
Softw Syst Model (2017) 16:313–331
DOI 10.1007/s10270-015-0487-8

SPECIAL SECTION PAPER

A taxonomy of tool-related issues affecting the adoption
of model-driven engineering

Jon Whittle1 · John Hutchinson1 · Mark Rouncefield1 ·
Håkan Burden2 · Rogardt Heldal2

Received: 19 September 2014 / Revised: 5 June 2015 / Accepted: 21 June 2015 / Published online: 23 August 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Although poor tool support is often blamed for
the low uptake of model-driven engineering (MDE), recent
studies have shown that adoption problems are as likely to
be down to social and organizational factors as with tooling
issues. This article discusses the impact of tools on MDE
adoption and practice and does so while placing tooling
within a broader organizational context. The article revisits
previous data onMDEuse in industry (19 in-depth interviews
withMDE practitioners) and reanalyzes that data through the
specific lens of MDE tools in an attempt to identify and cat-
egorize the issues that users had with the tools they adopted.
In addition, the article presents new data: 20 new interviews
in two specific companies—and analyzes it through the same
lens. A key contribution of the paper is a loose taxonomy of
tool-related considerations, based on empirical industry data,

Communicated by Dr. Moreira and Dr. Schätz.

An earlier version of this article appeared as “Industrial Adoption
of Model-Driven Engineering: Are the Tools Really the Problem?”
in the 2013 International Conference on Model Driven Engineering
Languages and Systems (MODELS). The major additions in this ver-
sion are: (i) contextual research from the CSCW (computer-supported
cooperative work) community is discussed, which provides important
background knowledge for interpreting and generalizing from the find-
ings; (ii) an appendix is included, which describes the taxonomy in
more detail; (iii) additional information about study design and validity
is presented.

B Jon Whittle
j.n.whittle@lancaster.ac.uk

1 School of Computing and Communications, InfoLab21,
Lancaster University, Lancaster, UK

2 Computer Science and Engineering, Chalmers University of
Technology and University of Gothenburg, Gothenburg,
Sweden

which can be used to reflect on the tooling landscape as well
as inform future research on MDE tools.

Keywords Model-driven engineering · Modeling tools ·
Organizational change

1 Introduction

When describing barriers to adoption of model-driven engi-
neering (MDE), many authors point to inadequate MDE
tools. Den Haan [10] highlights “insufficient tools” as one of
the eight reasons why MDE may fail. Kuhn et al. [19] iden-
tify five points of friction inMDE that introduce complexity;
all relate to MDE tools. Staron [28] found that “technology
maturity [may] not provide enough support for cost efficient
adoption of MDE.” Tomassetti et al.’s survey reveals that
30% of respondents see MDE tools as a barrier to adoption
[30].

Clearly, then, MDE tools play a major part in the adoption
(or not) of MDE. On the other hand, as shown by Hutchinson
et al. [16,17], adoption barriers are as likely to be social or
organizational rather than purely technical or tool-related.
The question remains, then, to what extent poor tools hold
back adoption of MDE and, in particular, what aspects—
both organizational and technical—should be considered in
the next generation of MDE tools.

A key contribution of this article is a loose taxonomy of
factorswhich capture howMDE tools impactMDEadoption.
The focus is on relating tools and their technical features
to the broader social and organizational context in which
they are used. The taxonomy was developed by analyzing
data from two separate studies of industrial MDE use. In the
first, we interviewed 19 MDE practitioners from different
companies. In the second, we interviewed a further 20 MDE

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0487-8&domain=pdf

314 J. Whittle et al.

practitioners in two different companies (ten per company).
The two studies complement each other: The first is a broad
but shallow study of MDE adoption across a wide range of
industries; the second is a narrower but deeper study within
two specific companies with different experiences of apply-
ingMDE. Neither study was limited to tooling issues; rather,
they were both designed to capture a broad range of experi-
ences related to MDE use and adoption, and in both, we used
qualitative methods to allow key themes to emerge from the
data. We focus in this paper only on emergent themes related
to MDE tools.

The literature has relatively little to say about non-
technical factors of MDE tooling. There have been a number
of surveys of MDE tools (e.g., [5,9,24]), but they focus
on classifying tools based on what technical functionalities
they provide. More recently, Paige and Varró [23] report on
lessons learned from developing two significant (academic)
MDE tools. Again, however, very little is said about under-
standing users’ needs and the users’ organizational context:
The authors simply state “Try to have real end-users; they
keep you honest” and “Rapid response to feedback can help
youkeepyour users.” Indeed, there is a distinct lack of knowl-
edge about how MDE tools are actually adopted in industry
and what social and organizational, as well as technical, con-
siderations need to be in place for a tool to succeed. This
paper makes a first attempt to redress the balance. It uses a
database derived from a large, systematic, qualitative empir-
ical investigation [17] to examine the extent to which MDE
adopters refer to ‘tools’ in their accounts of the success or
failure of MDE. What emerges in the course of interrogat-
ing the database and building the taxonomy, is a far more
subtle and nuanced picture, in which tool use is linked to
a range of social and organizational issues that may be far
more relevant to an understanding of success and failure. It is
this subtle and nuanced understanding—expressed and evi-
denced in the words of MDE users—that provides a series
of related answers to some of the issues raised by tool use in
MDE.

The paper is structured as follows. Section 2 discusses
existing literature on tools, with a focus on understanding
users’ needs and organizational context. Section 3 describes
the methodological details of our studies. Section 4 presents
our taxonomy, based on emerging themes from our first study
of MDE adoption. Section 5 discusses our second study and
relates its findings to the taxonomy. Section 6 then presents
a consideration of the social and organizational context – in
particular, showing how viewing tool selection and adoption
as an act of introducing new software into an organiza-
tion make it amenable to analysis from the perspective of
previous work on “computer- supported cooperative work”
(CSCW). Finally, the paper discusses how the taxonomy can
be used to advance research and development of MDE tools
(Sect. 7).

2 Context and related work

Tools have long been of interest to those considering the use
of technology in industrial settings. In research on CSCW,
there have been two distinctive approaches. On the one hand,
there are those interested in how individuals use tools and, in
particular, how to design tools that are intuitive and seamless
to use. This reflects a Heideggerian difference between tools
that are ‘ready to hand’ (they fade into the background) and
‘present at hand’ (focus is on the tool to the detriment of the
‘real’ issue). In contrast, another approach, exemplified by
Grudin [14] and Brown [3], considers how organizations use
tools and argues that failure can be attributed to: a disparity
of benefit between tool users and those who are required
to do unrecognized additional work to support tools; lack
of management understanding; and a failure by designers
and managers to recognize their limits. In a comment that
might cause some reflection forMDE tool developers, Brown
[3] suggests that (groupware) tools are generally useful in
supporting existing everydayorganizational processes, rather
than radical organizational change.

The issue of how software development should be orga-
nized and supported has long been discussed, and remedies
have often, though not always, included particular tools, tech-
niques, and practices. For example,whileMerisalo-Rantanen
et al. [22] found that tools facilitated fast delivery and easy
modification of prototypes, among the core values of the
‘agile manifesto’ were a focus on “individuals and inter-
actions over processes and tools,” and a number of studies
[25] emphasized the importance of organizational rather than
technical factors. However, when considering MDE tools
there is little in the way of systematic evaluation. Cabot and
Teniente [5] acknowledge MDE tools but suggest that they
have several limitations regarding code generation. Selic [26]
talks about the important characteristics of tools for the suc-
cess of MDE, suggesting that some MDE tools “have now
reached a degree of maturity where this is practical even
in large-scale industrial applications.” Recently, Stahl et al.
[27] have claimed that MDE does not make sense without
tool support. Two studies [1,19] identify the impact of tools
on processes and organizations, and vice versa, but the main
focus is on introducing MDE in large-scale software devel-
opment. Hutchinson et al. [17] describe a case study where
developers so subverted their use of an off-the-shelf MDE
tool that they likened its use to that of a compiler.

A survey in 2005 [21] investigated the use of, and attitude
toward,UMLandUML tools acrossEurope and included500
participants.Although themain focus of the surveywasUML
itself, it revealed a number of findings about the tools that
participants used and their relative importance. For example,
“The majority said that UML tools are not considered as an
important part of their development process.”The survey also
notes that, for some, tool cost is a factor with some claim-

123

A taxonomy of tool-related issues affecting the adoption of model-driven engineering 315

ing that the cost of appropriate tools meant that they were
unable to use them. One finding was that the most popular
tools used by participants belonged to the IBMRational suite,
but the list also included Microsoft Visio, which itself calls
into question the appropriateness of the tools used in some
cases.

There have been two recent, and very different, studies
about the experience of developing and deploying MDE
tools. Paige and Varró [23] conclude that: “using MDD
tools—in anger, on real projects, with reported real results,
is now both feasible and necessary.” However, it is sig-
nificant that this study is about academic MDE tools. In
contrast, Clark and Muller [7] use their own commercial
experiences to identify lessons learned about tool develop-
ment, in cases that might be considered technical successes
but were ultimately business or organizational failures:
“The last decade has seen a number of high profile com-
mercial MDD tools fail ...these tools were expensive to
produce and maintain ...there are a number of open-source
successes but it is not clear that these systems can sup-
port a business model.” In terms of specific lessons with
regard to tools, this one stands out: “ObjeXion and Xac-
tium made comparable mistakes. They were developing
elegant tools for researchers, not pragmatic tools for engi-
neers.”

3 Study method

The key contribution of the paper is a taxonomyofMDE tool-
related issues. The taxonomy has been developed based on
two sets of interviews: a set of 19 interviews from 18 differ-
ent companies carried out between November 2009 and July
2010, and a set of 20 interviews carried out in two companies
between January and February 2013. Our method was to use
the first set to develop the taxonomy; the second to validate
the taxonomy. The two sets are complementary: The first
provides broad, shallow coverage of ten different industrial
sectors; the second provides narrow, deep coverage of two
companies.

Our first set of interviews is the same set used in ear-
lier publications [16,17]. However, prior publications gave a
holistic view of the findings and did not include data on tools.
All interviewees came from industry and had significant
experience of applyingMDE in practice. The interviewswere
semi-structured, taking around 60min each, and all began
with general questions about the participant’s background
and experience with MDE. All interviews were recorded
and transcribed. In total, we collected around 20h of con-
versation, amounting to over 150,000 words of transcribed
data.

For this first set of interviews, we identified participants
through personal contacts and through responses to an online

survey, whichwas promoted on leading software engineering
and MDE mailing lists. The criteria for selecting a par-
ticipant was that she/he had real industrial experience of
applying MDE on significant projects. We also aimed for a
broad coverage of MDE application scenarios and domains.
The interviewees covered nine different industrial sectors
and application domains, including aerospace, automotive,
web applications, industrial control systems, and data-heavy
applications. Similarly, we ensured that our interviewees had
different levels of experience: in terms of number of years
applyingMDEand the rolewhich they took in anMDEadop-
tion effort. Collectively, our interviewees had over 360years
of software development experience and represent a range of
different roles, including developer, product manager, soft-
ware architect, consultant, CEO, and board member. Hence,
the interviewees provide broad coverage of where MDE has
been applied in industry.

The second set of interviews included ten participants at
Ericsson AB and ten participants at Volvo Cars Corporation.
The interviewees at Ericsson came from the Radio Base Sta-
tion unit, which has been involved in MDE since the late
1980s, while the interviewees at Volvo represent a new unit
that has just started to use MDE for in-house software devel-
opment for electric propulsion. The interviews cover more
than 20h of recorded conversation and were conducted in
the same semi-structured fashion as the first set.

These participants were chosen to provide a complemen-
tary set of data when compared with the first study: Whereas
the first study provided broad coverage across a range of
sectors and domains, the second study focused on more in-
depth coverage of two particular companies. We chose two
companies with experience in applying MDE, but where
one company had many years of experience (and hence was
influenced by earlier thinking around MDE such as OMG
standardization) and one company was relatively new to
MDE (and hence was influenced more by current develop-
ment methods such as agile). Within these companies, we
identified interviewees by talking with managers and other
influential stakeholders within the companies. Through these
discussions, we identified projects within the (very large)
companieswhereMDEwas being applied, andwe then chose
participants to ensure a diverse set of experiences, back-
ground and perspectives.

In both studies, our notion of MDE tool was very broad—
by tool, we mean any software application that was used by
our interviewees during the MDE development process to
create, manipulate, or analyze models.

Analysis of the interview transcripts was slightly different
in each case. The first set was used to develop the taxonomy.
Each transcript was coded by two researchers. The initial task
was to simply go through the transcripts looking for where
the respondents said anything about tools; these fragments
were then coded by reference to particular ideas or phrases

123

316 J. Whittle et al.

mentioned in the text—such as ‘cost’ or ‘processes.’ The
average reference to tool issues per transcript was 11 with 3
being the lowest and 18 being the highest. Inter-coder relia-
bility was computed usingHolsti’s formula [15], dividing the
number of agreements by the number of text fragments. For
this research, the average inter-coder agreement was 0.86
(161/187). The researchers then grouped the initial coding
into broad themes relating to “technical,” ”organizational,”
and “social” issues.

The second set was used to validate the taxonomy.
Researchers read the transcripts looking for tool-related
issues and then mapped those to the proposed taxonomy.
Any deviations from the taxonomy were noted.

This is a descriptive, qualitative interview study, rather
than an experimental study in which a wide range of validity
constructs—internal, external, construct, and conclusion—
are conventionally deployed. For those unfamiliar with our
approach,we should quickly state that this does notmean that
our study lacks these kinds of validity—just that they are not
framed in this particular (experimental) way. So, for exam-
ple, internal validity comes from our analysis of inter-rater
reliability and the fact that a second studywas used to validate
the results from the first. External validity and our ability to
generalize from our findings is approached rather differently
in this kind of qualitative study, and accounts for the exten-
sive use of quotes, included in this paper, from the individuals
involved in our interviews. This is becausewewant to be able
to point to the data to support our conclusions about MDE
and tool use—each of our analytic points is supported by
reference to what people actually said and the way that they
said it. As we argue elsewhere [16], these qualitative inter-
view studies provide sufficiently rich and authentic detail
that the generalization problem—‘how can this information
be relevant to other MDE projects in other organizations’?—
becomes instead an issue for our readers—‘in what respect
are the details reported here sufficiently familiar and simi-
lar to those in your own organization?’. In other words, the
findings must be interpreted within the context in which they
were found (illustrated by the quotes), and when it comes to
generalization, this context should be compared to the new
context. External validity also comes from the fact that we
place the findings in the context of known results from the
CSCW field (see Sect. 6), which has for decades studied the
impact of new tools and technologies introduced into orga-
nizations. Finally, we note that this is an exploratory study,
so the findings should be interpreted as potential hypotheses,
which warrant further, perhaps more experimental, research.

4 A taxonomy of MDE tool considerations

This section presents the taxonomy, developed from the first
set of interviews. Our analysis process resulted in four broad

Table 1 Taxonomy of MDE tool considerations

MDE tool considerations Technical factors

Internal organizational factors

External organizational factors

Social factors

themes, each broken into categories at two levels of detail:
(i) Technical Factors—where interviewees discussed specific
technical aspects of MDE tools, such as a missing feature
or technical considerations of applying tools in practice;
(ii) Internal organizational factors—the relationship between
tools and the way a company organizes itself; (iii) External
organizational factors—influences from outside the com-
pany which may affect tool use and application; (iv) Social
factors—issues related to theway people perceiveMDE tools
or tool stakeholders. In all cases, it should be assumed that
each issuemay impact in a range ofways on anMDEprocess.
For example, if a tool feature is not available, it may impede
the development process, whereas if it is present, then it may
aid the development process.

Tables 1, 2, 3, 4, and5 form the taxonomy.Table 1 gives the
top level of the taxonomy, and then each category is briefly
defined in the remaining tables, and an example of each sub-
category is given. Numbers in brackets are the number of
interviewees who commented on a particular sub-category
(max. 19). Care should be taken when interpreting these
numbers—they merely reflect what proportion of our par-
ticipants happened to talk about a particular issue. They do
not necessarily indicate relative importance of sub-categories
because one interviewee may have talked in depth about a
sub-category, whereas another may have mentioned it only
briefly. Moreover, a common problem may well be one that
is reasonably easy to overcome, whereas a less common one
may be the determiner of success or failure for a particular
user. A deeper analysis would be required to produce sub-
category “importance” or “severity” weightings.

The following subsections present highlights from each
theme: We have picked out particularly insightful or relevant
experiences from the interview transcripts.Wequote from the
transcripts frequently; these are given italicized and in quo-
tation marks. Quotes are taken from the transcripts verbatim.
Square brackets are used to include contextual information.

The taxonomy is a data-driven, evidence-based descrip-
tion of issues that industrial MDE practitioners have encoun-
tered in practice when applying or developing MDE tools.
We make no claim that the taxonomy covers all possible
tool-related issues; clearly, further evidence from other prac-
titioners may lead to an extension of the taxonomy. We also
do not claim that the sub-categories are orthogonal. As will
be seen later, some examples of tool use can be classified into
multiple sub-categories. Finally, we do not claim that this is

123

A taxonomy of tool-related issues affecting the adoption of model-driven engineering 317

Table 2 Technical categories

Category Sub-category

Tool features

Specific functionalities offered
in tools

Modeling behavior (1)

Action languages (1)

Support for domain-specific
languages (6)

Support for architecture (3)

Code generation templates (6)

UML profiles (1)

Scoped code generation (2)

Model analysis (5)

Reverse engineering models (3)

Sketching models (1)

Refactoring models (1)

Practical applicability

Challenges of applying tools in
practice

Tool scalability (1)

Tool versioning (1)

Chaining tools together (2)

Industrial quality of generated
code (8)

Flexibility of tools (3)

Maturity of tools (1)

Dealing with legacy (2)

Complexity

Challenges brought on by
excessive complexity in tools

Tool complexity (4)

Language complexity (5)

Accidental complexity introduced
by tools (1)

Human factors

Consideration of tool users Whether tools match human
abstractions (4)

Usability (4)

Theory

Theory underpinning tools Theoretical foundations of tools (1)

Formal Semantics (2)

Impact on development

Impact of tools on technical
success criteria

Impact on quality (2)

Impact on productivity (4)

Impact on maintainability (3)

the “perfect” taxonomy. It is simply one way of structuring
the emerging themes from our data, and the reader is wel-
come to restructure the themes into an alternative taxonomy
which better fits his/her purposes.

The taxonomy can be used in a variety of ways. It can
be used as a checklist of issues to consider when developing

Table 3 Internal organizational categories

Category Sub-Category

Processes

Adapting tools to processes
or vice-versa

Tailoring to a company’s existing
processes (5)

Sustainability of tools over the
long term (3)

Appropriating tools for purposes
they were not designed for (3)

Issues of integrating multiple tools
(6)

Migrating to different tool versions
(3)

Offsetting gains: tools bring gains
in one aspect but losses in
another (2)

Whether maintenance is carried
out at the code or model level (3)

Organizational culture

Impact of cultural attitudes
on tool application

Tailoring to a company’s culture
(4)

Inertia: reluctance to try new
things (1)

Over-ambition: asking too much of
tools (1)

Low-hanging fruit: using tools on
easy problems first (6)

Skills

Skills needed to apply tools Training Workforce (11)

Availability of MDE skills in
workforce (4)

Table 4 External organizational categories

Category Sub-category

External influences

Factors which an
organization has no direct
control over

Impact of marketing issues (1)

Impact of government/industry
standards (4)

Commercial aspects

Business considerations
impacting on tool use and
application

Business models for applying
MDE (3)

Cost of tools (5)

How to select tools (2)

tools. It can be used as a framework to evaluate existing tools.
Principally, however, we hope that it simply points to a range
of technical, social, and organizational factors that may be
underrepresented in the MDE tool research community.

123

318 J. Whittle et al.

Table 5 Social categories

Category Sub-category

Control

Impact of tools on whether
stakeholders feel in
control of their project

Ways of interacting with tool
vendors (2)

Subverting tools: workarounds
needed to apply them (1)

Trust

Impact of trust on tool use
and adoption

Trust of vendors (4)

Engineers’ trust of tools (6)

Impact of personal career needs (1)

All of the branches, categories, and sub-categories are
listed in the appendix along with a brief explanation of what
is referred to at each level.

4.1 Technical factors

Table 2 presents the set of categories and sub-categories that
relate to technical challenges and opportunities when apply-
ing MDE tools. There are six categories.

4.1.1 Category descriptions

First, tool features, detail-specific tool functionalities which
interviewees felt impacted on project success. These include
support formodeling systembehavior, architectures, domain-
specific modeling, and flexibility in code generation. Code
generation templates, for example, refer to the ability to
define one’s own code generation rules, whereas scoped code
generation refers to an incremental form of code generation
where only model changes are regenerated. The second cat-
egory, practical applicability, contains issues related to how
tools can be made to work in practice. The issues range from
tool support for very large models (scalability), to the impact
of using multiple tools or multiple versions of tools together,
to the general maturity level of tools and how flexibly they
can be adapted into existing tool chains. The third category
concerns complexity, which includes accidental complex-
ity, where the tools introduce complexity unnecessarily. The
fourth category is human factors and includes both classi-
cal usability issues but also bigger issues such as whether
the way tools are designed (and, in particular, the kinds of
abstractions they use) match the way that people think. The
final two categories concern the way that the lack of formal
foundations leads to sub-optimal tools and the reported per-
ceptions about how tools impact quality, productivity, and
maintainability.

4.1.2 Observations

One very clear finding that comes out of our analysis is that
MDE can be very effective, but it takes effort tomake it work.
The majority of our interviewees were very successful with
MDE but all of them either built their own modeling tools,
made heavy adaptations of off-the-shelf tools, or spent a lot of
time finding ways to work around tools. The only accounts of
easy-to-use, intuitive tools came from those who had devel-
oped tools themselves for bespoke purposes. Indeed, this
suggests that current tools are a barrier to success rather than
an enabler and “the fact that people are struggling with the
tools...and succeed nonetheless requires a certain level of
enthusiasm and competence.”

Our interviewees emphasized tool immaturity, complex-
ity, and lack of usability as major barriers. Usability issues
can be blamed, at least in part, on an over-emphasis on graph-
ical interfaces: “...I did an analysis of one of the IBM tools
and I counted 250 menu items.” More generally, tools are
often very powerful, but it is too difficult for users to access
that power; or, in some cases, they do not really need that
power and require something much simpler: “I was really
impressed with the power of it and on the other hand I saw
windows popping up everywhere...at the end I thought I still
really have no idea how to use this tool and I have only seen
a glimpse of the power that it has.”

These examples hint at a more fundamental problem,
which appears to be true of textual modeling tools as well: a
lack of consideration for how people work and think: “basi-
cally it’s still the mindset that the human adapts to the
computer, not vice-versa.” In addition, current tools have
focused on automating solutions once a problem has been
solved. In contrast, scant attention has been paid to sup-
porting the problem solving process itself: “so once the
analyst has figured out what maps to what it’s relatively
easy...However, what the tools don’t do is help the analyst
figure out what maps to what.”

Complexity problems are typically associated with off-
the-shelf tools. Of particular note is accidental complexity—
which can be introduced due to poor consideration of other
categories, such as lack of flexibility to adapt the tools to
a company’s own context. One interviewee described how
the company’s processes had to be significantly changed
to allow them to use the tool: a lack of control over the
code generation templates led to the need to modify the
generated code directly, which in turn led to a process to
control these manual edits. Complexity also arises when
fitting an MDE tool into an existing tool chain: “And the
integration with all of the other products that you have
in your environment...” Despite significant investment in
providing suites of tools that can work together, this is
clearly an area where it is easy to introduce accidental
complexity.

123

A taxonomy of tool-related issues affecting the adoption of model-driven engineering 319

It is ironic that MDE was introduced to help deal with
the essential complexity of systems, but in many cases, adds
accidental complexity.Although this should not be surprising
(cf. Brooks [2]), it is interesting to describe this phenomenon
in the context ofMDE. For the technical categories, in almost
every case, interviewees gave examples where the category
helped to tackle essential complexity, but also other examples
where the category led to the introduction of accidental com-
plexity. So, interviewees talked about the benefits of code
generation, but, at the same time, lamented the fact that “we
have some problems with the complexity of the code gener-
ated...we are permanently optimizing this tool.” Interviewees
discussed how domain-specific languages (DSLs) should be
targeted at complex parts of the system, such as where mul-
tiple disciplines intersect (“if you have multiple disciplines
like mechanical electronics and software, you can really use
those techniques”) while, at the same time realizing that the
use of DSLs introduces new complexities when maintaining
a standard DSL across a whole industry: “their own kind of
textual DSL [for pension rules]...And they went to a second
company and the second company said no our pension rules
are totally different.” Clearly, as well known from Brooks,
there is no silver bullet.

4.2 Internal organizational factors

4.2.1 Category descriptions

Table 3 gives the set of internal organizational categories. The
first, processes, relates to how toolsmust be adapted to fit into
existing processes or how existing processesmust be adapted
in order to use tools. Tailoring to existing processes con-
cerns the former of these; the remaining sub-categories the
latter. Sustainability of tools concerns processes for ensur-
ing long-term effectiveness of tools, taking into account
changes needed to the tools as their use grows within the
organization. Appropriation is about how tool use changes
over time, often in a way not originally intended. Integra-
tion issues are where new processes are needed to integrate
MDE tools with existing tools. Migration issues are about
migrating from one tool to another or from one tool version
to another. Offsetting gains is where a tool brings benefits
in one part of the organization but disadvantages in another
part of the organization.Maintenance level is about processes
that either mandate model-level changes only, or allow code-
level changes under certain constraints. The organizational
culture category relates to the culture of an institution: to
what extent tools need to be adapted to fit culture (tailor-
ing to existing culture), cultural resistance to use new tools
(inertia), a lack of realistic expectations about tool capabili-
ties (over ambition), and attitudes that look for quickwins for
new tools to prove themselves (low hanging fruit). The third

category concerns skills—both training needs (training) and
how existing skills affect adoption (availability of skills).

4.2.2 Observations

Our interviews point to a strong need for tailoring of some
sort: either tailor the tool to the process, tailor the process
to the tool, or build your own tool that naturally fits your
own process. Based on our data, it seems that, on balance,
it is currently much easier to do the latter. Some tool ven-
dors actively prohibit tailoring to the process, but rather a
process is imposed by the tool for business reasons: “...the
transformation engines are used as services...we don’t want
to give our customers the source code of the transformation
engines and have them change them freely. That’s a business
question.”

When introducing MDE tools, one should think carefully
where to introduce them.One company reported,“Weneeded
to find away to let them incrementally adopt the technology.”
The solution was to first introduce reverse engineering of
code into models, as the first part of a process of change
management. Another company introduced MDE tools by
first using them only in testing. The ‘perfect’ MDE tool may
not always be necessary. For example, one company used
MDE where the user interface was not so critical: “cases
which are internal applications ...where the user interface
is not such an issue ...that’s where you get the maximum
productivity from a tool like ours.”

There is a danger, though, in believing that one “killer
application” of an MDE tool leads to another: “prior to
that they had used the technology successfully in a differ-
ent project and it worked and they were very happy, so they
thought, ok, this could be applied to virtually any kind of
application.” It is not easy to identify which applications are
appropriate for MDE tools and which are not. Apart from
obvious industrieswhereMDEhas been appliedmorewidely
than others (e.g., the automotive industry), we do not have
a fine-grained way of knowing which MDE tools are appro-
priate for which jobs.

A curious paradox of MDE is that it was developed as
a way to improve portability [18]. However, time and again
issues ofmigration and versioning came up in our interviews:
“[XX] have burned a lot of money to build their own tool
which they stopped doing because they lost theirmodelswhen
the [YY] version changed.”

This migration challenge manifests itself slightly dif-
ferently as ‘sustainability’ when considering strategies for
long-term tool effectiveness. It was often remarked by our
interviewees that an MDE effort started small, and was well
supported by tools, but that processes and tools broke down
when trying to roll out MDE across a wider part of the orga-
nization: “the complexity of these little [DSL] languages
started to grow and grow and grow...we were trying to share

123

320 J. Whittle et al.

the [code generation] templates across teams and versioning
and releasing of these templates was not under any kind of
control at all.”Oneof our intervieweesmakes this pointmore
generally: “One of the things people forget about domain-
specific languages is that you may be able to develop a lan-
guage that really is very well suited to you; however, the cost
of sustaining just grows and it becomes eventually unaccept-
able because a language requires maintenance, it requires
tooling, it requires education.”

4.3 External organizational factors

4.3.1 Category descriptions

External organizational factors (Table 4) are those which are
outside the direct control of organizations. External influ-
ences include the impact of government or industry-wide
standards on the way tools are developed or applied, as well
as ways in which marketing strategies of the organization
or tool vendors impact on the use and application of tools.
Commercial aspects include how the cost of tools affects tool
uptake, how selection of tools can be made based on com-
mercial rather than technical priorities, and how the use of
tools relates to a company’s business model.

4.3.2 Observations

External influences clearly have an impact on whether
tools—any kind of tool, not just MDE—are adopted in an
organization. Our interviews show that the tool market is
focused only on supporting models at an abstraction level
very close to code, where the mapping to code is straight-
forward. This is clearly somewhat removed from the MDE
vision. Unfortunately, there is also a clear gap in the way that
vendors market their tools and their real capabilities in terms
of this low-level approach. As a result, many MDE appli-
cations fail due to expectations that have not been managed
properly.

Data on the impact of the cost of tools seems to be incon-
clusive. Some interviewees clearly found cost of tools to be a
prohibitive factor. In one case, the high cost of licenses led a
company to hack the tool’s license server! For the most part,
however, companies do not seem to point to tool costs as a
major factor: the cost of tools tends to be dwarfed by more
indirect costs of training, process change, and cultural shift:
“...it takes a lot of upfront investment for someone to learn
how to use the tools and the only reason I learnt how to use
them was because I was on a mission.”

Government or industry standards can both positively and
negatively affect whether tools are used or not. MDE tools
can help with certification processes: “they looked at the
development method using the modeling tools and said, well,
it’s a very clear and a very comprehensive way to go and

they accepted that.” In other cases, interviewees reported
that MDE tools can make certification more difficult as cur-
rent government certification processes are not set up to
deal with auto-generated code. Sometimes, external legal
demands were a main driver for the use of MDE tools in
the first place: “with the European legal demands, it’s more
and more important to have traceability.”

4.4 Social factors

4.4.1 Category descriptions

When it comes toMDE tools, social factors (Table 5) revolve
around issues of trust and control. Tool vendors, for example,
have different business models when it comes to controlling
or opening up their tools (interactingwith tool vendors). Sub-
verting tools is when a company looks for creative solutions
to bring a tool under its control. The data has a lot to say
about vendor trust, or how perceptions of vendors influence
tool uptake. Engineers’ trust also affects tool success: typical
examples are when programmers are reluctant to use mod-
eling tools because they do not trust code generated. Career
needs refers to how the culture of the software industry may
disadvantage MDE: an example is the ubiquitous use of con-
sultants who are not necessarily inclined to take the kind of
long-term view that MDE needs.

4.4.2 Observations

At a very general level, our data points to ways in which
different roles in a development project react to MDE tools.
One cannot generalize, of course, but roughly speaking, soft-
ware architects tend to embrace MDE tools because they
can encode their architectural rules and easily mandate that
others follow them. Code ‘gurus,’ or those highly expert pro-
grammers in a project, tend to avoid MDE tools as they can
take away some of their control. Similarly, ‘hobbyist pro-
grammers,’ those nine-to-fivers who nevertheless like to go
home and read about new programming techniques, also tend
to avoid MDE because it risks taking away their creativity.
Managers respond very differently to MDE tools depending
on their background and the current context. For example,
one manager was presented with a good abstract model of
the architecture but took this as a sign that the architects were
not working hard enough!

One much-trumpeted advantage of MDE is that it allows
stakeholders to better appreciate the big picture.While this is
undoubtedly true, there are also cases where MDE tools can
cloud understanding, especially of junior developers: “we’d
been using C and we were very clear about the memory map
and each engineer had a clear view...But in this case, we
cannot do something with the generated code so we sim-
ply ask the hardware guys to have more hard disc.” Similar

123

A taxonomy of tool-related issues affecting the adoption of model-driven engineering 321

implications can arise when companies become dependent
on vendors. Vendors often spend a lot of time with clients
customizing tools to a particular environment. But this can
often cause delays and cost overruns and takes control away
from the client: “And suddenly the tool doesn’t do something
expected and it’s a nightmare for them. So they try to contact
the vendor but they do not really know what’s going on, they
are mostly sales guys.”

MDE asks for a fundamental shift in the way that people
approach their work. This may not always be embraced. One
example is where MDE tools support engineers in thinking
more abstractly, and, in particular, tackling the harder busi-
ness problems. But engineers may not feel confident enough
to do this: “when you come to work and you say, well, I could
work on a technical problem or I could work on this business
problem that seems not solvable to me, it’s really tempting to
go work on the technical stuff.” MDE tools require up-front
investment to succeed, and the return on this investment may
not come until the tool has been applied to multiple projects.
There is a tension here with the consultancy model which is
often the norm in MDE: “So they felt that, let me do my best
in this one project. Afterward, I am moving into some other
project...[in a] consultancy organization, you measure your-
self and you associate yourself with things in a limited time.”

5 A study of MDE practice in two companies

This section presents insights from our second set of data:
20 additional interviews in Ericsson AB and Volvo Cars.
Interviewees at Ericsson were users of Rational Software
ArchitectRealTimeEdition (RSA/RTE).AtVolvo cars, inter-
viewees used Simulink. This set of interviewswas carried out
independently of the development of the taxonomy. The tax-
onomy was used in coding the second set of transcripts but
any deviations from the taxonomy were noted. Hence, this
second study can be seen as a validation of the taxonomy.

5.1 Modeling in Volvo cars and Ericsson AB

Both Ericsson AB and Volvo cars have been using model-
ing at several levels within their companies due to the size
and complexity of their software. For example, within Volvo
there are three distinct levels where different types of tools
and models are used. At the top-level, the overall electrical
architecture that can be used to build several types of cars is
developed. This model captures the logical software archi-
tecture and patterns, etc. This is quite a creative phase, and
there is less focus on the need to develop complete models.
The models are created using a number of different tools
supporting editing of graphical models as well as textual
descriptions.At the next level, a particular product or a partic-
ular type of car is described as amodel. The architectural tool

used is tailored directly to Volvo’s needs, capturing in detail
things such as all theECUs (electronic control units), the soft-
ware components and their interfaces. One can consider the
language used in this architectural tool to be a DSL for soft-
ware architecture within the automotive domain. From this
tool, one can create code skeleton (components) to the next
level down. It is within the code skeleton that Simulink code
is added. On top of this, there are several tools for version
control, testing and transformations. All these tools used at
different levels are quite different, and it can be quite demand-
ing if one needs to know several of them. It is extremely
important therefore to have good tool chains.

The situation at Ericsson is similar to the one at Volvo in
that there are several levels of modeling and different tools
are used in each. The key difference is that in Ericsson, most
code is built in-house. This is in contrast to the automotive
industry in which a significant amount of code is produced
by subcontractors.

In the following, we highlight, from our interviews, some
particularly interesting observations about how these two
companies use modeling tools and we relate these to the
taxonomy.We do not attempt to provide examples of all sub-
categories in Tables 1, 2, 3, 4 and 5. In general, the issues
highlighted by the taxonomy occur in both companies.

5.2 Technical factors

When modeling at the lower levels, it was crucial for both
companies that the models could be executed, so the tools
need to support executable code or support the generation of
skeletons within which code can easily be inserted and tested
(Table 2; code generation templates). It would have been next
to impossible to produce the models for these companies
without a good testing environment. Indeed, one of the main
goals of using models within Volvo cars was to improve soft-
ware testing (Table 2; impact on quality). Code generation
was crucial for both companies, either to produce code skele-
tons where C or C++ code could be inserted or to produce C
code from models containing graphical elements and action
code (Table 2; action languages/modeling behavior).

There are large disagreements among our interviewees
whether modeling or coding is the best way to build a sys-
tem, but a number of interviewees really liked modeling.
“And it’s really fun to work in Simulink I think instead of
writing code. Actually I really think it’s fun. It’s more graph-
ical. You see what’s happening. You get nice picture of it. So
that’s why really I enjoy it also. I’m not just doing coding in
pure text based. So that’s also why I enjoy it.” Others took a
more critical view. “It’s everything from small things, small,
annoying things. It wouldn’t sell if it would have been sold
to general consumers. Small things. You move, you change a
line name and youwant to undo it. It can’t. Likewhy?Nobody
knows.” To some extent, these differences in opinion may be

123

322 J. Whittle et al.

due to individual differences in theway people think (Table 2;
human abstractions) and/or individual tolerances to usability
problems (Table 2; usability).

Sometimes, these companies make models that are too
large for the tools to handle: “We did an activity diagram and
updated it … but the report generator couldn’t take that out
because it was too big.” (Table 2; tool scalability). Another
scaling problem was: “So we had scaling problems with tool
and so on. When we tried to start to use modeling tool A
instead of modeling tool B, there was some experts from
Canada here trying to get the things working because no one
else had this big models like we had… It was almost like we
gave up.” This is a severe limitation of the tools. Even when
the information is there it can be hard to find it sometimes.
“It wasn’t on page 1–200. It was somewhere else because it
was in the model somewhere. You couldn’t find it. That’s a
bad part of models. You can actually insert lot of information
that’s never found.”

This second study clearly shows that MDE tools can
both reduce and increase complexity. Ericsson employees
found benefits of using RSA/RTE because of the complex
aspects of the radio base station domain, such as synchro-
nous/asynchronous message passing: “It takes care of these
things for you so you can focus on the behavior you want to
have within a base station.” (Table 2; impact on productiv-
ity).

Interestingly, most of the interviewees at Ericsson have
now moved to a new project where all development is done
using C++, and a lot of time is spent on issues that were
dealt with by the tool before. And it is a constant source of
error. On the other hand, “I don’t think you gain advantage in
solving all kinds of problems in modeling.” There is a danger
of over-engineering the solution: “You would try to do some
smart modeling, or stuff and you would fail. After a while
you would end up in a worse place than if you had done this
in C++.” (Table 2; impact on maintainability).

Something which surprised us at Volvo was a tolerance
of slow tool execution: “And now when we have our new
laptops, it actually just takes five minutes to generate a code.
Before it would take up to 20 min, so it’s quite quick now.”
For some of our interviewees, it seems like the benefit or
joy of modeling outweighs the disadvantage of waiting for
tools to execute commands, problems with version control,
problems of merging of models, or even bugs in the tools.
(Table 2; impact on productivity).

5.3 Internal organizational factors

The proportion of in-house development has an effect on how
well modeling tools are received. For example, at Ericsson,
“this system architecture tool is not really designed to facili-
tate in-house development and so on. It gets a lot of criticism
for that.” Ericsson is working hard to resolve such problems

by writing scripts to support in-house development. This is
a clear example of where modeling tools have to be tailored
to match a company’s processes (Table 3; tailoring to a com-
pany’s existing processes).

According to another employee at Ericsson, it is necessary
to change the existing processes and culture in order to make
the most out ofMDE tools: “I think actually that the technol-
ogy for doing this [MDE] and the tools, as the enablers, they
are more advanced than the organizations that can use them
...Because the organizations are not mature to do it there
are few users of those tools and then the usability is poor.”
(Table 3; tailoring to a company’s culture).

At Volvo, a substantial effort has been made in order to
enable the transition from Simulink as a specification and
prototype tool into a code generation tool; due to the proper-
ties of the code generator, different design rules are suitable
for readability versus code generation. Migrating from one
tool to another also requires that old processes are updated:
“When it comes to TargetLink—a competitor to Simulink—
we have the knowledge of good and bad design patterns. For
Simulink, that is something we are currently obtaining, what
to do and not, in Simulink models.” (Table 3; sustainability
of tools over the long term; migrating to different tools).

One Ericsson employee noted the importance of inter-
nal organizational support for MDE tools: “Tool-wise I was
better off five years ago than I am today...then we had tool
support within the organization. And they knew everything.
Today, if I get stuck there is no support to help me.” The
quote comes from a system architect at Ericsson who con-
cludes that the tools can be used effectively but it requires
an effective in-house team knowledgeable about the details
of the tools who can be called on to help when issues arise
(Table 3; training workforce).

5.4 External organizational factors

Both companies illustrate how external organizational fac-
tors impact onMDE success. The functionality of Ericsson’s
radio base stations is accessed by Telecoms companies such
as AT&T through an API. The API is developed using
RSA/RTE by 7–8 software engineers. The changes to the
API are managed by a forum which is responsible for ensur-
ing that the accepted changes are consistent and that they
make sense for the customers: “We do have a process for
how to change it and we review the changes very carefully.
For new functions, we want it to look similar, we want to fol-
low certain design rules and have it so it fits in with the rest.”
(Table 4; impact of industry standards). In fact, this exam-
ple illustrates how MDE can be effectively used to manage
external influences: In this case, Ericsson models the API as
a UML profile and manages it through MDE.

At Volvo, the automotive standard AUTOSAR 3 hasmade
the choice of development tool a non-issue; Simulink is the

123

A taxonomy of tool-related issues affecting the adoption of model-driven engineering 323

standard tool: “...a language which makes it possible to com-
municate across the disciplinary borders. That the system
architect, the engineer and the tester actually understand
what they see.” (Table 4; impact of industry standards).

5.5 Social factors

BothEricsson andVolvo cars are large companies,withmany
employees involved inmodeling. This influences theway that
social factorsmanifest themselves. For example, tool vendors
want to make these companies happy, so they often go a long
way to support them (Table 5; social factors). The companies
also commonly have courses to learn the basics of using the
modeling tools, which affects to what extent engineers feel
they can trust the tools (Table 5; Engineers’ trust of tools).

There are situations where employees simply do not want
to change the language they happen to be using. “They don’t
want to program C++, so they wouldn’t do it because they
were Java guys…Change is hard.” Some of the interviewees
thought that modeling should not be forced on developers:
“That’s the biggest mistake you can do…You should let it sort
of come from the people that need it. That’s the big stuff.”

The second study surfaced one additional social factor
that was not highlighted in the earlier study. At Ericsson,
interviewees commented that the main difference between
working with RSA/RTE and code is that the latter is well
documented on the Web: “You can find examples and case
studies and what not in millions.” But when searching for
tool-specific help on UML tools, “you basically come up
empty-handed.” This observation prompted us to add an
additional sub-category in the taxonomy, that of “Developer
Forums.” It appears to be quite an important point whether
or not there are easily accessible, useful developer forums
where developers can go to get quick answers about issues
they are experiencing. An updated taxonomy is included in
the Appendix.

5.6 Taxonomy validation

The study at Ericsson and Volvo is in itself revealing about
MDE practice. However, for the purposes of this article, it
serves primarily to validate our taxonomy. For the most part,
the same issues come up in both studies. In only one case did
wefind that an extension to the taxonomywas necessary. This
was on the role that an open community can play in support-
ingMDE.As discussed in Sect. 5.4, the lack of online support
forums for MDE can lead to feelings of isolation and, in
turn, lack of engagement withMDE.We therefore extend our
taxonomy to reflect this—by adding a new category, Open
Community, with sub-category, Developer Forums— this is
shown in the Appendix.

The other issue is that it can be difficult to pick a single
sub-category to which a statement applies. Often, a single

statement overlaps multiple sub-categories. However, this
was not unexpected. Issues of MDE adoption and tool use
are complex and involve many dependencies, so it would be
unrealistic to expect a taxonomy with completely orthogonal
sub-categories.

6 Understanding the taxonomy’s social and
organizational context

As our interviews—and the resulting taxonomy—show,
MDE cannot be fully appreciated or evaluated as a software
development approach without first understanding important
aspects of business or organizational “context.” In the social
sciences, the word “context” tends to do some fairly heavy
duty analytic work since it is generally agreed that almost
nothing can be properly understood without an awareness
of the context in which it happens [6]. Hence, in the case
of MDE, the context in which a model is developed, code
is generated and/or some tool is used is crucial. Here, we
are interested in a relatively simple notion of context by
suggesting that MDE needs to be understood socially and
organizationally. It has been especially notable in our stud-
ies that MDE researchers have paid relatively little attention
to social and organizational issues. The focus has almost
always been technical: Researchers inevitably develop their
own modeling language, MDE tool, or methodology, with-
out much consideration of the context in which they will
be applied. Even empirical studies of MDE have largely
concentrated on technical aspects of MDE. There has been
little rigorous empirical research examining the social factors
related to MDE adoption. Such a gap in the research seems
odd, given the long history of trying to understand context
in software engineering more generally [e.g., see the CSCW
(computer-supported cooperative work) conference series].
Lehman [20] andCurtis [8] highlighted several years ago that
software engineering methods are influenced by the social
and organizational context in which they are developed. It
would be questionable to suppose that these CSCW findings
do not apply toMDE—after all, MDE involves many aspects
where people and organizations are key: planning, proce-
dures and abstraction, distributed coordination, and various
forms of ‘awareness’ of work.

In this section, we reflect on various CSCW findings that
are particularly relevant to MDE research. By so doing, we
hope to redress the balance to ensure that social and organi-
zational factors are duly considered in future MDE research.
Hence, we argue that MDE should be considered not merely
in terms of ‘tools’ but as an organizational intervention,
considering its impact on cooperation and collaboration in
complex social and organizational settings, where cool and
measured abstraction meets the messiness of the real world.
In such settings, plans and tools do not simply implement

123

324 J. Whittle et al.

themselves, but have to be implemented and used according
to whatever resources are to hand and in the face of various
changing and sometimes unpredictable contingencies. It is
people that do the work in organizations, not idealized or
abstract models and not tools. It is the everyday judgment
of workers, in interpreting and improvising standard proce-
dures, that gets work done and makes it routine. Software
processes, as an example of everyday, mundane work, are
clearly influenced by the social and organizational context in
which they are developed.

Because of the clear pervasiveness of software, software
process changes have a significant effect at both the macro-
and micro-organizational level. At the macro-organizational
level, software is now so important and is so often a fea-
ture of organizational change initiatives that software failures
can threaten the existence of the organization. This is typi-
cally true of efforts to adopt MDE, which are often designed
to effect organization-wide change. But project managers
must assess the benefits of the change and implement that
change without adversely affecting other project planning.
At what might be called the micro-organizational level, the
importance of organizational and cultural factors highlights
the need to explore and understand the ‘lived work’ of soft-
ware project management. We are especially concerned with
thinking beyondMDE tools to explicating exactly howMDE
projects are managed in the face of uncertain and evolving
requirements, while keeping the project on ‘track’, and doing
so within budget and, ideally on time. As Button and Shar-
rock [4] indicate, the key to a successful project is “notmerely
a matter of disposing of the individual’s work in hand, but
of carrying it out as work which is done in orientation to the
project’s needs, problems and objectives.”

Our studies provide ample evidence of how the realities
of a CSCW perspective play out in practice. MDE adoption
scenerios are complex and inherently collaborative—in par-
ticular, they are often collaborative between different kinds
of expertise or disciplinary background:

....it’s an interdisciplinary engineering task because
they are working together with mechanical engineers,
electrical engineers and our software engineers andwe
all together build the automation application for exam-
ple for a packagingmachine or something like this. And
so this is one application of model driven solutions to
model integration of these different disciplines and this
is something not found at the moment in current model
driven approaches because they are usually only tar-
geted on software development and not on the other
disciplines.

Another aspect of collaboration is what in CSCW is
referred to as ‘awareness of work’—which highlights the
way in which work tasks are made available to others and the
important role that this plays in the ‘real-world, real-time’

social organization of work. The different ways in which
‘awareness’ is developed, in which work is made visible to
others, are essential ingredients in ‘doing the work’ as part
of a socially distributed division of labor. In our interviews,
respondents reflected on how the nature of modeling requires
building awareness and understanding:

Q:Was that because once you started tomodel success-
fully you recognised that therewas a lot of commonality
in your systems?
A: Yes.
Q: OK so the modeling actually helped you understand
your systems?
A: Yes, and it is much easier to discuss the features of
the system together with a customer on a basis of the
models than on the basis of the code.

These extracts from our interviews show that successful
practitioners of MDE in industry highlight all sorts of sub-
tle aspects of its use, asking for a fundamental shift in the
way that people approach their work, requiring that engi-
neers think more abstractly about the relationship between
their work and the overall business and, in particular, the
‘harder’ business problems, rather than what can be the sim-
pler, technical issues.

7 Conclusions and arising research challenges

There are a number of well-known studies that document
how technology often fails to deliver on the radical orga-
nizational changes expected of it. As we have already
suggested, Brown’s 1990 study of Lotus notes [3], for exam-
ple, suggests that such investments in new technology are
generallymoreuseful in supporting existing everydayorgani-
zational processes, rather than radical organizational change.
Similarly, in Grudin’s (1988) [14] classic paper on ‘why
applications fail,’ the organizational use of tools and tech-
nology is considered and evaluated and the argument then
advanced that comparative failure can be attributed to orga-
nizational rather than technical issues: a disparity of benefit
between users and thosewho are required to do unrecognized
additional support work; lack of management understanding
and the difficulties of evaluation.

What has emerged from our research onMDE in practice,
perhaps surprisingly to those who are interested only in the
technical facets of MDE, is an emphasis on the importance
of social, managerial and organizational factors in shap-
ing successful MDE adoption and use. The move toward
MDE is an indicator and precursor of important changes.
Management in a period of change is often a complex and
difficult process, especially when the changes, in organiza-
tion, technology, and perhaps culture, are being introduced

123

A taxonomy of tool-related issues affecting the adoption of model-driven engineering 325

concurrently. Among these difficulties are the fact that often
changes in organizational culture, structure, and technology
do not all originate from a single integrated managerial or
business strategy and inevitably tensions arise which involve
reconciling what sometimes can turn out to be incompatible
goals. Our interviews suggest a need for a clearer under-
standing of the necessary support at lower organizational
levels for implementing and managing change, especially
when attempting to prioritize or reconcile long-term policy
goals and short-term contingencies.

The vast majority of modeling approaches—both indus-
trial and academic—are developed without an appreciation
for exactly how people and organizations work. In contrast,
what seems to be emerging from our current work is the
argument, essentially the CSCW argument, that software
modeling technologies should be designed and deployed to
match the way that people and organizations work. What
is required is more understanding of exactly how software
stakeholders work with abstraction, how theymaximize their
capacity for abstract thinking, and how they use models and
tools in their everyday work. On a related note, we also
need more insight into how organizations structure them-
selves to solve complex problems, the role that abstraction
plays in this process, how they use models as part of their
practices, and how we might develop innovative modeling
approaches that better match both individuals’ and organi-
zations’ abstraction processes as well as tools that better
support the way people want to model. While the theo-
retical benefits of MDE are often considered obvious, in
the ‘real-world, real-time’ practical (and often messy) busi-
ness world, MDE adoption and deployment can impact on
organizational or business success in unanticipated ways.
Consequently, adopting an MDE approach is, or proba-
bly should be, a business decision and therefore should
be judged in terms of whether it meets a number of busi-
ness and organizational goals rather than mere technical
goals.

To summarize, through our two separate studies of MDE
practitioners, comprising a total of 39 interviews, we have
developed a taxonomy of technical, social, and organiza-
tional issues related to MDE tool use in practice. This
taxonomy serves as a checklist for companies developing
and using tools, and also points to a number of open chal-
lenges for those working onMDE tool development. We end
this article by highlighting some of these challenges, which
have emerged from the data.

7.1 Match tools to people, not the other way around

Most MDE tools are developed by those with a technical
background but without in-depth experience of human–
computer interaction, CSCW or business issues. This can
lead to a situation where good tools force people to think

in a certain way. We recommend that the MDE community
pay more attention to tried-and-tested HCI and CSCWmeth-
ods, which can help to produce more useful and usable tools.
There is empirical work on studying MDE languages and
tools, but this is rarely taken into account. Research should
avoid competing with the market. The research community
should focus on issues not already tackled by commercial
vendors. Our study found that the majority of tools support
the transition from low-level design to code. However, many
bigger issues of modeling—such as support for early design
stages and support for creativity in modeling—are relatively
unexplored.

7.2 Finding the right problem is crucial

Our studies suggest that finding the right place for applying
MDE is a crucial success factor. However, there are very
little data about which parts of projects are good for MDE
and which are not. Nor are there data about which tools are
right for which jobs. In general, even the research community
has not clearly articulated how to decide what to model and
what not to model, and what tools to use or not to use.

7.3 More focus on processes, less on tools

The modeling research community focuses a lot on develop-
ing new tools andmuch less on understanding and improving
processes. A particular case is the importance of tailoring.
Very little research has been carried out on how best to tai-
lor: what kinds of tailoring go on, how tools can or cannot
support this, and how to develop simpler tools that can fit
into existing processes with minimal tailoring.

7.4 Open MDE communities

There is a distinct lackof openMDEdeveloper forums.Those
who do take the plunge with MDE are left feeling isolated,
with nowhere to go to get technical questions answered or
to discuss best practice. There are few examples of ‘good’
models online which people can consult, and efforts toward
repositories of such models (cf. [11]) have achieved limited
success. There is a chicken-and-egg dilemma here: if MDE
iswidely adopted, developer communitieswill self-organize;
if it is not, they will not.

The big conclusion of our studies is that MDE can work,
but it is a struggle. MDE tools do not seem to support those
who try. We need simpler tools and more focus on the under-
lying processes. MDE tools also need to be more resilient:
As with any new method, MDE is highly dependent on a
range of technical, social, and organizational factors. Rather
than assuming a perfect configuration of such factors, MDE
methods and tools should be resilient to imperfections.

123

326 J. Whittle et al.

For the most part, our sub-categories are already known
and have been noted either in the literature or anecdotally.
France and Rumpe [13], for example, point out that “Cur-
rent work on MDE technologies tends to focus on producing
implementation...from detailed design models”. Aranda et
al. [1] found that tailoring of processes is critical for MDE.
Similarly, Staron found that organizational context has a huge
impact on the cost effectiveness of MDE [28]. Indeed, many
of our observations about organizational aspects of MDE
adoption are not necessarily specific to MDE but are true of
technology adoption generally. However, the contribution of
the taxonomy is that it brings all of the factors—both tech-
nical and non-technical—together in one place to act as a
reference point.

Acknowledgements The authors would like to thank all those who
took part in the interviews, including those who facilitated the study at
Ericsson and Volvo.

8 Appendix: Extended description of
sub-categories in the taxonomy

This appendix expands briefly on the meaning of the sub-
categories in the taxonomy. These extended descriptions
were not included in Tables 1, 2, 3, 4 and 5 due to lack
of space. The appendix can therefore be used as a refer-
ence in case the titles of sub-categories in Tables 1, 2, 3, 4,
and 5 are unclear. Each sub-category defines a domain of
discourse which interviewees highlighted. Interviewees may
have made negative or positive remarks in each case: The
presence of a sub-category therefore merely marks that this
domain is of key importance to interviewees when applying
MDE tools in practice.

8.1 Technical factors (Table 2)

This branch of the taxonomy deals with technical issues that
may affect the adoption of an MDE tool. That is, the sub-
categories in Table 2 concern technical limitations of tools
whichmay affect adoption, particular features of tools, and/or
the impact of technical features of tools on the overall soft-
ware development process.

8.1.1 Tool features / specific functionalities offered in tools

This category details the presence or otherwise of particular
tool functionalities or features. The sub-categories should
not be considered an exhaustive list of possible tool features
nor a list of features that a tool is expected to have; the list
merely covers the features most regularly discussed by our
interviewees.

Modeling behavior (1) Does the tool allow system behavior
to be modeled? If so, how is behavior modeled and is it an
effective way of modeling behavior?

Action languages (1) Does the tool support the use of action
languages? If so, what action language(s) is supported? Is the
action language and tools support provided for it effective?

Support for domain-specific languages (6) Does the tool
support the definition and application of domain-specific
languages? If so, in what way—what kinds of facilities are
provided?

Support for architecture (3) What facilities, if any, does the
tool have for specifying and modeling architecture?

Code generation templates (6) Does the tool support the use
of code generation templates as a mechanism for allowing
tool users to generated customized code? Or does the tool
provide only a default format/style for generated code which
cannot be changed?

UML profiles (1) Does the tool support the definition and
application of UML profiles?

Scoped code generation (2) Does the tool have features that
support the incremental and iterative generation of code; that
is, when themodel changes, does the entire code base need to
be regenerated, or only the code that is affected by the model
change?

Model analysis (5) What facilities, if any, does the tool have
for analyzing models either statically or dynamically?

Reverse engineering models (3) Does the tool support
reverse engineering—where models are created from exist-
ing code?

Sketching models (1) Does the tool support the creation and
use of informal “sketched” models which might be used to
capture ideas at an early stage in the modeling process?

Refactoring models (1) Does the tool support the refactoring
of existing models?

8.1.2 Practical applicability / challenges of applying tools
in practice

This category is not concerned with the features a tool has
but how the tool is used in practice and whether it is possible
to adapt it according to different processes and procedures.

123

A taxonomy of tool-related issues affecting the adoption of model-driven engineering 327

Tool scalability (1) Is the tool able to cope with large-scale
models—of the sort that may be found in large industrial
projects?

Tool versioning (1) Are there issues associated with tool
versioning? For example, frequent upgrades, maintaining
compatibility with previous formats, etc.

Chaining tools together (2) How easy/difficult is it to use
multiple tools in conjunction with each other to provide end-
to-end functionalities?

Industrial quality of generated code (8) Is the generated code
of the quality, efficiency and size that would be expected in
an industrial setting?

Flexibility of tools (3) To what extent is the tool flex-
ible enough to adapt to different processes, other tools
and/or ways of working? For example, does it impose strict
processes on users? Or does it require other tools to be used
with it?

Maturity of tools (1) Has the tool reached a level of maturity
where robustness makes it suitable for an industrial project?

Dealing with legacy (2) What facilities, if any, does the tool
have to support the use of existing artefacts—e.g., existing
models, existing code, etc?

8.1.3 Complexity / challenges brought on by excessive
complexity in tools

This category concerns issues of complexity brought on by
modeling tools or languages.

Tool complexity (4) How complex or otherwise is the tool
itself? Is that level of complexity considered an appropriate
level of complexity or otherwise?

Language complexity (5) If the tool supports a particular
modeling language, how complex or otherwise is the lan-
guage?

Accidental complexity introduced by tools (1) Does the
tool—through its design—tend to introduce unnecessary
complexity into either the modeling process or the resulting
artifacts?

8.1.4 Human factors / consideration of tool users

This category is concerned with the effect the tool’s design
and features have on its users.

Whether tools match human abstractions (4) Do the abstrac-
tions in the tool match the way that humans think about
abstraction? Or does the tool force users to recast their own
internal abstractions in to a form that can be captured in the
tool?

Usability (4) Is the tool designed with usability in mind so
that users find it easy or intuitive to learn or is it designed in
such a way that it actually impedes its use?

8.1.5 Theory / theory underpinning tools

This category concerns theoretical underpinnings of tools,
such as whether they are grounded in a formal theory or not.

Theoretical foundations of tools (1) Does the tool actually
have theoretical foundations? If so, what are they and what
is their impact?

Formal semantics (2) Does the tool provide facilities to
support—or impose—formal semantics in the modeling
process? If so, how does this influence/impact modeling?

8.1.6 Impact on development / impact of tools on technical
success criteria

This category is concerned with the effect tools have on
higher-level project outcomes rather than the specific process
of modeling/development itself.

Impact on quality (2) Are there features of the tool that affect
the quality of the software developed using the tool—and are
these positive effects or negative effects?

Impact on productivity (4) Are there features of the tool that
affect the productivity of users—individually or as a team—
when using the tool? Are these positive effects or negative
effects?

Impact on maintainability (3) Are there features of the tool
that affect the maintainability of the software produced using
the tool—and are these positive effects or negative effects?

8.2 Internal organizational factors

This branch of the taxonomy is concerned with how tools
relate to the way an organization is structured managerially,
to any existing procedures or processes, and/or to any pre-
existing factors such as the culture of the organization or the
skill levels available.

123

328 J. Whittle et al.

8.2.1 Processes / adapting tools to processes or vice-versa

This category is concerned with to what extent process
change is necessitated by the introduction of a tool. For exam-
ple, does the tool mean that existing organizational processes
have to be changed to support the tool? Or is the tool flexible
enough that it can be easily adapted to fit an existing process?

Tailoring to a company’s existing processes (5) In a sense,
this is an “applied” version of the tool flexibility issue—how
possible is it to adapt the tool to existing processes? How
easy is it to leverage existing expertise?

Sustainability of tools over the long term (3) This sub-
category concerns the effort needed to maintain the use of a
tool within the organization over the long term. For example,
does it require significant ongoing maintenance efforts that
require internal resources? Or can the tool be bought once
and then used at no cost indefinitely? How easily can the tool
be adapted over time when the nature of the organization’s
business evolves?

Appropriating tools for purposes they were not designed for
(3) It is well known that users will use any tool in ways that
were unforeseen by the tool’s developers—are there exam-
ples of this happeningwithMDE tools andwhat is the impact
of this appropriation on a project/organization?

Issues of integrating multiple tools (6) Again, this is an
“applied” version of the “tool chaining” technical issue—
what are the consequences, from an organizational perspec-
tive, of adopting a particular tool when that tool has to be
integrated with a range of other tools?

Migrating to different tool versions (3) Howdoes the support
for migrations between tool versions affect an organization’s
processes? Is migration easily supported or does it require
an organization to introduce lengthy and complex internal
processes?

Offsetting gains: tools bring gains in one aspect but losses
in another (2) Are there aspects of a tool that appear to
bring gains in one part of an organization but incur losses
in another? An example would be code generation, which
could bring clear productivity gains to one team, but could
bring losses to another if the code generated is inefficient and
has to be adapted before deployment.

Whether maintenance is carried out at the code or model
level (3) What processes does an organization have in place
to enforce good practice, such as ensuring changes are made
at the model level rather than by modifying generated code?
Or are newprocesses required because an organizationmakes

changes to generated code which then have to be reflected
back in the model?

8.2.2 Organizational culture / impact of cultural attitudes
on tool application

This category concerns cultural issues related to an organi-
zation.

Tailoring to a company’s culture (4) However flexible a tool
is, it will impose new ways of working on any organization
adopting its use—does the tool offer any facilities to support
its tailoring to an organization’s existing culture? And if not,
what are the consequences?

Inertia: reluctance to try new things (1) Is there a culture of
reluctance in the organization to try new things? If so, does
the tool naturally exacerbate this problem or alleviate it?

Over-ambition: asking too much of tools (1) What do tools
promise? And are these promises realistic when they are con-
veyed to companies? Do companies believe that tools will
deliver more than they realistically can?

Low hanging fruit: using tools on easy problems first (6)
How do organizations apply the tool in practice, and to which
problems? Some companies, for example, have found suc-
cess in applying a tool to easily solved and well understood
problems. Other companies have tried to apply MDE tools
to very complex problems. Which is the best stragegy?

8.2.3 Skills / skills needed to apply tools

This category is concerned with how adoption/use of a
particular tool affects notions of “skills” in an adopting
company—and how they are acquired.

Trainingworkforce (11) What impact does adoption of a par-
ticular tool have on the training requirements of the adopting
company?

Availability of MDE skills in workforce (4) Is the choice of
tool affected by the availability of suitably experienced prac-
titioners for recruitment? Or is there a type of MDE skill that
transcends a particular tool? Alternatively, is tool choice a
result of available expertise?

8.3 External organizational factors

This branch of the taxonomy deals with issues concerning
external influences on theorganizationwhen they adoptMDE
tools and how those influences affect application of the tools.

123

A taxonomy of tool-related issues affecting the adoption of model-driven engineering 329

8.3.1 External influences /factors which an organization
has no direct control over

If a company has collaborators, suppliers or standards to
adhere to, how does the use of a tool affect those relation-
ships? Do external partners impose conditions that affect tool
use or does use of particular tool impose conditions on exter-
nal partners?

Impact of marketing issues (1) Does using the development
method du jour influence the adoption of any particular tool?
And what is that effect?

Impact of government/industry standards (4) Some software
is subject to extreme external verification. Does the use of a
particular tool (and associated methods) impact on this—in
a positive or negative way?

8.3.2 Commercial aspects / business considerations
impacting on tool use and application

This category is concerned with how tool choice/adoption
impacts how businesses make their commercial decisions—
whether advantages offset costs, for example.

Business models for applying MDE (3) Does the tool
(approach) support the use of existing business models? Or
do business models have to be adapted to adopt MDE tools?

Cost of tools (5) Is the cost of a commercial MDE tool an
impediment to the use of that tool—or otherwise? Does the
cost of a tool override other considerations?

How to select tools (2) How should potential users of a
tool make such a decision? Are there appropriate resources
available to inform decisions? For example, are there reports
available that compare capabilities of tools?

8.4 Social factors

This branch of the taxonomy deals specifically with social
issues such as trust and control regarding tool selection and
use.

8.4.1 Control / impact of tools on whether stakeholders feel
in control of their project

This category is particularly concerned with the relationship
that tool users have with stakeholders such as tool vendors.

Ways of interacting with tool vendors (2) What opportuni-
ties, if any, are there for interacting with the tool vendor and
how do these relate to how open the tools are? For example,

will the vendor adapt the tool for a particular organization?
If so, does this incur a cost? Or is the vendor adamant that
tools cannot be adapted for particular situations?

Subverting tools: workarounds needed to apply them (1) Is
it necessary to create specific work-arounds to allow tools to
match more closely the working practices of the user? For
example, these can often arise because lack of flexibility of
the tool vendor and can lead to a lack of trust in the tool.

8.4.2 Trust / impact of trust on tool use and adoption

This category is concerned with all aspects of how trust
affects tool use and attitudes toward tool adoption.

Trust of vendors (4) How is trust in the tool vendor estab-
lished (or lost)? For example, what is the vendor’s reputation
when it comes to matters such as cost, support, updates, etc?

Engineers’ trust of tools (6) Are there aspects of the tools
that impact on the specific engineering aspects of their use?
For example, is it possible to establish trust in the quality of
the code that is generated or the robustness and accuracy of
model checking/analysis?

Impact of personal career needs (1) Does the tool meet or
hinder the expectations of individual users? For example, are
developers unsure about using obscure tools that do not offer
them skills that might have broader appeal—and therefore
career opportunities?

8.4.3 Open community

This category is concerned with the availability or otherwise
of an open community of tools users that provide peer support
in the use of tools.

Developer forums Do developer forums exist to support
users of the tool by providing examples, advice and assis-
tance?

References

1. Aranda, J., Damian,D., Borici,A.: Transition tomodel-driven engi-
neering - what is revolutionary, what remains the same? In: France,
R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) Model Driven
Engineering Languages and Systems, Lecture Notes in Computer
Science, vol. 7590, pp. 692–708. Springer, Berlin, Heidelberg
(2012)

2. Brooks Jr, F.P.: The Mythical Man-Month: Essays on Software
Engineering, 2nd edn. Addison-Wesley, Boston (1995)

3. Brown, B.: The artful use of groupware: an ethnographic study of
how lotus notes is used in practice. Behav. Info. Technol. 19(4),
263–273 (1990)

123

330 J. Whittle et al.

4. Button, G., Sharrock, W.: Project work: the organisation of collab-
orative design and development in software engineering. Comput.
Supported Coop. Work (CSCW) 5(4), 369–386 (1996)

5. Cabot, J., Teniente, E.: ECMDA-FA. Lecture notes in computer
science. In: Rensink, A., Warmer, J. (eds.) Constraint Support in
MDA Tools: A Survey. Springer, Heidelberg (2006)

6. Chalmers, M.: A historical view of context. Comput. Supported
Coop. Work 13(3), 223–247 (2004)

7. Clark, T., Muller, P.A.: Exploiting model driven technology: a tale
of two startups. Softw. Syst. Model. 11(4), 481–493 (2012)

8. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software
design process for large systems. Commun. ACM 31(11), 1268–
1287 (1988)

9. de SousaSaraiva, J., da Silva,A.R.: Evaluation ofMDE tools froma
metamodelingperspective. In: Siau,K., Erickson, J. (eds.) Principal
Advancements in Database Management Technologies, pp. 105–
131. IGI Global, Hershey (2010)

10. Den Haan, J.: 8 reasons why model-driven approaches (will) fail.
http://www.infoq.com/articles/8-reasons-why-MDE-fails (2008)

11. France, R.B., Bieman, J.M., Mandalaparty, S.P., Cheng,
B.H.C., Jensen, A.C.: Repository for model driven development
(ReMoDD). In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) 34th
International Conference on Software Engineering, ICSE 2012,
June 2-9, 2012, Zurich, Switzerland, IEEE (2012) 1471–1472

12. France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.): Model
Driven Engineering Languages and Systems - 15th International
Conference, MODELS 2012, Innsbruck, Austria, September 30-
October 5 2012. Lecture Notes in Computer Science, vol. 7590.
Springer, Berlin, Heidelberg (2012)

13. France, R.B., Rumpe, B.: Model-driven development of complex
software: A research roadmap. In: Briand, L.C., Wolf, A.L. (eds.)
International Conference on Software Engineering, ICSE 2007,
Track on the Future of Software Engineering, FOSE 2007, May
23–25, 2007, Minneapolis, MN, USA. (2007) 37–54

14. Grudin, J.: Why CSCW applications fail: problems in the design
and evaluation of organization of organizational interfaces. In:
Greif, I. (ed.) CSCW, ACM (1988) 65–84

15. Holsti, O.R.: Content Analysis for the Social Sciences and Human-
ities. Addison-Wesley Publishing Company, Reading (1969)

16. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engi-
neering practices in industry. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu, HI, USA, 21–28 May, 2011, ACM (2011) 633–642

17. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.:
Empirical assessment of MDE in industry. In: Proceedings of
the 33rd International Conference on Software Engineering, ICSE
2011,Waikiki, Honolulu,HI,USA, 21–28May, 2011,ACM(2011)
471–480

18. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model
DrivenArchitecture: Practice and Promise. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2003)

19. Kuhn, A., Murphy, G.C., Thompson, C.A.: An exploratory study
of forces and frictions affecting large-scale model-driven devel-
opment, Model Driven Engineering Languages and Systems,
Spronger, (2012) 352–367

20. Lehman, M.M.: Process Models, Process Programs, Programming
Support. In: Proceedings of the 9th International Conference on
Software Engineering. IEEE Computer Society Press, Los Alami-
tos. (1987) 14–16

21. MediaDev Survey: Wide Gap Amongst Developers - Percep-
tion of the Importance of UML Tools, DeveloperEye Study
Reveals. http://www.prweb.com/releases/2005/04/prweb231386.
htm (2005). Accessed 19 Sep 2014

22. Merisalo-Rantanen, H., Tuunanen, T., Rossi, M.: Is extreme pro-
gramming just old wine in new bottles: a comparison of two cases.
J. Database Manag. 16(4), 41–61 (2005)

23. Paige, R.F., Varró, D.: Lessons learned from buildingmodel-driven
development tools. Softw. Syst. Model. 11(4), 527–539 (2012)

24. Perez-Medina, J.L., Dupuy-Chessa, S., Front, A.: A survey of
model driven engineering tools for user interface design. In:Winck-
ler, M., Johnson, H., Palanque, P.A. (eds.) TAMODIA. Volume
4849 of Lecture Notes in Computer Science. Springer, Heidelberg
(2007)

25. Robinson, H., Sharp, H.: The social side of technical practices. In:
Baumeister, H., Marchesi, M., Holcombe, M. (eds.) XP. Volume
3556ofLectureNotes inComputer Science, pp. 100–108. Springer,
Heidelberg (2005)

26. Selic, B.: The pragmatics of model-driven development. IEEE
Softw. 20(5), 19–25 (2003)

27. Stahl, T., Völter,M., Bettin, J., Haase, A., Helsen, S.:Model-Driven
Software Development-Technology, Engineering, Management.
Pitman, Boston (2006)

28. Staron,M.: Adoptingmodel driven software development in indus-
try – a case study at two companies. In: Nierstrasz, O., Whittle,
J., Harel, D., Reggio, G. (eds.) In: Model Driven Engineering
Languages and Systems, 9th International Conference, MODELS
2006, Genova, Italy, 1–6 October 2006. Volume 4199 of Lecture
Notes in Computer Science., Springer (2006) 57–72

29. Taylor, R.N., Gall, H., Medvidovic, N., (eds.) In: Proceedings of
the 33rd International Conference on Software Engineering, ICSE
2011, Waikiki, Honolulu, May 21–28, 2011, ACM (2011)

30. Tomassetti, F., Torchiano,M., Tiso,A., Ricca, F., Reggio,G.:Matu-
rity of software modelling and model driven engineering: A survey
in the Italian industry. In: Baldassarre, M.T., Genero, M., Mendes,
E., Piattini, M. (eds.) In: 16th International Conference on Evalua-
tion andAssessment in Software Engineering, EASE 2012, Ciudad
Real, Spain, 14–15 May 2012, IET - The Institute of Engineering
and Technology (2012) 91–100

Jon Whittle is professor and
Head of the School of Comput-
ing and Communications at Lan-
caster University. His research
interests are in the empiri-
cal assessment of model-driven
engineering, model-driven engi-
neering tools, and model-driven
engineering methodologies.

John Hutchinson is a senior
research associate in the School
of Computing and Communi-
cations at Lancaster University
in the UK. His main research
interests are in software engi-
neering and software engineer-
ing processes. He received his
Ph.D from Lancaster University
in 2012 for work on the assess-
ment of model driven develop-
ment in industry.

123

http://www.infoq.com/articles/8-reasons-why-MDE-fails
http://www.prweb.com/releases/2005/04/prweb231386.htm
http://www.prweb.com/releases/2005/04/prweb231386.htm

A taxonomy of tool-related issues affecting the adoption of model-driven engineering 331

Mark Rouncefield is a senior
lecturer in the School ofComput-
ing and Communications, Lan-
caster University. His research
interests are in computer-
supported cooperative work and
involve the study of various
aspects of the empirical study
of work, organization, human
factors and interactive computer
systems design. His empirical
studies of work and technol-
ogy have contributed to critical
debates concerning the relation-
ship between social and technical
aspects of IT systems design and
use.

Håkan Burden is a senior
researcher at Viktoria Swedish
ICT. He received his Ph.D in
Computer Science in 2014 at
theDepartment ofComputer Sci-
ence and Engineering, Chalmers
University of Technology and
University of Gothenburg. Cur-
rent research focuses on facil-
itating innovation within ICT
and embedded systems. Exam-
ples of projects include devel-
oping business models and tools
for enabling the participation of
third-party developers in auto-

motive software development as well as student-industry collaborations
involving safe and connected transportation.

Rogardt Heldal is currently an
associate professor of Software
Engineering at the Department
of Computer Science and Engi-
neering, Chalmers University of
Technology. He is a member of
large centers focusing onmanag-
ing new innovations in industry,
e.g., the vehicles ICT Arena and
the Software Center and respon-
sible for research projects with
partners from large international
companies, such Ericsson, Volvo
car andVolvo truck.He has broad
interests in software engineering
with projects focusing on, for

example, development and use of embedded software systems, soft-
ware specifications, model-driven development, and empirical studies
on the use of model-driven engineering.

123

	A taxonomy of tool-related issues affecting the adoption of model-driven engineering
	Abstract
	1 Introduction
	2 Context and related work
	3 Study method
	4 A taxonomy of MDE tool considerations
	4.1 Technical factors
	4.1.1 Category descriptions
	4.1.2 Observations

	4.2 Internal organizational factors
	4.2.1 Category descriptions
	4.2.2 Observations

	4.3 External organizational factors
	4.3.1 Category descriptions
	4.3.2 Observations

	4.4 Social factors
	4.4.1 Category descriptions
	4.4.2 Observations

	5 A study of MDE practice in two companies
	5.1 Modeling in Volvo cars and Ericsson AB
	5.2 Technical factors
	5.3 Internal organizational factors
	5.4 External organizational factors
	5.5 Social factors
	5.6 Taxonomy validation

	6 Understanding the taxonomy's social and organizational context
	7 Conclusions and arising research challenges
	7.1 Match tools to people, not the other way around
	7.2 Finding the right problem is crucial
	7.3 More focus on processes, less on tools
	7.4 Open MDE communities

	Acknowledgements
	8 Appendix: Extended description of sub-categories in the taxonomy
	8.1 Technical factors (Table 2)
	8.1.1 Tool features / specific functionalities offered in tools
	8.1.2 Practical applicability / challenges of applying tools in practice
	8.1.3 Complexity / challenges brought on by excessive complexity in tools
	8.1.4 Human factors / consideration of tool users
	8.1.5 Theory / theory underpinning tools
	8.1.6 Impact on development / impact of tools on technical success criteria

	8.2 Internal organizational factors
	8.2.1 Processes / adapting tools to processes or vice-versa
	8.2.2 Organizational culture / impact of cultural attitudes on tool application
	8.2.3 Skills / skills needed to apply tools

	8.3 External organizational factors
	8.3.1 External influences /factors which an organization has no direct control over
	8.3.2 Commercial aspects / business considerations impacting on tool use and application

	8.4 Social factors
	8.4.1 Control / impact of tools on whether stakeholders feel in control of their project
	8.4.2 Trust / impact of trust on tool use and adoption
	8.4.3 Open community

	References

