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Abstract. This paper presents ATL (ATLAS Transformation Language): a 
hybrid model transformation language that allows both declarative and 
imperative constructs to be used in transformation definitions. The paper 
describes the language syntax by using examples. Language semantics is 
described in pseudo-code and various optimizations of transformation 
executions are discussed. ATL is supported by a set of development tools such 
as an editor, a compiler, a virtual machine, and a debugger. A case study shows 
the applicability of the language constructs. Alternative ways for implementing 
the case study are outlined. ATL language features are classified according to a 
model that captures the commonalities and variabilities of the model 
transformations domain.  

1 Introduction 

Model transformations play an important role in Model Driven Engineering (MDE) 
approach. It is expected that writing model transformation definitions will become a 
common task in software development. Software engineers should be supported in 
performing this task by mature tools and techniques in the same way as they are 
supported now by IDEs, compilers, and debuggers in their everyday work. 

One direction for providing such a support is to develop domain-specific languages 
designed to solve common model transformation tasks. Indeed, this is the approach 
that has been taken recently by the research community and software industry. As a 
result a number of transformation languages have been proposed. We observe that, 
even though the problem domain of these languages is fixed, they still differ in the 
employed programming paradigm. Current model transformation languages usually 
expose a synthesis of paradigms already developed for programming languages 
(declarative, functional, object-oriented, imperative, etc.). It is not clear if a single 
approach will prevail in the future. A deeper understanding and more experience 
based on real and non-trivial problems is still necessary. We believe that different 
approaches are suitable for different types of tasks. One class of problems may be 
easily solved by a declarative language, while another class is more amenable to an 
imperative approach. 

In this paper we describe a transformation language and present how different 
programming styles allowed by this language may be applied to solve different types 

                                                           
1 Work partially supported by ModelWare, IST European project 511731. 



of problems. The language is named ATL (ATLAS Transformation Language) and is 
developed as a part of the AMMA (ATLAS Model Management Architecture) 
platform [3]. ATL is a hybrid language, i.e. it is a mix of declarative and imperative 
constructs.   

We present the syntax and semantics of ATL by using a case study. Whenever 
necessary a more formal description is provided. For some aspects of the case study 
several solutions are discussed. This helps in identifying patterns and potential 
obstacles in defining ATL transformations. Based on this knowledge a software 
developer is aware of various possibilities for solving problems and their trade offs. 

The paper is organized as follows. Section 2 gives an overview of the framework 
in which ATL is used. Section 3 presents the language constructs on the base of 
examples. Section 4 presents a case study that shows the applicability of ATL. 
Section 5 describes the tool support available for ATL: the ATL virtual machine, the 
ATL compiler, the IDE based on Eclipse, and the debugger. Section 6 presents an 
evaluation of ATL. Section 7 presents a brief comparison with other approaches for 
model transformations and outlines directions for future work. Section 8 gives 
conclusions. 

2 General Overview of the ATL Transformation Approach 

ATL is applied in a transformational pattern shown in Figure 1. In this pattern a 
source model Ma is transformed into a target model Mb. The transformation is driven 
by a transformation definition (or a transformation program) mma2mmb.atl written in 
the ATL language. The transformation definition is a model. The source and target 
models and the transformation definition conform to their metamodels MMa, MMb, 
and ATL respectively. The metamodels conform to the MOF metametamodel. 

 
Figure 1 Overview of ATL transformational approach 
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ATL is a hybrid transformation language. It contains a mixture of declarative and 
imperative constructs. We encourage a declarative style of specifying transformations. 
However, it is sometimes difficult to provide a complete declarative solution for a 
given transformational problem. In that case developers may resort to the imperative 
features of the language. 

ATL transformations are unidirectional, operating on read-only source models and 
producing a write-only target model. During the execution of a transformation the 
source model may be navigated but changes are not allowed. Target model cannot be 
navigated. A bidirectional transformation is implemented as a couple of 
transformations: one for each direction.  

3 Presentation of ATL 

In this section we present the features of ATL language. The syntax of the language is 
presented based on examples (sections 3.1-3.4). Then in section 3.5 we describe the 
execution semantics of ATL. 

3.1 Overall Structure of Transformation Definition 

Transformation definitions in ATL form modules. A module contains a mandatory 
header section, import section, and a number of helpers and transformation rules. 

Header section gives the name of a transformation module and declares the source 
and target models. Below we give an example header section that will be used in the 
transformation definition for our case study. 

 
module SimpleClass2SimpleRDBMS; 
create OUT : SimpleRDBMS from IN : SimpleClass; 

 
The header section starts with the keyword module followed by the name of the 

module. Then the source and target models are declared as variables typed by their 
metamodels. The keyword create indicates the target model. The keyword from 
indicates the source models. In our example the target model bound to the variable 
OUT is created from the source model IN. The source and target models conform to 
the metamodels SimpleClass and SimpleRDBMS respectively. In general more than 
one source and target models may be enumerated in the header section. 

Helpers and transformation rules are the constructs used to specify the 
transformation functionality. They are explained in the next two sections. 

3.2 Helpers 

The term helper comes from the OCL specification ([12], section 7.4.4, p11), which 
defines two kinds of helpers: operation and attribute helpers. 

In ATL, a helper can only be specified on an OCL type or a source type (coming 
from a source metamodel) since target models are not navigable. Operation helpers 



can be used to specify operations in the context of a model element or in the context 
of a module. The main purpose of operation helpers is to perform navigation over the 
source models. Operation helpers can have input parameters and can use recursion. 
Operation helpers defined in the context of model elements allow polymorphic calls. 
Since navigation is only allowed on read-only source models, an operation always 
returns the same value for a given context and set of arguments.  

Attribute helpers are used to associate read-only named values to source model 
elements. Similarly to operation helpers they have a name, a context, and a type. The 
difference is that they cannot have input parameters. Their values are specified by an 
OCL expression. Like operation helpers, attribute helpers can be recursively defined 
with the same constraints about termination and cycles. 

Attribute helpers are almost like derived features of MOF 1.4 [11] or Ecore [5] but 
can be associated to a transformation and are not always attached to a metamodel. 
Whereas in EMF [5] and MDR [10] they are implemented in Java, in ATL they can 
be specified using OCL. 

Attribute helpers can be considered as a means to decorate source models before 
transformation execution. A decoration of a model element may depend on the 
decoration of others. To illustrate the syntax of attribute helpers we consider an 
example. 

 
1.  helper context SimpleClass!Class def : 
2.    allAttributes : Sequence(SimpleClass!Attribute) = 
3.   self.attrs->union( 
4.  if not self.parent.oclIsUndefined() then 
5.   self.parent.allAttributes->select(attr | 
6.    not self.attrs->exists(at | at.name = attr.name) 
7.   ) 
8.  else Sequence {}  
9.  endif 
10.   )->flatten(); 

 
The attribute helper allAtributes is used to determine the set of all the attributes of 

a given class including the defined and the inherited attributes. It is associated to 
classes in the source model (indicated by the keyword context and the reference to the 
type in the source metamodel SimpleClass!Class) and its values are sequences of 
attributes (line 2). The OCL expression used to calculate value of the helper is given 
after the ‘=’ symbol (lines 3-10). 

This is an example of a recursive helper that uses the value of the same helper 
associated to the parent of current context class (line 5). If the context class does not 
have a parent then an empty sequence is used (line 8). This is the terminating case for 
the recursion. 

Attribute helpers can also be used to establish links between source models: the 
type of an attribute helper can be a class in a metamodel different from its context 
metamodel. This corresponds to a basic form of model composition. 



 
 

3.3 Transformation Rules 

Transformation rule is the basic construct in ATL used to express the transformation 
logic. ATL rules may be specified either in a declarative style or in an imperative 
style. In this section we focus on declarative rules. Section 3.4 describes the 
imperative features of ATL. 

Matched Rules 
Declarative ATL rules are called matched rules. A matched rule is composed of a 
source pattern and of a target pattern. 

Rule source pattern specifies a set of source types (coming from source 
metamodels and the set of collection types available in OCL) and a guard (as a 
Boolean expression in OCL). A source pattern is evaluated to a set of matches in 
source models. 

The target pattern is composed of a set of elements. Each of these elements 
specifies a target type (from the target metamodel) and a set of bindings. A binding 
refers to a feature of the type (i.e. an attribute, a reference or association end) and 
specifies an expression whose value is used to initialize the feature. 

The following snippet shows a simple matched rule in ATL. 
 

1. rule PersistentClass2Table{ 
2. from 
3.  c : SimpleClass!Class ( 
4.   c.is_persistent and c.parent.oclIsUndefined()  
5.  ) 
6. to 
7.  t : SimpleRDBMS!Table ( 
8.       name <- c.name 
9.  ) 
10.} 

 
The rule name PersistentClass2Table is given after the keyword rule (line 1). The 

rule source pattern specifies one variable of type Class (line 3). The guard (line 4) 
specifies that only persistent classes without superclasses will be matched. 

The target pattern contains one element of type Table (lines 7-9). This element has 
one binding (line 8) that specifies an expression used to initialize the attribute name of 
the table. The symbol ‘<-‘ is used to delimit the feature to be initialized (left-hand 
side) from the initialization expression (right-hand side).  

Execution Semantics of Matched Rules 
Matched rules are executed over matches of their source pattern. Rule ordering is 
concerned with triggering of rules. This mechanism is described further in this 
section. Here we focus on the execution of a single rule over a single match. 

For a given match the target elements of the specified types are created in the 
target model and are initialized using the bindings. Executing a rule on a match 
additionally creates a traceability link in the internal structures of the transformation 
engine. This link relates three components: the rule, the match (i.e. source elements) 



and the newly created target elements. Traceability links may be considered as a 
model and serialized by an ATL engine as an additional product of the execution. 

Actual feature initialization uses a specific value resolution algorithm, called ATL 
resolve algorithm. After the expression of a binding has been evaluated, the resulting 
value is first resolved before being assigned to the corresponding target feature. 
Resolution depends on the type of the value. If the type is primitive, then the value is 
simply assigned to the corresponding feature. If its type is a metamodel type there are 
two possibilities: 

• when the value is a target element it is simply assigned to the feature; 
• when the value is a source element it is first resolved into a target 

element using traceability links. The resolution results in an element from 
the target model, which is assigned to the feature. This algorithm uses 
traceability links to identify the target elements created from a given 
source element as a result of application of a transformation rule. 

Thanks to this algorithm, target elements can be effectively linked together using 
source model navigation only. Finding the appropriate target elements is left to ATL 
execution engine. 

Kinds of Matched Rules 
There are several kinds of matched rules differing in the way how they are triggered. 

• Standard rules are applied once for every match that can be found in 
source models; 

• Lazy rules are triggered by other rules. They are applied on a match as 
many times as it is referred to by other rules. This means that a lazy rule 
may be applied multiple times on a single match, each time producing a 
new set of target elements; 

• Unique lazy rules are also triggered by other rules. They are applied only 
once for a given match. If a unique lazy rule is triggered later on the same 
match the already created target elements are used. 

Examples of standard and unique lazy rules are given in the case study. The ATL 
resolution algorithm describe above takes care of triggering lazy and unique lazy rules 
when a source element is referred to within an initialization expression. 

Rule Inheritance 
In ATL rule inheritance can be used as a code reuse mechanism and also as a 
mechanism for specifying polymorphic rules. 

A rule (called subrule) may inherit from another rule (parent rule). A subrule 
matches a subset of what its parent rule matches. This implies a number of constraints 
on source patterns of subrules, which can be summarized in: “a subrule cannot change 
source pattern structure”. Source pattern types of the subrule must thus be either left 
unchanged or replaced by subtypes of those used in its parent. A subrule guard filters 
out elements that already match its parent guard. The actual guard of the subrule is the 
conjunction of both guards. 

A subrule target pattern extends its parent target pattern using any combination of 
the following: by subtyping target types, by adding bindings, by replacing bindings, 
and by adding new target elements. Note that a binding cannot be simply extended, it 



 
 

must be fully replaced. However, if the expression of a parent binding needs to be 
reused then it may be referred to using super keyword. 

3.4 Imperative Features of ATL 

The declarative style of transformation specification has a number of advantages. It is 
usually based on specifying relations between source and target patterns and thus 
tends to be closer to the way how the developers intuitively perceive a transformation. 
This style stresses on encoding these relations and hides the details related to selection 
of source elements, rule triggering and ordering, dealing with traceability, etc. 
Therefore, it can hide model transformation specific complex algorithms behind a 
simple syntax. 

However, in some cases, other complex source-domain or target-domain specific 
algorithms may be required (e.g. matrix diagonalization) and it may be difficult to 
specify a pure declarative solution for them. There are several possible approaches to 
this issue: 

• allow native operation calls. This solution has the drawback that it 
moves the control flow out of the transformation language semantics; 

• offer an imperative part in the transformation language. In that way the 
control flow remains in the transformation language semantics but the 
developer must encode this control flow explicitly. There are potential 
problems with efficiency and optimization of such transformation 
specifications. Nonetheless, the developer can perform manual 
optimizations, even when an optimizing engine is not available; 

• extract data that needs processing from the models to a domain-specific 
tool and then inject the result as models. A drawback of this approach is 
that it requires a heavyweight mechanism, but it offers large flexibility in 
the processing. 

The third option is available in ATL since it is not a matter of model 
transformation. The first two options have one common drawback: what is executed 
out of the reach of the execution engine (either totally, from native code or partially, 
by imperative constructs) restricts declarative advantages. They seem, however, 
necessary as using them requires less work than using the third one. ATL therefore 
has an imperative part, based on two main constructs: 

• called rules. A called rule is basically a procedure: it is invoked by its 
name and may take arguments. Its implementation can be native or 
specified in ATL (e.g. as a target pattern without source pattern since no 
match is needed). 

• action block. An action block is a sequence of imperative statements and 
can be used instead of or in a combination with a target pattern in matched 
or called rules. The imperative statements available in ATL are the well 
known constructs for specifying control flow such as conditions, loops, 
assignments, etc. We do not give their syntax in this paper. 

If either a called rule or an action block is used in an ATL program, this program is 
no longer fully declarative.  



3.5 Execution of Transformation Definitions 

In this section we discuss various aspects related to execution of ATL transformation 
definitions. First we present a pseudo code algorithm for execution of 
transformations. Then we discuss some optimization issues and provide information 
about the termination and determinism of ATL transformations. 

Algorithm for Executing ATL Transformations 
The following algorithm presents the basics of the procedural semantics of ATL 
language. This algorithm is used by the ATL transformation engine. We assume that 
transformation definitions can contain both matched and called rules. The algorithm 
presents only the execution of rules. Handling of helpers is not included. Moreover, 
ATL resolve algorithm was already described in section 3.3 and is not detailed here. 

execute called rule marked as entrypoint 
-- This results in a traditional imperative control flow. 
 
-- Match standard matched rules: 
ForEach standard rule R { 
 ForEach candidate pattern C of R { 

-- a candidate pattern is a set of elements matching the  
-- types of the source pattern of a rule 

   
evaluate the guard of R on C 

  If guard is true Then  
   create target elements in target pattern of R 
   create TraceLink for R, C, and target elements 
  Else 
   discard C 
  EndIf 
 } 
} 
 
-- Apply standard matched rules: 
ForEach TraceLink T { 
 R = the rule associated to T 
 C = the matched source pattern of T 
 P = the created target pattern of T 
 
 -- Initialize elements in the target pattern: 
 ForEach target element E of P { 
  -- Initialize each feature of E: 
  ForEach binding B declared for E { 
   expression =  initialization expression of B 
   value = evaluate expression in the context of C 
   featureValue = resolve value 
   set featureValue to corresponding feature of B 
  } 
 } 
 execute action block of R in the context of C and T 
 -- Imperative blocks can perform any navigation in C or T and 

-- any action on T. It is the programmer's responsibility 
-- to perform only valid operations. 

} 
 
execute called rule marked as endpoint 
-- We have again an imperative control flow. 



 
 

This algorithm starts with the execution of an optional called rule marked as entry 
point. This rule, in turn, may invoke other called rules. Then the algorithm proceeds 
with the execution of the standard matched rules in the transformation program (some 
of them may contain an action block). Note that rule matching and application are 
separated. This is not absolutely necessary. However, it is simpler to describe and 
implement a two stage algorithm because every TraceLink is available after the first 
stage. Therefore it is easy to resolve the required target elements in the second stage. 
Target elements could, however, be initialized as they are created. This would make 
the resolving algorithm more complex since some initializations may be delayed until 
the end of the transformation. 

The presented algorithm does not suppose any order in rule matching, target 
elements creation for a match, target elements initialization for a TraceLink, and 
feature initialization of a target element. Action block (if present) must, however, be 
executed after having applied the declarative part of the rule. This eases the 
programmer’s task since the target pattern is in a somewhat foreseeable state 
(imperative action blocks should only be used when declarative constructs are not 
enough). 

In fact, order constraints can be made even less restrictive. For instance, all target 
element features can really be initialized in any order while the given algorithm 
enforces that all features of a given target element are initialized in block and that all 
target elements of a TraceLink are initialized in block. This is not absolutely 
necessary. 

Some Possible Optimizations 
The execution algorithm described in this paper is roughly what is implemented in the 
current ATL engine (compiler and virtual machine) although the imperative parts of 
the language are not fully supported yet. An engine may, however, use the flexibility 
of execution order constraints to perform some optimizations. For instance, a single 
iteration could be performed for source patterns with the same structure but with 
different guards. 

Moreover, not all candidate patterns may need to be tested if some can be rejected 
by statically analyzing the guard. Consider a source model where elements of type A 
may contain elements of type B and a rule takes as source pattern every pair (a : A, b : 
B) with the constraints that a contains b (i.e. a.bs->includes(b) in OCL). 
Construction of the candidate patterns would look like the following code with two 
nested loops:  

for every a of type A { 
 for every b of type B { 
  evaluate the guard 
  do something 
 } 
} 
If the guard is analyzed the code may be optimized in the following: 
for every a of type A { 
 for every b of type B contained in A { 
  do something 
 } 
} 
Bs not contained in a are not tested. 



Lazy rules can also be used for optimization. One of the expensive operations in 
model transformations is the pattern matching of the rule source patterns. Instead of 
specifying complex patterns and guards the software engineer may locate the required 
source elements using helpers or using the context of matched rules. Then these 
elements may be transformed by unique lazy rules. In that way elements are only 
transformed if they are referred to by a transformed element. Obviously this is a user-
specified optimization rather than engine-inferred. 

Calls to helpers may also be optimized. As we saw in section 3.2, operation and 
attribute helpers are side-effect free and operate on read-only models. Their result 
values can therefore be cached instead of computed each time they are required. 
Besides, although attribute helpers may be initialized in a pass performed before 
running the rest of the transformation, they may also be lazily evaluated when the 
helper value is read for the first time. Both alternatives produce equivalent results. 
However, the performance is different. Lazy evaluation leads to a better performance 
since only a subset of the attribute helpers values may be actually used during the 
execution. 

Deterministic Execution and Termination 
As long as lazy rules and called rules are not used, the execution algorithm terminates 
and is deterministic. Although the order of execution of rules is non-deterministic, 
different execution orders produce the same result for a given source model. As a 
matter of fact, source models are read-only: the execution of a rule cannot change the 
set of matches. In addition, target models are write-only: the initialization of a target 
element cannot impact the initialization of another. However, it is possible to have 
recursive helpers that do not terminate. In this case the transformation does not 
terminate either. 

The problem with called rules is that within them we use a standard imperative 
language that cannot be proved to always terminate. 

As for lazy rules, the problem is that recursive references can be written. For 
instance: 

 
1.  lazy rule R1 { 
2.     from 
3.        s : Element 
4. to 
5.      t : Element ( 
6.  value <- [R2.t]s 
7. ) 
8.  } 
9. 
10. lazy rule R2 { 
11. from 
12.      s : Element 
13.      to 
14.      t : Element ( 
15.  value <- [R1.t]s 
16. ) 
17.  } 

 



 
 

In this example there are two lazy rules R1 and R2 that refer to each other (lines 6 
and 15). In that way it is possible to form infinite recursion. 

Lines 6 and 15 also illustrate one explicit way for triggering a lazy rule. The rule 
name and the identifier of the required target element are separated by ‘.’ and 
surrounded by square brackets followed by the source element on which the rule will 
operate. 

4 Case Study: Transforming Class to Relational Models 

In this section we present the solution written in ATL to the case study given in the 
call for papers of the workshop.  

4.1 Source and Target Metamodels 

In order to improve the clarity of the presentation we briefly repeat the case study 
already given in the call for papers. The case study requires transformation of simple 
class models to relational models. The class models conform to the source metamodel 
in Figure 2. 

name : String
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is_persistent : Boolean
Class

name : String
Association

PrimitiveDataType

name : String
is_primary : Boolean
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Figure 2 Source class metamodel 

According to this metamodel classes have names and a number of attributes. 
Classes may be declared as persistent (attribute is_persistent). The type of an attribute 
is a classifier: either a primitive data type or a class. Attributes may be defined as 
primary (attribute is_primary). Classes may be related via associations. An additional 
constraint is imposed that every class have at least one attribute and at least one 
primary attribute (they may be inherited). 

Relational models conform to the metamodel in Figure 3. Every model contains a 
number of tables. Each table has a number of columns, some of them are primary. A 
table may be associated to zero or more foreign keys. Each foreign key refers to a 
table and is associated with a number of columns that constitute the key. 
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Figure 3 Target relational metamodel 

Transformation rules are summarized below: 
• Persistent classes that are roots of an inheritance hierarchy are transformed to 

tables; 
• Table columns are derived from the attributes and associations of a class; 
• Every attribute of a primitive type is transformed to a single column. If the 

attribute is primary it results to a primary column in the table; 
• For every persistent root class a set of attributes and associations is derived by 

flattening the inheritance hierarchy. These attributes and associations are used 
to derive the columns of the result table; 

• Attributes whose type is a non-persistent class and associations that point to 
such a class are transformed to a set of columns derived from the class. This 
rule is applied recursively until a set of primitive attributes is obtained. We 
assume that circularity in references to classes is not allowed. A class inherits 
the attributes and associations of its parent; 

• Attributes whose type is a persistent class and associations that point to such a 
class are transformed to a foreign key and a set of columns contained by the 
key. The foreign key refers to the table derived from the persistent class. The 
columns are derived from the primary attributes of the persistent class. We 
assume that the same rule is also applied for the non-persistent classes whose 
top-most parent is a persistent class. We assume that the instances of these 
classes are kept in the table created from the root of the hierarchy. This is 
motivated by the flattening of the inheritance hierarchies1. 

We assume that primary attributes are always of primitive data types. 

4.2 Transformation Specification SimpleClass2SimpleRDBMS 

The following code presents the complete transformation program for the case study. 
It is written by using only the declarative features of ATL. In this section we explain 
the overall logic of the program. 
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the assumption we make does not simplify the transformation definition and does not remove 
any significant technical aspect from the transformation. 



 
 

 
1.  module SimpleClass2SimpleRDBMS; 
2.  create OUT : SimpleRDBMS from IN : SimpleClass; 
 
3.  helper context SimpleClass!Class def : 
4. allAttributes : Sequence(SimpleClass!Attribute) = 

 
5. self.attrs->union( 
6.  if not self.parent.oclIsUndefined() then 
7.   self.parent.allAttributes->select(attr | 
8.    not self.attrs->exists(at | at.name = attr.name) 
9.   ) 
10.  else Sequence {}  
11.  endif 
12. )->flatten(); 
 
13. helper context SimpleClass!Class def : 
14. allAssociations : Sequence(SimpleClass!Association) = 

 
15. let defAssoc : SimpleClass!Association =  
16.  SimpleClass!Association.allInstances()->select(assoc | 
17.   assoc.src = self) in 
18.    defAssoc->union( 
19.  if not self.parent.oclIsUndefined() then  
20.     self.parent.allAssociations 
21.  else Sequence {}  
22.         endif 
23. )->flatten(); 
 
24. helper context SimpleClass!Class def : 
25. topParent : SimpleClass!Class = 

 
26. if self.parent.oclIsUndefined() then  
27.  self  
28. else 
29.  self.parent.topParent 
30. endif; 
 
31. helper context SimpleClass!Class def : 
32. attributesOfSubclasses : Sequence(SimpleClass!Attribute) = 
  
33. let attrsInSubclasses : Sequence(SimpleClass!Attribute) = 
34.  SimpleClass!Class.allInstances()->select(c | 
35.   c.parent=self 
36.  )->collect(subclass | 
37.   subclass.attributesOfSubclasses 
38.  )->flatten() in 
39. attrsInSubclasses->union( 
40.  self.attrs->select(attr |  
41.   not attrsInSubclasses->exists(a | 
42.    a.name = attr.name) 
43. ))->flatten(); 
 
44. helper context SimpleClass!Class def : 
45. associationsOfSubclasses : Sequence(SimpleClass!Association) = 
46. 
47. SimpleClass!Association.allInstances()->select(assoc | 
48.   assoc.src = self)->union( 
49.      SimpleClass!Class.allInstances()->select(c | 
50.       c.parent = self)->collect(subclass | 



51.      subclass.associationsOfSubclasses)->flatten() 
52. )->flatten(); 
     
53. helper context SimpleClass!Class def : 
54. flattenedFeatures : Sequence(TupleType( 
55.   trace : Sequence(OclAny), 
56.                   isPrimary : Boolean, 
57.                   isForeignKey : Boolean, 
58.                   ForeignKeyColumns : Sequence(Sequence(OclAny)))) = 
 
59.  if self.topParent.is_persistent then 
60.  self.topParent.attributesOfSubclasses->union( 
61.   self.topParent.associationsOfSubclasses) 
62. else 
63.  self.allAttributes->union(self.allAssociations) 
64. endif->collect(f |  
65.  let feature : TupleType(type : SimpleClass!Classifier, 
66.       isPrimary : Boolean) =  
67.  if f.oclIsKindOf(SimpleClass!Attribute) then 
68.   Tuple{type = f.type, isPrimary = f.is_primary} 
69.   else 
70.   Tuple{type = f.dest, isPrimary = false}   
71.   endif in 
72. if feature.type.oclIsKindOf(SimpleClass!PrimitiveDataType) then 
73.  Tuple {trace = Sequence {f}, 
74.   isPrimary = feature.isPrimary, 
75.   isForeignKey = false, 
76.   ForeignKeyColumns = OclUndefined 
77.            } 
78. else if not feature.type.topParent.is_persistent then    
79.  feature.type.flattenedFeatures->collect (t | 
80.   Tuple {trace = t.trace->prepend(f),  
81.    isPrimary = t.isPrimary, 
82.    isForeignKey = t.isForeignKey, 
83.    ForeignKeyColumns = t.ForeignKeyColumns 
84.   } 
85.  ) 
86. else let primaryFeatures : Sequence(OclAny) = 
87.  feature.type.topParent.flattenedFeatures->select(t |  
88.   t.isPrimary)->collect(pt | 
89.    Tuple{trace = pt->prepend(f), 
90.          isPrimary = pt.isPrimary, 
91.          isForeignKey = false, 
92.          ForeignKeyColumns = OclUndefined 
93.    } 
94.   ) in 
95.  primaryFeatures.prepend(Tuple{ 
96.     trace = Sequence {f}, 
97.     isPrimary = false, 
98.     isForeignKey = true, 
99.     ForeignKeyColumns = primaryFeatures 
100.    }) 
101. endif endif 
102. )->flatten(); 
 
103. rule PersistentClass2Table{ 
104. from 
105.  c : SimpleClass!Class ( 
106.   c.is_persistent and c.parent.oclIsUndefined()  
107.  ) 



 
 

108. to 
109.  t : SimpleRDBMS!Table ( 
110.       name <- c.name, 
111.       cols <- c.flattenedFeatures->select(f | 
112.     not f.isForeignKey 
113.     )->collect(ft | ft.trace), 
114.       pkey <- c.flattenedFeatures->select(f | 
115.    f.isPrimary)->collect(ft | ft.trace), 
116.   fkeys <- c.flattenedFeatures->select(f |  
117.      f.isForeignKey) 
118.  ) 
119. } 
 
120. unique lazy rule Feature2Column { 
121. from 
122.  trace : Sequence(OclAny) 
123. to 
124.  col : SimpleRDBMS!Column ( 
125.   name <- trace->iterate(e; acc : String = '' | 
126.     acc + if acc = '' 
127.     then '' 
128.     else '_' endif + f.name), 
129.   type <- trace->last().type 
130.  ) 
131. } 
 
132. unique lazy rule PersistentFeature2ForeignKey { 
133. from 
134.  feature : TupleType( 
135.      trace : Sequence(OclAny), 
136.                     isPrimary : Boolean, 
137.                     isForeignKey : Boolean, 
138.                     ForeignKeyColumns : Sequence(Sequence(OclAny))) 
139. using { 
140.  last : OclAny = feature.trace->last(); 
141.  referencedClass : SimpleClass!Class = 
142.   if last.oclIsKindOf(SimpleClass!Attribute) then 
143.    last.type.topParent 
144.   else 
145.    last.dest.topParent 
146.   endif; 
147. } 
148. to 
149.  fkey : SimpleRDBMS!FKey ( 
150.   references <- referencedClass, 
151.   cols <- feature.ForeignKeyColumns  
152.  )        
153. }          
 

The transformation specification may be split into two logical parts. The first part 
performs decoration of the source model and the second part contains the actual 
transformation rules. Since the transformation specification is declarative there is no 
explicit execution order among these parts. 

The decoration part consists of a set of attribute helpers (lines 3-102). They are 
additional attributes of source model elements assigned during the transformation. 
Attribute helpers are used for the following tasks: 



• To determine the attributes and associations for every class including 
those inherited by the superclass. This is achieved by allAttributes (lines 
3-12) and allAssociations (lines 13-23) attribute helpers; 

• To determine the top-most parent of a given class (topParent attribute 
helper, lines 24-30). This helper is used when an attribute/association has 
as a type a non-persistent class whose top-level parent class is persistent; 

• To flatten inheritance hierarchies with root a persistent class. In this case 
all the attributes and associations of the direct and indirect children 
classes are united and associated with the root persistent lass. Attribute 
helpers attributesOfSublasses (lines 31-43) and associationsOfSubclasses 
(lines 44-52) are used to perform this flattening; 

• To flatten the features (either attributes or outgoing associations) of 
classes by performing the drill-down algorithm for handling the attributes 
of non-primitive types. This is done by flattenedFeatures (lines 53-102) 
attribute helper; 

 
The last helper is the most complex. We will explain it in bigger details. 
We treat attributes and outgoing associations of a class in a uniform way by 

referring to them as features1. For every feature we apply the rules for deriving table 
columns. If the feature is of primitive type a single column will be created. If the 
feature is of a non-persistent class then it results in a set of primitive features with 
recursive accumulation of names. If the feature is of persistent class (or the top parent 
is a persistent class) then we obtain the primary features of this class. 

The purpose of the helper is to associate a set of primitive features to every class 
from which columns are directly derived. Since some of these features are result of a 
flattening they are in fact a sequence of features derived according to the drill-down 
algorithm. We call such a sequence trace. Therefore, we associate a set of traces to 
every class and create a column from every trace of a persistent class. The names of 
the columns are formed as a concatenation of the names of the features in the traces. 
To illustrate better the idea we give an example shown in Figure 4. The example 
shows a simple source model where classes are decorated with traces. 

In Figure 4 traces are shown next to each class. Classes that inherit from a 
persistent class do not generate traces (Student and Employee). Primary features are 
underlined. 

«primary» name : String
address : Address

«persistent»
Person

number : String
Student Employee

city : String
street : String

Address

«primary» name : String

«persistent»
Organization

works_for

located_at

(city)
(street)

(located_at, city)
(located_at, street)

(name)

(address, city)
(address, street)

(name)
(number)

(works_for, name)

 
Figure 4 An example source model decorated with traces 

                                                           
1 Unfortunately the source metamodel does not contain a common parent class for Attribute 

and Association. 



 
 

The idea behind flattenedFeatures helper is to generate traces of features plus some 
additional information about the traces. The structure that holds this information is a 
tuple type with the following fields (lines 55-58): 

• trace – contains the trace as a sequence of features; 
• isPrimary – indicates if the trace generates a primary column; 
• isForeignKey – indicates if the trace ends with a feature of a persistent 

type; 
• ForeignKeyColumns – if the field isForeignKey is true then this field 

contains a sequence of traces that will be used to produce the columns of 
the foreign key. These traces are copies of the primary column traces of 
the persistent class for which the foreign key is generated; 

 
Figure 4 shows only traces. The entire structure explained above is not shown for 

simplicity. 
The logic in flattenedFeatures helper is to start with an initial list of features for a 

class and to build a sequence of tuples conforming to the described structure by 
applying flattening recursively. If the class is a persistent class then the initial list of 
features is the union of the values of attributesOfSublasses and 
associationsOfSubclasses attribute helpers (lines 59-61). If the class is a non-
persistent class that does not inherit from a persistent class then the initial list is the 
union of values of allAttributes and allAssociations attribute helpers (line 63). 

 
Transformation rules use the result of the decoration part to create the elements in 

the target model. The main work related to flattening is done by the helpers. 
Rule PersistentClass2Table transforms persistent root classes to tables. The 

interesting part of this rule is the initialization of the features of the created tables.  
The code in lines 111-113 initializes the cols slot of the table. The value of this slot 

is a collection of all the columns of the table. Columns are created from traces that do 
not represent foreign keys (this is encoded in the selection criteria in line 112). The 
value of the initialization expression is a sequence of traces, that is, a sequence of 
sequences of source model elements. Therefore this value must be resolved according 
to the ATL resolution algorithm. The resolution requires finding a rule that transforms 
the value of the expression into target model elements. Thus, in this feature 
initialization we have an implicit invocation of a transformation rule. The only 
suitable rule is Feature2Column unique lazy rule. This rule transforms traces to 
columns. It is triggered on demand. In our example it will be executed on every trace 
in the sequence generated by the initialization expression. 

Furthermore the slot pkey contains all the primary columns of the table. Primary 
columns are a subset of the set of all the columns of the table. Primary columns are 
also generated by the rule Feature2Column. Similarly to the previous slot, in lines 
114 and 115 we have an implicit invocation of Feature2Column rule. In other words 
the same rule may be triggered multiple times over the same source. This is a unique 
rule and this guarantees that invocations after the first time will return the same result. 
If the rule was not unique two different copies of the primary columns would be 
created. 

Foreign keys are created by the PersistentFeature2ForeignKey unique lazy rule. It 
is implicitly triggered in line 116. 



4.3 Discussion 

The presented solution is just one among several potential solutions for the case 
study. In this section we discuss some implementation alternatives. 

First of all, this solution relies on features of ATL that are not implemented yet in 
the current compiler. Current compiler does not fully support lazy rules and rules with 
multiple source elements and source elements that are of OCL types (e.g. sequences). 
The reason for giving this solution is to illustrate the full set of declarative constructs 
that will be available in ATL. We implemented a second solution that runs on the 
current version of the ATL virtual machine and may be compiled with the current 
ATL compiler. This solution will be made available on the Eclipse GMT project [8]. 
It shows that even with the current incomplete version, ATL is capable to handle 
completely the required case study. 

A significant part of the presented transformation definition is implemented as 
attributes helpers. The values of attribute helpers may be cached thus increasing the 
performance (see sections 3.5 and 5.2). The current version of ATL engine allows 
enabling and disabling the caching mechanism. We performed a measure of 
performance increase resulting from caching attribute helper results on a version of 
the case study working on the current ATL engine. 40853 bytecodes were executed 
with cache disabled and 15543 with cache enabled. This corresponds to a 2.6 decrease 
of the number of executed bytecodes. Although this optimization is rather simple, it 
should be noted that no change has to be done by the developer in the program: cache 
needs just to be activated. 

Furthermore the functionality of the helpers may be implemented in transformation 
rules. This would lead to recursive rules. It is not always easy to judge which 
functionality to be implemented as helpers and which one as transformation rules. In 
our case, the flattening functionality was related to the decoration of the source model 
and required only navigation over the source model. We decided to implement all the 
navigation functionality as helpers and to keep the transformation rules free from 
complex navigation expressions. This fits to the basic intention of these constructs: 
rules are used for creating target model elements and helpers are used for source 
model navigation. 

Another dimension of alternatives is using implicit rule invocation (through the 
ATL resolution algorithm) versus explicit rule calls. In our case study we used 
implicit rule invocation. We believe that this leads to more adaptable transformation 
definitions and to loosely coupled rules. However, explicit rule calls may be useful in 
case of ambiguity in determining the applicable transformation rules for a given input. 
When the resolution algorithm tries to resolve the default traceability link and there 
are more than one rule that produces such a default link then a conflict among rules 
arises. 

Finally, the presented solution is implemented in a declarative style. It is possible 
to implement it with the intended imperative features of ATL. However, in this paper 
we focus more on the declarative part of ATL. 



 
 

4.4 Second Case Study: Converting Roman Numbers to Arabic Numbers 

An important part of model transformations is extracting data from strings and 
conversion of strings. In many cases these tasks are not trivial. In this section we 
consider a small example of string conversions: from Roman numbers to Arabic 
numbers. 

The solution for this problem is not a model transformation definition. It is 
implemented as an ATL operation helper and relies on the capabilities of OCL. The 
following code shows the solution to this problem. This helper may be integrated and 
used in a more complex program. 

 
helper context String def:  
 toIntegerFromRoman() : Integer = 
 let rd : Sequence(String) = Sequence {'I', 'V', 'X', 'L', 'C', 
        'D', 'M'} in 

let rv : Sequence(Integer) = Sequence {1, 5, 10, 50,100, 500,  
                           1000} in 
       let r : TupleType(ret : Integer, prev : Integer) = 
 
 self.toSequence()->iterate(e; acc : TupleType(ret : Integer,  
             prev : 
                let val : Integer = rv.at(rd->indexOf(e)) in 
                if acc.prev = -1 then 
                        Tuple {ret = 0, prev = val} 
                else if acc.prev < val then 
                        Tuple {ret = acc.ret - acc.prev, prev = val} 
                else 
                        Tuple {ret = acc.ret + acc.prev, prev = val} 
                endif endif 
        ) in r.ret + r.prev; 

5 ATL Tools 

The practical application of a computer language requires a set of supporting tools: 
compiler/interpreter, development environment, debugger, profiler, etc. In this section 
we present the available ATL tools that include the ATL transformation engine, the 
ATL integrated development environment (IDE) based on Eclipse, and the ATL 
debugger. 

5.1 Requirements for ATL Tools 

There is no unique implementation architecture for the execution semantics described 
in section 3. We can identify some alternatives: 

• interpretation vs. compilation or a combination of both (a la Java); 
• fully sequential vs. partially parallel execution. The flexibility of ordering 

constraints on the execution path makes the parallel execution doable: 
matching rules in parallel, testing the guard of a single rule over several 
candidate patterns in parallel, applying initializations in parallel, etc.; 



Parallelizing the execution is more interesting when the underlying hardware is 
parallel. We chose to implement a sequential approach, because it is easier to 
implement and is sufficient for the present time. Dealing with very large models in the 
future may benefit from parallelizing the execution. Identification of parts in 
transformation programs suitable for parallel execution seems an interesting direction 
for future research. 

The following requirements were formulated for the ATL tools: 
• it should be easy to implement new language features; 
• it should be easy to replace an execution engine with a more efficient one; 
• it should be possible to debug the transformation program and the 

execution engine itself (e.g. a compiler, an interpreter, a virtual machine); 
• the execution engine should be portable to several model handlers (e.g. 

MDR [10], EMF [5], etc.); 
The implemented solution includes an ATL compiler, a virtual machine (VM), an 

IDE, and a debugger. These tools are described in the following two sections. 

5.2 ATL Execution Engine 

The architecture of the ATL execution environment is shown in Figure 5. It contains 
the following components arranged across several layers: 

• ATL Compiler. ATL compiler transforms ATL programs into programs 
written in byte-code;   

• ATL Virtual Machine. ATL VM executes the byte-code generated by the 
compiler. The virtual machine is specialized in handling models and 
provides a set of instructions for model manipulation; 

• Model Handler Abstraction Layer. The virtual machine may run on top of 
various model management systems. To isolate the machine from their 
specifics an intermediate level is introduced called Model Handler 
Abstraction Layer. This layer translates the instructions of the VM for 
model manipulation to the instructions of a specific model handler; 

• Model Handlers. These are components that provide programming 
interface for model manipulation. Some examples are Eclipse Modeling 
Framework (EMF) and MDR; 

• Model Repository. Model repository provides storage facilities for 
models. As Figure 5 shows the simplest form of a model repository is the 
file system that stores models as XML files serialized according to the 
XMI standard; 

Because of this layered architecture we achieve the requirements for flexibility of 
the execution engine. Additions of new language features affect mainly the ATL 
compiler. A more efficient execution requires changes in the implementation of the 
virtual machine and the compiler (some static optimizations may be performed by the 
compiler). Existing programs will run on top of a new VM provided that it conforms 
to the same set of instructions. A specification of ATL VM is provided on the GMT 
website [8]. Thanks to the Model Handler Abstraction Layer the virtual machine is 
relatively easy to port to a new model handler. 



 
 

In section 3.5, we discussed possible optimizations of ATL programs execution. In 
the current implementation of ATL engine, we implemented some of them: attribute 
helpers values are lazily evaluated and their results are cached. For instance, 
considering the attribute helper specified in section 3.2: it may be rewritten as an 
operation helper without parameters. However, this will lead to a worse performance 
with the current ATL engine since the results of operation helpers are not cached. The 
operation helper for a given class will be executed every time when the attributes of a 
direct or indirect subclass are determined. In the implementation based on attribute 
helpers the value is calculated only once and reused afterwards. Additionally, we gave 
actual figures of achieved optimization in section 4.3. 

 
Figure 5 The architecture of the ATL execution engine 

5.3 ATL IDE 

The current ATL IDE is built on top of Eclipse. It includes an editor that provides 
view of the text with syntax highlighting, outline (view of the model corresponding to 
the text), and error reporting. The IDE uses the Eclipse interface to the ATL 
debugger. 

Figure 6 shows a screenshot of the ATL IDE.   
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*The simplest form of a model repository is a file system. 

XMI 2.0 
XMI 1.2 

ATL programs 



 

Figure 6 A screenshot of the ATL development environment 

The figure indicates various components in the IDE: the code editor, error 
indications, the builder, the project view, the outline view, and the variables watch 
used during a debugging session. 

6 Discussion 

In this section we present an evaluation of ATL according to criteria derived from the 
design decisions found in other transformation languages. In addition, we provide an 
overview of the features of the language currently supported by the ATL compiler and 
the features that will be supported in a future release. 

6.1 Classification Categories for Transformation Languages 

Czarnecki and Helsen [6] present a domain analysis of existing model transformation 
approaches. The results of this analysis are summarized in a feature model that 
presents the commonalities and variabilities in the domain. Here we briefly describe 
the main categories of classification and their variation areas. Variations indicate the 
design choices made in existing model transformation approaches. The categories are 
presented in the subsequent sections. 
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Transformation Rules 
Transformation rules are the basic constructs in transformation definitions. They have 
left-hand side and right-hand side, which may or may not be syntactically separated. 
The areas of variation found in transformation rules are: 

• Directionality: rules may be executed in one or two directions; 
• Rule parameterization: rules may receive additional input via parameters; 
• Intermediate structures: some approaches allow intermediate model 

structures; 

Source-Target Relationship 
This classification category captures the relation between source and target models. 
The following variations are found: 

• Source and target models are different; 
• Source and target is the same model: this allows updates in the source model 

(in-place update); 

Rule Application Strategy 
Generally, a rule may match more than one element/tuple in the source model. 
Therefore a strategy for the rule application on the matches is required. Strategies 
may be: 

• Deterministic: an algorithm governs the order of application of rules over 
matches;  

• Non-deterministic: the order of application of rules may be different for 
different executions of the same transformation on the same source model; 

• Interactive: the user specifies the strategy; 

Rule Scheduling 
Rule scheduling mechanism is responsible for the order in which the rules are applied. 
It may vary in four areas: 

• Form: concerns the way the order is expressed. The form may be implicit 
and explicit. Implicit form of scheduling relies on implicit relations among 
the rules. Explicit form of scheduling uses dedicated constructs to control the 
order. Explicit scheduling may be internal and external. Internal scheduling 
uses control flow structures within rules and explicit rule invocation. 
External scheduling uses scheduling logic separated from the transformation 
rules; 

• Rule selection: rule selection may rely on explicit condition on the source 
elements. Since many rules may be applicable on a single source element 
there may be a need of rule conflict resolution (e.g. via rule priority); 

• Rule iteration: iteration may be based on recursion, looping, fixpoint 
iteration, and combination of them; 

• Phasing: a transformation definition is separated into phases usually 
executed sequentially. Each phase uses certain set of rules; 



Rule Organization 
Rule organization concerns relations among transformation rules. Three variation 
areas are related to this category: 

• Modularity mechanisms: these are mechanisms for grouping of rules into 
packaging constructs; 

• Reuse mechanisms: allow rules to reuse existing rules in new rule 
definitions; 

• Organizational structure: rules may be organized according to the source 
language, target language, or in other independent way; 

Traceability Links 
Traceability links record correspondences between source and target elements 
established during transformation execution. Generally, two approaches are followed 
for maintaining traceability links: 

• User-based: the user is responsible to create links as ordinary model 
elements; 

• Dedicated support: transformation language and transformation engine 
provide support for maintaining links. This support may be automatic and 
manual; 

Directionality 
Some languages allow transformation definitions only in one direction: from source to 
target model. These transformations are known as unidirectional transformations. 
Other languages allow definitions that may be executed in both directions. These 
transformations are known as bidirectional transformations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

6.2 Classifying ATL 

This section classifies ATL according to the categories explained in Section 6.1. 
Results are summarized in Table 1. 

 
 
 

Category Classification of ATL 

Structure Syntactically separated left-hand side and right-hand side 
parts with variables and patterns.  

Directionality Unidirectional rules from source to target elements. 
Rule 
parameters Supported in called rules only. 

Transformation 
Rules 

Intermediate 
Structures Supported via attribute helpers and OCL tuples. 

Source-Target Relationship 
Separated source and target models without possibility for 
in-place update. See also the feature Refining mode in the  
next section 6.3 

Deterministic Supported for imperative called rules only. 

Non-
deterministic 

Rule application on all the matches of the rule source 
pattern in a non-deterministic order (see discussion on 
determinism in section 3.5). 

Rule 
Application 

Strategy 
Interactive Not supported. 

Form 
Mix of implicit and explicit form of scheduling. Implicit 
scheduling supported through matched rules. Explicit form 
is supported through invocation of called rules and control 
flow constructs (internal explicit form). 

Rule selection 
Based on a rule source guard. Conflicts among standard 
matched rules are not allowed when they lead to ambiguity 
in resolving the default traceability links. 

Rule iteration Recursion is supported. 

Rule 
Scheduling 

Phasing Possible by applying two distinct transformations in a 
sequence. 

Modularity 
mechanisms Transformation modules and libraries. 

Reuse 
mechanisms Rule inheritance and module inclusion. 

Rule 
Organization 

Organizational 
Structure Source-driven. 

Traceability Links Dedicated automatic support. Storage of links is handled 
by the transformation engine. 

Directionality of transformations Unidirectional (from source model to target model). 

 Table 1. ATL features according to the classification of transformation 
approaches 

 
 



6.3 Currently Supported ATL features 

Table 2 presents a summary of the features of ATL currently supported by the 
compiler and some features that could be implemented as future extensions. Stars 
indicate the supported features. An explanation of some of the features is given in the 
numbered list after the table.  

ATL feature Current version Future extensions 
metamodel types,  
OCL primitive and 
tuple types, 
transformation 
module (i.e. static) 

*  
operations 
and 
attributes in 
the context 
of OCL collection 

types  * 

references (i.e. with opposite) (1)  * 

OCL helpers 

other ways to specify values of 
attribute or reference helper (2)  * 

helpers libraries *  Code reuse 
rule libraries (importable modules)  * 
standard *  
lazy  * 
unique lazy  * 
rule inheritance  * 

Matched 
rules 

multiple source elements  * 
standard *  
with rule inheritance  * 
with lazy rules  * ATL resolve 

algorithm 
more strongly typed explicit 
resolving (3)  * 

Refining mode (4) *(basic) *(improved) 

Traceability internal external 

ATL called rules  * 
native called rules  * 

Imperative 
part 

action blocks  * 

OCL type checking Dynamic Static (following the 
specification) 

Table 2 ATL features summary 

(1) Such reference helpers could be used to optimize source model decoration: 
instead of explicitly linking A to B and B to A, only one direction would have 
to be initialized. For instance, instead of: 

 
helper context A def: b : B = 

B.allInstances()->select(e | 
 e.name = self.name)->asSequence()->first(); 

helper context B def: a : A = 
A.allInstances()->select(e | 

    e.name = self.name)->asSequence()->first(); 



 
 

 
we would have: 
 
helper context A def: b : B oppositeOf a = 

B.allInstances()->select(e | 
 e.name = self.name)->asSequence()->first(); 

 
(2) Currently, the only way to specify an attribute helper value is by specifying an 

OCL expression. Mechanisms making complex mappings simpler could be 
implemented; for instance: linking elements having the same name without 
manually implementing hashing. Instead of: 

 
helper context A def: b : B oppositeOf a = 

B.allInstances()->select(e | 
e.name = self.name)->asSequence()->first(); 

 
we would have: 
 
helper context A def: b : B oppositeOf a linkWhen self.name = b.name; 
 
(3) Corresponds to explicit rule polymorphism through inheritance from abstract 

rules. As a matter of fact, because of present lack of type checking in ATL 
engine, references to other rules cannot be checked for correctness. Therefore, 
although polymorphism currently works, it is not statically checked for sanity. 

(4) In ATL, source models are read-only and target models are write-only; this 
prohibits in-place transformations. However, such transformations are quite 
common in certain domains. Therefore, ATL provides a mechanism to answer 
this need: refining mode. This mode can be used for transformations having 
the same source and target metamodel. Unmatched source elements are 
automatically copied into target model, as if a default copying rule was 
present. Note that refining mode may be implemented as in-place model 
transformation by an ATL engine provided the result is proved to be the same. 

7 Related and Future Work 

In the last couple of years we observed a number of proposals for model 
transformation languages. Some of them are a response to the QVT RFP issued by 
OMG [13]. As we explained in Section 2 ATL is applicable in QVT transformation 
scenarios where transformation definitions are specified on the base of MOF 
metamodels. However, ATL is designed to support other transformation scenarios 
going beyond QVT context where source and target models are artifacts created with 
various technologies such as databases, XML documents, etc. In that way ATL serves 
the purpose of the AMMA platform as a generic data management platform. 

Another class of transformation approaches relies on graph transformations theory 
[1][14]. ATL is not directly based on the mathematical foundation of these 
approaches. An interesting direction for future research is to formalize the ATL 



semantics in terms of graph transformation theory. The declarative part of ATL is 
especially suitable for this. 

Some approaches stress on providing graphical syntax for transformation 
definitions [9][15]. Currently ATL does not have a graphical syntax. This is a second 
important direction for future research. It is related to the model weaving approach [7] 
(another integral part of the AMMA platform) in which relations among model 
elements are established by using a visual tool. These relations may be interpreted in 
various ways: as compositional operators, transformations, equivalence, etc. 

ATL has already been used in various contexts. More than twenty examples are 
already published on GMT website some of them consisting of several ATL 
programs. In all examples XMI is used to represent models. However, in a large 
number of them, it is only used as intermediary representation between 
transformations. Source and target are indeed often not XMI models but other kind of 
XML documents, text files, spreadsheets, etc. This consideration is important because 
we think model transformation cannot be limited to XMI if real-life problems are to 
be solved [2]. 

In [4] we present another application of ATL by showing how it can be used to 
check models if they satisfy given constraints. A simple specific target metamodel is 
defined to represent diagnostics resulting from evaluation of these constraints as a set 
of problems (i.e. constraint violations). OCL constraints defined on a metamodel can 
then be translated into ATL rules generating such problems. Diagnostic models can 
subsequently be transformed into any convenient representation. We plan to extend 
this work and show how ATL can be used to compute any kind of metrics on models. 

Although ATL does not permit bidirectional transformation specifications this 
becomes possible by coupling ATL with model weaving [7]. We showed an example 
of this technique at GTTSE'2005 (Summer School on Generative and 
Transformational Techniques in Software Engineering) hold in Braga, Portugal in 
July 2005. 

Static type checking of OCL expressions used in ATL programs is not 
implemented in current compiler. It is however necessary to be closer to OCL 2.0 
specification. Moreover, it will help transformation developers by reducing the 
number of runtime errors requiring recompilation and relaunching of programs. We 
believe an ATL type checker could be implemented in the form of an ATL 
transformation. This approach seems indeed more interesting than using ad-hoc 
means (e.g. Java code), but is more challenging since it relies on ATL itself. We think 
current ATL engine is almost mature enough for this purpose and we already have an 
initial prototype working on simple OCL expressions (i.e. using only primitive types). 

8 Conclusions 

In this paper we presented ATL: a hybrid model transformation language developed 
as a part of the ATLAS Model Management Architecture. ATL is supported by a set 
of development tools built on top of the Eclipse environment: a compiler, a virtual 
machine, an editor, and a debugger. 



 
 

The current state of ATL tools already allows solving non-trivial problems. This is 
demonstrated by the increasing number of implemented examples and the interest 
shown by the ATL user community that provides a valuable feedback. 

The applicability of ATL was demonstrated in a case study. We identified 
alternative ways for implementing the case study. Alternatives are based of different 
programming styles, e.g. declarative and imperative. ATL allows both styles to be 
used in transformation definitions depending on the problem at hand. We encourage a 
declarative approach for defining transformations whenever possible. We believe that 
this approach allows transformation developers to focus on the essential relations 
among the model elements and to leave the handling of complex execution algorithms 
and optimizations to the ATL compiler and virtual machine. 
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