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Introduction: 
 
This working paper describes the developing specification for ReMoDeL DBQ, a high-level 
database design language.  It serves to outline some suggested syntax and its possible uses in 
data design, query design, data transformation and query optimisation.  Like other modelling 
languages in the ReMoDeL stable, DBQ directly encodes the abstract syntax tree using a 
domain-specific dialect of XML.  However, this document focuses as much on the processes 
that will manipulate DBQ, as on the language itself, as a way of motivating the different 
suggested constructions.  These are therefore introduced in a bottom-up fashion, for ease of 
comprehension. 

Basic Data Types: 
 
The atomic data type in DBQ is called a Basic type.  We assume that a number of basic types 
could exist, even types which are considered structured types in other contexts, like Date, 
Time or Money.  Examples include: 
 
<Basic name=“Integer” /> 
<Basic name=“Natural” /> 
<Basic name=“String” /> 

Record Types: 
 
The conceptual entities of a database are called Records.  These may only contain fields of 
Basic data types (otherwise some kind of relationship is required between Records). 
 
<Record name=“Person”> 
  <Field name=“forename” type=“String” size=“30” /> 
  <Field name=“surname” type=“String” size=“30” /> 
  <Field name=“gender” type=“Character” range=“{m, f}” /> 
  <Field name=“age” type=“Natural” range=“{0-120}” /> 
</Record> 
 
We assume that entities are defined as Record types, consisting of Fields.  Certain fields may 
express constraints on their value, such as the possible range of admissible values.  A range is 
expressed as a set of permissible values and may contain enumerations, a single subrange, or 
disjoint subranges of contiguous elements. The String type may specify a maximum size for 
efficient storage in a database. 
 
<Record name=“Student”> 
  <Field name=“number” type=“Natural” key=“total” /> 
  <Field name=“level” type=“Natural” range=“{1-4}”/> 
</Record> 
 
<Record name=“Degree”>  
  <Field name=“code” type=“String” size=“8” key=“total” /> 
  <Field name=“name” type=“String” size=“30” /> 
</Record> 
 



<Record name=“Module”>  
  <Field name=“code” type=“String” size=“8” key=“total” /> 
  <Field name=“name” type=“String” size=“30” /> 
  <Field name=“credits” type=“Natural”  
   range=“{5, 10, 15, 20, 30, 40, 60}” /> 
</Record> 
 
Certain fields may be marked as key fields.  A key with the value total indicates a unique 
primary key.  Several keys with the value partial indicate a compound key.  A key with the 
value auto indicates an automatically-generated primary key (see below). 

Association Types: 
 
We assume both binary and higher-arity relationships, involving multiple entities as their 
end-roles (although the problem of data normalisation is significantly simpler if the 
conceptual model contains only binary associations – see below).  For example, a Student 
who registers for a Degree is a kind of binary Association between the Student and Degree 
records: 
 
<Association name=“Register”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
</Association> 
 
One could also choose to define this relationship instead as a ternary Association involving 
the Department owning the degree: 
 
<Association name=“Register”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
  <Role name=“owner” type=“Department” multiple=“mandatory” /> 
</Association> 
 
or indeed as a quaternary (or higher-arity) Association involving other partner Departments 
which help to deliver that degree: 
 
<Association name=“Register”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
  <Role name=“owner” type=“Department” multiple=“mandatory” /> 
  <Role name=“partner” type=“Department” multiple=“zeromany” /> 
</Association> 
 
Each Association is uniquely named within its data Schema (recommended, in case it should 
later be promoted to a named Table) and each end-Role records the type and multiple of 
related entities.  The names of the end-Roles are often distinct from the names of the related 
types – the above example shows how owner and partner refer to two different roles played 
by a Department.  Otherwise, the default convention is to use the Record type name converted 
to “camel-case”.   
 
Associations relate Records to each other in the multiples: {mandatory, optional, zeromany, 
onemany}.  Transformation rules will operate on this information, to convert some 



Associations into foreign key fields (those with mandatory at one end and optional, zeromany 
or onemany at the other) and promoting other Associations to full Tables in their own right 
(those with optional, zeromany or onemany at both ends).  As an example, the following will 
be promoted, by virtue of the zeromany-onemany multiplicity, to a Table called Study, whose 
instances each relate exactly one Student and one Module: 
 
<Association name=“Study”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“module” type=“Module” multiple=“onemany” /> 
</Association> 
 
This is not the only reason for promoting an Association to a Table, for example, such a 
measure is also required if the Association has attributes of its own, recording properties of 
the relationship, rather than of the participating entities: 
 
<Association name=“Study”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“module” type=“Module” multiple=“onemany” /> 
  <Field name=“marks” type=“Natural” range=“{0-100}” /> 
  <Field name=“level” type=“Natural” range=“{1-4}” /> 
</Association> 
 
Here, the marks relate to the Study relationship (linking a particular Student and Module) 
rather than to the Student, or Module individually.  Similarly, the level relates to the level at 
which the Student studied the Module (assuming that Modules may be studied by Students at 
different levels, according to which Degree they follow). 
 
Associations may be more precisely constrained.  An end-Role may specify an exact quantity, 
an integer denoting the exact number of participants at that end of the Association.  Similarly, 
an end-Role may specify a permissible range of participants in the style:  range=“{low-
high}”.  The value of range is always a contiguous range in this case.  Any rules that operate 
on multiplicity may infer this from quantity or range attributes. 

Generalisation and Aggregation: 
 
Generalisation and Aggregation are special kinds of directed structural relationship, in which 
it is important to express the direction.  A Generalisation is a relationship between a subtype 
and a supertype.  For example, to express that a Student is a kind of Person, we specify that 
the Person record type is the head of the Generalisation.  This corresponds to the triangular 
generalisation arrowhead in a UML class diagram: 
 
<Generalisation head=“Person”> 
  <Role name=“person” type=“Person” multiple=“mandatory” /> 
  <Role name=“student” type=“Student” multiple=“optional” /> 
</Generalisation> 
 
Note that the multiples on the end-Roles are always optional-mandatory in this case, since 
each Student must be a kind of Person, but each Person need not also relate to a Student.  
This is provided for translations that convert specialised classes into multiple Tables, that is, 
which treat generalisation just like any other kind of association.   
 



It is also possible to specify a group of generalisation relationships together (sometimes 
known as a generalisation set in UML).  The following declares that a Student is a kind of 
Person; and also that a Lecturer is a kind of Person.  This kind of declaration is equivalent to 
making several pair-wise declarations between each related subtype and supertype. 
 
<Generalisation head=“Person” disjoint=“true”> 
  <Role name=“person” type=“Person” multiple=“mandatory” /> 
  <Role name=“student” type=“Student” multiple=“optional” /> 
  <Role name=“teacher” type=“Lecturer” multiple=“optional” /> 
</Generalisation> 
 
Furthermore, it is possible to specify whether such a family of specialisations is disjoint or 
overlapping.  By specifying disjoint=“true” then every Person record will be related 
exclusively either to a Student or to a Lecturer record, and not both.  A translator may make 
the decision to merge the Person table’s fields into the tables for Student and Lecturer and 
generate just these two Tables, instead of three.  However, if disjoint=“false” (or simply 
not specified) it is understood that the specialisations are overlapping by default.  This means 
that the same Person could be both a Student and a Teacher (e.g. a Teaching Assistant), in 
which case three Tables would be needed to relate a unique Person record to each of the 
Student and Teacher extension records. 
 
An Aggregation is a relationship between a whole and its parts.  To express that a Bicycle is a 
composite whole consisting of many parts, we specify that the Bicycle record type is the head 
of an Aggregation (a type cannot aggregate itself recursively).  This corresponds to the 
diamond-shaped aggregation arrowhead in a UML class diagram: 
 
<Aggregation head=“Bicycle”> 
  <Role name=“bicycle” type=“Bicycle” multiple=“mandatory” /> 
  <Role name=“frame” type=“Frame” multiple=“mandatory” /> 
  <Role name=“fork” type=“Fork” multiple=“mandatory” /> 
  <Role name=“wheel” type=“Wheel” multiple=“onemany” /> 
</Aggregation> 
 
This specifies that a Bicycle consists of a Frame, a Fork and some Wheels (at least one).  The 
notion is that a Bicycle cannot eventually exist, unless it has these parts; however, in this 
default form of Aggregation, the parts are assumed to exist independently of the whole.  It is 
possible to specify the numbers of participants in an Aggregation more precisely, using the 
quantity or range attribute, instead of the multiple attribute.  The following states that a 
Bicycle contains one Frame, one Fork and exactly two Wheels: 
 
<Aggregation head=“Bicycle” composite=“true”> 
  <Role name=“bicycle” type=“Bicycle” quantity=”1” /> 
  <Role name=“frame” type=“Frame” quantity=”1” /> 
  <Role name=“fork” type=“Fork” quantity=”1” /> 
  <Role name=“wheel” type=“Wheel” quantity=“2” /> 
</Aggregation> 
 
Furthermore, it is possible to specify that an aggregate structure is either composite or 
separate.  By specifying composite=“true”, this indicates that all of the aggregate’s parts 
are created and deleted together, therefore it would be possible to merge the fields of all the 
parts:  Frame, Fork and two instances of Wheel, into a Table standing for the whole Bicycle.  
Otherwise, if composite=“false” (or simply not specified), it is understood that the parts 



are separate by default.  They must then be modelled in separate Tables, since they may be 
added to, and removed from, the aggregate structure. 
 
Note that saying quantity=“1” is equivalent to declaring a mandatory multiplicity;  also 
saying range=“{0-1}” is equivalent to declaring an optional multiplicity;  also saying 
range=“{0-n}” is equivalent to declaring an zeromany multiplicity;  and finally saying 
quantity=“n” or range=“{1-n}” is equivalent to declaring a onemany multiplicity.  
Rules which expect to operate on multiplicity information may infer this. 

Data Tables: 
 
The intention is for DBQ to express both high-level conceptual schemas, and low-level 
database schemas that can be directly implemented as relational tables.  The DBQ language 
will support translation from the high-level to the low-level view.  The entities declared at the 
lower level are called Table types, since they define the shape of rows in a database table.  A 
Table may be derived from a Record from the conceptual schema: 
 
<Table name=“Degree”>  
  <Field name=“code” type=“String” size=“8” key=“total” /> 
  <Field name=“name” type=“String” size=“30” /> 
</Table> 
 
A Table may also be derived from an Association from the conceptual schema: 
 
<Table name=“Register”> 
  <Field name=“student.number” type=“Natural” key=“partial”  

refer=”Student” /> 
  <Field name=“degree.code” type=”String” key=“partial”  
  refer=“Degree” /> 
</Table> 
 
The normalisation process is described below.  We assume that Records do not contain 
repeating groups of data (1NF) and that all non-key attributes in each Record depend on the 
primary key (2NF).  Essentially, all Records, relationships and Queries from the conceptual 
schema are processed until the normal schema contains only Table definitions and normalised 
Queries.  The resulting Schema is typically in third normal form (3NF) and may achieve 4NF 
or 5NF (depending on the treatment of higher-arity Associations). 

Primary and Foreign Keys: 
 
Any Table that does not obtain a primary key from its original Record (possibly unique, 
possibly a compound key) must be provided with an automatic primary key field, always 
named identity.  This field stores a unique serial number that is incremented for each new 
instance, when it is first added to the database.  The attribute key=“auto” is set to indicate 
that the field is an automatic primary key.   
 
The Person record above did not originally specify any explicit primary key field, so the 
corresponding Person table must be given one: 
 
<Table name=“Person”> 
  <Field name=“identity” type=“Natural” key=“auto” /> 



  <Field name=“forename” type=“String” size=“30” /> 
  <Field name=“surname” type=“String” size=“30” /> 
  <Field name=“gender” type=“Character” range=“{m, f}” /> 
  <Field name=“age” type=“Natural” range=“{0-120}” /> 
</Table> 
 
Any binary Association that was one-to-one (mandatory on both sides) must be eliminated by 
merging the two related Records in a single Table to satisfy 3NF (unless the association is 
involuted – see below).  The name of the merged Table is equal to the name of the more 
significant Record (called major), chosen automatically or with help from the designer.  The 
Field names of the other (minor) Record are made unique, by prefixing them with an 
identifier created from the minor type, to avoid the possibility of name-clashes.  For example, 
if a Student is uniquely associated with a UCard in a one-to-one association, after merging 
UCard (minor) into Student (major), we have: 
 
<Table name=“Student”> 
  <Field name=“number” type=“Natural” key=“total” /> 
  <Field name=“level” type=“Natural” range=“{1-4}”/> 
  <Field name=“uCard.number” type=“Natural” /> 
  <Field name=“uCard.expiry” type=“Date” /> 
</Table> 
 
Note how the names of the merged fields are prefixed with “uCard” to prevent duplicate 
occurrences of the number field.  Although the UCard’s number was originally marked as a 
primary key, in the merger this becomes dependent on the Student’s primary key (suppressing 
the key attribute).  If an auto-generated identity field existed in the minor Record, it would 
disappear altogether in the merger, since it is no longer needed. 
 
Any binary Association that was one-to-many (mandatory on one side, optional, zeromany or 
onemany on the other) is eliminated in 3NF by inserting the primary key of the mandatory 
Record as a foreign key in the Table for the other Record.  The name of the foreign key Field 
is created by concatenating the end-Role name from the Association with the Field-name in 
the related Record.  For example, where many Students are related to one Degree, the Student 
Table acquires a foreign key, based on the Degree’s primary key code, but renamed 
degree.code in Student: 
 
<Table name=“Student”> 
  <Field name=“number” type=“Natural” key=“total” /> 
  <Field name=“level” type=“Natural” range=“{1-4}” /> 
  <Field name=“degree.code” type=“String” refer=“Degree” /> 
</Table> 
 
Note how the synthesized name is derived from the end-Role name, not the type-name (in this 
example they just happen to be the same), because of the possibility of having several, distinct 
associations with the same type, with different end-Role names.  The type of the foreign key 
Field is the same as the type of the related primary key.  The field also sets an attribute 
refer=“Degree” to identify the related Table. 

Coordinator (Linker) Types: 
 



Any other kind of binary Association must be promoted to a full Table in its own right, co-
ordinating the participants in the association.  The end-Roles are converted into named Fields 
storing the primary keys of the participants as foreign keys in the new Table.  Promoted 
Tables act as co-ordinators for the relationship expressed by the original Association.  They 
are known as linker tables in a database. 
 
There are three different cases.  Firstly, an Association which has its own attributes must be 
promoted to a Table containing these attributes as its Fields.  Secondly, a many-to-many, or 
many-to-optional Association must always be promoted, since there is no way of storing the 
foreign key fields in either related Table type alone.  An example is the Study association 
between Student and Module, which is both many-to-many and has attributes.  After 
normalisation, it is promoted to a Table with the same name: 
 
<Table name=“Study”> 
  <Field name=“student.number” type=“Natural” key=”partial” 

refer=“Student” /> 
  <Field name=“module.code” type=“String” key=”partial” 

refer=“Module” /> 
  <Field name=“marks” type=“Natural” range=“{0-100}” /> 
  <Field name=“level” type=“Natural” range=“{1-4}” /> 
</Table> 
 
Whereas the Roles originally referred directly to the participating entities, the new Fields are 
foreign key fields, storing the corresponding primary keys of the related entities.  The foreign 
key fields are named using the concatenation rule described above.  Furthermore, the primary 
key of any such co-ordinating Table is always a compound key, consisting of the foreign keys 
describing the related participants (every instance of Study uniquely relates a tuple of Student 
and Module instances).  This is indicated by key=”partial” in each foreign key field. 
 
Thirdly, any involuted binary Associations must be promoted.  An involuted association is one 
which relates a given Record type back to itself.  This cannot be handled using foreign keys in 
the usual way, which would leave null references for some Records (or else seem to require a 
merger, doubling the fields redundantly).  For example, if a Person record was related to itself 
by the involuted association Marry, relating the (optional) husband and wife roles, this could 
not be handled using foreign keys in 3NF, since null references would exist for the unmarried.  
Instead, promoting the Marry association yields the following: 
 
<Table name=“Marry”> 
  <Field name=“husband.identity” type=“Natural” key=”partial” 

refer=“Person” /> 
  <Field name=“wife.identity” type=“Natural” key=”partial” 

refer=“Person” /> 
</Table> 
 
This completes the normalisation process for binary Associations. 

Higher-Arity Relationships: 
 
While it might be possible to promote ternary, quaternary or higher-arity Associations in a 
similar way, in general this is not safe and leads to violations of 4NF.  This is because the 
dependencies that exist between all participants in higher-arity associations may or may not 



be independent.  The safest thing to do is to split these into binary associations first; and this 
process usually requires human intervention, since it requires some understanding of the 
meaning of the data.   
 
In general, the same related sets of instances should be reachable in the transformed result as 
in the original model.  For example, the ternary Association: 
 
<Association name=“Register”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
  <Role name=“owner” type=“Department” multiple=“mandatory” /> 
</Association> 
 
relates multiple Students to one Degree and one Department.  It could be split into any two 
binary Associations between pairs of participants, for example, one solution is: 
 
<Association name=“RegisterFor”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
</Association> 
<Association name=“RegisterIn”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“owner” type=“Department” multiple=“mandatory” /> 
</Association> 
 
This solution yields two many-to-one Associations.  For each Student, we can determine both 
the related Degree (via the RegisterFor association) and the related Department (via the 
RegisterIn association).  However, this might not be the best solution in a domain where 
every Degree always belongs to a unique Department.  In this case, we would do better to 
arrange the split this way: 
 
<Association name=“Register”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
</Association> 
<Association name=“Administer”> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
  <Role name=“owner” type=“Department” multiple=“mandatory” /> 
</Association> 
 
Now, a Student merely has to register for a Degree, which determines the related Department 
by a one-to-one mandatory association.  This solution is better, in the sense that the act of 
registering for a degree (which happens more frequently than providing a new degree course) 
is made less complicated.  Pursuing this example further, the Degree and Department records 
would eventually have to be merged in 3NF (see above). 
 
The splitting process might have to be handled differently for the example originally given as 
a quaternary Association.  Here, the Department type is related multiple times, via two 
different roles named owner and partner, to the Student and Degree types: 
 



<Association name=“Register”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
  <Role name=“owner” type=“Department” multiple=“mandatory” /> 
  <Role name=“partner” type=“Department” multiple=“zeromany” /> 
</Association> 
 
If we assume, as above, that Degrees are uniquely owned and administered by one 
Department, we could convert the above into three binary Associations: 
 
<Association name=“Register”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
</Association> 
<Association name=“Administer”> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
  <Role name=“owner” type=“Department” multiple=“mandatory” /> 
</Association> 
<Association name=“Partner”> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
  <Role name=“partner” type=“Department” multiple=“zeromany” /> 
</Association> 
 
This would seem to be the logical extension of the earlier transformation.  However, further 
processing of this example would seem to require merging Degree and Department in one 
association, but not in the other!  A much better translation, which is only really found by 
human insight into the domain, is the following: 
 
<Association name=“Register”> 
  <Role name=“student” type=“Student” multiple=“zeromany” /> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
</Association> 
<Association name=“Administer”> 
  <Field name=”owner” type=”Boolean” /> 
  <Role name=“degree” type=“Degree” multiple=“mandatory” /> 
  <Role name=“department” type=“Department” multiple=“onemany” /> 
</Association> 
 
This captures the relationship with multiple Departments more succinctly, and identifies one 
of the participating Departments as the owner of the Degree through an attribute, recorded as 
a Field of the Association.  These examples show how higher-arity associations can be 
somewhat problematical to eliminate automatically!  

Structural Relationships: 
 
Generalisation and Aggregation relationships must also be eliminated, when converting into 
the tabular format of a database.  Both kinds of structural relationship can be translated in 
several ways, depending on the trade-off between expressiveness (achieved by full 
normalisation) and efficiency (achieved with pre-normal forms).   
 
The usual translation of a (by default, overlapping) Generalisation introduces a foreign key 
field in the optional subtype Record relating it to the mandatory supertype Record.  This may 



use the standard algorithm for creating a foreign key field, based on the end-Role name and 
primary key name in the related type: 
 
<Table name=“Student”> 
  <Field name=“person.identity” type=“Natural” refer=“Person” /> 
  <Field name=“number” type=“Natural” key=“total” /> 
  <Field name=“level” type=“Natural” range=“{1-4}”/> 
</Table> 
 
The special translation of a disjoint Generalisation eliminates the supertype record altogether 
and introduces its fields into each of its subtypes separately.  This is a pre-normal, or de-
normalised form, since there is replication of fields in several tables in the data schema, but it 
saves computing joins between tables.  The alternative translation of Student is given as: 
 
<Table name=“Student”> 
  <Field name=“identity” type=“Natural” key=“auto” /> 
  <Field name=“forename” type=“String” size=“30” /> 
  <Field name=“surname” type=“String” size=“30” /> 
  <Field name=“gender” type=“Character” range=“{m, f}” /> 
  <Field name=“age” type=“Natural” range=“{0-120}” /> 
  <Field name=“number” type=“Natural” /> 
  <Field name=“level” type=“Natural” range=“{1-4}” /> 
</Table> 
 
This special translation is probably the only one which does not need to rename the fields 
merged from the supertype in the subtype, since these are distinct in any case.  Note how the 
original primary key for Person is retained, despite the fact that this was an auto-generated 
identity, and the Student number key has been suppressed.  This is for consistency across all 
the disjoint types, allowing for a common code-generation strategy further down the line. 
 
The usual translation of a (separate) Aggregation introduces a foreign key field in every 
component part Record relating it to the whole Record.  This may use the standard algorithm 
for creating a foreign key field, based on the end-Role name and primary key name in the 
related type.  Taking the Wheel component as an example, we have: 
 
<Table name=“Wheel”> 
  <Field name=”number” type=”Natural” key=”total” /> 
  <Field name=”manufacturer” type=”String” /> 
  <Field name=”diameter” type=”Natural” /> 
  <Field name=“bicycle.identity” type=“Natural” refer=“Bicycle” /> 
</Table> 
 
The same would be done for the components Frame and Fork.  This translation assumes that 
all the different parts exist independently of the Bicycle itself, and so are optionally related to 
the particular whole.  The remaining fields of Wheel are assumed to have been present in the 
original Wheel record (not elaborated above). 
 
The special translation of a composite Aggregation embeds the fields of all of the component-
parts inside the Bicycle Table directly.  This may require clever synthesis of field name 
prefixes, to distinguish when components are replicated several times inside the aggregate 
structure: 
 



<Table name=“Bicycle”> 
  <Field name=“identity” type=“Natural” key=“auto” /> 
  <Field name=“frame.number” type=“Natural” ... /> 
  <Field name=“frame.size” type=“Natural” ... /> 
  ... 
  <Field name=“fork.number” type=“Natural” ... /> 
  ... 
  <Field name=“wheel[1].number” type=“Natural” ... /> 
  <Field name=” wheel[1].manufacturer” type=”String” /> 
  <Field name=” wheel[1].diameter” type=”Natural” /> 
  <Field name=“wheel[2].number” type=“Natural” ... /> 
  <Field name=”wheel[2].manufacturer” type=”String” /> 
  <Field name=”wheel[2].diameter” type=”Natural” /> 
</Table> 
 
This de-normalised translation might be very efficient for reading and writing whole Bicycles 
from the database, although it replicates fields.  It still allows unusual combinations, such as 
different-diameter front and back wheels (chopper-style bicycle), or matching up a pair of 
wheels from different manufacturers (unusual).  Above, we suggest the numbering notation 
[n] to distinguish replicated fields.  Alternatively, the user could be asked to rename the fields 
to more meaningful names such as frontWheel, backWheel. 

Package and Schema: 
 
As with all ReMoDeL dialects, the outermost linguistic specification unit is the Package.  A 
Package is the root element of any XML tree.  For DBQ, the kind of Package is given by the 
value of the model attribute, and the package may optionally define a name-space, or may 
specify a file system location where it is to be stored.  A Package is a translation unit, that is, 
ReMoDeL transformers and generators should be able to translate a Package without needing 
to load other packages.  
 
<?xml version=”1.0” encoding=”UTF-8” ?> 
<Package name=”Uni” model=”DBQ” location=”uni.data.model”> 
  <Schema name=”Registration”> 
    <!-- other conceptual schema data inserted here --> 
  </Schema> 
</Package> 
 
A Package contains one or more data Schemas (typically just one).  A Schema is the metadata 
for a database, consisting of data and query definitions.  Initially, a Schema is constructed by 
considering what entities the database will contain (named Records, consisting of named 
Fields) and what relationships will exist between them (Association, Generalisation or 
Aggregation relationships) and finally what kinds of Query will be executed over the data.   
This kind of Schema is called a conceptual schema, which is closest to the data model end-
users have in their minds. 
 
An alternative kind is a normal Schema, which instead consists of normalised data Tables and 
Queries that have been optimised to execute over these tables, ready for implementation in a 
relational database.  A normal Schema is distinguished by the normal attribute.  If 
normal=”true”, the Schema is normal, otherwise it is conceptual.  
 



<?xml version=”1.0” encoding=”UTF-8” ?> 
<Package name=”Uni” model=”DBQ” location=”uni.data.normal”> 
  <Schema name=”Registration” normal=”true”> 
    <!-- other normal schema data inserted here --> 
  </Schema> 
</Package> 
 
To satisfy the requirements of a translation unit, all elements that are imported from outside 
the current Schema must be declared.  The following shows the declarations imported by a 
Schema:  
  
<Schema name=“Registration”> 
  <Employ type=“Integer” basic=“true” /> 
  <Employ type=“Natural” basic=“true” /> 
  <Employ type=“String” from=“DBType” location=“data.type” /> 
  <Record ... /> 
  <Association ... /> 
  <!—other records, associations, etc. inserted here --> 
</Schema> 
 
In this, it is imagined that the elements of the Schema either have to be defined locally (as the 
Record and Association types here) or imported from other places.  Basic types may be 
assumed to exist in any implementation, but some types, such as the String type here, are 
assumed to be imported from other packages, corresponding to libraries.   

Query Language:  
 
The format for query expressions must be sufficiently general that these could be translated 
into a variety of different query models, such as SQL, or DAPLEX or OCL or perhaps even 
the XML-based tree searching languages XQuery and XPath.  This means that a neutral query 
expression language must support navigation-style queries (like DAPLEX, OCL, XPath) and 
constraint-matching queries (like SQL, OCL). 
 
Queries will be expressed initially in a high-level query language (a conceptual query 
language), which operates upon the Records, Associations, Generalisations and Aggregations 
stored in a conceptual data Schema.  These will be converted into a low-level query language 
(an optimised query language) that operates upon normalised data tables.  The high-level 
query language may look something like OCL, Daplex or XPath, based on navigating from 
concept to concept.  The low-level transformations of these queries may look more like SQL 
queries, acting upon primary and foreign key fields of tables. 
 
The query language will need to distinguish between different kinds of Query, such as side-
effect free Select expressions and table-modifying Insert and Update expressions.  A Select 
expression should always denote (be considered to return) a set of records matching some 
criterion.  Similarly, an Update expression will use a Select statement to specify a set of 
records to be modified, but specify one or more assignments to their fields.  Some kind of 
expression will be required to relate two sets of records (similar to a join).  An Insert 
expression will specify a set of new records to be added to the current set maintained by the 
database – this requires a syntax for expressing record instances, with literal representations 
of their field values.  It is unlikely that the query language will need runtime expressions to 



manipulate metadata, corresponding to the Create and Drop Table instructions in SQL, since 
any changes to the data Schema will result in re-generation of the system. 

Path Expressions: 
 
The high-level query language manipulates entities in a data model consisting of collections 
of Records, related to each other mainly by Associations.  We assume that both concepts will 
eventually be stored as tables, and that queries may navigate from one table to another and 
return subsets of Records, or project out Tuples of values.  A key concept is a Path, denoting 
a route navigating from some starting point to an element, or to a set of elements. 
 
All Path expressions typically start with a locally-bound variable to denote the starting point.  
The elements of a Path expression  are identifiers separated by dots, describing how to 
navigate to a Field or Role.  For example, if person is a variable denoting a Person instance, 
the following paths navigate to its age and surname fields: 
 
<Path name=”person.age” type=”Natural” /> 
<Path name=”person.surname” type=”String” /> 
 
Likewise, if study is a variable denoting an instance of the Study association, the following 
navigate to the module and student end-Roles of that association;  or access the marks 
attribute of the association.  Note that you can only navigate from an Association to its 
associated Records, not the other way around: 
  
<Path name=”study.module” type=”Module” /> 
<Path name=”study.student” type=”Student” /> 
<Path name=”study.marks” type=”Natural” /> 
 
Paths may be longer expressions, navigating to attributes of the related Records.  This is 
expressive in the high-level query language, but may correspond to table joins in the low-
level query language translation.  In the following, the first two Paths require a join across 
tables, but the last may not, since the result is a foreign key field: 
 
<Path name=”study.module.name” type=”String” /> 
<Path name=”study.student.surname” type=”String” /> 
<Path name=”study.module.code” type=”String” /> 
 
The expressible limit for a Path expression is any Path whose result is a set of values.  No 
further navigation can be applied to a set (only searching may be performed). 
 
A further kind of Path expression refers to complete datasets.  By convention, the database is 
accessed via a global variable called data; and each of its datasets is accessed using the name 
of the stored type (converted to “camel case”).  For example, the following Path expressions 
refers to the set of all Student records, and Study associations, in the database: 
 
<Path name=”data.student” type=”Set[Student]” /> 
<Path name=”data.study” type=”Set[Study]” /> 

Select Query: 
 



The query language is based upon very few fundamental functions.  These include the Select 
query, which maps a predicate over a set, returning a subset of records which pass the 
predicate test.  This is similar to a filter-function in a functional algebra, which accepts a 
predicate and a list as arguments, returning a list as the result.  The following are some 
examples. 
 
Select 1:  uses a trivial predicate to return everything.  Note the structure of the Function 
element, which consists of a formal argument and a body-expression (this is the return value 
of the function). 
 
<Select label=“all persons” type=”Set[Person]”> 
  <Function> 
    <Variable name=”person” type=”Person” /> 
    <Literal value=”true” type=”Boolean” /> 
  </Function> 
  <Path name=”data.person” type=”Set[Person]” /> 
</Select> 
 
Select 2:  uses a more substantial predicate to return a subset of records.  
 
<Select label=“all persons under 50” type=”Set[Person]”> 
  <Function> 
    <Variable name=”person” type=”Person” /> 
    <Operator symbol=”lessThan”> 
      <Path name=”person.age” type=”Natural” /> 
      <Literal name=”50” type=”Natural” /> 
    </Operator> 
  </Function> 
  <Path name=”data.person” type=”Set[Person]” /> 
</Select> 
 
Select 3:  returns a singleton set for a uniquely-identified record.  All Select statements return 
a set of records, which must be anticipated in the rest of the algebra. 
 
<Select label=“a given student” type=”Set[Student]”> 
  <Function> 
    <Variable name=”student” type=”Student” /> 
    <Operator symbol=”equals”> 
      <Path name=”student.number” type=”Natural” /> 
      <Literal value=”27639421” type=”Natural” /> 
    </Operator> 
  </Function> 
  <Path name=”data.student” type=”Set[Student]” /> 
</Select> 

Project Query: 
 
The second fundamental function in the query language is the Project function, because it 
projects out a set of (reachable, or computable) values from a set of records.  This corresponds 
to a map-function in functional algebra, which accepts a function and a list as arguments, and 
returns a list, consisting of the results of mapping the function over every element in the input 



list.  Project is often used in combination with Select to return data of interest after a search.  
The following are some examples: 
 
Project 1:  projects out one field from each record in a set of records.  Note how the single 
body expression is understood to return the value defined by the path expression.  Also, the 
Project function is here a true projection, that returns a set, rather than a list, of values: 
 
<Project label=“age of all persons” type=”Set[Natural]”> 
  <Function> 
    <Variable name=”person” type=”Person” /> 
    <Path name=”person.age” type=”Natural” /> 
  </Function> 
  <Path name=”data.person” type=”Set[Person]” /> 
</Project> 
 
Project 2:  projects out two fields from a set of records.  Note that tuple-types are defined 
using  comma-separated types; and the tuple operator constructs the result. 
 
<Project label=“age of all persons” type=”Set[Natural, String]”> 
  <Function> 
    <Variable name=”person” type=”Person” /> 
    <Operator name=”tuple”> 
      <Path name=”person.age” type=”Natural” /> 
      <Path name=”person.surname” type=”String” /> 
    </Operator> 
  </Function> 
  <Path name=”data.person” type=”Set[Person]” /> 
</Project> 
 
Project 3:  projects out one field from a selection of a subset of records.  This is where the 
power of Project and Select together are shown.  Instead of supplying the whole dataset as 
input, a filtered set is provided.  This also shows the importance of indicating the result-type 
of each query operation, since it may be nested inside other queries. 
 
<Project label=“age of persons under 50” type=”Set[Natural]”> 
  <Function> 
    <Variable name=”person” type=”Person” /> 
    <Path name=”person.age” type=”Natural” /> 
  </Function> 
  <Select label=“all persons under 50” type=”Set[Person]”> 
    <Function> 
      <Variable name=”person” type=”Person” /> 
      <Operator symbol=”lessThan”> 
        <Path name=”person.age” type=”Natural” /> 
        <Literal name=”50” type=”Natural” /> 
      </Operator> 
    </Function> 
    <Path name=”data.person” type=”Set[Person]” /> 
  </Select> 
</Project> 
 



Relate Query: 
 
The third fundamental function is Relate.  This maps from one dataset to its image in the other 
dataset.  In functional algebra, this is like a double-filter function, which accepts two lists, and 
returns all instances in the first list, for which the predicate relates it to any instances in the 
second list.  Note how the predicate is a function of two arguments, one from each list.  Relate 
serves a similar purpose to the traditional relational join. 
 
Relate 1:  returns a matching set of linker records for a given set of records. 
 
<Relate label=“study of a given student” type=”Set[Study]”> 
  <Function> 
    <Variable name=”study” type=”Study” /> 
    <Variable name=”student” type=”Student” /> 
    <Operator symbol=”and”> 
      <Operator symbol=”equals”> 
        <Path name=”student.number” type=”Natural” /> 
        <Literal value=”27639421” type=”Natural” /> 
      </Operator> 
      <Operator symbol=”equals”> 
        <Path name=”study.student” type=”Student” /> 
        <Path name=”student” type=”Student” /> 
      </Operator> 
    </Operator> 
  </Function> 
  <Path label=”data.study” type=”Set[Study]” /> 
  <Path name=”data.student” type=”Set[Student]” /> 
</Relate> 
 
Relate 2:  optimises the above search, by filtering the second set, before passing this to the 
Relate function.  The matching predicate is split over the two searches. 
  
<Relate label=“study of a given student” type=”Set[Study]”> 
  <Function> 
    <Variable name=”study” type=”Study” /> 
    <Variable name=”student” type=”Student” /> 
    <Operator symbol=”equals”> 
      <Path name=”study.student” type=”Student” /> 
      <Path name=”student” type=”Student” /> 
    </Operator> 
  </Function> 
  <Path label=”data.study” type=”Set[Study]” /> 
  <Select label=“a given student” type=”Set[Student]”> 
    <Function> 
      <Variable name=”student” type=”Student” /> 
      <Operator symbol=”equals”> 
        <Path name=”student.number” type=”Natural” /> 
        <Literal value=”27639421” type=”Natural” /> 
      </Operator> 
    </Function> 
    <Path name=”data.student” type=”Set[Student]” /> 
  </Select> 
</Relate> 



 
The above Relate-expressions search through both the Student and Study datasets.  The first 
example has n-squared complexity; the second varies between this and linear, depending on 
the size of the pre-filtered dataset.  Sometimes, it may be possible to eliminate the double 
search altogether.  The above example can be converted into a Select, which has linear 
complexity.  The join operation is avoided, because the related attribute in the Student dataset 
is stored as a foreign key in the Study dataset. 
 
Select 4:  sometimes an alternative to Relate, returns a matching set of linkers for a related 
record.  This does not need to search the Student dataset, since student.number is directly 
accessible as a foreign key in the Study dataset. 
 
<Select label=“study of a given student” type=”Set[Study]”> 
  <Function> 
    <Variable name=”study” type=”Study” /> 
    <Operator symbol=”equals”> 
      <Path name=”study.student.number” type=”Natural” /> 
      <Literal value=”27639421” type=”Natural” /> 
    </Operator> 
  </Function> 
  <Path name=”data.study” type=”Set[Study]” /> 
</Select> 
 
Relate 3:  returns a matching set of linker records for a given set of records.  This version 
must use the Relate function, because the compared values are not foreign keys. 
 
<Relate label=“study of a named student” type=”Set[Study]”> 
  <Function> 
    <Variable name=”study” type=”Study” /> 
    <Variable name=”student” type=”Student” /> 
    <Operator symbol=”and”> 
      <Operator symbol=”equals”> 
        <Path name=”student.surname” type=”String” /> 
        <Literal value=”Smith” type=”String” /> 
      </Operator> 
      <Operator symbol=”equals”> 
        <Path name=”study.student” type=”Student” /> 
        <Path name=”student” type=”Student” /> 
      </Operator> 
    </Operator> 
  </Function> 
  <Path label=”data.study” type=”Set[Study]” /> 
  <Path name=”data.student” type=”Set[Student]” /> 
</Relate> 
 
Once more, this is the least efficient form of the query, since it searches the entire Student 
dataset for each instance of the Study dataset (the complexity is of the order n-squared), using 
a combined predicate inside Relate.  It could be made more efficient by pre-filtering the 
Student dataset with a query on the student.surname, then passing this much smaller set as the 
second set-argument to Relate. 
 
The above examples assume that it is possible to compare record-references for equality (the 
Role study.student is tested for equality with a locally-bound student variable).  In practice, 



this equality might be tested using the foreign key field in the Study record and primary key 
field in the Student record. 
 
Relate 4:  equivalent Relate search, using primary and foreign keys, instead of direct 
comparison of Record references.  This might be how searches are performed in the low-level 
query language. 
 
<Relate label=“study of a given student” type=”Set[Study]”> 
  <Function> 
    <Variable name=”study” type=”Study” /> 
    <Variable name=”student” type=”Student” /> 
    <Operator symbol=”and”> 
      <Operator symbol=”equals”> 
        <Path name=”student.surname” type=”String” /> 
        <Literal value=”Smith” type=”String” /> 
      </Operator> 
      <Operator symbol=”equals”> 
        <Path name=”study.student.number” type=”Natural” /> 
        <Path name=”student.number” type=” Natural” /> 
      </Operator> 
    </Operator> 
  </Function> 
  <Path label=”data.study” type=”Set[Study]” /> 
  <Path name=”data.student” type=”Set[Student]” /> 
</Relate> 
 
Relate 5:  optimises the above search slightly by searching for a filtered subset of Student 
records, before passing this as the second argument to Relate, returning a matching set of 
Study records.  Note how the predicate is split over the two searches. 
  
<Relate label=“study of a given student” type=”Set[Study]”> 
  <Function> 
    <Variable name=”study” type=”Study” /> 
    <Variable name=”student” type=”Student” /> 
    <Operator symbol=”equals”> 
      <Path name=”study.student.number” type=”Natural” /> 
      <Path name=”student.number” type=”Natural” /> 
    </Operator> 
  </Function> 
  <Path label=”data.study” type=”Set[Study]” /> 
  <Select label=“a given student” type=”Set[Student]”> 
    <Function> 
      <Variable name=”student” type=”Student” /> 
      <Operator symbol=”equals”> 
        <Path name=”student.surname” type=”String” /> 
        <Literal value=”Smith” type=”String” /> 
      </Operator> 
    </Function> 
    <Path name=”data.student” type=”Set[Student]” /> 
  </Select> 
</Relate> 
 



Combined Queries: 
 
Project 4:  in combination with Relate and Select, returns a set of records from one dataset 
that are related to records in a different dataset.  
 
<Project label=“modules of a given student” type=”Set[Module]”> 
  <Function> 
    <Variable name=”study” type=”Study” /> 
    <Path name=”study.module” type=”Module” /> 
  </Function> 
  <Relate label=“study of a given student” type=”Set[Study]”> 
    <Function> 
      <Variable name=”study” type=”Study” /> 
      <Variable name=”student” type=”Student” /> 
      <Operator symbol=”equals”> 
        <Path name=”study.student” type=”Student” /> 
        <Path name=”student” type=”Student” /> 
      </Operator> 
    </Function> 
    <Path label=”data.study” type=”Set[Study]” /> 
    <Select label=“a given student” type=”Set[Student]”> 
      <Function> 
        <Variable name=”student” type=”Student” /> 
        <Operator symbol=”equals”> 
          <Path name=”student.number” type=”Natural” /> 
          <Literal value=”27639421” type=”Natural” /> 
        </Operator> 
      </Function> 
      <Path name=”data.student” type=”Set[Student]” /> 
    </Select> 
  </Relate> 
</Project> 
 
Project 5:  is the most efficient transformation of the above query, using the technique from 
the example Select 4 to eliminate the Relate expression altogether. 
 
<Project label=“modules of a given student” type=”Set[Module]”> 
  <Function> 
    <Variable name=”study” type=”Study” /> 
    <Path name=”study.module” type=”Module” /> 
  </Function> 
  <Select label=“study of a given student” type=”Set[Study]”> 
    <Function> 
      <Variable name=”study” type=”Study” /> 
      <Operator symbol=”equals”> 
        <Path name=”study.student.number” type=”Natural” /> 
        <Literal value=”27639421” type=”Natural” /> 
      </Operator> 
    </Function> 
    <Path name=”data.study” type=”Set[Study]” /> 
  </Select> 
</Project> 
 



Project 6:  accesses the attributes of an association.  This is just as simple as other searches, 
and reinforces the case for allowing searches to start from Association types. 
 
<Project label=“module code and marks” type=”Set[String, Natural]”> 
  <Function> 
    <Variable name=”study” type=”Study” /> 
    <Operator name=”tuple”> 
      <Path name=”study.module.code” type=”String” /> 
      <Path name=”study.mark” type=”Natural” /> 
    </Operator> 
  </Function> 
  <Select label=“study of a given student” type=”Set[Study]”> 
    <Function> 
      <Variable name=”study” type=”Study” /> 
      <Operator symbol=”equals”> 
        <Path name=”study.student.number” type=”Natural” /> 
        <Literal value=”27639421” type=”Natural” /> 
      </Operator> 
    </Function> 
    <Path name=”data.study” type=”Set[Study]” /> 
  </Select> 
</Project> 

Update Query: 
 
The Update function performs an update operation on every instance of a dataset.  Here, we 
find it most simple to style this as a kind of assignment operation, although in functional 
algebra, this can also be thought of as a kind of map from one set of records to another set, in 
which the desired changes have been effected by the map-function equivalent to the 
assignment.  Update is typically applied together with Select.  The following are some 
examples of usage: 
 
Update 1:  initialises a set of records.  It is designed like Project, in that it applies a function 
to every instance of a dataset, and returns the modified dataset. 
 
<Update label=“set level of all students to 1” type=”Natural”> 
  <Function> 
    <Variable name=”student” type=”Student” /> 
    <Operator symbol=”assign”> 
      <Path name=”student.level” type=”Natural” /> 
      <Literal value=”1” type=”Natural” /> 
    </Operator> 
  </Function> 
  <Path name=”data.student” type=”Set[Student]” /> 
</Project> 
 
Note:  the Natural return type indicates that the Update function is assumed to return a count 
of the number of records that were updated.  (The assign operator can be assumed to return 
the value that was assigned, but this value is not used by Update in any way). 
 



Update 2:  applies an update to a subset of records.  This shows the most common 
circumstance, in which Update is applied to the result of Select: 
 
<Update label=“set level of a given student to 2” type=”Natural”> 
  <Function>  
    <Variable name=”student” type=”Student” /> 
    <Operator symbol=”assign”> 
      <Path name=”student.level” type=”Natural” /> 
      <Literal value=”2” type=”Natural” /> 
    </Operator> 
  </Function> 
  <Select label=“a given student” type=”Set[Student]”> 
    <Function> 
      <Variable name=”student” type=”Student” /> 
      <Operator symbol=”equals”> 
        <Path name=”student.number” type=”Natural” /> 
        <Literal value=”27639421” type=”Natural” /> 
      </Operator> 
    </Function> 
    <Path name=”data.student” type=”Set[Student]” /> 
  </Select> 
</Project> 
 
These handle all the necessary combinations of selections, joins, projections and updates from 
a database.  
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