
A Taxonomy of Model Transformation

Tom Mens1

Software Engineering Lab
Université de Mons-Hainaut

Mons, Belgium

Pieter Van Gorp2

Formal Techniques in Software Engineering
Universiteit Antwerpen
Antwerpen, Belgium

Abstract

This article proposes a taxonomy of model transformation, based on the discussions of a working
group on model transformation of the Dagstuhl seminar on Language Engineering for Model-
Driven Software Development. This taxonomy can be used, among others, to help developers in
deciding which model transformation language or tool is best suited to carry out a particular model
transformation activity.

Keywords: model transformation, taxonomy, comparison, MDD, MDE

1 Introduction

Model-driven engineering (MDE) is a discipline in software engineering that
relies on models as first class entities and that aims to develop, maintain and
evolve software by performing model transformations. MDE is embraced by
various organisations and companies, including OMG, IBM and Microsoft.
MDE encompasses a wide variety of different techniques, including OMG’s
Model-Driven Architecture (MDATM), model-integrated computing, Microsoft’s

1 Email: tom.mens@umh.ac.be
2 Email:pieter.vangorp@ua.ac.be

Electronic Notes in Theoretical Computer Science 152 (2006) 125–142

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.10.021

mailto:tom.mens@umh.ac.be
mailto:pieter.vangorp@ua.ac.be
http://www.elsevier.com/locate/entcs


software factories, and many more. There is also a wide variety of tools avail-
able, such as the Eclipse Generative Model Transformer (GMT) framework,
the Generic Modeling Environment (GME) and many more. For a detailed
overview we refer to www.planetmde.org

In this paper we propose a taxonomy of model transformation. By taxon-
omy we mean “A system for naming and organizing things [. . . ] into groups
which share similar qualities” (Cambridge Dictionaries Online). Such a tax-
onomy can be used for a wide variety of purposes. Among others, it can help a
software developer choosing a particular model transformation approach that
is best suited for his needs, it can help tool builders to assess the strengths and
weaknesses of their tools compared to other tools, and it can help scientists
to identify limitations across tools or technology that need to be overcome by
improving the underlying techniques and formalisms.

Many of the ideas in the proposed taxonomy our based on the discussions
of a working group of a 2004 Dagstuhl seminar on Language Engineering for
Model-Driven Software Development. The working group addressed a variety
of important issues with model transformation, undoubtedly the most pro-
found aspect of model-driven software development [1,2]. The group started
with a discussion on the essential characteristics of model transformations,
as well as their supporting languages and tools. The group also discussed
the commonalities and variabilities between existing model transformation
approaches.

2 Definitions and Examples

Before classifying model transformation techniques, one should understand
some model-driven engineering definitions. We will clarify the definition of a
model and a model transformation by means of two running examples.

Several sources acknowledge that a model is a simplified representation
(or an abstract description) of a part of the world named the system [3,4]. A
model is useful if it helps to gain a better understanding of the system. In
an engineering context, a model is useful if it helps deciding the appropriate
actions that need to be taken to reach and maintain the system’s goal.

The goal of software is to automate some tasks in the real world. Models
of software requirements, structure and behavior at different levels of abstrac-
tion help all stakeholders deciding how this goal should be accomplished and
maintained. According to this definition, source code is a model too since it
is a simplified representation of the lower-level machine structures and oper-
ations that are required to automate the tasks in the real world. Moreover,
correct source code is a very useful model since it tells the machine what ac-

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142126



(a)

Fig. 1. Class diagram before executing the pull up method transformation.

(a)

Fig. 2. Class diagram after executing the pull up method transformation.

tions need to be taken to maintain the system’s goal. Design representations
of the source code (e.g., UML diagrams) are useful models if they make the
source code more understandable.

When building modeling tools, one needs to model the structure and well-
formedness rules of the language in which the models are expressed. Such
models are called metamodels [5]. Having a precise metamodel is a prerequisite
for performing automated model transformations.

Consider the UML class diagrams in Fig. 1. The diagrams visualize the
static structure of a Local Area Network (LAN) application [6] before and
after executing a model transformation. The method bill is pulled up from
the subclass PrintServer (see Fig. 1 (a)) to the superclass Node (see Fig. 1
(b)).

As another example, consider the problem of translating hierarchical state-
charts into flat ones [7]. A part of the translation process consists of redirecting

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142 127



Fig. 3. A hierarchical statechart being transformed into a more flat one. The example of a delivery
process is inspired by a popular UML book [8]. We have adapted the example such that an order
can only be cancelled if it has not been dispatched yet.

transitions starting from composite states to make these transitions start from
the contained states. If a contained state already has an outgoing transition
with the same label as the outer transition, that contained state will not get
an extra outgoing transition. This prevents non-determinism. Fig. 3 visu-
alizes one step of the flattening algorithm. To complete the flattening, the
transition to Delivered needs to be flattened as well and the Active state
should ultimately be removed.

3 Model transformation taxonomy

According to Cambridge dictionary, a taxonomy is “A system for naming and
organizing things [. . . ] into groups which share similar qualities”. Some tax-
onomies, such as the taxonomic organisation of species in a biological context,
are hierarchical, but this is not a prerequisite.

In this paper, we propose a taxonomy for model transformation that al-
lows us to group tools, techniques or formalisms for model transformation
based on their common qualities. In order to identify these qualities, we pro-
ceeded as follows. Each of the following subsections investigate an important
question with respect to model transformation, and suggest a number of ob-
jective criteria to be taken into consideration to provide a concrete answer to
the question. Each criterion can be used to group together model transfor-

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142128



mation approaches satisfying this criterion. As such, or taxonomy provides
a multi-dimensional classification, allowing us to group and compare model
transformation approaches, based on the criteria of interest.

3.1 What needs to be transformed into what?

The first important question concerns the source and target artifacts of the
model transformation. If these artifacts are programs (i.e., source code, byte-
code, or machine code), one uses the term program transformation. If the
software artifacts are models, we use the term model transformation. Accord-
ing to the definitions presented in Section 2, the latter term encompasses the
former one since a model can range from abstract analysis representations
of the system, over more concrete design models, to very concrete models of
source code. Hence, model transformations also include transformations from
a more abstract to a more concrete model (e.g., from design to code) and
vice versa (e.g., in a reverse engineering context). Model transformations are
obviously needed in common tools such as code generators and parsers.

Given that all program transformations can be performed as model trans-
formations, one can clasify the source and target models of a transformation
in terms of their structure. More specifically, some systems can be represented
as a strict tree whereas others require a graph representation. Note that every
graph can be encoded as a tree with references from certain nodes to nodes dif-
ferent from their child nodes. However, navigating a graph encoded as a tree
requires (potentially tedious) join operations. Encoding a graph in a relational
datastructure leads to even more join operations since the relations between
tree nodes and their children need to be represented by means of references
as well. Therefore, one should choose the technology that matches the system
as closely as possible without sacrificing too much runtime performance.

Number of source and target models.

A first distinguishing characteristic of a model transformation is its number of
source and target models. Kleppe et al. [9] provided the following definition
of model transformation. A transformation is the automatic generation of
a target model from a source model, according to a transformation definition.
A transformation definition is a set of transformation rules that together
describe how a model in the source language can be transformed into a model
in the target language. A transformation rule is a description of how one
or more constructs in the source language can be transformed into one or more
constructs in the target language. We suggest that this should be generalised,
in that a model transformation should also be applicable to multiple source

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142 129



models and/or multiple target models. An example of the former is model
merging, where we want to combine or merge multiple source models that have
been developed in parallel into one resulting target model. An example of the
latter is a transformation that takes a platform-independent model (PIM), and
transforms it into a number of platform-specific models (PSM). Both examples
are schematically represented in Fig. 4.

PIM

PSM1 PSM2 PSMn

A vertical one-to-many model transformation

merged
model

Model1

Model2

Modeln

A horizontal many-to-one model transformation

Fig. 4. Examples of model transformations

Technical space.

A technical space [10] is a model management framework containing con-
cepts, tools, mechanisms, techniques, languages and formalisms associated
to a particular technology. A technical space is determined by the meta-
metamodel that is used (M3-level). For example, the world-wide web consor-
tium (W3C) promotes the XML technical space, which uses XML Schema as
meta-metamodel. This space includes support for languages such as HTML,
XML, XMI, XSLT, and XQuery. As another example, the Object Manage-
ment Group (OMG) promotes the MDA technical space, which uses the MOF
as meta-metamodel, and supports languages such as UML. Many other tech-
nical spaces are available, including those relying on abstract syntax trees
and grammars, graphs and graph transformations, database technology, or
ontologies.

Given a model transformation, its source and target models may belong
to the same or to different technical spaces. In the latter case, we need tools
and techniques to define transformations that bridge technical spaces. One
possibility is to provide model exporters and importers while executing the
actual transformation in the technical space of either the source or target
model.

For example, when translating XML documents into UML diagrams one
can choose to execute the actual transformation in either the XML or the

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142130



MDA technical space. To perform the transformation in the XML technical
space, one would use an XSLT or XQuery program translating the general
XML document into an XML document conforming to the syntax of the XMI
standard (XML metadata interchange) and conforming to the semantics MOF-
XMI document for the UML standard. An XMI parser can then be used to
import the resulting XMI document in a UML CASE tool, residing in the
MDA technical space.

Performing the transformation in the MDA technical space would require
a MOF metamodel for XML. After parsing the XML document into instances
of this metamodel, the actual transformation could be performed as a MOF
transformation. The QVT request for proposals [11] aims to standardize all
efforts in trying to implement this kind of model transformations.

Endogenous versus exogenous transformations.

In order to transform models, these models need to be expressed in some
modeling language (e.g., UML for design models, and programming languages
for source code models). The syntax and semantics of the modeling language
itself is expressed by a metamodel. For example, the syntax of the UML meta-
model is expressed using class diagrams, whereas its semantics is described by
a mixture of well-formedness rules (expressed as OCL constraints) and natural
language [12].

Based on the language in which the source and target models of a trans-
formation are expressed, a distinction can be made between endogenous and
exogenous transformations. Endogenous transformations are transformations
between models expressed in the same language. Exogenous transformations
are transformations between models expressed using different languages. 3

In [13], essentially the same distinction was proposed, but ported to a
model transformation setting. In that taxonomy, the term rephrasing was
used for an endogenous transformation, whereas the term translation was
used for an exogenous transformation.

Typical examples of translation (i.e., exogenous transformation) are:

• Synthesis of a higher-level, more abstract, specification (e.g., an analysis
or design model) into a lower-level, more concrete, one (e.g, a model of a
Java program). A typical example of synthesis is code generation, where
the source code is translated into bytecode (that runs on a virtual machine)
or executable code, or where the design models are translated into source
code.

3 If we have to deal with transformations with multiple source models and/or multiple
target models, there can even be more than 2 different languages involved.

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142 131



• Reverse engineering is the inverse of synthesis and extracts a higher-level
specification from a lower-level one.

• Migration from a program written in one language to another, but keeping
the same level of abstraction.

Typical examples of rephrasing (i.e., endogenous transformation) are:

• Optimization, a transformation aimed to improve certain operational qual-
ities (e.g., performance), while preserving the semantics of the software.

• Refactoring, a change to the internal structure of software to improve cer-
tain software quality characteristics (such as understandability, modifiabil-
ity, reusability, modularity, adaptability) without changing its observable
behaviour [14]. The pull up method transformation of Figure 1 is an exam-
ple of such a refactoring.

• Simplification and normalization, used to decrease the syntactic complexity,
e.g., by translating syntactic sugar into more primitive language constructs.
The statechart flattening transformation of Figure 3 is an example of such
a simplification.

• Component adaptation, to modify and adapt the code of existing software
components, either statically or dynamically (i.e., during component execu-
tion), to the user’s needs.

One can further classify endogenous model transformations in terms of the
number of models involved. If this number is only one, the source and target
model are the same and all changes are made in-place. Other endogenous
transformations create model elements in one model based on properties of
another model (regardless of the fact that both models conform to the same
metamodel). Such transformations are called out-place. Note that exogenous
transformations are always out-place. We do not incorporate this distinction in
the proposed taxonomy since for most applications it doesn’t matter whether
a transformation is implemented in- or out-place. Still, the terms have shown
to be useful in technical discussions on model transformation.

Horizontal versus vertical transformations.

A horizontal transformation is a transformation where the source and target
models reside at the same abstraction level. Typical examples are refactor-
ing (an endogenous transformation) and migration (an exogenous transfor-
mation). A vertical transformation is a transformation where the source and
target models reside at different abstraction levels. A typical example is re-
finement, where a specification is gradually refined into a full-fledged imple-
mentation, by means of successive refinement steps that add more concrete

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142132



details [15,16].

Table 1 illustrates that the dimensions horizontal versus vertical and en-
dogenous versus exogenous are truly orthogonal, by giving a concrete example
of all possible combinations. As a clarification for the Formal refinement men-
tioned in the table, a specification in first-order predicate logic or set theory
can be gradually refined such that the end result uses exactly the same lan-
guage as the original specification (e.g., by adding more axioms).

Table 1
Orthogonal dimensions of model transformations with examples

horizontal vertical

endogenous Refactoring Formal refinement

exogenous Language migration Code generation

Syntactical versus semantical transformations.

A final distinction can be made between model transformations that merely
transform the syntax, and more sophisticated transformations that also take
the semantics of the model into account. As an example of syntactical trans-
formation, consider a parser that transforms the concrete syntax of a program
(resp. model) in some programming (resp. modeling language) into an ab-
stract syntax. The abstract syntax is then used as the internal respresentation
of the program (resp. model) on which more complex semantical transforma-
tions (e.g. refactoring or optimisation) can be applied. Also when we want to
import our export our models in a specific format, a syntactical transformation
is needed.

3.2 Important characteristics of a model transformation

Level of automation.

A distinction can and should be made between model transformations that
can be automated and transformations that need to be performed manually
(or at least need a certain amount of manual intervention).

An example of the latter is a transformation from a requirements document
to an analysis model. For such a transformation, manual intervention is needed
to address and resolve ambiguity, incompleteness and inconsistency in the
requirements that are (partially) expressed in natural language.

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142 133



Complexity of the transformation.

Some transformations, such as model refactorings, can be considered as small,
while others are considerably more heavy-duty. Examples of the latter are
parsers, compilers and code generators. The difference in complexity between
small transformations and heavy-duty transformations is so big that they re-
quire an entirely different set of techniques and tools.

Preservation.

Although there is a wide range of different types of transformations that are
useful during model-driven development, each transformation preserves cer-
tain aspects of the source model in the transformed target model. The prop-
erties that are preserved can differ significantly depending on the type of
transformation. For example, with refactorings or restructurings, the (exter-
nal) behaviour needs to be preserved, while the structure is modified. With
refinements, the program correctness needs to be preserved [17]. The technical
space also heavily influences what needs to be preserved. For example, in the
case of a database transformation, we need to preserve the integrity of the
database, while in the case of a program transformation, we need to preserve
the syntactic well-formedness and type correctness of the program.

3.3 Success criteria for a transformation language or tool

In the previous discussion, we restricted ourselves to characteristics of the
model transformation or of the models being transformed. Equally important,
or perhaps even more important, are the characteristics of a transformation
language or transformation tool. Below we enumerate a number of important
functional requirements that contribute to the success of such a language or
tool. Many of these criteria are still in a research stage, in the sense that they
are not yet fully supported in state-of-the-art model transformation tools.

Creating/Reading/Updating/Deleting transformations (CRUD).

While this is a trivial requirement for a transformation language, it is not
that obvious for a transformation tool. For example, if we consider a typ-
ical program refactoring tool, it comes with a predefined set of refactoring
transformations that can be applied, but there is often no way to define new
refactoring transformations, or to fine-tune existing transformations to specific
needs of the user. As such, having the possibility to create new transforma-
tions or update existing ones is an important criterion.

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142134



Suggesting when to apply transformations.

For certain application scenarios, dedicated tools can be built that suggest
to the user which model transformations might be appropriate in a given
context. For example, a refactoring tool might not only apply refactoring
transformations, but also suggest in which context a particular refactoring
should be applied [18,19].

Customising or reusing transformations.

For example, if we adopt an object-oriented transformation language, we may
be able to use the inheritance mechanism to reuse the specifications of model
transformations. Other customisation or reuse mechanisms include parame-
terisation and templates.

3.3.1 Verifying and guaranteeing correctness of the transformations.

If the transformation language or tool has a mathematical underpinning, it
may be possible, under certain circumstances, to prove theoretical properties
of the transformation such as termination, soundness, completeness, (syntactic
and semantic) correctness, etc. The simplest notion of correctness is syntactic
correctness : given a well-formed source model, can we guarantee that the tar-
get model produced by the transformation is well-formed? Another notion is
syntactic completeness : for each element in the source model, there should be
a corresponding element in the target model that can be created by a model
transformation.
A significantly more complex notion is semantic correctness : does the pro-
duced target model have the expected semantic properties? This is for exam-
ple a crucial requirement for refactoring transformations, were we want to be
able to ensure that these transformations preserve certain behavioural prop-
erties. Other important semantic properties are termination and confluence:
given a set of transformations, they should always lead to a result (i.e., they
should terminate) and this result should be unique (confluence).

Testing and validating transformations.

Since transformations can be considered as a special kind of programs (e.g., the
XSLT transformation language is a Turing-equivalent programming language 4 ),
we need to apply systematic testing and validation techniques to transforma-
tions to ensure that they have the desired behaviour.

4 See http://www.unidex.com/turing/utm.htm for more information

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142 135



Dealing with incomplete or inconsistent models.

It is important to be able to transform models early in the software devel-
opment life-cycle, when requirements may not yet be fully understood or are
described in natural language. This often gives rise to ambiguous, incomplete
or inconsistent models, which implies that we need to have mechanisms for
inconsistency management. These mechanisms may be used to detect, and
possibly resolve, inconsistencies in the transformations themselves, or in the
models being transformed.

Grouping, composing and decomposing transformations.

The ability to compose existing transformations into new composite ones is
useful to increase the readability, modularity, maintainability and scalability
of a transformation language. Decomposition of a complex transformation
into smaller steps may also require a control mechanism to specify how these
smaller transformations need to be combined. This control mechanism may
be implicit or explicit.

Genericity of transformations.

Ideally, transformations should be first class entities in a transformation lan-
guage. If we can represent transformations as models too, we can apply trans-
formations to these models, thus achieving a notion of higher-order trans-
formations. A concrete example of this would be to refactor a given set of
transformations (e.g., a family of code generators), to reduce the amount of
code duplication in these transformations. In order to achieve this, we need
to transform the transformations themselves.

Bidirectionality of transformations.

Languages or tools that have the property of bidirectionality require fewer
transformation rules, since each transformation can be used in two different
directions: to transform the source model(s) into target model(s), and the
inverse transformation to transform the target model(s) into source model(s).

Supporting traceability and change propagation.

To support traceability, the transformation language or tool needs to provide
mechanisms to maintain an explicit link between the source and target models
of a model transformation. To support change propagation, the transforma-
tion language or tool may have a consistency checking mechanism and an
incremental update mechanism [20].

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142136



Note that some transformation approaches require to translate the source
model first into some standardised format (e.g., XML), then apply the trans-
formation, and then do another translation to obtain the target model. A
clear disadvantage of such an approach is that it is difficult to synchronise
source and target models when changes are made to them.

3.4 Quality requirements for a transformation language or tool

Besides all the functional requirements enumerated above, a transformation
language or tool should also satisfy a number of non-functional or quality
requirements. These requirements are of particular interest to industrial users
of model transformation tools. They may be a reason for accepting or rejecting
the tool in practice.

Usability and usefulness.

The language or tool should be useful, which means that it has to serve a
practical purpose. On the other hand, it has to be usable too, which means
that it should be intuitive and efficient to use. Obviously, this issue is directly
related to developer training and experience. Instead of using a full-fledged
transformation language, developers may prefer a more direct model manip-
ulation approach, where the internal model is directly accessed by means of
an API. The advantage is that developers can keep on using their preferred
language and require virtually no extra training. The disadvantage is that the
API may restrict the kinds of transformations that can be performed [2].

Verbosity versus conciseness.

Conciseness means that the transformation language should have as few syn-
tactic constructs as possible. From a practical point of view, however, this
often requires more work to specify complex transformations. Hence, the
language should be more verbose by introducing extra syntactic sugar for fre-
quently used syntactic constructs. It is always a difficult task to find the right
balance between these two conflicting goals. Referring to the previous exam-
ple of direct model manipulation via an API, the developers will typically use
a general purpose programming language to specify the transformations. This
leads to considerably more verbose code than with dedicated model transfor-
mation languages [2].

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142 137



Performance and scalability.

The language or tool should be able to cope with large and complex trans-
formations or transformations of large and complex software models with-
out sacrificing performance. Another issue that has to do with performance
is whether the transformation tool is interpreter-based or compiler-based.
Compilation-based approaches may have the benefit of improved performance
over interpretation-based ones.

Extensibility.

The flexibility of a tool depends on the ease with which the tool can be ex-
tended with new functionality. For example, many contemporary tools (e.g.,
Eclipse) offer plug-in frameworks in order to facilitate the addition of third-
party code (so-called plug-ins) into the tool in a standardised way.

Interoperability.

The tool should also be interoperable or easy to integrate with other tools
used within the (model-driven) software engineering process. To achieve this,
the tool needs to provide bridges to other frequently used technical spaces.

Acceptability by user community.

The best transformation language from a theoretical point of view may not
necessarily be the best from a pragmatic point of view. For example, it the
target community is an object-oriented audience, a transformation language
based on a logic or functional paradigm may not be acceptable.

Standardization.

The transformation tool should be compliant to all relevant standards (such
as XML, MOF, UML). For example, the tool may need to support XMI for
importing or exporting the source or target models of a transformation.

3.5 Which mechanisms can be used for model transformation?

Mechanisms should be interpreted here in a broad sense. They include tech-
niques, languages, methods, and so on. To specify and apply a transformation,
ideas from any of the major programming paradigms can be used. One can
borrow techniques from the a procedural, object-oriented, functional or logic
paradigms, or even use a hybrid approach combining any of the former ones.

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142138



Nevertheless, it is important to note that a model transformation tool
should be dedicated to the construction and modification of models. In this
sense, a dedicated domain-specific programming language, preferably even
restricted to the technical space of interest, is likely to be more effective than
a full-fledged general-purpose programming language.

The major distinction between transformation mechanisms is whether they
rely on a declarative or an operational (or imperative) approach. Declarative
approaches focus on the what aspect, i.e., they focus on what needs to be
transformed into what by defining a relation between the source and target
models. Operational approaches focus on the how aspect, i.e., they focus on
how the transformation itself needs to be performed by specifying the steps
that are required to derive the target models from the source models.

Declarative approaches (e.g., [21]) are attractive because particular ser-
vices such as source model traversal, traceability management and automatic
bidirectionality can be offered by an underlying reasoning engine. There are
several aspects that can be made implicit in a transformation language: (1)
navigation of a source model, (2) creation of target model and (3) order of
rule execution. As such, declarative transformations tend to be easier to write
and understand by software engineers.

Operational (or constructive) approaches (e.g., [22]) may be required to
implement transformations for which declarative approaches fail to guarantee
their services. Especially when the application order of a set of transforma-
tions needs to be controlled explicitly, an imperative approach is more appro-
priate thanks to its built-in notions of sequence, selection and iteration. Such
explicit control may be required to implement transformations that reconcile
source and target models after they were both heavily manipulated outside
that transformation tool.

One particular flavour of a declarative approach is functional programming.
Such an approach towards model transformation is appealing, since any trans-
formation can be regarded as a function that transforms some input (the source
model) into some output (the target model). In most functional languages,
functions are first class, implying that transformations can be manipulated as
models too. An important disadvantage of the functional approach is that it
becomes awkward to maintain state during transformation.

Another flavour of a declarative approach is logic programming. A logic
language (e.g., Prolog or Mercury) has many features that are of direct interest
for model transformation: backtracking, constraint propagation (in the case
of constraint logic programming languages), and unification. Unification may
either be partial (which is easier to use and understand) or full (which is
more powerful). Additionally, logic languages always offer a query mechanism,

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142 139



which means that no separate query language needs to be provided.

4 Related work

The taxonomy presented in this paper is similar to, but broader in scope
than, the survey of rewriting strategies in program transformation systems by
Visser [13]. Indeed, program transformation is only a small subset of model
transformation. In this sense, Visser’s survey restricts itself to a particular
technical space.

Probably the closest work that is related to our taxonomy is the classifica-
tion of model transformation approaches that has been proposed by Czarnecki
and Helsen in [23]. This is not surprising at all, since Czarnecki participated
in the Dagstuhl workshop on which many of the ideas in our taxonomy our
based. One of the main differences is that Czarnecki and Helsen propose a
hierarchical classification based on feature diagrams, while our taxonomy is
essentially multi-dimensional. Another important difference is they classifies
the specification of model transformations, whereas our taxonomy is more
targetted towards tools, techniques and formalisms supporting the activity of
model transformation.

5 Conclusion

In this paper, we provided a taxonomy of model transformation. The purpose
of this taxonomy is manifold: (1) to position concrete model transformation
tools and techniques within the domain; (2) to provide a framework for com-
paring and combining individual tools and techniques; (3) to identify and
evaluate tools or technologies for a specific model transformation activity; (4)
to provide an overview of the research field of model transformation. Each
of these purposes is essential, given the proliferation of tools and techniques
within the domain of model transformation, and given the fact that model
transformations can be applied for a very wide range of applications.

While there is never a unique answer to the question which approach (or
tool, or technique) to model transformation is the best, we have shown that
it is possible to come up with a set of concrete criteria that need to be taken
into consideration when dealing with the following crucial questions:

• What needs to be transformed into what?

• What are the important characteristics of a model transformation?

• What are the success criteria for a transformation language or tool?

• Which mechanisms can be used for model transformations?

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142140



Based on the answers to these questions, a particular model transformation
approach may be selected and adopted to address a particular problem.

In the future, we are planning to apply our model transformation taxonomy
in order to find answers to other interesting and important questions such as:

• Which underlying technique is better suited to support model transforma-
tion? Answering this question will first require us to identify the different
techniques that have been used to implement model transformation tools,
for example, tree transformation or graph transformation, identify a num-
ber of representative tools implementing each technology, and comparing
these tools using our taxonomy.

• Which technical space is better suited for model transformation? Almost all
model transformation tools have a primary technical space, which is typ-
ically MOF-based or XML-based. Comparing transformation tools across
technical spaces may allow us to identify the virtues and shortcomings of
each.

References

[1] Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The missing link
of MDA. In: Graph Transformation. Volume 2505 of Lecture Notes in Computer Science.,
Springer-Verlag (2002) 90–105 Proc. 1st Int’l Conf. Graph Transformation 2002, Barcelona,
Spain.

[2] Sendall, S., Kozaczynski, W.: Model Transformation - The Heart and Soul of Model-Driven
Software Development. IEEE Software, Special Issue on Model Driven Software Development
(2003) 42–45

[3] Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework. In: Proc.
16th Int’l Conf. Automated Software Engineering, IEEE Computer Society (2001) 273

[4] Seidewitz, E.: What models mean. IEEE Software 20 (2003)

[5] Favre, J.M.: Towards a basic theory to model model driven engineering. In: Proc.
3rd Workshop in Software Model Engineering (Satellite workshop at the 7th International
Conference on the UML). (2004)

[6] Janssens, D., Demeyer, S., Mens, T.: Case study: Simulation of a LAN. Electronic Notes in
Theoretical Computer Science 72 (2003)

[7] Wasowski, A.: Flattening statecharts without explosions. In: Proc. ACM SIGPLAN/SIGBED
Conf. Languages, compilers, and tools. (2004) 257–266

[8] Fowler, M., Scott, K.: UML Distilled – Second Edition – A Brief Guide to the Standard Object
Modeling Language. Object technology series. Addison-Wesley (1999)

[9] Kleppe, A., Warmer, J., Bast., W.: MDA Explained, The Model-Driven Architecture: Practice
and Promise. Addison Wesley (2003)

[10] Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments with the ATL
model transformation language: Transforming XSLT into XQuery. In: 2nd OOPSLA Workshop
on Generative Techniques in the context of Model Driven Architecture. (2003)

[11] Object Management Group: MOF 2.0 Query / Views / Transformations RFP ad/2002-04-10
(2002) URL: http://www.omg.org/cgi-bin/apps/doc?ad/02-04-10.pdf.

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142 141



[12] Object Management Group: Unified Modeling Language specification version 1.5.
formal/2003-03-01 (2003)

[13] Visser, E.: A survey of rewriting strategies in program transformation systems. Electronic
Notes in Theoretical Computer Science 57 (2001)

[14] Fowler, M.: Refactoring: Improving the Design of Existing Programs. Addison-Wesley (1999)

[15] Wirth, N.: Program development by stepwise refinement. Comm. ACM 14 (1971) 221–227

[16] Back, R.J., von Wright, J.: Refinement Calculus. Springer Verlag (1998)

[17] Back, R.: On correct refinement of programs. Journal of Computer and Systems Sciences 23
(1981) 49–68

[18] van Emden, E., Moonen, L.: Java quality assurance by detecting code smells. In: Proc. 9th
Working Conf. Reverse Engineering, IEEE Computer Society (2002) 97–107

[19] Tourwé, T., Mens, T.: Identifying refactoring opportunities using logic meta programming.
In: Proc. 7th European Conf. Software Maintenance and Re-engineering (CSMR 2003), IEEE
Computer Society (2003) 91–100

[20] Van Gorp, P., Janssens, D., Gardner, T.: Write Once, Deploy N: a performance oriented
mda case study. In: Proceedings of the 8th IEEE International Enterprise Distributed Object
Computing Conference, IEEE (2004)

[21] Akehurst, D., Kent, S.: A relational approach to defining transformations in a metamodel.
In: Proc. 5th Int’l Conf. UML. Volume 2460 of Lecture Notes in Computer Science., Springer-
Verlag (2002) 243–258

[22] Sprinkle, J., Agrawal, A., Levendovszky, T., Shi, F., Karsai, G.: Domain model translation
using graph transformations. In: Proc. Int’l Conf. Engineering of Computer-Based Systems,
IEEE Computer Society (2003) 159–168

[23] Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: OOPSLA03
Workshop on Generative Techniques in the Context of Model-Driven Architecture. (2003)

T. Mens, P. Van Gorp / Electronic Notes in Theoretical Computer Science 152 (2006) 125–142142


	Introduction
	Definitions and Examples
	Model transformation taxonomy
	What needs to be transformed into what?
	Important characteristics of a model transformation
	Success criteria for a transformation language or tool
	Quality requirements for a transformation language or tool
	Which mechanisms can be used for model transformation?

	Related work
	Conclusion
	References



