flow.

This algorithm starts with the execution of an optional called rule marked as entry
point. This rule, in turn, may invoke other called rules. Then the algorithm proceeds
with the execution of the standard matched rules in the transformation program (some
of them may contain an action block). Note that rule matching and application are
separated. This is not absolutely necessary. However, it is simpler to describe and
implement a two stage algorithm because every TraceLink is available after the first
stage. Therefore it is easy to resolve the required target elements in the second stage.
Target elements could, however, be initialized as they are created. This would make
the resolving algorithm more complex since some initializations may be delayed until
the end of the transformation.

The presented algorithm does not suppose any order in rule matching, target
elements creation for a match, target elements initialization for a TraceLink, and
feature initialization of a target element. Action block (if present) must, however, be
executed after having applied the declarative part of the rule. This eases the
programmer’s task since the target pattern is in a somewhat foreseeable state
(imperative action blocks should only be used when declarative constructs are not
enough).

In fact, order constraints can be made even less restrictive. For instance, all target
element features can really be initialized in any order while the given algorithm
enforces that all features of a given target element are initialized in block and that all
target elements of a TraceLink are initialized in block. This is not absolutely
necessary.

Some Possible Optimizations
The execution algorithm described in this paper is roughly what is implemented in the
current ATL engine (compiler and virtual machine) although the imperative parts of
the language are not fully supported yet. An engine may, however, use the flexibility
of execution order constraints to perform some optimizations. For instance, a single
iteration could be performed for source patterns with the same structure but with
different guards.

Moreover, not all candidate patterns may need to be tested if some can be rejected
by statically analyzing the guard. Consider a source model where elements of type A
may contain elements of type B and a rule takes as source pattern every pair (a : A, b :
B) with the constraints that a contains b (i.e. a.bs->includes(b) in OCL).
Construction of the candidate patterns would look like the following code with two
nested loops:

for every a of type A {
 for every b of type B {
 evaluate the guard
 do something
 }
}
If the guard is analyzed the code may be optimized in the following:
for every a of type A {
 for every b of type B contained in A {
 do something
 }
}
Bs not contained in a are not tested.

Lazy rules can also be used for optimization. One of the expensive operations in
model transformations is the pattern matching of the rule source patterns. Instead of
specifying complex patterns and guards the software engineer may locate the required
source elements using helpers or using the context of matched rules. Then these
elements may be transformed by unique lazy rules. In that way elements are only
transformed if they are referred to by a transformed element. Obviously this is a user-
specified optimization rather than engine-inferred.

Calls to helpers may also be optimized. As we saw in section 3.2, operation and
attribute helpers are side-effect free and operate on read-only models. Their result
values can therefore be cached instead of computed each time they are required.
Besides, although attribute helpers may be initialized in a pass performed before
running the rest of the transformation, they may also be lazily evaluated when the
helper value is read for the first time. Both alternatives produce equivalent results.
However, the performance is different. Lazy evaluation leads to a better performance
since only a subset of the attribute helpers values may be actually used during the
execution.

Deterministic Execution and Termination
As long as lazy rules and called rules are not used, the execution algorithm terminates
and is deterministic. Although the order of execution of rules is non-deterministic,
different execution orders produce the same result for a given source model. As a
matter of fact, source models are read-only: the execution of a rule cannot change the
set of matches. In addition, target models are write-only: the initialization of a target
element cannot impact the initialization of another. However, it is possible to have
recursive helpers that do not terminate. In this case the transformation does not
terminate either.

The problem with called rules is that within them we use a standard imperative
language that cannot be proved to always terminate.

As for lazy rules, the problem is that recursive references can be written. For
instance:

1. lazy rule R1 {
2. from
3. s : Element
4. to
5. t : Element (
6. value <- [R2.t]s
7.)
8. }
9.
10. lazy rule R2 {
11. from
12. s : Element
13. to
14. t : Element (
15. value <- [R1.t]s
16.)
17. }

In this example there are two lazy rules R1 and R2 that refer to each other (lines 6
and 15). In that way it is possible to form infinite recursion.

Lines 6 and 15 also illustrate one explicit way for triggering a lazy rule. The rule
name and the identifier of the required target element are separated by ‘.’ and
surrounded by square brackets followed by the source element on which the rule will
operate.

4 Case Study: Transforming Class to Relational Models

In this section we present the solution written in ATL to the case study given in the
call for papers of the workshop.

4.1 Source and Target Metamodels

In order to improve the clarity of the presentation we briefly repeat the case study
already given in the call for papers. The case study requires transformation of simple
class models to relational models. The class models conform to the source metamodel
in Figure 2.

name : String
Classifier

is_persistent : Boolean
Class

name : String
Association

PrimitiveDataType

name : String
is_primary : Boolean

Attribute

src

dest

parent

attrs*

type

Figure 2 Source class metamodel

According to this metamodel classes have names and a number of attributes.
Classes may be declared as persistent (attribute is_persistent). The type of an attribute
is a classifier: either a primitive data type or a class. Attributes may be defined as
primary (attribute is_primary). Classes may be related via associations. An additional
constraint is imposed that every class have at least one attribute and at least one
primary attribute (they may be inherited).

Relational models conform to the metamodel in Figure 3. Every model contains a
number of tables. Each table has a number of columns, some of them are primary. A
table may be associated to zero or more foreign keys. Each foreign key refers to a
table and is associated with a number of columns that constitute the key.

FKey

type : String
name : String

Column

name : String
Table

pkey

* cols

*

fkeys

*
references

cols *
Figure 3 Target relational metamodel

Transformation rules are summarized below:
• Persistent classes that are roots of an inheritance hierarchy are transformed to

tables;
• Table columns are derived from the attributes and associations of a class;
• Every attribute of a primitive type is transformed to a single column. If the

attribute is primary it results to a primary column in the table;
• For every persistent root class a set of attributes and associations is derived by

flattening the inheritance hierarchy. These attributes and associations are used
to derive the columns of the result table;

• Attributes whose type is a non-persistent class and associations that point to
such a class are transformed to a set of columns derived from the class. This
rule is applied recursively until a set of primitive attributes is obtained. We
assume that circularity in references to classes is not allowed. A class inherits
the attributes and associations of its parent;

• Attributes whose type is a persistent class and associations that point to such a
class are transformed to a foreign key and a set of columns contained by the
key. The foreign key refers to the table derived from the persistent class. The
columns are derived from the primary attributes of the persistent class. We
assume that the same rule is also applied for the non-persistent classes whose
top-most parent is a persistent class. We assume that the instances of these
classes are kept in the table created from the root of the hierarchy. This is
motivated by the flattening of the inheritance hierarchies1.

We assume that primary attributes are always of primitive data types.

4.2 Transformation Specification SimpleClass2SimpleRDBMS

The following code presents the complete transformation program for the case study.
It is written by using only the declarative features of ATL. In this section we explain
the overall logic of the program.

1 Another possibility is to treat all the non-persistent classes in a uniform way. We believe that

the assumption we make does not simplify the transformation definition and does not remove
any significant technical aspect from the transformation.

1. module SimpleClass2SimpleRDBMS;
2. create OUT : SimpleRDBMS from IN : SimpleClass;

3. helper context SimpleClass!Class def :
4. allAttributes : Sequence(SimpleClass!Attribute) =

5. self.attrs->union(
6. if not self.parent.oclIsUndefined() then
7. self.parent.allAttributes->select(attr |
8. not self.attrs->exists(at | at.name = attr.name)
9.)
10. else Sequence {}
11. endif
12.)->flatten();

13. helper context SimpleClass!Class def :
14. allAssociations : Sequence(SimpleClass!Association) =

15. let defAssoc : SimpleClass!Association =
16. SimpleClass!Association.allInstances()->select(assoc |
17. assoc.src = self) in
18. defAssoc->union(
19. if not self.parent.oclIsUndefined() then
20. self.parent.allAssociations
21. else Sequence {}
22. endif
23.)->flatten();

24. helper context SimpleClass!Class def :
25. topParent : SimpleClass!Class =

26. if self.parent.oclIsUndefined() then
27. self
28. else
29. self.parent.topParent
30. endif;

31. helper context SimpleClass!Class def :
32. attributesOfSubclasses : Sequence(SimpleClass!Attribute) =

33. let attrsInSubclasses : Sequence(SimpleClass!Attribute) =
34. SimpleClass!Class.allInstances()->select(c |
35. c.parent=self
36.)->collect(subclass |
37. subclass.attributesOfSubclasses
38.)->flatten() in
39. attrsInSubclasses->union(
40. self.attrs->select(attr |
41. not attrsInSubclasses->exists(a |
42. a.name = attr.name)
43.))->flatten();

44. helper context SimpleClass!Class def :
45. associationsOfSubclasses : Sequence(SimpleClass!Association) =
46.
47. SimpleClass!Association.allInstances()->select(assoc |
48. assoc.src = self)->union(
49. SimpleClass!Class.allInstances()->select(c |
50. c.parent = self)->collect(subclass |

51. subclass.associationsOfSubclasses)->flatten()
52.)->flatten();

53. helper context SimpleClass!Class def :
54. flattenedFeatures : Sequence(TupleType(
55. trace : Sequence(OclAny),
56. isPrimary : Boolean,
57. isForeignKey : Boolean,
58. ForeignKeyColumns : Sequence(Sequence(OclAny)))) =

59. if self.topParent.is_persistent then
60. self.topParent.attributesOfSubclasses->union(
61. self.topParent.associationsOfSubclasses)
62. else
63. self.allAttributes->union(self.allAssociations)
64. endif->collect(f |
65. let feature : TupleType(type : SimpleClass!Classifier,
66. isPrimary : Boolean) =
67. if f.oclIsKindOf(SimpleClass!Attribute) then
68. Tuple{type = f.type, isPrimary = f.is_primary}
69. else
70. Tuple{type = f.dest, isPrimary = false}
71. endif in
72. if feature.type.oclIsKindOf(SimpleClass!PrimitiveDataType) then
73. Tuple {trace = Sequence {f},
74. isPrimary = feature.isPrimary,
75. isForeignKey = false,
76. ForeignKeyColumns = OclUndefined
77. }
78. else if not feature.type.topParent.is_persistent then
79. feature.type.flattenedFeatures->collect (t |
80. Tuple {trace = t.trace->prepend(f),
81. isPrimary = t.isPrimary,
82. isForeignKey = t.isForeignKey,
83. ForeignKeyColumns = t.ForeignKeyColumns
84. }
85.)
86. else let primaryFeatures : Sequence(OclAny) =
87. feature.type.topParent.flattenedFeatures->select(t |
88. t.isPrimary)->collect(pt |
89. Tuple{trace = pt->prepend(f),
90. isPrimary = pt.isPrimary,
91. isForeignKey = false,
92. ForeignKeyColumns = OclUndefined
93. }
94.) in
95. primaryFeatures.prepend(Tuple{
96. trace = Sequence {f},
97. isPrimary = false,
98. isForeignKey = true,
99. ForeignKeyColumns = primaryFeatures
100. })
101. endif endif
102.)->flatten();

103. rule PersistentClass2Table{
104. from
105. c : SimpleClass!Class (
106. c.is_persistent and c.parent.oclIsUndefined()
107.)

108. to
109. t : SimpleRDBMS!Table (
110. name <- c.name,
111. cols <- c.flattenedFeatures->select(f |
112. not f.isForeignKey
113.)->collect(ft | ft.trace),
114. pkey <- c.flattenedFeatures->select(f |
115. f.isPrimary)->collect(ft | ft.trace),
116. fkeys <- c.flattenedFeatures->select(f |
117. f.isForeignKey)
118.)
119. }

120. unique lazy rule Feature2Column {
121. from
122. trace : Sequence(OclAny)
123. to
124. col : SimpleRDBMS!Column (
125. name <- trace->iterate(e; acc : String = '' |
126. acc + if acc = ''
127. then ''
128. else '_' endif + f.name),
129. type <- trace->last().type
130.)
131. }

132. unique lazy rule PersistentFeature2ForeignKey {
133. from
134. feature : TupleType(
135. trace : Sequence(OclAny),
136. isPrimary : Boolean,
137. isForeignKey : Boolean,
138. ForeignKeyColumns : Sequence(Sequence(OclAny)))
139. using {
140. last : OclAny = feature.trace->last();
141. referencedClass : SimpleClass!Class =
142. if last.oclIsKindOf(SimpleClass!Attribute) then
143. last.type.topParent
144. else
145. last.dest.topParent
146. endif;
147. }
148. to
149. fkey : SimpleRDBMS!FKey (
150. references <- referencedClass,
151. cols <- feature.ForeignKeyColumns
152.)
153. }

The transformation specification may be split into two logical parts. The first part
performs decoration of the source model and the second part contains the actual
transformation rules. Since the transformation specification is declarative there is no
explicit execution order among these parts.

The decoration part consists of a set of attribute helpers (lines 3-102). They are
additional attributes of source model elements assigned during the transformation.
Attribute helpers are used for the following tasks:

• To determine the attributes and associations for every class including
those inherited by the superclass. This is achieved by allAttributes (lines
3-12) and allAssociations (lines 13-23) attribute helpers;

• To determine the top-most parent of a given class (topParent attribute
helper, lines 24-30). This helper is used when an attribute/association has
as a type a non-persistent class whose top-level parent class is persistent;

• To flatten inheritance hierarchies with root a persistent class. In this case
all the attributes and associations of the direct and indirect children
classes are united and associated with the root persistent lass. Attribute
helpers attributesOfSublasses (lines 31-43) and associationsOfSubclasses
(lines 44-52) are used to perform this flattening;

• To flatten the features (either attributes or outgoing associations) of
classes by performing the drill-down algorithm for handling the attributes
of non-primitive types. This is done by flattenedFeatures (lines 53-102)
attribute helper;

The last helper is the most complex. We will explain it in bigger details.
We treat attributes and outgoing associations of a class in a uniform way by

referring to them as features1. For every feature we apply the rules for deriving table
columns. If the feature is of primitive type a single column will be created. If the
feature is of a non-persistent class then it results in a set of primitive features with
recursive accumulation of names. If the feature is of persistent class (or the top parent
is a persistent class) then we obtain the primary features of this class.

The purpose of the helper is to associate a set of primitive features to every class
from which columns are directly derived. Since some of these features are result of a
flattening they are in fact a sequence of features derived according to the drill-down
algorithm. We call such a sequence trace. Therefore, we associate a set of traces to
every class and create a column from every trace of a persistent class. The names of
the columns are formed as a concatenation of the names of the features in the traces.
To illustrate better the idea we give an example shown in Figure 4. The example
shows a simple source model where classes are decorated with traces.

In Figure 4 traces are shown next to each class. Classes that inherit from a
persistent class do not generate traces (Student and Employee). Primary features are
underlined.

«primary» name : String
address : Address

«persistent»
Person

number : String
Student Employee

city : String
street : String

Address

«primary» name : String

«persistent»
Organization

works_for

located_at

(city)
(street)

(located_at, city)
(located_at, street)

(name)

(address, city)
(address, street)

(name)
(number)

(works_for, name)

Figure 4 An example source model decorated with traces

1 Unfortunately the source metamodel does not contain a common parent class for Attribute

and Association.

The idea behind flattenedFeatures helper is to generate traces of features plus some
additional information about the traces. The structure that holds this information is a
tuple type with the following fields (lines 55-58):

• trace – contains the trace as a sequence of features;
• isPrimary – indicates if the trace generates a primary column;
• isForeignKey – indicates if the trace ends with a feature of a persistent

type;
• ForeignKeyColumns – if the field isForeignKey is true then this field

contains a sequence of traces that will be used to produce the columns of
the foreign key. These traces are copies of the primary column traces of
the persistent class for which the foreign key is generated;

Figure 4 shows only traces. The entire structure explained above is not shown for

simplicity.
The logic in flattenedFeatures helper is to start with an initial list of features for a

class and to build a sequence of tuples conforming to the described structure by
applying flattening recursively. If the class is a persistent class then the initial list of
features is the union of the values of attributesOfSublasses and
associationsOfSubclasses attribute helpers (lines 59-61). If the class is a non-
persistent class that does not inherit from a persistent class then the initial list is the
union of values of allAttributes and allAssociations attribute helpers (line 63).

Transformation rules use the result of the decoration part to create the elements in

the target model. The main work related to flattening is done by the helpers.
Rule PersistentClass2Table transforms persistent root classes to tables. The

interesting part of this rule is the initialization of the features of the created tables.
The code in lines 111-113 initializes the cols slot of the table. The value of this slot

is a collection of all the columns of the table. Columns are created from traces that do
not represent foreign keys (this is encoded in the selection criteria in line 112). The
value of the initialization expression is a sequence of traces, that is, a sequence of
sequences of source model elements. Therefore this value must be resolved according
to the ATL resolution algorithm. The resolution requires finding a rule that transforms
the value of the expression into target model elements. Thus, in this feature
initialization we have an implicit invocation of a transformation rule. The only
suitable rule is Feature2Column unique lazy rule. This rule transforms traces to
columns. It is triggered on demand. In our example it will be executed on every trace
in the sequence generated by the initialization expression.

Furthermore the slot pkey contains all the primary columns of the table. Primary
columns are a subset of the set of all the columns of the table. Primary columns are
also generated by the rule Feature2Column. Similarly to the previous slot, in lines
114 and 115 we have an implicit invocation of Feature2Column rule. In other words
the same rule may be triggered multiple times over the same source. This is a unique
rule and this guarantees that invocations after the first time will return the same result.
If the rule was not unique two different copies of the primary columns would be
created.

Foreign keys are created by the PersistentFeature2ForeignKey unique lazy rule. It
is implicitly triggered in line 116.

4.3 Discussion

The presented solution is just one among several potential solutions for the case
study. In this section we discuss some implementation alternatives.

First of all, this solution relies on features of ATL that are not implemented yet in
the current compiler. Current compiler does not fully support lazy rules and rules with
multiple source elements and source elements that are of OCL types (e.g. sequences).
The reason for giving this solution is to illustrate the full set of declarative constructs
that will be available in ATL. We implemented a second solution that runs on the
current version of the ATL virtual machine and may be compiled with the current
ATL compiler. This solution will be made available on the Eclipse GMT project [8].
It shows that even with the current incomplete version, ATL is capable to handle
completely the required case study.

A significant part of the presented transformation definition is implemented as
attributes helpers. The values of attribute helpers may be cached thus increasing the
performance (see sections 3.5 and 5.2). The current version of ATL engine allows
enabling and disabling the caching mechanism. We performed a measure of
performance increase resulting from caching attribute helper results on a version of
the case study working on the current ATL engine. 40853 bytecodes were executed
with cache disabled and 15543 with cache enabled. This corresponds to a 2.6 decrease
of the number of executed bytecodes. Although this optimization is rather simple, it
should be noted that no change has to be done by the developer in the program: cache
needs just to be activated.

Furthermore the functionality of the helpers may be implemented in transformation
rules. This would lead to recursive rules. It is not always easy to judge which
functionality to be implemented as helpers and which one as transformation rules. In
our case, the flattening functionality was related to the decoration of the source model
and required only navigation over the source model. We decided to implement all the
navigation functionality as helpers and to keep the transformation rules free from
complex navigation expressions. This fits to the basic intention of these constructs:
rules are used for creating target model elements and helpers are used for source
model navigation.

Another dimension of alternatives is using implicit rule invocation (through the
ATL resolution algorithm) versus explicit rule calls. In our case study we used
implicit rule invocation. We believe that this leads to more adaptable transformation
definitions and to loosely coupled rules. However, explicit rule calls may be useful in
case of ambiguity in determining the applicable transformation rules for a given input.
When the resolution algorithm tries to resolve the default traceability link and there
are more than one rule that produces such a default link then a conflict among rules
arises.

Finally, the presented solution is implemented in a declarative style. It is possible
to implement it with the intended imperative features of ATL. However, in this paper
we focus more on the declarative part of ATL.

4.4 Second Case Study: Converting Roman Numbers to Arabic Numbers

An important part of model transformations is extracting data from strings and
conversion of strings. In many cases these tasks are not trivial. In this section we
consider a small example of string conversions: from Roman numbers to Arabic
numbers.

The solution for this problem is not a model transformation definition. It is
implemented as an ATL operation helper and relies on the capabilities of OCL. The
following code shows the solution to this problem. This helper may be integrated and
used in a more complex program.

helper context String def:
 toIntegerFromRoman() : Integer =
 let rd : Sequence(String) = Sequence {'I', 'V', 'X', 'L', 'C',
 'D', 'M'} in

let rv : Sequence(Integer) = Sequence {1, 5, 10, 50,100, 500,
 1000} in
 let r : TupleType(ret : Integer, prev : Integer) =

 self.toSequence()->iterate(e; acc : TupleType(ret : Integer,
 prev :
 let val : Integer = rv.at(rd->indexOf(e)) in
 if acc.prev = -1 then
 Tuple {ret = 0, prev = val}
 else if acc.prev < val then
 Tuple {ret = acc.ret - acc.prev, prev = val}
 else
 Tuple {ret = acc.ret + acc.prev, prev = val}
 endif endif
) in r.ret + r.prev;

5 ATL Tools

The practical application of a computer language requires a set of supporting tools:
compiler/interpreter, development environment, debugger, profiler, etc. In this section
we present the available ATL tools that include the ATL transformation engine, the
ATL integrated development environment (IDE) based on Eclipse, and the ATL
debugger.

5.1 Requirements for ATL Tools

There is no unique implementation architecture for the execution semantics described
in section 3. We can identify some alternatives:

• interpretation vs. compilation or a combination of both (a la Java);
• fully sequential vs. partially parallel execution. The flexibility of ordering

constraints on the execution path makes the parallel execution doable:
matching rules in parallel, testing the guard of a single rule over several
candidate patterns in parallel, applying initializations in parallel, etc.;

Parallelizing the execution is more interesting when the underlying hardware is
parallel. We chose to implement a sequential approach, because it is easier to
implement and is sufficient for the present time. Dealing with very large models in the
future may benefit from parallelizing the execution. Identification of parts in
transformation programs suitable for parallel execution seems an interesting direction
for future research.

The following requirements were formulated for the ATL tools:
• it should be easy to implement new language features;
• it should be easy to replace an execution engine with a more efficient one;
• it should be possible to debug the transformation program and the

execution engine itself (e.g. a compiler, an interpreter, a virtual machine);
• the execution engine should be portable to several model handlers (e.g.

MDR [10], EMF [5], etc.);
The implemented solution includes an ATL compiler, a virtual machine (VM), an

IDE, and a debugger. These tools are described in the following two sections.

5.2 ATL Execution Engine

The architecture of the ATL execution environment is shown in Figure 5. It contains
the following components arranged across several layers:

• ATL Compiler. ATL compiler transforms ATL programs into programs
written in byte-code;

• ATL Virtual Machine. ATL VM executes the byte-code generated by the
compiler. The virtual machine is specialized in handling models and
provides a set of instructions for model manipulation;

• Model Handler Abstraction Layer. The virtual machine may run on top of
various model management systems. To isolate the machine from their
specifics an intermediate level is introduced called Model Handler
Abstraction Layer. This layer translates the instructions of the VM for
model manipulation to the instructions of a specific model handler;

• Model Handlers. These are components that provide programming
interface for model manipulation. Some examples are Eclipse Modeling
Framework (EMF) and MDR;

• Model Repository. Model repository provides storage facilities for
models. As Figure 5 shows the simplest form of a model repository is the
file system that stores models as XML files serialized according to the
XMI standard;

Because of this layered architecture we achieve the requirements for flexibility of
the execution engine. Additions of new language features affect mainly the ATL
compiler. A more efficient execution requires changes in the implementation of the
virtual machine and the compiler (some static optimizations may be performed by the
compiler). Existing programs will run on top of a new VM provided that it conforms
to the same set of instructions. A specification of ATL VM is provided on the GMT
website [8]. Thanks to the Model Handler Abstraction Layer the virtual machine is
relatively easy to port to a new model handler.

In section 3.5, we discussed possible optimizations of ATL programs execution. In
the current implementation of ATL engine, we implemented some of them: attribute
helpers values are lazily evaluated and their results are cached. For instance,
considering the attribute helper specified in section 3.2: it may be rewritten as an
operation helper without parameters. However, this will lead to a worse performance
with the current ATL engine since the results of operation helpers are not cached. The
operation helper for a given class will be executed every time when the attributes of a
direct or indirect subclass are determined. In the implementation based on attribute
helpers the value is calculated only once and reused afterwards. Additionally, we gave
actual figures of achieved optimization in section 4.3.

Figure 5 The architecture of the ATL execution engine

5.3 ATL IDE

The current ATL IDE is built on top of Eclipse. It includes an editor that provides
view of the text with syntax highlighting, outline (view of the model corresponding to
the text), and error reporting. The IDE uses the Eclipse interface to the ATL
debugger.

Figure 6 shows a screenshot of the ATL IDE.

Model Handler Abstraction Layer

EMF MDR …

ATL VM

ATL Compiler

Model repository*

*The simplest form of a model repository is a file system.

XMI 2.0
XMI 1.2

ATL programs

Figure 6 A screenshot of the ATL development environment

The figure indicates various components in the IDE: the code editor, error
indications, the builder, the project view, the outline view, and the variables watch
used during a debugging session.

6 Discussion

In this section we present an evaluation of ATL according to criteria derived from the
design decisions found in other transformation languages. In addition, we provide an
overview of the features of the language currently supported by the ATL compiler and
the features that will be supported in a future release.

6.1 Classification Categories for Transformation Languages

Czarnecki and Helsen [6] present a domain analysis of existing model transformation
approaches. The results of this analysis are summarized in a feature model that
presents the commonalities and variabilities in the domain. Here we briefly describe
the main categories of classification and their variation areas. Variations indicate the
design choices made in existing model transformation approaches. The categories are
presented in the subsequent sections.

Code
Editor

Outline

Debugger

Project Automatic Builder

Variable
Location

Errors

Transformation Rules
Transformation rules are the basic constructs in transformation definitions. They have
left-hand side and right-hand side, which may or may not be syntactically separated.
The areas of variation found in transformation rules are:

• Directionality: rules may be executed in one or two directions;
• Rule parameterization: rules may receive additional input via parameters;
• Intermediate structures: some approaches allow intermediate model

structures;

Source-Target Relationship
This classification category captures the relation between source and target models.
The following variations are found:

• Source and target models are different;
• Source and target is the same model: this allows updates in the source model

(in-place update);

Rule Application Strategy
Generally, a rule may match more than one element/tuple in the source model.
Therefore a strategy for the rule application on the matches is required. Strategies
may be:

• Deterministic: an algorithm governs the order of application of rules over
matches;

• Non-deterministic: the order of application of rules may be different for
different executions of the same transformation on the same source model;

• Interactive: the user specifies the strategy;

Rule Scheduling
Rule scheduling mechanism is responsible for the order in which the rules are applied.
It may vary in four areas:

• Form: concerns the way the order is expressed. The form may be implicit
and explicit. Implicit form of scheduling relies on implicit relations among
the rules. Explicit form of scheduling uses dedicated constructs to control the
order. Explicit scheduling may be internal and external. Internal scheduling
uses control flow structures within rules and explicit rule invocation.
External scheduling uses scheduling logic separated from the transformation
rules;

• Rule selection: rule selection may rely on explicit condition on the source
elements. Since many rules may be applicable on a single source element
there may be a need of rule conflict resolution (e.g. via rule priority);

• Rule iteration: iteration may be based on recursion, looping, fixpoint
iteration, and combination of them;

• Phasing: a transformation definition is separated into phases usually
executed sequentially. Each phase uses certain set of rules;

Rule Organization
Rule organization concerns relations among transformation rules. Three variation
areas are related to this category:

• Modularity mechanisms: these are mechanisms for grouping of rules into
packaging constructs;

• Reuse mechanisms: allow rules to reuse existing rules in new rule
definitions;

• Organizational structure: rules may be organized according to the source
language, target language, or in other independent way;

Traceability Links
Traceability links record correspondences between source and target elements
established during transformation execution. Generally, two approaches are followed
for maintaining traceability links:

• User-based: the user is responsible to create links as ordinary model
elements;

• Dedicated support: transformation language and transformation engine
provide support for maintaining links. This support may be automatic and
manual;

Directionality
Some languages allow transformation definitions only in one direction: from source to
target model. These transformations are known as unidirectional transformations.
Other languages allow definitions that may be executed in both directions. These
transformations are known as bidirectional transformations.

6.2 Classifying ATL

This section classifies ATL according to the categories explained in Section 6.1.
Results are summarized in Table 1.

Category Classification of ATL

Structure Syntactically separated left-hand side and right-hand side
parts with variables and patterns.

Directionality Unidirectional rules from source to target elements.
Rule
parameters Supported in called rules only.

Transformation
Rules

Intermediate
Structures Supported via attribute helpers and OCL tuples.

Source-Target Relationship
Separated source and target models without possibility for
in-place update. See also the feature Refining mode in the
next section 6.3

Deterministic Supported for imperative called rules only.

Non-
deterministic

Rule application on all the matches of the rule source
pattern in a non-deterministic order (see discussion on
determinism in section 3.5).

Rule
Application

Strategy
Interactive Not supported.

Form
Mix of implicit and explicit form of scheduling. Implicit
scheduling supported through matched rules. Explicit form
is supported through invocation of called rules and control
flow constructs (internal explicit form).

Rule selection
Based on a rule source guard. Conflicts among standard
matched rules are not allowed when they lead to ambiguity
in resolving the default traceability links.

Rule iteration Recursion is supported.

Rule
Scheduling

Phasing Possible by applying two distinct transformations in a
sequence.

Modularity
mechanisms Transformation modules and libraries.

Reuse
mechanisms Rule inheritance and module inclusion.

Rule
Organization

Organizational
Structure Source-driven.

Traceability Links Dedicated automatic support. Storage of links is handled
by the transformation engine.

Directionality of transformations Unidirectional (from source model to target model).

 Table 1. ATL features according to the classification of transformation
approaches

6.3 Currently Supported ATL features

Table 2 presents a summary of the features of ATL currently supported by the
compiler and some features that could be implemented as future extensions. Stars
indicate the supported features. An explanation of some of the features is given in the
numbered list after the table.

ATL feature Current version Future extensions
metamodel types,
OCL primitive and
tuple types,
transformation
module (i.e. static)

*
operations
and
attributes in
the context
of OCL collection

types *

references (i.e. with opposite) (1) *

OCL helpers

other ways to specify values of
attribute or reference helper (2) *

helpers libraries * Code reuse
rule libraries (importable modules) *
standard *
lazy *
unique lazy *
rule inheritance *

Matched
rules

multiple source elements *
standard *
with rule inheritance *
with lazy rules * ATL resolve

algorithm
more strongly typed explicit
resolving (3) *

Refining mode (4) *(basic) *(improved)

Traceability internal external

ATL called rules *
native called rules *

Imperative
part

action blocks *

OCL type checking Dynamic Static (following the
specification)

Table 2 ATL features summary

(1) Such reference helpers could be used to optimize source model decoration:
instead of explicitly linking A to B and B to A, only one direction would have
to be initialized. For instance, instead of:

helper context A def: b : B =

B.allInstances()->select(e |
 e.name = self.name)->asSequence()->first();

helper context B def: a : A =
A.allInstances()->select(e |

 e.name = self.name)->asSequence()->first();

we would have:

helper context A def: b : B oppositeOf a =

B.allInstances()->select(e |
 e.name = self.name)->asSequence()->first();

(2) Currently, the only way to specify an attribute helper value is by specifying an

OCL expression. Mechanisms making complex mappings simpler could be
implemented; for instance: linking elements having the same name without
manually implementing hashing. Instead of:

helper context A def: b : B oppositeOf a =

B.allInstances()->select(e |
e.name = self.name)->asSequence()->first();

we would have:

helper context A def: b : B oppositeOf a linkWhen self.name = b.name;

(3) Corresponds to explicit rule polymorphism through inheritance from abstract

rules. As a matter of fact, because of present lack of type checking in ATL
engine, references to other rules cannot be checked for correctness. Therefore,
although polymorphism currently works, it is not statically checked for sanity.

(4) In ATL, source models are read-only and target models are write-only; this
prohibits in-place transformations. However, such transformations are quite
common in certain domains. Therefore, ATL provides a mechanism to answer
this need: refining mode. This mode can be used for transformations having
the same source and target metamodel. Unmatched source elements are
automatically copied into target model, as if a default copying rule was
present. Note that refining mode may be implemented as in-place model
transformation by an ATL engine provided the result is proved to be the same.

7 Related and Future Work

In the last couple of years we observed a number of proposals for model
transformation languages. Some of them are a response to the QVT RFP issued by
OMG [13]. As we explained in Section 2 ATL is applicable in QVT transformation
scenarios where transformation definitions are specified on the base of MOF
metamodels. However, ATL is designed to support other transformation scenarios
going beyond QVT context where source and target models are artifacts created with
various technologies such as databases, XML documents, etc. In that way ATL serves
the purpose of the AMMA platform as a generic data management platform.

Another class of transformation approaches relies on graph transformations theory
[1][14]. ATL is not directly based on the mathematical foundation of these
approaches. An interesting direction for future research is to formalize the ATL

semantics in terms of graph transformation theory. The declarative part of ATL is
especially suitable for this.

Some approaches stress on providing graphical syntax for transformation
definitions [9][15]. Currently ATL does not have a graphical syntax. This is a second
important direction for future research. It is related to the model weaving approach [7]
(another integral part of the AMMA platform) in which relations among model
elements are established by using a visual tool. These relations may be interpreted in
various ways: as compositional operators, transformations, equivalence, etc.

ATL has already been used in various contexts. More than twenty examples are
already published on GMT website some of them consisting of several ATL
programs. In all examples XMI is used to represent models. However, in a large
number of them, it is only used as intermediary representation between
transformations. Source and target are indeed often not XMI models but other kind of
XML documents, text files, spreadsheets, etc. This consideration is important because
we think model transformation cannot be limited to XMI if real-life problems are to
be solved [2].

In [4] we present another application of ATL by showing how it can be used to
check models if they satisfy given constraints. A simple specific target metamodel is
defined to represent diagnostics resulting from evaluation of these constraints as a set
of problems (i.e. constraint violations). OCL constraints defined on a metamodel can
then be translated into ATL rules generating such problems. Diagnostic models can
subsequently be transformed into any convenient representation. We plan to extend
this work and show how ATL can be used to compute any kind of metrics on models.

Although ATL does not permit bidirectional transformation specifications this
becomes possible by coupling ATL with model weaving [7]. We showed an example
of this technique at GTTSE'2005 (Summer School on Generative and
Transformational Techniques in Software Engineering) hold in Braga, Portugal in
July 2005.

Static type checking of OCL expressions used in ATL programs is not
implemented in current compiler. It is however necessary to be closer to OCL 2.0
specification. Moreover, it will help transformation developers by reducing the
number of runtime errors requiring recompilation and relaunching of programs. We
believe an ATL type checker could be implemented in the form of an ATL
transformation. This approach seems indeed more interesting than using ad-hoc
means (e.g. Java code), but is more challenging since it relies on ATL itself. We think
current ATL engine is almost mature enough for this purpose and we already have an
initial prototype working on simple OCL expressions (i.e. using only primitive types).

8 Conclusions

In this paper we presented ATL: a hybrid model transformation language developed
as a part of the ATLAS Model Management Architecture. ATL is supported by a set
of development tools built on top of the Eclipse environment: a compiler, a virtual
machine, an editor, and a debugger.

The current state of ATL tools already allows solving non-trivial problems. This is
demonstrated by the increasing number of implemented examples and the interest
shown by the ATL user community that provides a valuable feedback.

The applicability of ATL was demonstrated in a case study. We identified
alternative ways for implementing the case study. Alternatives are based of different
programming styles, e.g. declarative and imperative. ATL allows both styles to be
used in transformation definitions depending on the problem at hand. We encourage a
declarative approach for defining transformations whenever possible. We believe that
this approach allows transformation developers to focus on the essential relations
among the model elements and to leave the handling of complex execution algorithms
and optimizations to the ATL compiler and virtual machine.

References

[1] Agrawal A., Karsai G., Kalmar Z., Neema S., Shi F., Vizhanyo A.The Design of
a Simple Language for Graph Transformations, Journal in Software and System
Modeling, in review, 2005

[2] Bézivin, J., Dupe, G., Jouault, F., Pitette, G., and Rougui, J. E. First experiments
with the ATL model transformation language: Transforming XSLT into XQuery,
2nd OOPSLA Workshop on Generative Techniques in the context of MDA,
Anaheim, CA, USA (2003)

[3] Bézivin, J., Jouault, F., and Touzet, D. An Introduction to the ATLAS Model
Management Architecture. Research Report LINA, (05-01)

[4] Bézivin, J., Jouault, F. Using ATL for Checking Models. To appear in the
proceedings of the GraMoT workshop of GPCE 2005 conference in Tallinn,
Estonia

[5] Budinsky, F., Steinberg, D., Raymond Ellersick, R., Ed Merks, E., Brodsky, S. A.,
Grose, T. J. Eclipse Modeling Framework, Addison Wesley, 2003

[6] Czarnecki, K., Helsen, S. Classification of model transformation approaches.
OOPSLA2003 Workshop on Generative Techniques in the Context of MDA,
Anaheim, CA, USA, 2003

[7] Didonet Del Fabro, M, Bézivin, J, Jouault, F, and Valduriez, P. Applying Generic
Model Management to Data Mapping. To appear in the Proceedings of the
Journées Bases de Données Avancées (BDA05), 2005

[8] Eclipse Foundation, Generative Model Transformer Project,
http://www.eclipse.org/gmt/

[9] Kalnins, A., Barzdins, J., Celms, E. Model transformation language MOLA. In U.
Asmann (Ed.), Proceedings of Model Driven Architecture: Foundations and
Applications 2004. Linkoping, Sweden, 2004

[10] Netbeans Meta Data Repository (MDR). http://mdr.netbeans.org

[11] OMG. Meta Object Facility (MOF) Specification, version 1.4, OMG Document
formal/2002-04-03

[12] OMG. Object Constraint Language (OCL). OMG Document ptc/03-10-14

[13] OMG. MOF 2.0 Query/Views/Transformations RFP. OMG document ad/2002-
04-10, 2002

[14] Varró, D., Varró, G., Pataricza, A. Designing the automatic transformation of
visual languages. Journal of Science of Computer Programming, vol. 44, pp. 205-
227, Elsevier, 2002

[15] Willink, E. UMLX: A graphical transformation language for MDA. In A.
Rensink (Ed.), Model Driven Architecture: Foundations and Applications 2003,
CTIT Technical Report TR-CTIT-03-27, University of Twente, the Netherlands,
2003

