
074 0 -74 5 9 /14 / $ 31. 0 0 © 2 014 I E E E MAY/JUNE 2014 | IEEE SOFTWARE 79

The State of
Practice in
Model-Driven
Engineering
Jon Whittle, John Hutchinson, and Mark Rounce� eld,
Lancaster University

// Despite lively debate over the past decade

on the bene� ts and drawbacks of model-

driven engineering (MDE), there have

been few industry-wide studies of MDE in

practice. A new study that surveyed 450

MDE practitioners and performed in-depth

interviews with 22 more suggests that

although MDE might be more widespread than

commonly believed, developers rarely use it

to generate whole systems. Rather, they apply

MDE to develop key parts of a system. //

IN 2001, the Object Management
Group published the fi rst version of
its model-driven architecture (MDA)
specifi cation. MDA emphasized the
role of models as primary artifacts in

software development and, in partic-
ular, argued that models should be
precise enough to support automated
model transformations between life-
cycle phases. This wasn’t a new idea,

of course, but it did lead to a resur-
gence of activity in the area as well
as hotly contested debates between
proponents and detractors of model-
driven approaches.1

Many years later, there remains
a lack of clarity on whether model-
driven engineering (MDE) is a good
way to develop software (see the
“What Is MDE, Anyway?” sidebar).
Some companies have reported great
success with it, whereas others have
failed horribly. What’s missing is an
industry-wide, independent study of
MDE in practice, highlighting the
factors that lead to success or fail-
ure. Although there have been a few
prior surveys of modeling in indus-
try, they’ve focused on only one as-
pect of modeling, such as the use of
UML2 or formal models.3

In this article, we report on a new
study of MDE practice that cov-
ers a broad range of experiences. In
particular, we focus on identifying
MDE’s success and failure factors.
We surveyed 450 MDE practitio-
ners and interviewed 22 more from
17 different companies represent-
ing 9 different industrial sectors (see
the “Methods” sidebar for more in-
formation on the particulars). The
study refl ects a wide range of ma-
turity levels with MDE: question-
naire respondents were equally split
among those in early exploration
phases, those carrying out their fi rst
MDE project, and those with many
years’ experience with MDE. Inter-
viewees were typically very experi-
enced with MDE.

We discovered several surprises
about the way that MDE is being
used in industry, and we learned a
lot about how companies can tip the
odds in their favor when adopting
it. Many of the lessons point to the
fact that social and organizational

FEATURE: SOFTWARE DESIGN

s3whi.indd 79 4/4/14 2:29 PM

80 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE DESIGN

 factors are at least as important in
determining success as technical
ones. We describe elsewhere the gory
details of the research approach.4,5
In this article, we focus on key take-
home messages for those who have
adopted MDE or who are thinking
of adopting it.

MDE Use Is Widespread
Some claim that the application of
MDE to software engineering is
minimal. MDE, they argue, is only
used by specialists in niche mar-
kets. Our data refutes such claims,
however. We found that some
form of MDE is practiced widely,
across a diverse range of indus-
tries (including automotive, bank-
ing, printing, Web applications,
and so on). The 450 questionnaire

respondents, for example, were
employed in a range of different
roles (36 percent developers, 37
percent project managers) and rep-
resented a good spread of compa-
nies with respect to the number
of people involved in development
(52 percent at fewer than 100, and
19 percent at more than 1,000).
Our interviews back up this find-
ing and illustrate that MDE use
is in fact widespread and used in
many different ways, ranging from
industry- wide efforts to define pre-
cise models for an entire applica-
tion domain to very restricted,
limited uses of MDE in the genera-
tion of code for a single applica-
tion family in a single company.

Perhaps surprisingly, the major-
ity of MDE examples in our study

followed domain-specific modeling
paradigms: the companies who suc-
cessfully applied MDE largely did
so by creating or using languages
specifically developed for their do-
main, rather than using general-
purpose languages such as UML.
Interview data shows that it’s com-
mon to develop small domain-spe-
cific languages (DSLs) for narrow,
well-understood domains. In con-
trast to perceived wisdom—that
significant effort should be em-
ployed in developing models that
cover broad domains and capture
knowledge in that domain—prac-
tical application of domain mod-
eling is “quick and dirty,” where
DSLs (and accompanying genera-
tors) can be developed sometimes
in as little as two weeks. There’s
also widespread use of mini-DSLs,
even within a single project. A clear
challenge, then, is how to integrate
multiple DSLs. Our participants
tended to use them in combination
with UML—in some cases, the DSL
was a UML profile. Whatever the
context, however, modeling lan-
guages requires significant custom-
ization before the languages can be
applied in practice.

Our findings also lead us to be-
lieve that most successful MDE
practice is driven from the ground
up. MDE efforts imposed by high-
level management typically strug-
gle; interviewees claimed that top-
down management mandates fail if
they don’t have the buy-in of devel-
opers first. Consequently, there are
fewer examples of the use of MDE
to generate whole systems. Rather
than following heavyweight top-
down methodologies, successful
MDE practitioners use MDE as and
when it’s appropriate and combine
it with other methods in a very flex-
ible way.

WHAT IS MDE, ANYWAY?
In software engineering, a model is an abstraction of a running system. Model-
ing is undoubtedly a core activity in software development. The precise form of
modeling varies widely—from whiteboard sketches to precise models that sup-
port code generation—but modeling in some form is a fundamental part of un-
derstanding, communicating, and analyzing software-intensive systems.

Several terms have been used to describe approaches that focus on mod-
els. We follow David Ameller1 and others in defining model-driven development
(MDD) as a subset of MDE: MDD focuses on the generation of implementations
from models. In contrast, model-driven engineering (MDE) includes other uses
of precise models to support the development process, such as model-driven
reverse engineering and model-driven evolution. In particular, model-driven ar-
chitecture (MDA) is a particular form of MDD that uses the Object Management
Group’s (OMG) standards.

Participants in our study used a variety of MDE approaches. The majority of
our interviewees focused on code generation from models (MDD), but a signifi-
cant number used models in some other way consistent with the vision of MDE.
Only two interviewees claimed to be using MDA.

Reference
 1. D. Ameller, “SAD: Systematic Architecture Design, A Semi-Automatic Method,” master’s

thesis, Universitat Politècnica de Catalunya, 2010.

s3whi.indd 80 4/4/14 2:29 PM

 MAY/JUNE 2014 | IEEE SOFTWARE 81

Code Generation
Doesn’t Drive MDE
Surprisingly, it appears from our
data that code generation isn’t the
key driver for adopting MDE. Al-
though MDE is often considered to
be synonymous with code genera-
tion (or at least model-driven devel-
opment) and code generation itself
is perceived to bring benefits such as
productivity, reports of productivity
gains vary widely (from a 27 percent
loss to an 800 percent gain6). Most
companies seem to experience pro-
ductivity increases of between 20 to
30 percent.

Interestingly, our data suggests
that such increases aren’t considered
significant enough to drive an MDE
adoption effort: MDE brings with it
increased training costs and substan-
tial organizational change that eas-
ily offset 20 to 30 percent of produc-
tivity increases. This doesn’t mean,
however, that companies shouldn’t
adopt MDE. Rather, the interview
data illustrates time and again that,
although companies use code gen-
eration, they find other benefits to
MDE that are much more important
than relatively minor productivity
gains. In this sense, therefore, code
generation is a red herring when it
comes to describing MDE, and our
results suggest a re-interpretation of
how MDE is envisaged, marketed,
and understood.

The Real Benefits
of MDE Are Holistic
So, if the real benefits of MDE aren’t
to be found in code generation, then
where are they? It turns out that the
main advantages are in the support
that MDE provides in documenting
a good software architecture.

Most would agree that a clearly de-
scribed software architecture is one of
the key ingredients for successful soft-

ware development. However, software
engineers lack the skills, know-how,
or time to invest in expensive architec-
ture definition efforts and, as a result,
although the value of architecture def-
inition is usually accepted philosophi-
cally, it often isn’t practiced.

Unanimously, our interviewees
argue that MDE makes it easier to
define explicit architectures, espe-
cially when MDE is a ground-up
effort. When precise modeling is
gradually introduced into an orga-
nization, developers find themselves
recognizing similar code fragments
that they can then abstract into a
DSL and write a generator for. In ef-
fect, they’re incrementally building
up an architecture description. The
rigor that precise modeling imposes
on developers forces them to develop

an explicit architecture description,
but in a way that doesn’t impose a
heavyweight and lengthy architec-
ture definition process.

One company in our study used a
variety of XML-based DSLs to gen-
erate large parts of a major, com-
plex system. Over time, the develop-
ers began to realize that they were
building up an architecture by using
a nonstandard form of separation
of concerns: they found themselves
looking for parts of the system to
automatically generate (the simpler
parts) and parts that experienced
software developers needed to write
(the complex parts). This form of
separation of concerns—a division
of simple and complex—brought
about a much deeper understand-
ing of the system’s architecture and

METHODS
We used an eclectic set of research techniques, ranging from a widely dissemi-
nated questionnaire to semistructured interviews with industry professionals to on-
site observational studies of model-driven engineering (MDE) practitioners at work.

The questionnaire was implemented online using SurveyMonkey and com-
prised mostly closed questions, using both multiple choice and Likert scales for
answers. In the questionnaire’s preamble, we stressed that our target commu-
nity was industrial practitioners with experience in using MDE in industry. The
questionnaire was promoted through software engineering mailing lists and on
the OMG website (www.omg.org).

We also carried out 22 semistructured, in-depth interviews, mostly by tele-
phone. The majority were generally positive about MDE, although we did identify
a smaller number who had tried MDE but failed. The interviews lasted 45 to
60 minutes and included questions on the approach to MDE, the motivation for
adopting it, the reasons for success/failure, and lessons learned. Interviews were
recorded and transcribed; this produced more than 150,000 words of written
data describing MDE experiences.

More details about the study methodology appear elsewhere.1

Reference
 1. J. Hutchinson et al., “Empirical Assessment of MDE in Industry,” Proc. 33rd Int’l Conf.

Software Eng. (ICSE 2011), 2011, pp. 471–480.

s3whi.indd 81 4/4/14 2:29 PM

82 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE DESIGN

arose not because of a managerial
edict but because of the way that
MDE evolved in practice.

Success Requires
a Business Driver
Even in companies that recognize
the benefits of MDE, adoption can
take a long time, even when com-
pared to the adoption of other ap-
proaches such as agile. Our data il-
lustrates that one of the main factors

for this inertia is that MDE is usu-
ally marketed as a technology that
can do the same things faster and
cheaper. However, this isn’t usually
enough motivation for companies
to risk adopting it; rather, compa-
nies that adopt MDE do so because
it can enable business that otherwise
wouldn’t be possible.

An illustrative example is the ex-
perience of a well-known, global
printer production company that
consciously started using MDE 10
years ago. At that time, software was
its bottleneck: a widely held percep-
tion promoted software as a limiting
factor in getting a new generation of
printers to market. However, after 10
years of evolving its use of MDE, the
company now reports that software
is no longer the problem. In other
words, MDE enabled the company to
be what it always should have been—
a company focusing on printers, not
software. This finding suggests a re-
thinking of the way we market MDE:
not as a way to do things faster, but
as a way to do new things.

The Psychology of MDE
In addition to offering these kinds
of interesting insights into why some
companies adopt MDE successfully
and others don’t, our data sheds
light on the psychological and orga-
nizational aspects of MDE.

A phenomenon observed in other
subfields of software engineering is
that there can be significant indi-
vidual differences between certain
types of developers—for example,

between novice and expert program-
mers.7,8 We’ve observed similar ef-
fects with MDE.

First, it appears that software ar-
chitects generally react well to MDE.
An MDE project uses code genera-
tors that encode architectural rules,
constraints, and patterns that soft-
ware architects have formulated.
MDE therefore puts more control
into the hands of architects, who can
now easily enforce their design deci-
sions across a development team.

Second, certain types of develop-
ers can be very resistant to MDE.
This applies both to code gurus, who
are traditionally asked to solve hard
technical challenges, and hobbyist
developers, the individuals who like
to play with new coding technolo-
gies even outside of work hours. In
the former case, the resistance to
MDE is again an issue of control:
these individuals see MDE as threat-
ening to reduce their importance to
the company. In the latter case, hob-
byist developers perceive that MDE
will constrain their creativity be-

cause it automates many tasks.
We’ve observed similar findings

in management. In particular, it ap-
pears that middle managers can be a
bottleneck in adopting MDE. These
managers are subordinate to senior
managers but above operational
staff. They typically have little stra-
tegic responsibility and therefore
might not see the future vision that
MDE can bring. Instead, their main
responsibility is to track schedules
and milestones, which makes them
naturally risk-averse and resistant to
new technologies.

MDE can offer a fundamental
shift in global software develop-
ment. Numerous companies re-
ported that they reduced their off-
shoring activities as a result of MDE
because they’re now able to auto-
mate onshore tasks that were previ-
ously outsourced.

There appears to be some dis-
agreement in industry as to whether
everyone is capable of thinking ab-
stractly. One company, for example,
reported that the major bottleneck
in its use of MDE is that it had to
retrain hundreds of software coders,
many of whom were unable to make
the jump to abstract thinking. Other
companies, in contrast, reported
that only a very small percentage of
coders are unable to think abstractly
(a figure of 3 percent was quoted,
but this is in no way scientific). Al-
though this issue clearly relates to a
company’s level of MDE maturity,
the results also suggest that we have
only a very limited understanding of
abstract thinking in software devel-
opment—an observation made by
others as well.9

There’s some evidence that the
MDE guru needs to have software
development (and abstraction) skills
as well as an in-depth understanding
of the domain (or domains). Because

Companies that target a particular domain
are more likely to use MDE than companies

that develop generic software.

s3whi.indd 82 4/4/14 2:29 PM

 MAY/JUNE 2014 | IEEE SOFTWARE 83

most MDE efforts are highly do-
main-specific, domain knowledge
is crucial. However, success is less
likely when a team has a division of
skills between domain and MDE ex-
perts. Chances of success increase
if team members have both sets of
skills—that is, individuals within the
team are able to develop metamodels
of and code generators for the do-
main, as well as have the ability to
reason about the domain. This leads
to fewer misunderstandings and can
speed progress.

Organizational Factors
As with other software engineering
methods, there are interesting rela-
tionships between the structure and
business of an organization and the
likelihood that MDE is appropriate
or will be a success.

Our data resoundingly suggests
that MDE isn’t appropriate for ev-
ery type of organization (at least
not yet). Interestingly, companies
that target a particular domain—
automotive, printer interfaces, fi-
nancial applications—are more
likely to use MDE than companies
that develop generic software, such
as consultancies. The former al-
ready employ domain experts who
are probably already creating mod-
els. Although they might create
these models as sketches or, in some
cases, more detailed blueprints,
they might only do this informally
using something like Power Point.
As one of our interviewees stated,
it’s easier to move from these infor-
mal models to precise, computer-
readable models than starting mod-
eling from scratch.

In contrast, developers writing
generic software might struggle to
see the relevance of modeling and,
in fact, modeling might not be ap-
propriate for the kind of software

they’re developing. This point has
been made no more forcefully than
when a large, global software con-
sultancy noted that although it had
used MDE successfully many times
with clients working in specific do-
mains, it considered it too unlikely
to succeed in-house.

MDE seems to question some
of the assumptions about how or-
ganizations evaluate individuals
and teams. For instance, archi-
tects have reported to us that they
sometimes artificially increase the
complexity of their models be-
cause their managers don’t un-
derstand that a simple model is
better; rather, their managers per-
ceive simple models as not properly
thought out.

The way in which organizations
hire new staff also doesn’t fit with
the MDE way of thinking. Typi-
cally, developers are hired based on
what technologies they’re familiar
with rather than what domains they
have knowledge of. But the MDE
guru needs an in-depth understand-
ing of one or more domains to
make the technique succeed.

Tips of the Trade
Many of our results point to specific
guidelines that practitioners should

be aware of. We offer here our top
five tips for success with MDE, based
on the empirical data we gathered:

• Keep domains tight and nar-
row. In agreement with other

sources,10 we found that MDE
works best when used to auto-
mate software engineering tasks
in very narrow, tight domains.
Rather than attempting to for-
malize a wide-ranging domain
(such as financial applications),
practitioners should write small,
easy-to-maintain DSLs and
code generators. In practice,
however, multiple DSLs are
usually required, which brings
its own challenges in terms of
integration.

• Put MDE on the critical path.
Perhaps counterintuitively, suc-
cessful MDE practitioners argue
that MDE should be tried on
projects that can’t fail—avoid
the temptation to try out MDE
on side projects that won’t
have sufficient resources or the
best staff. MDE should still be
introduced incrementally, but
each increment needs to add real
value to the organization for it
to succeed.

• Be careful about gains offset
elsewhere. A company might not
realize that gains in productivity
achieved through code genera-
tion are lost in other branches
of the company. A poignant
example is when certifying code

for use in government informa-
tion systems: one case study
showed that because of the lack
of readability and inefficiency of
code generated by commercial
off-the-shelf generators, code

Typically, developers are hired based on
what technologies they’re familiar with
rather than what domains they know.

s3whi.indd 83 4/4/14 2:29 PM

84 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE DESIGN

certification costs rose by a fac-
tor of eight. A second example
is a company that mandated the
use of a commercial MDE tool.
However, the developers couldn’t
get the tool to fit their processes,
so they hacked it, messed with
the generated code, and circum-
vented it when they had to.

• Most projects fail at scale-up.
MDE works best when driven
from the ground-up, but there
comes a point when an orga-
nization needs to unite such
grassroots efforts and effect
organizational change. Not
surprisingly, this is where prob-
lems start to arise, so managers
should be careful to allocate ap-
propriate resources during this
transition phase.

• Don’t obsess about code gen-
eration. MDE is often sold as
a code generation solution. As
we’ve seen, however, its real
benefits don’t necessarily lie in
code generation. Companies
would therefore be wise to con-
sider the more holistic benefits
that MDE can bring rather
than focusing only on code
generation.

As you can see, these top tips
require some careful judgments to
be made about the application of
MDE; plenty of evaluation into how
things are progressing seems to be
another important part of success-
ful adoption.

Training in MDE
Our data also suggests implica-
tions for the way that modeling is
taught. A typical university course
in software engineering teaches in
a top-down fashion, in which re-
quirements models are first devel-
oped and then iteratively refined
into architecture, design, code,

tests, and so on. Students often
have a great deal of difficulty pro-
ceeding in this manner because it
requires them to formulate an ab-
stract understanding of the system
under development before the con-
crete details are understood.

However, in our study, we ob-
served that attempts to introduce
MDE into a company in this kind
of top-down, organization-wide
manner are fraught with difficulty.
Those companies that do succeed
invariably do so by driving MDE
adoption from the grassroots: small
teams of developers try out aspects
of MDE, leading them to recog-
nize reusable assets, and eventually
MDE propagates to the organiza-
tion as a whole. This way of work-
ing suggests that developers find it
easier to come to grips with MDE
when refactoring existing assets
from the ground-up rather than in
trying to abstract from above. This
highlights a mismatch between the
way MDE works in practice and the
way we teach it.

In addition, it appears that MDE
developers need both compiler de-
velopment skills and abstraction

skills. Unfortunately, these skillsets
are usually taught in distinct parts
of a computer science curriculum
with little connection between them.
Based on our evidence, however, we
would argue that abstraction and
compilation/optimization techniques
ought to be taught together, in an
integrated fashion. Such an idea
would significantly alter the way
that software engineering is taught
and would skill-up a new genera-
tion of developers capable of both
abstracting in a problem space and
automating the transition to a solu-
tion space.11

O ur study is the first wide-
ranging industry study of
MDE practice. It uncovered

many companies who have had great
success with MDE and some of the
reasons why. It has also uncovered
companies who have tried to apply
MDE but gave up. Many of our find-
ings are general development lessons
and consistent with findings from
other studies (for example, those on
formal methods use3). Clearly, how-
ever, there are MDE-specific lessons,
too, such as those that deal with code
generation or abstraction.

Perhaps the biggest eye-opener
was the realization that state-of-
the-art modeling techniques and
tools do a poor job of supporting
software development activities.
We found no consensus on model-
ing languages or tools—developers
cited more than 40 modeling lan-
guages and 100 tools as “regularly
used” in our survey. A recent study2
surveyed 50 software designers and
found that these designers either
didn’t use UML at all or used it only
selectively and informally.

These studies highlight that the
fundamentals of modeling—how

These studies highlight that the
fundamentals of modeling aren’t well

reflected in current modeling approaches.

s3whi.indd 84 4/4/14 2:29 PM

MAY/JUNE 2014 | IEEE SOFTWARE 85

designers “do” abstraction, how
engineers reason about a system in
abstract terms, how organizations
work with abstract concepts—aren’t
well refl ected in current modeling
approaches. Indeed, the vast major-
ity of modeling approaches—both
industrial and academic—are de-
veloped without an appreciation for
how people and organizations work.
UML 2.0, for example, a major re-
vision of the UML standard, didn’t
refl ect the literature on empirical
studies of software modeling or soft-
ware design studies. Consequently,
current approaches force develop-
ers and organizations to operate in a
way that fi ts the approach instead of
making the approach fi t the people.

We end, then, by arguing for a
concerted effort to develop model-
ing approaches that better refl ect
the way that developers and orga-
nizations handle abstraction and
complex problem solving. We be-
lieve the only way to achieve this
is to unite three areas of study—
software modeling, software design
studies, and studies of organiza-
tions—which, to date, have yielded
signifi cant results within their own
spheres of infl uence, but that have
seen relatively little crossover. To
date, there have been too few at-
tempts to feed an understanding
of developers’ and organizations’
practices into the tools and tech-
niques that are supposed to support
them—addressing this gap could
solve all kinds of problems and
make modeling even more widely
applicable than it currently is.

References
 1. D.S. Frankel and J. Parodi, eds., The

MDA Journal: Model-Driven Architecture
Straight from the Masters, Meghan Kiffer,
2004.

 2. M. Petre, “UML in Practice,” Proc. 35th
Int’l Conf. Software Eng. (ICSE 13), 2013,
pp. 722–731.

 3. J. Woodcock et al., “Formal Methods:
Practice and Experience,” ACM Comput-
ing Surveys, vol. 41, no. 4, 2009, pp. 1–36.

 4. J. Hutchinson et al., “Empirical Assess-
ment of MDE in Industry,” Proc. 33rd Int’l
Conf. Software Eng. (ICSE 11), 2011,
pp. 471–480.

 5. J. Hutchinson, M. Rouncefi eld, and J.
Whittle, “Model Driven Engineering
Practices in Industry,” Proc. 33rd Int’l
Conf. Software Eng. (ICSE 11), 2011,
pp. 633–642.

 6. P. Mohagheghi and V. Dehlen, “Where Is
the Proof?—A Review of Experiences from
Applying MDE in Industry,” Proc. 4th Eu-
ropean Conf. Model Driven Architecture
Foundations and Applications, (ECMDA
08), 2008, pp. 432–443.

 7. E. Soloway and J.C. Spohrer, eds., Study-
ing the Novice Programmer, Psychology
Press, 1988.

 8. B. Curtis, “Fifteen Years of Psychology in
Software Engineering: Individual Differ-
ences and Cognitive Science,” Proc. 7th

Int’l Conf. Software Eng. (ICSE 84), 1984,
pp. 97–106.

 9. J. Kramer, “Is Abstraction the Key to
Computing?,” Comm. ACM, Apr. 2007,
pp. 36–42.

 10. S. Kelly and J.-P. Tolvanen, Domain-
Specifi c Modeling: Enabling Full Code
Generation, Wiley, 2008.

 11. J. Whittle and J. Hutchinson, “Mismatches
between Industry Practice and Teaching
of Model-Driven Software Development,”
Models in Software Eng., LNCS 7167,
Springer, 2012, pp. 40–47.

JON WHITTLE is Chair of Software Engineering in the School
of Computing and Communications at Lancaster University. His
research interests include software modeling, empirical soft-
ware engineering, and social computing. Whittle received a PhD
in artifi cial intelligence from the University of Edinburgh. Contact
him at j.n.whittle@lancaster.ac.uk.

JOHN HUTCHINSON is a senior research associate in the
School of Computing and Communications at Lancaster Univer-
sity. His research interests are in software modeling, software
process evaluation, and computational linguistics. Hutchinson
received a PhD in computer science from Lancaster University.
Contact him at j.hutchinson@lancaster.ac.uk.

MARK ROUNCEFIELD is a senior lecturer in the School of
Computing and Communications at Lancaster University, and a
former Microsoft European Research Fellow. His research inter-
ests involve the empirical study of work, organization, human
factors, and interactive computer systems design. Rouncefi eld
received a PhD in sociology from Lancaster University. Contact
him at m.rouncefi eld@lancaster.ac.uk.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

s3whi.indd 85 4/4/14 2:29 PM

