

ReMoDeL

Functional
Programming

Model Specification

Version: 0.5

Date: 02 November 2011

Anthony J H Simons
Department of Computer Science
University of Sheffield

ReMoDeL: FUN Specification, 2 November 2011 2

1 Introduction .. 3

1.1 Model Scope .. 3

1.2 Model Semantics ... 3

1.3 Common Metamodel ... 4

1.4 XML Conventions ... 4

2 Types .. 5

2.1 Basic Type ... 5

2.2 Symbolic Type .. 6

2.3 Generic Type ... 7

2.4 Record Type .. 7

2.5 Tuple Type .. 8

2.6 Array Type .. 9

2.7 Function Type ... 10

3 Expressions .. 12

3.1 Literal Expression ... 12

3.2 Identifier Expression ... 14

3.3 Operator Expression .. 15

3.4 Access Expression ... 16

3.5 Function Expression .. 17

3.6 Apply Expression .. 18

3.7 Branch Expression ... 19

3.8 Select Expression .. 21

4 Declarations ... 23

4.1 Slot Declaration ... 23

4.2 Field Declaration ... 24

4.3 Variable Declaration ... 25

4.4 Function Declaration ... 26

4.5 Package Declaration .. 29

4.6 Program Declaration ... 30

5 References .. 30

ReMoDeL: FUN Specification, 2 November 2011 3

1 Introduction

This document describes the specification for ReMoDeL FUN, a dialect of XML [1]

used to encode the Functional Programming Model. This is a foundational model,

used as a core subset by other ReMoDeL XML dialects.

1.1 Model Scope

The Functional Programming Model is intended to support a language of pure

computation, consisting of types, values, variables, functions and expressions. It

should be possible to translate from ReMoDeL FUN into Functional languages, such

as Haskell, ML, Miranda, Clean or Hope; and also into the Functional subset of other

languages, such as Scheme, Common Lisp and C. However, it is not our intention

that FUN should support all the diverse and powerful constructions present in each of

these languages individually. Instead, FUN should be a very simple model.

One of the motivations for developing ReMoDeL FUN as a core model was to avoid

re-inventing similar constructions when devising the expression-handling subsets of

each new ReMoDeL XML dialect. The intention is to reuse, extend and adapt the

constructions from ReMoDeL FUN in other ReMoDeL XML dialects. This also

promotes a desirable kind of homogeneity across the different models.

1.2 Model Semantics

Since the Functional Programming Model is intended also to form the expression

handling subset of other imperative languages, choices were made to harmonise the

model semantics with those of imperative languages. The two major issues were the

evaluation semantics, and the calling semantics.

Functional languages may support eager evaluation (call by value), in which all sub-

expressions are simplified before substitution into function arguments, or lazy

evaluation (call by need), in which sub-expressions are substituted directly and are

only evaluated on demand. The latter is standard in modern functional languages,

such as Haskell, Miranda and Clean. However, older functional languages and

imperative languages do not support lazy evaluation, except in the if-construction (and

in the non-strict evaluation of Boolean compounds). For this reason, FUN adopts

eager evaluation semantics.

Functional languages may support automatic deconstruction of arguments (pattern

matching), or rely on explicit navigation (access functions) to the parts of a structured

variable. The former is standard in modern functional languages, but is absent from

older languages such as Scheme and Common Lisp; and was never a feature of

imperative languages. Again, for maximum applicability, FUN adopts the simpler

strategy of using access functions to deconstruct arguments.

Apart from this, FUN is a simple language of expressions. Every expression denotes

a value (literally, or by reduction). Every function returns a value, which is the result

of simplifying its body expression, after values have been substituted for the

function’s arguments. There is no need for an explicit return operator in FUN

(although this may be necessary in imperative languages that extend FUN).

ReMoDeL: FUN Specification, 2 November 2011 4

In keeping with Functional programming, computation is not expressed sequentially

as a series of steps, but through the implicit ordering defined by the nesting of

function applications. This is carried through to the declaration of local variables

(constants) and functions within any given scope. Variable names are logically bound

in parallel, upon entry to that scope, and cannot rely on each other for any assumed

sequential order of initialisation.

1.3 Common Metamodel

The XML elements and attributes defined in this syntax model correspond to

concepts, attributes and relationships in the ReMoDeL Metamodel. The deliberate

consequence of this is that XML elements may be mapped directly onto metamodel

classes. Elements are not defined in isolation, but may be organised in a conceptual

hierarchy according to their similarities and differences. This is intended to support

parsers that build syntax trees directly from instances of the metamodel classes, as

well as parsers that use conventional XML trees.

A model will be constructed from the terminal elements in the conceptual hierarchy.

A consequence of this is that certain XML element names will be reserved to denote

abstract concepts in the metamodel, which are never actually present in any instance

of the model. These abstract elements are nonetheless defined as part of the model,

since they may correspond to strongly typed nodes in syntax trees derived directly

from the metamodel.

The intention is for all ReMoDeL XML dialects to be mapped onto a common

metamodel. The terminal elements used across different languages, though they may

be different, will nonetheless share certain similarities, expressed through their

relationships with common abstract elements.

1.4 XML Conventions

ReMoDeL FUN adopts all the W3C conventions for XML [1]. Identifier symbols

must observe the rules of Unicode identifiers, attribute values must be enclosed in

quotes and special characters must be escaped as entity references. Apart from this,

ReMoDeL imposes a certain "house style" on identifiers:

 The names of all XML elements are presented in CapitalCase, similar to type

names in the Java programming language.

 The names of all XML attributes are presented in camelCase, similar to

variable names in the Java programming language.

The use of hyphens and underscores as part of identifier names goes against the house

style and is strongly discouraged. The use of digits as part of the body of an identifier

is legal, but also generally discouraged, unless the application clearly demands this.

ReMoDeL: FUN Specification, 2 November 2011 5

2 Types

The kinds of Types used in ReMoDeL FUN subdivide into the Basic types, the

Symbolic types, the Record types, the Structure types and the Generic parameters.

These all descend from the metaclass Type, as illustrated in the fragment of the

ReMoDeL Metamodel shown in figure 1.

Type

Structure
Basic

Symbolic

Generic

/parts *

Tuple

Array

Record

Function

Figure 1: Types in the ReMoDeL Metamodel

All types are defined as instances of one of these metaclasses, which also specify the

type’s implementation. For example, an Integer type is defined as an instance of the

Basic metaclass; the symbolic Boolean type is defined as an instance of the Symbolic

metaclass; a Person record type is defined as an instance of the Record metaclass; and

the String type is defined as an instance of the Array metaclass. Instances of the

Generic metaclass are type parameters, placeholders for types. Function defines an

executable function, which has an associated type.

ReMoDeL assumes standard default specifications for the types: Boolean, Character,

Integer, Natural, Decimal and Void, which may be taken for granted if no alternative

definition is provided. Boolean occupies a byte, Character supports UTF-8, Integer

assumes a signed 32-bit range, Natural assumes an unsigned 32-bit range, Decimal

assumes double-precision floating point and Void is the most specific type of the

empty value null. These types are declared in the Core package for the ReMoDeL

FUN dialect, which has other basic types, such as Byte, Short and Long, which may be

included in models as desired.

2.1 Basic Type

The Basic element is used to declare a primitive value-type with a fixed range of

values. Basic types are often built-in types of the target language. The syntax

supports declaring types with different ranges (and therefore different precision),

which must be preserved by the implementation of the target language.

The grammar for the Basic element is:

ReMoDeL: FUN Specification, 2 November 2011 6

<!ELEMENT Basic (Literal, Literal)>

<!ATTLIST Basic name NMTOKEN #REQUIRED>

The attributes of the Basic element are:

 name – the name of the type (required).

The name must be given in CapitalCase (see section 1.4).

The children of the Basic element are exactly one each of:

 Literal – the lower limit of the type (optional);

 Literal – the upper limit of the type (optional);

Examples of the Basic element include:

<Basic name="Character"/>

<Basic name="Integer">

 <Literal value="-2147483648" limit="low" type="Integer"/>

 <Literal value="2147483647" limit="high" type="Integer"/>

</Basic>

In the first example, the range of the declared Character type is assumed to be the

default range supporting UTF-8. The second example explicitly declares the Integer

type to have a 32-bit range.

2.2 Symbolic Type

The Symbolic element is used to declare a symbolic value-type with enumerable

values. These are symbolic constants, which are declared by finite enumeration.

Symbolic types are often user-defined, but may be built-in types.

The grammar for the Symbolic element is:

<!ELEMENT Symbolic (Literal+)>

<!ATTLIST Symbolic name NMTOKEN #REQUIRED>

The attributes of the Symbolic element are:

 name – the name of the type (required).

The name must be given in CapitalCase (see section 1.4).

The children of the Symbolic element are one or more ordered occurrences of:

 Literal – a symbolic constant of the type (one-to-many).

Examples of the Symbolic element include:

<Symbolic name="Boolean">

 <Literal value="false" type="Boolean"/>

 <Literal value="true" type="Boolean"/>

</Symbolic>

ReMoDeL: FUN Specification, 2 November 2011 7

<Symbolic name="Status">

 <Literal value="closed" type="Status"/>

 <Literal value="open" type="Status"/>

 <Literal value="frozen" type="Status"/>

</Symbolic>

Model transformation tools must be able to determine whether any given symbolic

type is primitive (built-in), or requires special declaration in each target language.

2.3 Generic Type

The Generic element is used to declare generic parameters. These are placeholders

for actual types. Generic parameters are included as the first children inside any

generic type or function definition.

The Generic element has more attribute options in OOP. The grammar for the

Generic element in FUN is:

<!ELEMENT Generic EMPTY>

<!ATTLIST Generic name NMTOKEN #REQUIRED>

<!ATTLIST Generic satisfy NMTOKEN #IMPLIED>

The attributes of the Generic element are:

 name – the name of the parameter (required);

 satisfy – an upper bound interface name (optional).

Names must be given in CapitalCase (see section 1.4). By default, any type may be

substituted later for a generic parameter. If an upper bound interface is supplied, only

types that satisfy this interface may be substituted. ReMoDeL FUN assumes that the

interfaces Equal[T] and Compare[T] are predefined.

The Generic element has no children.

Examples of the Generic element include:

<Generic name="Element"/>

<Generic name="Type" satisfy="Compare[Type]"/>

The first example is a parameter for the element type of a general list or tree. The

second example is a parameter for the element type of a sorted list or tree, in which

values of the supplied type must be compared with each other. Only predefined

interfaces exist in FUN – interfaces are more generally available in OOP.

2.4 Record Type

The Record element is used to declare record types. These are named structures,

consisting of named fields, each of a different type. Record types may declare generic

type parameters for the types of one or more of their fields. Records have reference

semantics, when passed as values.

The grammar for the Record element is:

ReMoDeL: FUN Specification, 2 November 2011 8

<!ELEMENT Record (Generic*, Field+)>

<!ATTLIST Record name NMTOKEN #REQUIRED>

The attributes of the Record element are:

 name – the name of the type (required).

The name must be given in CapitalCase (see section 1.4).

The children of the Record element are:

 Generic – generic type parameter (optional, zero-to-many);

 Field – named field member (required, one-to-many).

Examples of the Record element include:

<Record name="Person">

 <Field name="forename" type="String"/>

 <Field name="surname" type="String"/>

 <Field name="gender" type="Character"/>

 <Field name="age" type="Natural"/>

</Record>

<Record name="List">

 <Generic name="Element"/>

 <Field name="head" type="Element"/>

 <Field name="tail" type="List[Element]"/>

</Record>

The Record metaclass is used to create structures with named fields. The first

example is of a user-defined Person record, with Fields of the given names and types.

The second example is of a generic List record type, the building block for linked lists

in FUN. The tail of this record is a reference to another structure of the same type.

The null value marks the end of the list.

2.5 Tuple Type

The Tuple element may be used to declare tuple types. These are optionally named

structures, consisting of indexed slots, each of a different type. Tuple types are more

usually inferred dynamically from the context. Tuple types may declare generic

parameters for one or more of their slots. Tuples have reference semantics, when

passed as values.

The grammar for the Tuple element is:

<!ELEMENT Tuple (Generic*, Slot+)>

<!ATTLIST Tuple name NMTOKEN #IMPLIED>

The attributes of the Tuple element are:

 name – the name of the type (optional).

The name must be given in CapitalCase (see section 1.4). While Tuples can be

named, it is more usual to infer a name for a Tuple from its type contents.

ReMoDeL: FUN Specification, 2 November 2011 9

The children of the Tuple element are:

 Generic – generic type parameter (optional, zero-to-many);

 Slot – indexed structure slot (required, one-to-many).

Examples of the Tuple element include:

<Tuple>

 <Slot type="String"/>

 <Slot type="Natural"/>

</Tuple>

<Tuple name="Pair">

 <Generic name="First"/>

 <Generic name="Second"/>

 <Slot type="First"/>

 <Slot type="Second"/>

</Tuple>

The first example is a simple entry mapping from a String to a Natural number. The

second is the generalisation of this to a generic Pair type. The first example is not

explicitly named, but its type name is inferred as Tuple [String, Natural] from the

context. The named Pair type has the equivalent inferred name: Tuple [?X, ?Y],

where ?X, ?Y denote missing type values to be supplied later.

2.6 Array Type

The Array element may be used to declare array types. These are optionally named

structures, consisting of indexed slots, each of the same type. Array types are more

usually inferred dynamically from the context. Array types may declare a generic

parameter for all of their slots. Arrays have reference semantics, when passed as

values. Matrix types are constructed from nested arrays.

The grammar for the Array element is:

<!ELEMENT Array (Generic?, (Slot | Array))>

<!ATTLIST Array name NMTOKEN #IMPLIED>

<!ATTLIST Array size CDATA #IMPLIED>

The attributes of the Array element are:

 name – the name of the type (optional);

 size – the length of the array (optional).

The name must be given in CapitalCase (see section 1.4). While Arrays can be

named, it is more usual to infer a structured name for an Array from its dimension and

element type. The size must be given as a natural number (unsigned).

The children of the Array element are:

 Generic – generic type parameter (optional);

ReMoDeL: FUN Specification, 2 November 2011 10

 Slot – a single exemplar slot (optional, alternates with Array);

 Array – a nested array type (optional, alternates with Slot).

Examples of the Array element include:

<Array name="String">

 <Slot type="Character"/>

</Array>

<Array size="10">

 <Slot type="Integer"/>

</Array>

<Array name="Table" size="10">

 <Generic type="Element"/>

 <Slot type="Element"/>

</Array>

<Array name="Matrix" size="10">

 <Array size="20">

 <Slot type="Decimal"/>

 </Array>

</Array>

The first example illustrates how the String type is declared in the Core library. The

length of the String is not predefined, but must be inferred from the context of usage.

The second example is of an unnamed array type containing ten Integer slots. Its type

name may be inferred as: Array [10, Integer] from the context. The third example is

of a generic Table containing ten elements of any homogeneous type. The fourth

example is of a Matrix with dimensions 10 x 20, containing Decimal values.

Explicitly named types are equivalent to their corresponding inferred versions. The

String type is equivalent to: Array [?X, Character], and the Table type is equivalent

to Array [10, ?Y], where ?X denotes the missing dimension and ?Y the missing type,

to be supplied later. The equivalent structural type of the Matrix is derived in the

same way as: Array [10, Array [20, Decimal]]. Inferred array types always include

the dimension as the first component.

2.7 Function Type

The Function element may be used to declare named functions, each with an

associated function type signature. The types of functions are usually inferred from

the context. As a kind of Structure, a Function defines named arguments, each of a

possibly different type, and maps to a result type. Functions may declare generic

parameters for one or more of their argument or result types. A Function is also a

kind of named Property, and a kind of Expression. Refer to Function Declaration for

the full specification of functions (see section 4.4).

Examples of the Function element used to specify function signatures include:

<Function name="square" type="Integer">

 <Variable name="value" type="Integer"/>

</Function>

ReMoDeL: FUN Specification, 2 November 2011 11

<Function name="head" type="Element">

 <Generic name="Element"/>

 <Variable name="list" type="List[Element]"/>

</Tuple>

The first example is of a simple function computing the square of an integer. The

inferred type of this function is: Function [Integer, Integer]. The second example is

of a generic function from the Lists library package that returns the head element of a

generic list. The inferred type of this function is: Function [List [?X], ?X], where ?X

denotes the missing type, to be supplied later. Inferred function types always list the

argument types in the same order that the arguments were declared, and include the

result type as their last component.

ReMoDeL: FUN Specification, 2 November 2011 12

3 Expressions

The kinds of Expression used in ReMoDeL FUN subdivide into Literal, Identifier and

Function expressions, the evaluating Operator, Access and Apply expressions and the

compound expression Select. These all descend from the metaclass Expression, as

illustrated in the fragment of the ReMoDeL Metamodel shown in figure 2.

Expression Evaluate

Literal

Identifier

Function

Operator

Access
Compound

Select

Apply

Branch

2..*

Figure 2: Expressions in the ReMoDeL Metamodel

All expressions are defined as instances of one of these metaclasss. For example, the

literal values 3 or "hello" are instances of the Literal metaclass; the variable name

count is defined as an instance of the Identifier metaclass; a function passed as a value

is an instance of the Function metaclass; a mathematical operation is an instance of

the Operator metaclass; a function invocation is an instance of the Apply metaclass;

and any access into a structured type is defined as an instance of the Access metaclass.

The Select metaclass defines binary and multi-branch selection.

3.1 Literal Expression

The Literal element may be used to define a literal expression, or constant. Simple

literal values may be declared for any type whose values have a directly printable

representation. Literals of structured types may also be declared in FUN by nesting

the Literal element. Literal elements may state whether they are the low or high limit

for their type.

The grammar for the Literal element is:

<!ELEMENT Literal (Literal | Identifier)*>

<!ATTLIST Literal value CDATA #IMPLIED>

<!ATTLIST Literal limit (low | high) #IMPLIED>

<!ATTLIST Literal type NMTOKEN #REQUIRED>

The attributes of the Literal element are:

ReMoDeL: FUN Specification, 2 November 2011 13

 value – the literal value, a constant (optional, alternates with children);

 limit – whether this value is the low or high limit (optional);

 type – the type of the literal value (required).

Any value that has a printed representation is valid, including integral and floating-

point numbers, single and multiple character strings or symbols. The value is always

supplied as text data. The interpretation of the value is given by the corresponding

type, which is the defined name, or inferred name, of any declared ReMoDeL FUN

type (see section 2).

The children of the Literal element, which alternate with the value attribute, are zero

or more ordered occurrences of:

 Literal – a nested literal value (optional, zero-to-many);

 Identifier – a nested bound identifier (optional, zero-to-many).

Nested Literal and Identifier elements are only used when constructing literal values

of structured types. In this case, the value attribute is not used in the enclosing Literal

element. Nested Identifier elements are used when constructing the result of a

function from values bound in some of the function’s arguments.

Simple examples of the Literal element include:

<Literal value="false" type="Boolean"/>

<Literal value="e" type="Character"/>

<Literal value="-10" type="Integer"/>

<Literal value="42" type="Natural"/>

<Literal value="3.1415926" type="Decimal"/>

<Literal value="null" type="Void"/>

These examples show how to express literals of simple types. The value null is the

only legal value of the Void type. Examples of structured Literal elements include:

<Literal type="Array[3, Integer]">

 <Literal value="56" type="Integer"/>

 <Literal value="-2" type="Integer"/>

 <Literal value="66" type="Integer"/>

</Literal>

<Literal type="Person">

 <Literal value="John" type="String"/>

 <Literal value="Smith" type="String"/>

 <Literal value="M" type="Character"/>

 <Literal value="32" type="Natural"/>

</Literal>

ReMoDeL: FUN Specification, 2 November 2011 14

These examples illustrate structured literal values of array and record types. The

types of the nested literals must correspond to the expected types of the structure’s

components. Examples of Literal elements used as limits include:

<Literal value="-2147483648" limit="low" type="Integer"/>

<Literal value="2147483647" limit="high" type="Integer"/>

<Literal value="0" limit="low" type="Natural"/>

<Literal value="4294967295" limit="high" type="Natural"/>

The first two examples define the limits of a signed 32-bit Integer type. The second

two examples define the limits of an unsigned 32-bit Natural type. Refer to Basic

Types for more examples (see section 2.1).

3.2 Identifier Expression

The Identifier element may be used to define an occurrence of a variable that was

previously declared, and which is currently in scope.

The grammar for the Identifier element in FUN is:

<!ELEMENT Identifier EMPTY)>

<!ATTLIST Identifier name NMTOKEN #REQUIRED>

<!ATTLIST Identifier type NMTOKEN #REQUIRED>

<!ATTLIST Identifier scope (local | global) "local">

The attributes of the Identifier element are:

 name – the name of the identifier (required);

 type – the type of the identifier (required);

 scope – the scope of the identifier (optional).

The name must be supplied in camelCase, and the type must be a legal ReMoDeL

FUN type name (see section 2). The scope attribute is used when it is desired to

override the default local scope of an identifier. In ReMoDeL FUN, the only

alternative scope is global (other scopes may be defined in different ReMoDeL

dialects).

The Identifier element has no children.

Examples of the Identifier element include:

<Identifier name="majority" type="Natural"/>

<Identifier name="version" type="String" scope="global"/>

The first example is of an identifier referring by default to a locally scoped variable

called majority of the type Natural. The second example is of an identifier referring

to a globally scoped variable called version of the type String.

ReMoDeL: FUN Specification, 2 November 2011 15

3.3 Operator Expression

The Operator element may be used to define an operator expression. This is any

standard operation using the predefined mathematical, Boolean or comparison

operator symbols supported by ReMoDeL FUN. All such symbols have standard

ReMoDeL names, which are mapped to the appropriate symbol by model

transformation tools.

The grammar for the Operator element in FUN is:

<!ELEMENT Operator ((Literal | Identifier | Operator |

 Access | Apply | Select),

 (Literal | Identifier | Operator | Access | Apply |

 Select)?)>

<!ATTLIST Operator symbol (not | or | and | implies |

 equals | notEquals | lessThan | moreThan |

 noMoreThan | noLessThan | negate | plus | minus |

 times | divide | modulo) #REQUIRED>

<!ATTLIST Operator type NMTOKEN #REQUIRED>

The attributes of the Operator element are:

 symbol – the standard name of the operator symbol (required);

 type – the result type of the operator expression (required).

The type must be any legal ReMoDeL FUN type name (see section 2). The

predefined legal symbol names to be used include the following (where noMoreThan

denotes less than or equal, and noLessThan denotes greater than or equal):

 logical operators: not, or, and and implies;

 comparison operators: equals, notEquals, lessThan, moreThan, noMoreThan

and noLessThan;

 arithmetic operators: negate, plus, minus, times, divide and modulo.

The logical and comparison operators yield a Boolean valued result. The arithmetic

operators are polymorphic, returning some Number type consistent with the argument

types, such as Integer, Natural or Decimal.

The children of the Operator element include one or more occurrences of:

 any kind of expression apart from a function (required).

The majority of the predefined operators are binary and expect two operands. The

operators not and negate are unary operators and only expect a single operand.

Examples of the Operator element include:

<Operator symbol="negate" type="Integer">

 <Literal value="42" type="Integer"/>

</Operator>

ReMoDeL: FUN Specification, 2 November 2011 16

<Operator symbol="plus" type="Integer">

 <Literal value="7" type="Integer"/>

 <Literal value="35" type="Integer"/>

</Operator>

<Operator symbol="lessThan" type="Boolean">

 <Literal value="7" type="Integer"/>

 <Operator symbol="minus" type="Integer">

 <Literal value="12" type="Integer"/>

 <Literal value="6" type="Integer"/>

 </Operator>

</Operator>

The first example is of a unary operation, negating the value of the operand 42. The

second example is of a simple binary operation, adding two integer operands. The

third example is of a boolean comparison of two values, where the second value is a

nested operation.

3.4 Access Expression

The Access element may be used to navigate to a sub-part of a structured value. It

generalises projections from tuples, the indexing of single- and multi-dimensional

arrays, and access paths to the named fields of records. Access is a basic operation

that bypasses any visibility restrictions (see 4.2).

The grammar for the Access element is:

<!ELEMENT Access ((Literal | Identifier | Access |

 Apply | Select),

 (Literal | Identifier | Operator | Access |

 Apply | Select)+)>

<!ATTLIST Access type NMTOKEN #REQUIRED>

The attributes of the Access element are:

 type – the result type of the access expression (required).

The type may be any legal ReMoDeL FUN type name (see section 2). The result type

of the access expression must correspond to the type of the value selected by the

indexing-expression(s). Likewise, the type of the indexing-expression must be

suitable for the kind of structure-expression being navigated.

The children of the Access element are two or more expressions of suitable types:

 the structure-expression (required);

 further indexing-expressions (required).

If the structure-expression is a tuple or simple array, the indexing-expression can only

yield a natural number index. If the structure-expression is a multi-dimensional array,

there may be a sequence of indices, up to the total number of dimensions. If the

structure-expression is a simple record, the indexing-expression can only be a label.

If the structure is a nested record, there may be a sequence of labels corresponding to

an access path into the record structure.

ReMoDeL: FUN Specification, 2 November 2011 17

Examples of the Access element include:

<Access type="String">

 <Identifier name="pair" type="Tuple[Integer, String]"/>

 <Literal value="1" type="Natural"/>

</Access>

<Access type="Integer">

 <Identifier name="vector" type="Array[10, Integer]"/>

 <Literal value="3" type="Natural"/>

</Access>

<Access type="Integer">

 <Identifier name="matrix"

 type="Array[10, Array[20, Integer]]"/>

 <Literal value="3" type="Natural"/>

 <Literal value="2" type="Natural"/>

</Access>

<Access type="Array[20, Integer]">

 <Identifier name="matrix"

 type="Array[10, Array[20, Integer]]"/>

 <Literal value="3" type="Natural"/>

</Access>

<Access type="String">

 <Identifier name="employee" type="Person"/>

 <Literal value="surname" type="Label"/>

</Access>

<Access type="String">

 <Identifier name="company" type="Company"/>

 <Literal value="manager" type="Label"/>

 <Literal value="surname" type="Label"/>

</Access>

The first example accesses the second projection (at index 1) of a tuple. The first

projection would be at index 0. Note how the types must correspond, so it is rare to

use anything other than a constant for the index, whereas when using arrays, it is more

common to compute the index.

The second example accesses the fourth value (at index 3) from an array of integers.

The third example shows an access path inside a matrix to return the value of the

fourth row and third column. Note how the indices are applied in the same order that

the dimensions are nested. The fourth example shows how fewer indices than the

maximum may be applied, returning the fourth row of the matrix.

The fifth example accesses the surname field of a record. The sixth example applies a

sequence of labels, navigating the access path: company.manager.surname to yield

the name, a String. Shorter paths would return a record type. Note that record field

names are considered literal values of the predefined Symbolic type Label.

3.5 Function Expression

The Function element may be used to declare an unnamed function-expression, to be

passed as a value (or returned as a result). This is the anonymous lambda term, used

ReMoDeL: FUN Specification, 2 November 2011 18

in higher-order functional programming. As a kind of Expression, a Function has

reference semantics when it is passed by value. Refer to Function Declaration for the

full specification of functions (see section 4.4).

Examples of the Function element used to define anonymous lambda terms include:

<Function type="Boolean">

 <Variable name="number" type="Integer"/>

 <Operator symbol="lessThan" type="Boolean">

 <Identifier name="number" type="Integer"/>

 <Literal value="0" type="Integer"/>

 </Operator>

</Function>

<Function type="Integer">

 <Variable name="number" type="Integer"/>

 <Operator symbol="times" type="Integer">

 <Identifier name="number" type="Integer"/>

 <Literal value="2" type="Integer"/>

 </Operator>

</Function>

The first anonymous function is a predicate to test whether an integer number is less

than zero. This function could be mapped over a list of integers to filter the list. The

second anonymous function is a transformer that doubles its integer argument. This

function could be mapped over a list to transform the whole list.

3.6 Apply Expression

The Apply element may be used to define a function application expression. Apply

denotes a function- or procedure-call in languages with functions and procedures. It

is an evaluating expression that applies a function to suitable argument expressions to

return a result. The Apply element may refer to a declared function by name, or may

include the function-expression as its first child.

The grammar for the Apply element in FUN is:

<!ELEMENT Apply ((Function | Identifier)?,

 (Literal | Identifier | Function | Operator |

 Access | Apply | Select)+)>

<!ATTLIST Apply function NMTOKEN #IMPLIED>

<!ATTLIST Apply type NMTOKEN #REQUIRED>

The attributes of the Apply element are:

 function – the name of the function (optional, alternates with first child);

 type – the result type of the application (required).

The function name, if supplied, must be given in camelCase, and should refer to a

previously defined function that is currently in scope. The type may be any legal

ReMoDeL FUN type name (see section 2), but must also be identical to the expected

result type of the function being applied.

ReMoDeL: FUN Specification, 2 November 2011 19

The children of the Apply element are one or more expressions of suitable types:

 the function-expression (optional, alternates with function);

 further argument-expressions (required).

The argument-expressions must evaluate to suitable values, whose types correspond

to the types expected by the function’s arguments.

Examples of the Apply element include:

<Apply function="isEven" type="Boolean">

 <Literal value="7" type="Natural"/>

</Apply>

<Apply function="maximum" type="Natural">

 <Literal value="7" type="Natural"/>

 <Literal value="13" type="Natural"/>

</Apply>

<Apply type="Boolean">

 <Identifier name="test" type="Function[Natural, Boolean]"

 <Literal value="7" type="Natural"/>

</Apply>

<Apply type="Boolean">

 <Function type="Boolean">

 <Variable name="number" type="Natural"/>

 <Operator symbol="lessThan" type="Boolean">

 <Identifier name="number" type="Natural"/>

 <Literal value="0" type="Natural"/>

 </Operator>

 </Function>

 <Literal value="7" type="Natural"/>

</Apply>

The first example applies the named function isEven (which must be defined and in

scope) to the single argument-expression. The second example applies the named

function maximum to a pair of argument-expressions (the function must accept a pair

of arguments of these types).

The third and fourth examples have no named function, but apply the first expression

(the function-expression) to the remaining argument-expressions. The third example

applies the function stored in the identifier test to its argument; and the fourth

example applies a locally scoped anonymous function-expression to its argument (see

also section 3.5).

3.7 Branch Expression

The Branch element may be used to define a lazy-evaluating expression. The Branch

element is a kind of Expression, representing a guard or trigger protecting the

enclosed expression, whose evaluation is delayed. In FUN, Branch is used in

conjunction with Select, a generalised conditional branching construction. When a

selection choice-expression is evaluated, and the result matches the trigger for a

particular branch, this identifies which branch of the program to follow.

ReMoDeL: FUN Specification, 2 November 2011 20

The grammar for the Branch element in FUN is:

<!Element Branch (Literal | Identifier | Function |

 Operator | Access | Apply | Select)>

<!ATTLIST Branch when CDATA #REQUIRED>

<!ATTLIST Branch type NMTOKEN #REQUIRED>

The attributes of the Branch element are:

 when – the trigger value for the branch (required);

 type – the type of the delayed expression (required).

The trigger when is a value determining when the branch should be executed. This

can be a Boolean value (false, true), a scalar value (a symbolic or integral value) or

the result of any other choice-expression tested by Select expressions (in FUN; other

ReMoDeL dialects may also test choice-expressions in Iterate expressions). The type

may be any legal ReMoDeL type name (see section 2), but must correspond to the

type of the wrapped expression, whose evaluation is delayed.

The children of the Branch element are:

 Expression – the expression whose evaluation is delayed.

Boolean-triggered examples of the Branch element include:

<Branch when="true" type="String">

 <Literal value="True branch selected" type="String"/>

</Branch>

<Branch when="false" type="String">

 <Literal value="False branch selected" type="String"/>

</Branch>

Scalar-triggered examples of the Branch element include:

<Branch when="closed" type="String">

 <Literal value="Account is closed" type="String"/>

</Branch>

<Branch when="open" type="String">

 <Literal value="Account is open" type="String"/>

</Branch>

<Branch when="frozen" type="String">

 <Literal value="Account is frozen" type="String">

</Branch>

These examples are the cases for a multi-branch selection on some expression of the

type Status, each wrapping an expression, here a String value to be returned. Cases of

other scalar types are possible, such as Integer, Natural or Character, so long as all

cases are mutually exclusive and exhaustive. There is no default case.

ReMoDeL: FUN Specification, 2 November 2011 21

3.8 Select Expression

The Select element may be used to define a conditional branching expression. Select

is the generalisation of the binary branching if-statement and the multi-branching

switch-statement (or case-statement) in programming languages. Select is the only

kind of Compound expression used in ReMoDeL FUN, which does not have

Sequence, Parallel or Iterate expressions. (There are no sequences, since these only

exist in languages that evaluate expressions for their side effects; and all repetition is

accomplished through recursive definitions). Select is used in conjunction with lazy-

evaluating Branch expressions in FUN.

The grammar for the Select element in FUN is:

<!ELEMENT Select ((Literal | Identifier | Operator |

 Access | Apply | Select),

 Branch, Branch+)>

<!ATTLIST Select choice (simple | multiple) #REQUIRED>

<!ATTLIST Select type NMTOKEN #REQUIRED>

The attributes of the Select element are:

 choice – whether the choice is simple or multiple (required);

 type – the result type of the selection expression (required).

The choice indicates whether a simple or multiple-choice selection is intended. The

type may be any legal ReMoDeL FUN type name (see section 2), but must also be

identical to the expected result type of each branch of the Select expression.

The Select element has one Expression child and two or more Branch children:

 the choice-expression, having a Boolean type for a simple choice and a scalar

type for a multiple-choice (required);

 the branch expressions, of which one will be taken (required, two-to-many).

The first child is always the choice-expression. This has a Boolean value in binary

selections (if-then-else statement), or any scalar value in a multi-branching selection

(switch, case statement).

Examples of the Select element include the following simple choice and multiple-

choice:

ReMoDeL: FUN Specification, 2 November 2011 22

<Select choice="simple" type="String">

 <Operator symbol="moreThan" type="Boolean">

 <Identifier name="count" type="Natural"/>

 <Literal value="0" type="Natural"/>

 </Operator>

 <Branch when="true" type="String">

 <Literal value="More than zero" type="String">

 </Branch>

 <Branch when="false" type="String">

 <Literal value="Equal to zero" type="String">

 </Branch>

</Select>

This first example has a Boolean-valued choice expression, so is a binary branching

selection. In FUN, binary branching expressions must have two branches and single-

branch if-statements are not permitted. Both branches must return the same String

type, which is also the type of the Select-expression.

<Select choice="multiple" type="String">

 <Identifier name="status" type="Status"/>

 <Branch when="closed" type="String">

 <Literal value="Account is closed" type="String"/>

 </Branch>

 <Branch when="open" type="String">

 <Literal value="Account is open" type="String"/>

 </Branch>

 <Branch when="frozen" type="String">

 <Literal value="Account is frozen" type="String"/>

 </Branch>

</Select>

This second example has a scalar-valued choice expression, of the enumerated type

Status, so is a multi-branching selection. In FUN, multi-branching expressions must

exhaustively cover all possible branches (missing branches are not permitted). So, it

is useful to be able to use finite Symbolic types as the values of guards.

ReMoDeL: FUN Specification, 2 November 2011 23

4 Declarations

The kinds of Declaration used in ReMoDeL FUN include all Type, Variable and

Function declarations. Significant kinds of Declaration include Classifier, which

defines all things with a namespace; and Property, which defines named properties

with an associated Type. Descendants of Property include Slot, an indexed property,

and Member, an owned property. Functions and variables are free properties that are

not owned by other types (although they are organised in packages). Figure 2

illustrates the fragment of the ReMoDeL Metamodel dealing with declarations.

Array

Property Variable

Function Classifier

Record

Field

1..* args

Declaration

Member

Slot

Type

1..* fields

1 type

Tuple

1..* slots

Figure 3: Declarations in the ReMoDeL Metamodel

Program declarations are instances of these metaclasses. For example, a function

definition is an instance of the Function metaclass; and a global or local variable

definition is an instance of the Variable metaclass. The types of the language, which

were considered above (see section 2) are also kinds of Declaration.

4.1 Slot Declaration

The Slot element may be used to declare storage for program values. Slot is a basic

concept in the ReMoDeL Metamodel, used to declare storage for values in Array and

Tuple types. A slot is a degenerate kind of unnamed Property, which may instead be

indexed by its owning type.

The grammar for the Slot element is:

<!ELEMENT Slot EMPTY>

<!ATTLIST Slot type NMTOKEN #REQUIRED>

The attributes of the Slot element are:

 type – the type of the slot (required).

The type may be any legal ReMoDeL FUN type name (see section 2).

The Slot element has no children.

ReMoDeL: FUN Specification, 2 November 2011 24

Examples of the Slot element include:

<Slot type="Integer"/>

<Slot type="Person"/>

<Slot type="Array[12, Integer]"/>

The first example defines a slot for a basic Integer type, which will store its contents

by value (have value-semantics). The second example defines a slot for a Person

record type, which will store its contents by reference (have reference semantics). All

values of Structure types are stored by reference.

The third example is rare, since Array types of more than one dimension are usually

defined by nesting the Array element, rather than by typing each Slot individually.

This form is useful when declaring a Tuple with Slots of different lengths, to create a

ragged array. Refer to Tuple Types (see section 2.5) and Array Types (see section 2.6)

for more details.

4.2 Field Declaration

The Field element may be used to define the named fields of records. A Field is a

kind of Member (which is more significant in ReMoDeL OOP, where this metaclass

bestows a visibility on all members) and transitively a kind of Property (from which it

obtains a name and typed storage).

The grammar for the Field element in FUN is:

<!ELEMENT Field ((Literal | Identifier | Function |

 Operator | Access | Apply | Select)?)>

<!ATTLIST Field name NMTOKEN #REQUIRED>

<!ATTLIST Field type NMTOKEN #REQUIRED>

The attributes of the Field element are:

 name – the name of the field (required);

 type – the type of the field (required).

The name must be supplied in camelCase, the expected style for all property names.

By default, the visible value is always private (visibility comes more into play in other

ReMoDeL dialects). However, FUN also supplies the Access expression, which

ignores all visibility restrictions. The type may be any legal ReMoDeL FUN type

name (see section 2).

The Field element optionally has the child:

 the initial value expression to bind to the field (optional).

Initial value expressions may be used to declare and initialise a field at the point of

introduction. It is more usual to initialise a whole record variable to a structured

literal value; but the above syntax may be used to initialise constant record types.

ReMoDeL: FUN Specification, 2 November 2011 25

4.3 Variable Declaration

The Variable element may be used to define named storage for program values.

Variable is used to declare both global and local variables, and also formal arguments

to functions. A Variable is a kind of Property (from which it obtains a property name

and associated typed storage). In other ReMoDeL dialects supporting iteration, a

Variable may have further attributes and child elements.

The grammar for the Variable element in FUN is:

<!ELEMENT Variable (Literal | Identifier | Function |

 Operator | Access | Apply | Select)?>

<!ATTLIST Variable name NMTOKEN #REQUIRED>

<!ATTLIST Variable type NMTOKEN #REQUIRED>

The attributes of the Variable element are:

 name – the name of the variable (required);

 type – the type of the variable (required).

The name must be supplied in camelCase, the expected style for all property names.

FUN only uses the scope values local and global. The step relates to how a variable

may be reset automatically. This feature is not used in FUN, since variables cannot be

reassigned. The type may be any legal ReMoDeL FUN type name (see section 2).

In FUN, the Variable element optionally has the child:

 the initial value expression to bind to the variable (optional).

Initial value expressions may be used to declare and initialise a global or local

variable at the point of introduction. The semantics of binding is identical to the

binding of values to formal arguments upon entry to a function. Each variable

introduced in the same scope is bound independently to its initial value.

Initial value expressions may also be used to express default values for formal

arguments, to be used in certain circumstances when no supplied value is available.

This is used with folding or reducing operations in higher-order functional

programming.

Simple examples of the Variable element used as a parameter include:

<Variable name="amount" type="Integer"/>

<Variable name="primes" type="Array[5, Natural]"/>

<Variable name="function" type="Function[Natural, Boolean]"/>

These examples show how it is possible to declare variables of both simple and

structured types. The last example shows how it is possible to type a variable so that

it may receive a function expression as its value. Further examples of the Variable

element include:

ReMoDeL: FUN Specification, 2 November 2011 26

<Variable name="rate" type="Decimal">

 <Literal value="3.25" type="Decimal"/>

</Variable>

<Variable name="manager" scope="global" type="Person">

 <Literal type="Person">

 <Literal value="John" type="String"/>

 <Literal value="Smith" type="String"/>

 <Literal value="M" type="Character"/>

 <Literal value="32" type="Natural"/>

 </Literal>

</Variable>

<Variable name="primes" type="Array[5, Natural]">

 <Literal type="Array[5, Natural]">

 <Literal value="2" type="Natural"/>

 <Literal value="3" type="Natural"/>

 <Literal value="5" type="Natural"/>

 <Literal value="7" type="Natural"/>

 <Literal value="11" type="Natural"/>

 </Literal>

</Variable>

These examples illustrate how variables of both simple and structured types may be

initialised, respectively to simple or structured literal values. These are implicitly

global variables, if declared in package scope.

4.4 Function Declaration

The Function element may be used to define named functions for execution in a

program. A Function declares one or more formal parameters and defines a body

expression to compute its result, which is the value returned. A function may also

declare generic type parameters, if it is a generic function. Defining a function binds

the function’s name to the function’s definition (which is treated exactly like binding

a variable to a value). A Function is a kind of Property (from which it obtains a

property name and an associated type).

The grammar for the Function element is:

<!ELEMENT Function (Generic*, Variable+,

 (Literal | Identifier | Function |

 Operator | Access | Apply | Select))>

<!ATTLIST Function name NMTOKEN #IMPLIED>

<!ATTLIST Function type NMTOKEN #REQUIRED>

The attributes of the Function element are:

 name – the name of the function (optional, if anonymous);

 type – the result type of the function (required).

The name, if supplied, must be in camelCase, the expected style for all property

names. Functions may be anonymous (see section 3.5). The type records the result

type of the function and may be any legal ReMoDeL FUN type name (see section 2).

This is different from the function’s complete type signature (see section 2.7).

ReMoDeL: FUN Specification, 2 November 2011 27

The Function element has the children:

 Generic – generic type parameter (optional, zero-to-many);

 Variable – the formal parameters to the function (required, one-to-many);

 the function’s single body expression (required).

A function will have generic parameters, if it manipulates a type, which also contains

generic parameters. A function must have one to many formal parameters. Some of

these may be given default values (allowing the function to be called on fewer

arguments). A function always has exactly one body expression, whose type is the

same as the function’s result type. No special syntax is required to indicate the result

of the Function, since this is always clear in FUN.

Simple examples of the Function element include:

<Function name="sumTwoValues" type="Integer">

 <Variable name="first" type="Integer"/>

 <Variable name="second" type="Integer"/>

 <Operator symbol="plus" type="Integer">

 <Identifier name="first" type="Integer"/>

 <Identifier name="second" type="Integer"/>

 </Operator>

</Function>

<Function name="isEven" type="Boolean">

 <Variable name="number" type="Natural"/>

 <Operator symbol="equals" type="Boolean">

 <Operator symbol="modulo" type="Natural">

 <Identifier name="number" type="Natural"/>

 <Literal value="2" type="Natural"/>

 </Operator>

 <Literal value="0" type="Natural"/>

 </Operator>

</Function>

These examples illustrate how the body can be any expression. The second example

has a nested body expression, where the inner operator expression returns its value to

the outer operator expression, which returns as the result of the function.

Some more complex examples are given below. The first example defines the higher-

order map function, which maps a function over the elements of a list, returning a list

of the transformed results. It illustrates the use of generic parameters, to generalise

the types of the input and output lists, relating these to the transformer function’s

signature. It also demonstrates how to pass a function as an argument to another

function, and how to call it internally. Finally, it illustrates the use of recursion when

traversing a list.

ReMoDeL: FUN Specification, 2 November 2011 28

<Function name=map type="List[Result]">

 <Generic name="Argument"/>

 <Generic name="Result"/>

 <Variable name="func" type="Function[Argument, Result]"/>

 <Variable name="list" type="List[Argument]"/>

 <Select choice="simple" type="List[Result]">

 <Operator symbol="equals" type="Boolean">

 <Identifier name="list" type="List[Argument]"/>

 <Literal value="null" type="List[Argument]"/>

 </Operator>

 <Branch when="true" type="List[Result]">

 <Literal value="null" type="List[Result]"/>

 </Branch>

 <Branch when="false" type="List[Result]">

 <Apply function="add" type="List[Result]">

 <Apply function="func" type="Result">

 <Apply function="head" type="Argument">

 <Identifier name="list" type="List[Argument]"/>

 </Apply>

 </Apply>

 <Apply function="map" type="List[Result]">

 <Identifier name="func"

 type="Function[Argument, Result]"/>

 <Apply function="tail" type="List[Argument]">

 <Identifier name="list" type="List[Argument]"/>

 </Apply>

 </Apply>

 </Apply>

 </Branch>

 </Select>

</Function>

The next example is of a function with default values for its arguments. This function

sum is normally called on two arguments, which it adds together. However, if it is

called on fewer arguments, it uses the default values in place of any missing actual

values. The reason for this flexibility is to support a different kind of higher-order

functional programming, when reducing a list.

<Function name="sum" type="Integer">

 <Variable name="next" type="Integer">

 <Literal value="0" type="Integer"/>

 </Variable>

 <Variable name="total" type="Integer">

 <Literal value="0" type="Integer"/>

 </Variable>

 <Operator symbol="plus" type="Integer">

 <Identifier name="next" type="Integer"/>

 <Identifier name="total" type="Integer"/>

 </Operator>

</Function>

The final example is of the reduce function, a higher-order function that expects to

perform some aggregating operation over a whole list. If it is called with sum as its

first argument, this will sum the values of the list, by adding the head of the input list

to the result of summing the recursive call. Eventually, the input list will be empty, so

sum is defined to return zero, when invoked on no arguments.

ReMoDeL: FUN Specification, 2 November 2011 29

<Function name=reduce type="Result">

 <Generic name="Argument"/>

 <Generic name="Result"/>

 <Variable name="func"

 type="Function[Argument, Result, Result]"/>

 <Variable name="list" type="List[Argument]"/>

 <Select choice="simple" type="Result">

 <Operator symbol="equals" type="Boolean">

 <Identifier name="list" type="List[Argument]"/>

 <Literal value="null" type="List[Argument]"/>

 </Operator>

 <Branch when="true" type="Result">

 <Apply function="func" type="Result"/>

 </Branch>

 <Branch when="false" type="Result">

 <Apply function="func" type="Result">

 <Apply function="head" type="Argument">

 <Identifier name="list" type="List[Argument]"/>

 </Apply>

 <Apply function="reduce" type="Result">

 <Identifier name="func"

 type="Function[Argument, Result, Result]"/>

 <Apply function="tail" type="List[Argument]">

 <Identifier name="list" type="List[Argument]"/>

 </Apply>

 </Apply>

 </Apply>

 </Branch>

 </Select>

</Function>

4.5 Package Declaration

ReMoDeL FUN uses the ReMoDeL Package and Namespace Model for organising

function and variable definitions into separate packages. See the separate model

specification [2] for full details.

A ReMoDeL FUN package is declared using the Package element to wrap the

contents of the package. A skeleton example is the following:

<Package model="FUN" name="Func" location="lib.func">

 <!-- other definitions inserted here -->

</Package>

This declares that the definitions contained within belong to the package whose

namespace is Func, whose contents are to be stored at the logical location lib.func and

that the package model type is FUN. This information may be interpreted differently

by different translators: they may use the namespace identifier to qualify all

definitions, or use the logical location to store all compiled definitions at a given

physical location under a root directory for the target language.

The entire contents of a package may be imported into the current namespace using

the global import instruction:

ReMoDeL: FUN Specification, 2 November 2011 30

<Import model="FUN" package="Func" location="lib.func"/>

<Import model="FUN" package="Lists" location="lib.lists"/>

Alternatively, a package may express its dependency on other packages and then

certain elements may be imported selectively:

<Consult model="FUN" package="Func" location="lib.func"/>

<Consult model="FUN" package="Lists" location="lib.lists"/>

<Employ refer="map" kind="Function" from="Func"/>

<Employ refer="reduce" kind="Function" from="Func"/>

<Employ refer="List" kind="Record" from="Lists"/>

<Employ refer="head" kind="Function" from="Lists"/>

<Employ refer="tail" kind="Function" from="Lists"/>

Model-checking tools should be able to identify suitable matching elements in the

consulted package.

4.6 Program Declaration

In ReMoDeL FUN, the notion of a program is deliberately simple. A program

consists of a set of function and variable declarations, possibly imported from various

foreign packages. The main program is simply a distinguished variable, called result,

of some appropriate type (here ResultType is just a template), whose initialisation

forces the evaluation of the whole program:

<Variable name="result" type="ResultType">

 <!-- initialisation expression inserted here -->

</Variable>

How the result of the computation is communicated to the end-user is a matter for

different translations. The FUN model says nothing about input or output, since the

language is one of pure computation. Input and output are imperative operations, and

different functional languages have different ways of finessing I/O. Some expect the

result to be stored in a variable with a predictable name. Others use more arcane

functional machinery, such as monads.

A translation of FUN into a Functional language may have to identify the program

entry point in some way to the translator. Alternatively, the translator may use result

directly in the target language, or identify the initialisation expression for result as the

main function to call in the target language.

5 References

[1] World Wide Web Consortium (W3C), Extensible Markup Language (XML)

1.0, 5
th

 edition, eds. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F.

Yergeau, 26 November, 2008. http://www.w3.org/TR/2008/REC-xml-20081126/

[2] A. J. H. Simons, ReMoDeL Package and Namespace Model Specification,

Technical Report, Department of Computer Science, University of Sheffield, 2011.

http://www.w3.org/TR/2008/REC-xml-20081126/

