

ReMoDeL

Object-Oriented
Programming

Model Specification

Version: 0.5

Date: 20 January 2012

Anthony J H Simons
Department of Computer Science
University of Sheffield

ReMoDeL: OOP Specification, 20 January 2012 2

1 Introduction .. 4

1.1 Model Scope .. 4

1.2 Model Semantics ... 4

1.3 Common Metamodel ... 7

1.4 XML Conventions ... 7

2 Types .. 8

2.1 Basic Type ... 8

2.2 Symbolic Type .. 9

2.3 Generic Type ... 10

2.4 Class Type ... 11

2.5 Interface Type ... 14

3 Expressions .. 16

3.1 Literal Expression ... 16

3.2 Identifier Expression ... 18

3.3 Operator Expression .. 19

3.4 Assign Expression ... 20

3.5 Create Expression .. 21

3.6 Invoke Expression ... 23

3.7 Branch Expression ... 24

3.8 Select Expression .. 25

3.9 Iterate Expression .. 27

3.10 Sequence Expression ... 30

3.11 Parallel Expression .. 31

3.12 Return Statement ... 33

3.13 Assert Statement .. 34

3.14 Rescue Statement ... 36

4 Declarations ... 38

4.1 Variable Declaration ... 38

4.2 Field Declaration ... 40

4.3 Method Declaration ... 43

4.4 Creator Declaration ... 46

4.5 Package Declaration .. 48

ReMoDeL: OOP Specification, 20 January 2012 3

4.6 Program Declaration ... 49

5 References .. 50

ReMoDeL: OOP Specification, 20 January 2012 4

1 Introduction

This document describes the specification for ReMoDeL OOP, a dialect of XML [1]

used to encode the Object-Oriented Programming Model. This programming model

is derived from the core ReMoDeL FUN functional programming model [2] and

contains extensions for object-oriented programming. It also uses constructions from

the ReMoDeL PKG package and namespace model [3].

1.1 Model Scope

The Object-Oriented Programming Model is intended to support a language of pure

object-orientation, consisting of interfaces, classes, symbolic and basic types, fields

and methods, variables, values and expressions. It should be possible to translate

from ReMoDeL OOP into the strongly typed object-oriented languages, such as Java,

C#, C++, Eiffel and Delphi; and also into other more radical languages, such as

Smalltalk, Self and CLOS. However, it is not our intention that OOP should support

every construction present in each of these languages individually. Instead, OOP

captures a common subset of features that can be modelled in each of these languages.

ReMoDeL OOP is derived from the basic programming model, ReMoDeL FUN, to

avoid re-inventing common constructions shared by both models, such as variables

and expressions. It shares some imperative features with ReMoDeL STR, the

structured programming model. The intention is to reuse, or adapt programming

language constructions from other ReMoDeL XML dialects. This promotes a

desirable kind of homogeneity across the different models.

1.2 Model Semantics

Since the Object-Oriented Programming Model is intended to serve as the basis for

code generation in various target languages with subtly different execution semantics,

a Common Semantic Model was devised, representing the semantics that could either

be supported directly by, or encoded in, each target language. The major issues to

resolve included: strong typing, object references, memory management, policies on

inheritance, overloading, overriding and dynamic binding, class fields and methods,

styles of construction and exception handling.

OOP supports strongly typed object-oriented languages. Weakly typed languages,

such as Smalltalk or Objective C may also be generated, but lose the strong typing of

the models. OOP class and interface types are defined within a class hierarchy,

supporting a simple subtyping model (redefined method signatures have invariant

argument types and covariant result types). OOP also supports generic type

parameters, with optional type assumptions on the parameter. Some languages like

C++ cannot check these assumptions (until parameters are bound), and weakly typed

languages like Smalltalk can only render generic variables as having the most general

Object type (but need not recover more specific type information).

Most object-oriented languages provide reference semantics by default for their object

variables (a variable stores a pointer); C++ is the exception to this, supporting value

semantics by default (a variable stores an object). Eiffel also has expanded types,

stored by value, and C++ also offers reference and pointer variables. OOP adopts the

ReMoDeL: OOP Specification, 20 January 2012 5

more common reference semantics by default for its object variables. The C++

translation requires special handling, to emulate this uniformly.

Object-oriented languages support different policies on memory management. In

Smalltalk, Java, C# and Eiffel, a garbage collector is assumed to reclaim dead or

unreachable objects no longer used by a program. In C++, no memory management is

provided by default. OOP assumes the existence of a garbage collector. The C++

translation may either provide a collector, or must translate in such a way that objects

manage their own lifetimes, for example, by use of smart pointers and reference

counting.

Many object-oriented languages offer a modular mechanism for packaging sets of

related classes. These may be called packages, modules, namespaces or clusters. In

Java, the package represents both a namespace and a directory tree. In C++,

namespaces and directories are orthogonal concepts. In Eiffel, clusters correspond to

directory trees and no further partitioning by namespace is supported. OOP supports

named packages with associated directory trees. Code may be generated for target

languages with namespaces, or with directory trees, or both. Namespaces may be

emulated in Eiffel, by adding package prefixes to class names.

Object-oriented languages offer quite diverse schemes for encapsulation at the class

level. Most support a fine-grained control over visibility, offering private (visible

locally), protected (visible also to inheritors) and public (visible to all) declarations

for a class’s fields and methods. Some offer package-level visibility (visible to others

in the package) by default. Smalltalk offers a simple scheme, in which all fields are

protected and all methods public by necessity. Eiffel offers a flexible export control,

making different groups of methods visible to named groups of classes. OOP adopts

the three-valued private, protected and public policy, with the rule that no field may

be public. Eiffel may be restricted to mimic the three-value scheme; and Smalltalk

can accommodate it (but will be weaker in its enforcement). At the package level,

OOP supports private and public declarations, to indicate secret or exported classes

and interfaces within the package.

Object-oriented languages differ in their policies on inheritance. Some, such as

Smalltalk, support single inheritance (each class has one parent). Some, such as Eiffel

or C++ support multiple inheritance (each class may have several parents). Some,

such as Java, C# and Objective C, support a hybrid approach in which classes are

defined within a single hierarchy but may also satisfy multiple interfaces, arranged in

a multiple hierarchy. OOP adopts the latter position, on the grounds that more

languages support this model directly, and others may emulate it, by restricting how

inheritance is used. Even Smalltalk may fit this model, since objects are untyped and

methods are only checked at runtime for the correct number of arguments.

Object-oriented languages differ in whether they allow name overloading within a

class. Some, like Java, C# and C++, allow method names to be overloaded, such that

the same name may refer to distinct methods, which are distinguished only by their

type signatures. Others, like Eiffel and Smalltalk uniquely identify methods on a

name-only basis. OOP adopts a no-overloading policy within a class, such that

distinct names must be invented for each distinct method. Different classes may

nonetheless provide different versions of the same named method.

ReMoDeL: OOP Specification, 20 January 2012 6

Object-oriented languages differ in their policies on method overriding. Eiffel and

Smalltalk redefine methods on a name-only basis, expecting the redefined method

signature to conform to the original. C++ and C# offer the possibility of redefinition

with method overriding (if the signatures conform) or overloading with method hiding

(if they don’t). This can result in quite different behaviour in different circumstances.

OOP adopts the policy that a redefined method is intended to override. The redefined

method must have unchanged argument types, but may specialise the result type.

Object-oriented languages differ in their policies on method binding. Some, like C#

and C++, assume static binding by default, whereas others, like Java, assume dynamic

binding by default; but both support the opposite, by explicit instruction. Other

languages, like Objective C, support universal dynamic binding, whereas some, like

Self, expect the binding issues to be resolved by a smart compiler. OOP adopts

dynamic binding by default, so as not to restrict method redefinition, and does not

require binding to be made explicit in the model. Code generators may make

assumptions based on the completeness of models.

The combination of dynamic binding and overriding results in different execution

semantics in different languages. In C++, Eiffel and Java, quite different behaviour

may obtain when overriding a private method in a subclass, resulting in dynamic

binding (invoking a subclass method through a superclass pointer), method hiding

(removing access to a superclass method in the subclass) or a compile-time error. For

this reason, OOP restricts overriding to public and protected methods. So, private

methods may never be redefined in OOP.

Object-oriented languages differ in their support for class fields and methods (called

static, or shared). While static fields are allocated once for the class, and define

shared properties, static methods are more like global functions, invoked on class-

objects at runtime. Not every language supports the latter concept, so OOP adopts

shared fields only. Programs that require the use of static methods are in any case

considered poor object-oriented style.

Object-oriented languages sometimes offer different styles of method invocation,

where methods are selected according to the types of one or more arguments. OOP

adopts the most prevalent style, in which one object (or expression) is the designated

receiver, or target, of the method invocation and the remaining arguments are passed

after resolution of the invocation. If no target object is specified, the assumed target is

self, the current object in the enclosing method execution.

Object-oriented languages offer different styles of object creation. Some treat

constructors as functional expressions that return the new object; others treat them as

side-effecting methods that initialise a blank target variable. OOP treats constructors

as initialising procedures (called Creators), but also supports functional expressions to

create objects (called Create expressions). A Create expression returns an object of

the specific requested type; but this object is initialised using one or more Creators

(chained by inheritance). Create expressions may optionally include the target

variable to initialise.

Object-oriented languages differ in their policy on exception handling. Some, like

Smalltalk, have implementation-dependent mechanisms to deal with exceptions raised

outside of the main flow of control. Others, like Java, C++ and C# offer a fine-

ReMoDeL: OOP Specification, 20 January 2012 7

grained control over the raising and handling of exceptions. Eiffel offers a single

disciplined mechanism [4], whereby a faulty method may attempt to redeem its

failure. OOP adopts this approach, known as programming by contract, and bases

exception handling on the declaration of semantic assertions about correct behaviour.

This can be emulated by smart code generation in other languages.

1.3 Common Metamodel

The XML elements and attributes defined in this syntax model correspond to

concepts, attributes and relationships in the ReMoDeL Metamodel. The deliberate

consequence of this is that XML elements may be mapped directly onto metamodel

classes. Elements are not defined in isolation, but may be organised in a conceptual

hierarchy according to their similarities and differences. This is intended to support

parsers that build syntax trees directly from instances of the metamodel classes, as

well as parsers that use conventional XML trees.

A model will be constructed from the terminal elements in the conceptual hierarchy.

A consequence of this is that certain XML element names will be reserved to denote

abstract concepts in the metamodel, which are never actually present in any instance

of the model. These abstract elements are nonetheless defined as part of the model,

since they may correspond to strongly typed nodes in syntax trees derived directly

from the metamodel.

The intention is for all ReMoDeL XML dialects to be mapped onto a common

metamodel. The terminal elements used across different languages, though they may

be different, will nonetheless share certain similarities, expressed through their

relationships with common abstract elements.

1.4 XML Conventions

ReMoDeL OOP adopts all the W3C conventions for XML [1]. Identifier symbols

must observe the rules of Unicode identifiers, attribute values must be enclosed in

quotes and special characters must be escaped as entity references. Apart from this,

ReMoDeL imposes a certain "house style" on identifiers:

 The names of all XML elements are presented in CapitalCase, similar to type

names in the Java programming language.

 The names of all XML attributes are presented in camelCase, similar to

variable names in the Java programming language.

The use of hyphens and underscores as part of identifier names goes against the house

style and is strongly discouraged. The use of digits as part of the body of an identifier

is legal, but also generally discouraged, unless the application clearly demands this.

ReMoDeL: OOP Specification, 20 January 2012 8

2 Types

The kinds of Types used in ReMoDeL OOP subdivide into the Basic types, the

Symbolic types, the Class types and the Interface types. There is also a Generic type

parameter. These all descend from the metaclass Type, as illustrated in the fragment

of the ReMoDeL Metamodel shown in figure 1. The metaclass Record is not needed

in OOP, since it is superseded by Class. Likewise the metaclass Array is not needed,

since OOP uses predefined library collection classes instead.

Type

Structure
Basic

Symbolic

Generic

/parts *

Class

Interface

Figure 1: Types in the ReMoDeL Metamodel

All types are defined as instances of one of these metaclasses, which also specify the

type’s implementation. For example, an Integer type is defined as an instance of the

Basic metaclass; the symbolic Boolean type is defined as an instance of the Symbolic

metaclass; a Person class is defined as an instance of the Class metaclass; and the

Iterator interface is defined as an instance of the Interface metaclass. Instances of the

Generic metaclass are type parameters, placeholders for types.

ReMoDeL assumes standard default specifications for the types: Boolean, Character,

Integer, Natural, Decimal and Void, which may be taken for granted if no alternative

definition is provided. Boolean occupies a byte, Character supports UTF-8, Integer

assumes a signed 32-bit range, Natural assumes an unsigned 32-bit range, Decimal

assumes double-precision floating point and Void is the most specific type of the

empty value null. These types are declared in the Core package for the ReMoDeL

OOP dialect, which has other basic types, such as Byte, Short and Long, and also the

class String, which may be included in models as desired.

2.1 Basic Type

The Basic element is used to declare a primitive value-type with a fixed range of

values. Basic types are often built-in types of the target language. The syntax

supports declaring types with different ranges (and therefore different precision),

which must be preserved by the implementation of the target language.

The grammar for the Basic element is:

<!ELEMENT Basic (Literal, Literal)>

<!ATTLIST Basic name NMTOKEN #REQUIRED>

ReMoDeL: OOP Specification, 20 January 2012 9

The attributes of the Basic element are:

 name – the name of the type (required).

The type name must be given in CapitalCase (see section 1.4).

The children of the Basic element are exactly one each of:

 Literal – the lower limit of the type (optional);

 Literal – the upper limit of the type (optional);

Examples of the Basic element include:

<Basic name="Character"/>

<Basic name="Integer">

 <Literal value="-2147483648" limit="low" type="Integer"/>

 <Literal value="2147483647" limit="high" type="Integer"/>

</Basic>

In the first example, the range of the declared Character type is assumed to be the

default range supporting UTF-8. The second example explicitly declares the Integer

type to have a 32-bit range.

2.2 Symbolic Type

The Symbolic element is used to declare a symbolic value-type with enumerable

values. These are symbolic constants, which are declared by finite enumeration.

Symbolic types are often user-defined, but may be built-in types.

The grammar for the Symbolic element is:

<!ELEMENT Symbolic (Literal+)>

<!ATTLIST Symbolic name NMTOKEN #REQUIRED>

The attributes of the Symbolic element are:

 name – the name of the type (required).

The type name must be given in CapitalCase (see section 1.4).

The children of the Symbolic element are one or more ordered occurrences of:

 Literal – a symbolic constant of the type (required, one-to-many).

Examples of the Symbolic element include:

<Symbolic name="Boolean" from="Core">

 <Literal value="false" type="Boolean"/>

 <Literal value="true" type="Boolean"/>

</Symbolic>

ReMoDeL: OOP Specification, 20 January 2012 10

<Symbolic name="Status">

 <Literal value="closed" type="Status"/>

 <Literal value="open" type="Status"/>

 <Literal value="frozen" type="Status"/>

</Symbolic>

Model transformation tools must be able to determine whether any given symbolic

type is primitive (built-in), or requires special declaration in each target language.

2.3 Generic Type

The Generic element is used to declare generic parameters. These are placeholders

for actual types. Generic parameters are included as the first children inside any

generic class or method definition.

The grammar for the Generic element is:

<!ELEMENT Generic EMPTY>

<!ATTLIST Generic name NMTOKEN #REQUIRED>

<!ATTLIST Generic inherit NMTOKEN #IMPLIED>

<!ATTLIST Generic satisfy NMTOKEN #IMPLIED>

The attributes of the Generic element are:

 name – the name of the parameter (required);

 inherit – an upper bound class name (optional);

 satisfy – an upper bound interface name (optional).

Both must be given in CapitalCase (see section 1.4). By default, any type may be

substituted later for a generic parameter. If an upper bound class is supplied, only

classes that inherit from this class may be substituted. If an upper bound interface is

supplied, only types that satisfy this interface may be substituted. At most one of the

optional attributes is used.

The Generic element has no children.

Examples of the Generic element include:

<Generic name="Element"/>

<Generic name="Element" satisfy="Compare"/>

<Generic name="Human" inherit="Person"/>

The first example declares a type parameter for the element type of a general list or

tree. The second example is a parameter for the element type of a sorted list or tree,

which must satisfy the interface type Compare, since any type replacing the parameter

must possess comparison operations. The third example declares a type parameter for

any type, which inherits from the Person class, since it must possess at least the

methods defined in Person.

ReMoDeL: OOP Specification, 20 January 2012 11

2.4 Class Type

The Class element is used to declare class types. These are named structures,

consisting of named fields, each of a different type, and named methods, describing

the operations of the class. Class types may declare generic type parameters for the

types of one or more of their fields or methods. Class types may also assert invariant

properties for the class as a whole.

The grammar for the Class element is:

<!ELEMENT Class (Generic*, Inherit?, Satisfy*, Employ*, Assert*,

 Field*, Creator*, Method+)>

<!ATTLIST Class name NMTOKEN #REQUIRED>

<!ATTLIST Class visible (private|public) "public">

<!ATTLIST Class abstract (false|true) "false">

<!ATTLIST Class library (false|true) "false">

The attributes of the Class element are:

 name – the name of the class (required);

 visible – the package export status of the class (optional);

 abstract – true, if the class is abstract (optional);

 library – true, if the class is in a predefined library (optional).

Class names must be given in CapitalCase (see section 1.4). The package export

status of a class is usually public (the default), but may be made private (not exported

from the package). A class may optionally be declared abstract (if it has at least one

abstract method), and may belong to a predefined library (in which case it only

contains signatures, rather than full definitions).

The children of the Class element are:

 Generic – a generic type parameter (zero-to-many);

 Inherit – refers to the immediate superclass (optional);

 Satisfy – refers to any satisfied interface (zero-to-many);

 Employ – refers to any other employed type (zero-to-many);

 Assert – the class invariant assertion (optional);

 Field – a named field member (zero-to-many);

 Creator – a named constructor member (zero-to-many);

 Method – a named method member (one-to-many).

ReMoDeL: OOP Specification, 20 January 2012 12

The only compulsory child to have is at least one Method. A class should declare at

least one Creator if it also defines Fields. If no Inherit reference is supplied, the

default superclass is understood to be Object, the root of the class hierarchy.

Examples of the Class element include:

<Class name="Person" visible="public">

 <Assert contract="age within range" when="always">

 <!-- assertion body omitted -->

 </Assert>

 <Field name="forename" type="String" visible="private"/>

 <Field name="surname" type="String" visible="private"/>

 <Field name="gender" type="Character" visible="private"/>

 <Field name="age" type="Natural" visible="private"/>

 <Creator name="make" type="Void" visible="public">

 <Variable name="forename" type="String"/>

 <Variable name="surname" type="String"/>

 <Variable name="gender" type="Character"/>

 <Variable name="age" type="Natural"/>

 <!-- creator body omitted -->

 </Creator>

 <Method name="getForename" type="String" visible="public">

 <!-- method body omitted -->

 </Method>

 <Method name="getSurname" type="String" visible="public">

 <!-- method body omitted -->

 </Method>

 <Method name="getGender" type="Character" visible="public">

 <!-- method body omitted -->

 </Method>

 <Method name="getAge" type="Natural" visible="public">

 <!-- method body omitted -->

 </Method>

</Class>

This example is of a user-defined Person class, with Fields and Methods of the given

names and types. It is exported from its owning package (not shown). It asserts a

class invariant, whose contract will ensure that the value of the age Field is always

within a suitable range. It has a single Creator, with formal arguments whose names

deliberately alias the Field names – this is typical in OOP, since the scope of

identifiers may be resolved explicitly. The Methods are designed to return the values

stored in the respective Fields, and are appropriately typed. Since these are access

methods, they have no formal arguments.

<Class name="Pair" visible="public" library="true">

 <Generic name="First"/>

 <Generic name="Second"/>

 <Field name="first" type="First" visible="private"/>

 <Field name="second" type="Second" visible="private"/>

 <Creator name="make" type="Void" visible="public">

 <Variable name="first" type="First"/>

 <Variable name="second" type="Second"/>

 </Creator>

 <Method name="getFirst" type="First" visible="public"/>

 <Method name="getSecond" type="Second" visible="public"/>

</Class>

ReMoDeL: OOP Specification, 20 January 2012 13

This example is of a generic Pair class type, the building block for arbitrary pairs in

OOP. It has two generic parameters, First and Second, standing for two arbitrary

types, which are used to type the first and second projections. Because this is a

predefined library class, no method- or creator-bodies are required.

A Class may be defined to inherit from a parent Class, known as its superclass. In

this case, the Inherit reference dependency is used (see the ReMoDeL Package and

Namespace Model [3]). An example of this is:

<Class name="Student" visible="public">

 <Inherit refer="Person" kind="Class" from="People"/>

 <Field name="registration" type="Natural" visible="private"/>

 <Creator name="make" override="true"

 type="Void" visible="public">

 <Variable name="forename" type="String"/>

 <Variable name="surname" type="String"/>

 <Variable name="gender" type="Character"/>

 <Variable name="age" type="Natural"/>

 <Variable name="registration" type="Natural"/>

 <!-- creator body omitted -->

 </Creator>

 <Method name="getRegistration" type="Natural" visible="public">

 <!-- method body omitted -->

 </Method>

</Class>

This defines the Student class to be a subclass of Person, adding the extra Field called

registration. In ReMoDeL OOP, at most one superclass may be specified; and if no

superclass is specified, the default superclass is Object, the root class from the Core

package. The class Person is here assumed to exist in a foreign Package called

People, which must have been previously consulted by the current Package, for the

name to be in scope.

Inheritance also affects how objects are created. The Student class must define how to

initialise its own instances; here it redefines the Creator called make (see section 4.4),

so that this accepts more arguments than the inherited version. The new version will

call the inherited version, to initialise inherited fields.

A Class may also be defined to satisfy an Interface, in which case the Satisfy

reference dependency is used. The satisfying class must provide concrete methods for

each signature declared in the interface. An example is where the Account class

satisfies the interface Asset:

<Class name="Account" visible="public" abstract="true">

 <Satisfy refer="Asset" kind="Interface" from="Finance"/>

 <Employ refer="Status" kind="Symbolic" from="Finance"/>

 <Employ refer="Person" kind="Class" from="People"/>

 <!-- class body omitted for brevity -->

</Class>

We assume that the Asset interface defined a signature for getValue, an abstract

method, which class Account now implements, perhaps by returning the account's

current balance. In ReMoDeL OOP, a class may satisfy as many interfaces as is

desired, so long as it implements all of the declared abstract methods (or, declares

itself to be an abstract class). Note in this example how the Employ reference

ReMoDeL: OOP Specification, 20 January 2012 14

dependency is also used to express the dependency on other types declared in this, and

other, packages. In general, all structured types should explicitly declare their fine-

grained dependencies on other types. Certain types, such as the standard types from

the Core package, may be assumed to exist automatically.

2.5 Interface Type

The Interface element is used to declare interface types. These are named structures,

consisting of named methods, describing the abstract operations of the interface.

Interface types may declare generic type parameters for the types of one or more of

their methods. Interface types may also assert invariant properties for the interface as

a whole.

The grammar for the Interface element is:

<!ELEMENT Interface (Generic*, Satisfy*, Employ*, Assert*,

 Field*, Method+)>

<!ATTLIST Class name NMTOKEN #REQUIRED>

<!ATTLIST Class visible (private|public) #FIXED "public">

<!ATTLIST Class abstract (false|true) #FIXED "true">

<!ATTLIST Class library (false|true) "false">

The attributes of the Interface element are:

 name – the name of the interface (required);

 visible – always public, since an interface must be exported;

 abstract – always true, since an interface is always abstract;

 library – true, if the interface is in a predefined library (optional).

Interface names must be given in CapitalCase (see section 1.4). The package export

status of an interface is always public, since otherwise there would be no point in

declaring it. An interface is always abstract (since its methods are all abstract), and

may belong to a predefined library.

The children of the Interface element are:

 Generic – a generic type parameter (zero-to-many);

 Satisfy – refers to any super-interfaces (zero-to-many);

 Employ – refers to any other employed type (zero-to-many);

 Assert – the interface invariant assertion (optional);

 Field – a shared field constant (zero-to-many);

 Method – a named method signature (one-to-many).

The only compulsory child to have is at least one Method signature. An interface may

optionally declare Fields, if these are shared, initialised constants. If no Satisfy

ReMoDeL: OOP Specification, 20 January 2012 15

reference is supplied, the default super-interface is understood to be Anything, the root

of the interface hierarchy.

An example of the Interface element is the following:

<Interface name="Equal" visible="public"

 abstract="true" library="true">

 <Generic name="Type"/>

 <Method name="equals" type="Boolean" visible="true">

 <Variable name="other" type="Type"/>

 </Method>

 <Method name="notEquals" type="Boolean" visible="true">

 <Variable name="other" type="Type"/>

 </Method>

</Interface>

This is the definition of the Equals[Type] interface declared in the Core standard

library. It is generic in the type parameter Type, since classes satisfying this interface

will supply methods comparing like Type with Type. Any class implementing the two

methods specified here will satisfy this interface. An interface may also optionally

declare Fields, if these are shared, public, initialised constants.

An Interface may be defined to satisfy a super-interface, in which case the Satisfy

reference dependency is used (see the ReMoDeL Package and Namespace Model [3]).

<Interface name="Compare" visible="public"

 abstract="true" library="true">

 <Generic name="Type"/>

 <Satisfy refer="Equal[Type]" kind="Interface" from="Core"/>

 <Method name="lessThan" type="Boolean" visible="true">

 <Variable name="other" type="Type"/>

 </Method>

 <Method name="moreThan" type="Boolean" visible="true">

 <Variable name="other" type="Type"/>

 </Method>

 <Method name="noLessThan" type="Boolean" visible="true">

 <Variable name="other" type="Type"/>

 </Method>

 <Method name="noMoreThan" type="Boolean" visible="true">

 <Variable name="other" type="Type"/>

 </Method>

</Interface>

This is the definition of the Compare[Type] interface declared in the Core standard

library. It is generic in the type parameter Type, since classes satisfying this interface

will supply methods comparing like Type with Type. Notice how this interface in turn

satisfies the super-interface Equal[Type], which defines equality and non-equality as

methods. Any class implementing the six comparison methods illustrated will satisfy

this interface.

An Interface may satisfy as many other interfaces as desired. If it declares no super-

interface, then the implicit super-interface is Interface, the root interface.

ReMoDeL: OOP Specification, 20 January 2012 16

3 Expressions

The kinds of Expression used in ReMoDeL OOP subdivide into the simple Literal,

Identifier, and Branch expressions; the evaluating expressions Assign, Operator,

Create and Invoke; the compound expressions Sequence, Parallel, Select and Iterate

and the control statements Assert, Rescue and Return. These all descend from the

metaclass Expression, as illustrated in the fragment of the ReMoDeL Metamodel

shown in figure 2.

Expression Evaluate

Literal

Identifier

Branch

Operator

Control
Select

Create

Assign

Invoke

Compound

Sequence

Parallel

Iterate

Return

Assert

Rescue

Figure 2: Expressions in the ReMoDeL Metamodel

All expressions are defined as instances of one of these metaclasses. For example, the

literal values 3 or "hello" are instances of the Literal metaclass; an occurrence of the

variable count is defined as an instance of the Identifier metaclass; a mathematical

operation is an instance of the Operator metaclass; object construction is an instance

of the Create metaclass and a method invocation is an instance of the Invoke

metaclass. A sequential block of statements is an instance of the Sequence metaclass.

Conditionally executed statements are instances of the Select metaclass, denoting

branching. The Assert and Rescue metaclasses define exception handling, and Return

indicates returned values. All expressions have a type attribute (even if Void).

3.1 Literal Expression

The Literal element may be used to define a literal expression, or constant. Simple

literal values may be declared for any type whose values have a directly printable

representation. Literals of structured types may not be declared in OOP, which

requires the use of object construction using Create instead. Literal elements may

state whether they are the low or high limit for their type.

ReMoDeL: OOP Specification, 20 January 2012 17

The grammar for the Literal element is:

<!ELEMENT Literal (Literal | Identifier)*>

<!ATTLIST Literal value CDATA #IMPLIED>

<!ATTLIST Literal limit (low | high) #IMPLIED>

<!ATTLIST Literal type NMTOKEN #REQUIRED>

The attributes of the Literal element are:

 value – the literal value, a constant (optional; required in OOP);

 limit – whether this value is the low or high limit (optional);

 type – the type of the literal value (required).

Any value that has a printed representation is valid, including integral and floating-

point numbers, single and multiple character strings or symbols. The value is always

supplied as text data. The interpretation of the value is given by the corresponding

type, which is the defined name, or inferred name, of any declared ReMoDeL OOP

type (see section 2).

The Literal element may not have children in OOP; although it may in other

ReMoDeL dialects. In OOP, Literal instances always represent instances of basic or

symbolic types, or character strings, which are instances of the String class. Instances

of structured types should instead be created using the Create object construction

expression.

Simple examples of the Literal element include:

<Literal value="false" type="Boolean"/>

<Literal value="e" type="Character"/>

<Literal value="-10" type="Integer"/>

<Literal value="42" type="Natural"/>

<Literal value="3.1415926" type="Decimal"/>

<Literal value="null" type="Void"/>

These examples show how to express literals of simple types. The value null is the

only legal value of the Void type. Examples of Literal elements used to define the

upper and lower limits of a Basic type include:

<Literal value="-2147483648" limit="low" type="Integer"/>

<Literal value="2147483647" limit="high" type="Integer"/>

<Literal value="0" limit="low" type="Natural"/>

<Literal value="4294967295" limit="high" type="Natural"/>

ReMoDeL: OOP Specification, 20 January 2012 18

The first two examples define the limits of a signed 32-bit Integer type. The second

two examples define the limits of an unsigned 32-bit Natural type. Refer to Basic

Types for more examples (see section 2.1).

3.2 Identifier Expression

The Identifier element may be used to define an occurrence of a variable that was

previously declared, and which is currently in scope.

The grammar for the Identifier element in OOP is:

<!ELEMENT Identifier EMPTY)>

<!ATTLIST Identifier name NMTOKEN #REQUIRED>

<!ATTLIST Identifier type NMTOKEN #REQUIRED>

<!ATTLIST Identifier state (before | after) #IMPLIED>

<!ATTLIST Identifier scope (local | object | special) "local">

The attributes of the Identifier element are:

 name – the name of the identifier (required);

 type – the type of the identifier (required);

 state – the prior, or posterior state (optional):

 scope – the scope of the identifier (optional).

The name must be supplied in camelCase, and the type must be a legal ReMoDeL

OOP type name (see section 2). The state attribute is only used inside postconditions,

taking the value before or after. The scope attribute is used to specify the scope of an

identifier. In ReMoDeL OOP, the allowed scopes are local (the default), object and

special. An identifier with local scope refers to a local variable, or method argument

currently in scope. An identifier with object scope refers to an object field. An

identifier with special scope refers to one of the three special reserved identifiers:

self, super or result, which are used in particular contexts. Since OOP identifiers are

always scoped, it is custom to use the same names for both Fields and local Variables,

which simplifies naming conventions in OOP.

The Identifier element has no children.

Examples of the Identifier element include:

<Identifier name="age" type="Natural"/>

<Identifier name="age" type="Natural" scope="object"/>

<Identifier name="self" type="Person" scope="special"/>

The first example is of an identifier referring (by default) to a locally scoped Variable

called age of the type Natural (this could be a method argument, or locally declared

variable). The second example is of an identifier referring unambiguously to an

object's Field of the same name and type. The third example shows how to refer to

the self-referential variable, standing for the current object.

ReMoDeL: OOP Specification, 20 January 2012 19

3.3 Operator Expression

The Operator element may be used to define an operator expression. This is any

standard operation using the predefined mathematical, Boolean or comparison

operator symbols supported by ReMoDeL OOP. All such symbols have standard

ReMoDeL names, which are mapped to the appropriate symbol by model

transformation tools.

The grammar for the Operator element is:

<!ELEMENT Operator ((Literal | Identifier | Operator |

 Create | Invoke),

 (Literal | Identifier | Operator | Create | Invoke)?)>

<!ATTLIST Operator symbol (not | or | and | implies |

 equals | notEquals | lessThan | moreThan |

 noMoreThan | noLessThan | negate | plus | minus |

 times | divide | modulo) #REQUIRED>

<!ATTLIST Operator type NMTOKEN #REQUIRED>

The attributes of the Operator element are:

 symbol – the standard name of the operator symbol (required);

 type – the result type of the operator expression (required).

The type must be any legal ReMoDeL OOP type name (see section 2). The

predefined legal symbol names to be used include the following (where noMoreThan

denotes less than or equal, and noLessThan denotes greater than or equal):

 logical operators: not, or, and and implies;

 comparison operators: equals, notEquals, lessThan, moreThan, noMoreThan

and noLessThan;

 arithmetic operators: negate, plus, minus, times, divide and modulo.

The logical and comparison operators yield a Boolean valued result. The arithmetic

operators are polymorphic, returning some Number type consistent with the argument

types, such as Integer, Natural or Decimal.

The children of the Operator element are its operands, which include one or more

occurrences of:

 any expression that returns a value of a suitable type (required).

The majority of the predefined operators are binary and expect two operands. The

operators not and negate are unary operators and only expect a single operand.

Examples of the Operator element include:

<Operator symbol="negate" type="Integer">

 <Literal value="42" type="Integer"/>

</Operator>

ReMoDeL: OOP Specification, 20 January 2012 20

<Operator symbol="plus" type="Integer">

 <Literal value="7" type="Integer"/>

 <Literal value="35" type="Integer"/>

</Operator>

<Operator symbol="lessThan" type="Boolean">

 <Literal value="7" type="Integer"/>

 <Operator symbol="minus" type="Integer">

 <Literal value="12" type="Integer"/>

 <Literal value="6" type="Integer"/>

 </Operator>

</Operator>

The first example is of a unary operation, negating the value of the operand 42. The

second example is of a simple binary operation, adding two integer operands. The

third example is of a Boolean comparison of two values, where the second value is a

nested operation.

3.4 Assign Expression

The Assign element may be used to define a variable re-assignment. This includes

assigning a new value to a variable and also modifying the in-place contents of a

variable. All side-effecting updates are performed with the Assign element, which is

available in those ReMoDeL dialects that support side-effecting updates. The

different kinds of assignment operator have standard ReMoDeL names, which are

mapped to the appropriate symbol by model transformation tools.

The grammar for the Assign element is:

<!ELEMENT Assign (Identifier, (Literal | Identifier |

 Operator | Assign | Create | Invoke)?)>

<!ATTLIST Assign symbol

 (equals | plus | minus | times | divide) #REQUIRED>

<!ATTLIST Assign type NMTOKEN #FIXED "Void" >

The attributes of the Assign element are:

 symbol – the standard name of the operator symbol (required);

 type – the Void type (required).

The type of an assignment is always Void. The most common assignment operator

symbol is equals, indicating that the target will be set equal to the second operand.

The legal symbol names to be used include the following:

 binary re-assignment: equals;

 binary in-place update: plus, minus, times and divide;

 unary in-place update: plus and minus;

Assignment always returns the type Void, since it is bad practice to embed

assignments inside functional expressions.

ReMoDeL: OOP Specification, 20 January 2012 21

The children of the Assign element are its operands, which include:

 an Identifier expression, denoting the variable to update (required);

 any compatible expression to be assigned (required; or not needed).

Standard re-assignment is a binary operation, requiring both an identifier and a value

expression. In-place update may be a unary or binary operation – if unary, the

implicit second operand is always the unit value 1.

Examples of the Assign element include:

<Assign symbol="equals" type="Void">

 <Identifier name="counter" type="Integer"/>

 <Literal value="35" type="Integer"/>

</Assign>

<Assign symbol="plus" type="Void">

 <Identifier name="counter" type="Integer"/>

</Assign>

The first example assigns the value 35 to the variable counter. The second example

increments the value of this counter by one. Assign is similar to, but distinct from

Operator, because of its side-effecting behaviour. Translation tools may insert special

processing tasks, such as reasserting invariants, when an assignment is detected.

3.5 Create Expression

The Create element may be used to define an object creation expression. This is an

evaluating expression that allocates a new object of a specific type and invokes that

object's Creator procedure to initialise it. The Create element refers to the chosen

initialisation procedure by name, which must be defined for the target class. It may

include a target variable to initialise as its first child, or, if this is absent, returns the

created object.

The grammar for the Create element is:

<!ELEMENT Create (Identifier?, (Literal | Identifier |

 Operator | Create | Invoke)*)>

<!ATTLIST Create creator NMTOKEN #REQUIRED>

<!ATTLIST Create implicit (false | true) "false">

<!ATTLIST Create type NMTOKEN #REQUIRED>

The attributes of the Create element are:

 creator – the name of the creator procedure (required);

 implicit – true, if the target of creation is omitted (optional);

 type – the result type of the created object (required).

The creator name must be given in camelCase, and should refer to a previously

defined Creator for the object being created. The type must be the class name of the

object being created, in CapitalCase. This class should have a Creator of the given

ReMoDeL: OOP Specification, 20 January 2012 22

name. If implicit is set to true, this means that the target variable to initialise is

implicit, and the result of creation will be passed as an initial value to the next

enclosing expression, some kind of Variable or Field declaration.

The children of the Create element include an optional identifier to initialise, and zero

or more construction arguments as further expressions:

 the target identifier to initialise (optional, alternates with implicit);

 further argument-expressions (zero-to-many).

The argument-expressions must evaluate to suitable values, whose types correspond

to the types expected by the creator procedure's arguments. It is common for a class

to provide one creator, conventionally called create, that expects no arguments. Other

creators are uniquely named (see section 1.2) and expect arguments.

Examples of the Create element include:

<Create creator="create" type="Person">

 <Identifier name="person" type="Person"/>

</Create>

<Variable name="person" type="Person">

 <Create creator="create" implicit="true" type="Person"/>

</Variable>

The first example creates an instance of Person (determined by the value of the type

attribute), and invokes the creator called create to initialise this object, storing the

result in the target identifier person, which refers to a previously declared variable.

By convention, the default creator (with no arguments) is always given the name

create. This is the creation style to use if the target variable is already declared.

The second example illustrates the use of the implicit attribute, indicating the

omission of the target variable. In this case, the result of creation is passed as an

initial value to the surrounding Variable expression. This is the only case where

Create needs no children. This is the creation style to use if the target variable is

being initialised as part of its declaration.

<Create creator="make" type="Person">

 <Identifier name="person" type="Person"/>

 <Literal value="John" type="String"/>

 <Literal value="Smith" type="String"/>

 <Literal value="m" type="Character"/>

 <Literal value="24" type="Natural"/>

</Create>

<Create creator="make" type="Pair[String, Natural]">

 <Identifier name="person" type="Pair[String, Natural]"/>

</Create>

The third example illustrates a more common style of creation, in which both the

target variable and a set of construction arguments are supplied as children of the

Create element. The construction arguments have the types String, String, Character,

ReMoDeL: OOP Specification, 20 January 2012 23

Natural; this assumes that the creator called make in the class Person was defined to

expect four arguments of these types.

The last example shows how to create an instance of a generic class, Pair. The type

attribute declares how the class's two type parameters First, Second (see section 2.4)

are to be instantiated with the actual types String and Natural. In all these examples,

the same type was used for the Create expression and the target Variable receiving

the created object. In general, the Variable may have a more general type than the

created object. This is determined from the class hierarchy

3.6 Invoke Expression

The Invoke element may be used to define a method invocation expression. This is an

evaluating expression that invokes a named Method on a target object, which is

typically the first child expression. The Method element refers to the chosen method

by name, which must be defined for the class of the target object. It may include a

target object expression as its first child, or, if this is absent, assumes that the target

object is self, the currently executing object.

The grammar for the Invoke element is:

<!ELEMENT Invoke ((Literal | Identifier | Operator |

 Create | Invoke)?,

 (Literal | Identifier | Operator | Create |

 Invoke)*)>

<!ATTLIST Invoke method NMTOKEN #REQUIRED>

<!ATTLIST Invoke implicit (false | true) "false">

<!ATTLIST Invoke type NMTOKEN #REQUIRED>

The attributes of the Invoke element are:

 method – the name of the method to invoke (required);

 implicit – true, if the target object is omitted (optional);

 type – the result type of the invoked method (required).

The method name must be given in camelCase, and should refer to a previously

defined Method for the class of the target object. The type must be the result type of

this method, in CapitalCase. If implicit is set to true, this means that the target object

is implicit, and is understood to be self, the current object.

The children of the Invoke element include an optional target object expression, and

zero or more method arguments as further expressions:

 the target object expression (optional, alternates with implicit);

 further argument-expressions (zero-to-many).

The argument-expressions must evaluate to suitable values, whose types correspond

to the types expected by the method's arguments. It is possible for some methods to

expect no arguments, if they access field values in the target object. All methods are

uniquely named within a given class (see section 1.2).

ReMoDeL: OOP Specification, 20 January 2012 24

Examples of the Invoke element include:

<Invoke method="getAge" type="Natural"/>

 <Identifier name="person" type="Person"/>

</Invoke>

<Invoke method="getAge" implicit="true" type="Natural"/>

<Invoke method="getAge" type="Natural"/>

 <Identifier name="self" scope="special" type="Person"/>

</Invoke>

The first example invokes the no-argument access method getAge on a target variable

person, whose type is the class Person. A Method with this name must be defined for

the class Person. The target object expression need not be an identifier, but can be

any expression that yields an object when it is evaluated.

The second example illustrates the use of the implicit attribute, indicating the

omission of the target object expression. In this case, the target object is implicitly

understood to be self, the currently executing object, here assumed to be a Person.

Methods may explicitly refer to self, a special identifier (see section 3.2), usually

when passing the current object as an argument. The third example refers explicitly to

self, and is equivalent to the second example in meaning.

<Invoke method="setAge" type="Void">

 <Identifier name="person" type="Person"/>

 <Literal value="24" type="Natural"/>

</Invoke>

<Invoke method="setAge" implicit="true" type="Void">

 <Literal value="24" type="Natural"/>

</Invoke>

In general, the Invoke element will require one or more additional method argument

expressions as its children. The fourth example invokes the method setAge on the

object denoted by the person identifier (the first sub-expression) and supplies a literal

expression as a method argument (the second sub-expression). The fifth example

invokes the same method implicitly on self. In this case, the Invoke element need only

contain the argument expression as its child. Invoke should supply as many argument

expressions as the named Method expects, and the expressions should be of suitable

compatible types.

3.7 Branch Expression

The Branch element may be used to define a lazy-evaluating expression. The Branch

element is a kind of Expression, representing a guard or trigger protecting the

enclosed expression, whose evaluation is delayed. In OOP, Branch is used in

conjunction with Select, a generalised conditional branching construction, and Iterate,

a generalised deterministic and conditional looping construction. When a selection

choice-expression is evaluated, and the result matches the trigger for a particular

branch, this identifies which branch of the program to follow.

The grammar for the Branch element in OOP is:

ReMoDeL: OOP Specification, 20 January 2012 25

<!Element Branch (Assign | Return | Create | Invoke |

 Select | Iterate | Sequence | Parallel)>

<!ATTLIST Branch when CDATA #REQUIRED>

<!ATTLIST Branch type NMTOKEN #REQUIRED>

The attributes of the Branch element are:

 when – the trigger value for the branch (required);

 type – the type of the delayed expression (required).

The trigger when is a value determining when the branch should be executed. This

can be a Boolean value (false, true), a scalar value (a symbolic or integral value) or

the result of any other choice-expression tested by Select or Iterate expressions (both

available in OOP, but not in all ReMoDeL dialects). The type may be any legal

ReMoDeL type name (see section 2), but must correspond to the type of the wrapped

expression, whose evaluation is delayed.

The children of the Branch element are:

 the expression whose evaluation is delayed.

Boolean-triggered examples of the Branch element include:

<Branch when="true" type="String">

 <!-- branch expression omitted -->

</Branch>

<Branch when="false" type="String">

 <!-- branch expression omitted -->

</Branch>

Scalar-triggered examples of the Branch element include:

<Branch when="closed" type="String">

 <!-- branch expression omitted -->

</Branch>

<Branch when="open" type="String">

 <!-- branch expression omitted -->

</Branch>

<Branch when="frozen" type="String">

 <!-- branch expression omitted -->

</Branch>

These examples are the cases for a multi-branch selection on some expression of the

type Status, each wrapping an expression, here a String value to be returned. Cases of

other scalar types are possible, such as Integer, Natural or Character, so long as all

cases are mutually exclusive and exhaustive. There is no default case.

3.8 Select Expression

The Select element may be used to define a conditional branching expression. It is a

generalisation of the binary branching if-statement and the multi-branching switch-

ReMoDeL: OOP Specification, 20 January 2012 26

statement (or case-statement) in programming languages. The Select expression is

one of four Compound expressions available in OOP (the others being: Iterate,

Sequence, and Parallel). Select is used in combination with lazy-evaluating Branch

expressions in OOP.

The grammar for the Select element in OOP is:

<!ELEMENT Select ((Literal | Identifier | Operator |

 Create | Invoke), Branch+)>

<!ATTLIST Select choice (simple | multiple) #REQUIRED>

<!ATTLIST Select type NMTOKEN #REQUIRED>

The attributes of the Select element are:

 choice – whether the choice is simple or multiple (required);

 type – the result type of the selection expression (required).

The choice indicates whether a simple or multiple-choice selection is intended. The

type may be any legal ReMoDeL OOP type name (see section 2), but must either be

identical to, or a supertype of, the expected result type of each Branch. Formally, the

type returned by Select is the least upper bound of the types returned by all of its

branches. For single-branch Select, the result type must be Void.

The Select element has one choice-Expression child and one or more Branch children

(in OOP, single-branch Select is permitted):

 the choice-expression, having a Boolean type for a simple choice and a scalar

type for a multiple choice (required);

 the branch expressions, of which one may be taken (required, one-to-many).

The first child is always the choice-expression. This has a Boolean value in binary

selections (if-then-else statement), or any scalar value in a multi-branching selection

(switch, case statement).

Examples of the Select element include:

<Select choice="simple" type="Void">

 <Operator symbol="equals" type="Boolean">

 <Identifier name="count" type="Natural"/>

 <Literal value="0" type="Natural"/>

 </Operator>

 <Branch when="true" type="Void">

 <Assign symbol="plus" type="Void">

 <Identifier name="count" type="Natural">

 </Assign>

 </Branch>

</Select>

This first example is a simple selection with a Boolean-valued choice expression. In

OOP, simple selections may have one or two branches. This example is of a single-

branching if-statement, whose optional branch is selected when count = 0. A single-

branching Select cannot return any value, since the false case does not exist (and so

ReMoDeL: OOP Specification, 20 January 2012 27

cannot return a value). The result type must be Void for both branches. Compare the

above with the next example:

<Select choice="simple" type="String">

 <Operator symbol="moreThan" type="Boolean">

 <Identifier name="count" type="Natural"/>

 <Literal value="0" type="Natural"/>

 </Operator>

 <Branch when="true" type="String">

 <Return type="String">

 <Literal value="More than zero" type="String">

 </Return>

 </Branch>

 <Branch when="false" type="String">

 <Return type="String">

 <Literal value="Equal to zero" type="String">

 </Return>

 </Branch>

</Select>

This second example is another simple selection, but this time with two branches,

each of which returns a value. Select must always return the least upper bound type

(the most specific type that is a supertype of each of the branch types). An individual

Branch may return a more specific type than the result type declared for Select. In

this case, both branches return a String, and the Select therefore returns a String.

<Select choice="multiple" type="String">

 <Identifier name="status" type="Status"/>

 <Branch when="closed" type="String">

 <Return type="String">

 <Literal value="Account is closed" type="String"/>

 </Return>

 </Branch>

 <Branch when="open" type="String">

 <Return type="String">

 <Literal value="Account is open" type="String"/>

 </Return>

 </Branch>

 <Branch when="frozen" type="String">

 <Return type="String">

 <Literal value="Account is frozen" type="String"/>

 </Return>

 </Branch>

</Select>

This third example is a multi-branching selection, with a scalar-valued choice-

expression of the enumerated type Status. In OOP, multi-branching expressions must

exhaustively cover all possible branches (missing branches are not permitted). So, it

is useful to be able to use finite Symbolic types as the values of guards. (Code

generators are free to generate default branches that raise an exception).

3.9 Iterate Expression

The Iterate element may be used to define a deterministic, or conditional looping

expression. It is a generalisation of the deterministic for-loop and the conditional

while-loop. The Iterate expression is one of four Compound expressions available in

ReMoDeL: OOP Specification, 20 January 2012 28

OOP (the others being: Select, Sequence, and Parallel). Iterate is used in

combination with lazy-evaluating Branch expressions in OOP.

The grammar for the Iterate element in OOP is:

<!ELEMENT Iterate (Variable | (Literal | Identifier |

 Operator | Create | Invoke), Branch)>

<!ATTLIST Iterate loop (bounded | dynamic) #REQUIRED>

<!ATTLIST Iterate type NMTOKEN #FIXED "Void">

The attributes of the Iterate element are:

 loop – whether the loop is bounded or dynamic (required);

 type – the result type of the Iterate expression (must be Void).

The value of loop indicates what kind of iteration is desired: bounded indicates a

deterministic loop over a known range, dynamic indicates a conditional loop with an

unknown number of iterations. The type of an Iterate expression is always Void,

since the repeated Branch is always executed for its side effects.

The Iterate element has two children, of which the first must be chosen according to

the type of loop desired:

 the loop control expression, a control Variable of any suitable type for a

bounded loop, or any Boolean expression for a dynamic loop (required);

 a Branch expression, wrapping the body of the iteration (required).

If the loop is bounded, the first child must be a Variable declaration, containing the

details of the range of the iteration. If the loop is dynamic, the first child may be any

Boolean valued entry condition to the loop.

Examples of the Iterate element include:

<Iterate loop="bounded" type="Void">

 <Variable name="count" type="Integer" step="plus">

 <Literal value="0" type="Integer"/>

 <Literal value="10" type="Integer"/>

 </Variable>

 <Branch when="next" type="Void">

 <!-- loop body omitted -->

 </Branch>

</Iterate>

<Iterate loop="bounded" type="Void">

 <Variable name="count" type="Integer" step="minus">

 <Literal value="10" type="Integer"/>

 <Literal value="0" type="Integer"/>

 </Variable>

 <Branch when="next" type="Void">

 <!-- loop body omitted -->

 </Branch>

</Iterate>

ReMoDeL: OOP Specification, 20 January 2012 29

These are both examples of bounded iteration that repeat ten times. The first example

initialises the control variable count to 0, and increments this after each cycle, halting

when the value of count reaches 10. That is, the loop body is executed once for each

of the ascending values 0..9 inclusive, but halts at 10. The second example initialises

count to 10, and decrements this after each cycle, halting when the value of count

reaches 0. That is, the loop body is executed once for each of the descending values

10..1 inclusive, but halts at 0. The loop body may refer to the value of count through

an Identifier expression also called count.

Control variables have a step attribute that is set to one of plus or minus, when

performing this kind of counted iteration, depending on whether it is desired to visit

elements in ascending, or descending order. The Variable element always contains

two children: an initialisation expression, and a backstop expression, denoting when

to halt. The backstop is always "one past the end" of the range of the iteration.

Another kind of bounded iteration in OOP supports visiting every element of a

collection:

<Iterate loop="bounded" type="Void">

 <Variable name="member" type="Person" step="next">

 <Identifier name="membership" type="List[Person]"/>

 </Variable>

 <Branch when="next" type="Void">

 <!-- loop body omitted -->

 </Branch>

</Iterate>

In this case, the step attribute is set to next, meaning that the variable should range

over each element of the following collection. Here, the member variable will range

over every Person object in the following expression, which has the collection type

List[Person]. When the Variable's step attribute is set to next, it only expects one

child element, any collection expression, and the variable is initialised to the first

element of the collection, and is reset to the next element on each cycle, until no

elements are left. The loop body may refer to the value of member through an

Identifier of the same name. However, the collection should not be updated while

iteration is in progress (this behaviour is undefined).

For bounded iterations, the Branch is triggered on the special condition next, which

only holds when the next value of the control variable is available. On each cycle, the

control variable will take on the next value, until no more values are available,

whereupon the condition fails to hold, so the loop terminates. For dynamic iterations,

the Branch is triggered when the Boolean control expression is true:

<Iterate loop="dynamic" type="Void">

 <Operator symbol="lessThan" type="Boolean">

 <Identifier name="count" type="Integer"/>

 <Literal value="10" type="Integer"/>

 </Operator>

 <Branch when="true" type="Void">

 <!-- loop body omitted -->

 </Branch>

</Iterate>

ReMoDeL: OOP Specification, 20 January 2012 30

In this example, a Boolean-valued loop control expression is tested before each cycle;

and the loop body is executed only if the outcome is true. The loop will iterate for as

long as this condition remains true, and will halt if it becomes false.

3.10 Sequence Expression

The Sequence element may be used to define a compound block of statements, which

are executed in sequential order. It is one of four Compound expressions available in

OOP (the others being: Select, Iterate and Parallel). A Sequence is used as the top-

level expression in the body of a Method or Creator. A Sequence may also introduce

local Variable declarations at the start of the block, or return a value at the end of the

block.

The grammar for the Sequence element in OOP is:

<!ELEMENT Sequence (Variable*, (Assign | Create |

 Invoke | Select | Iterate | Parallel)*, Return?)>

<!ATTLIST Sequence type NMTOKEN #REQUIRED>

The attributes of the Sequence element are:

 type – the result type of the Sequence expression (mandatory).

The type of a Sequence is usually Void, but may be some other type, if the last

statement in the Sequence is a Return expression, in which case the Sequence must be

given the same type as the Return expression.

The children of the Sequence element include:

 local Variable declarations (zero to many);

 various statement expressions (zero to many);

 a Return expression (optional).

If the Sequence declares local Variables at the start of the block, the rest of the block

may contain Identifier expressions having the same names, through which the values

of the variables may be accessed or modified. Local Variables may be bound to

values as they are declared; they become unbound at the end of the block.

Examples of the Sequence element include:

<Sequence type="Void"/>

<Sequence type="Void">

 <Invoke method="push" type="Void">

 <Identifier name="stack" type="Stack[Integer]"/>

 <Literal value="42" type="Integer"/>

 </Invoke>

 <Invoke method="pop" type="Void">

 <Identifier name="stack" type="Stack[Integer]"/>

 </Invoke>

</Sequence>

ReMoDeL: OOP Specification, 20 January 2012 31

The first example is of an empty Sequence, commonly used as the body of a method

that deliberately does nothing, a null operation. The second example shows a

Sequence consisting of two ordered statements, method invocations that first push,

then pop a stack. The statements are executed in the order that they appear.

In the second example, the stack Identifier is assumed to correspond to a local

Variable that is already in scope. Two more examples below illustrate how a

Sequence may also declare local variables at the head of the sequence:

<Sequence type="Void">

 <Variable name="number" type="Integer"/>

 <Assign symbol="equals" type="Void">

 <Identifier name="number" type="Integer"/>

 <Literal value="42" type="Integer"/>

 </Assign>

</Sequence>

<Sequence type="Integer">

 <Variable name="number" type="Integer">

 <Literal value="42" type="Integer"/>

 </Variable>

 <Assign symbol="equals" type="Void">

 <Identifier name="number" type="Integer"/>

 <Literal value="7" type="Integer"/>

 </Assign>

 <Return type="Integer">

 <Identifier name="number" type="Integer"/>

 </Return>

</Sequence>

The third example declares a Variable number, and later assigns the value of 42 to

this. The fourth example declares the Variable number and initialises it to the value

of 42, and later re-assigns the value 7 to it. Several Variables may be declared and

initialised at the head of a Sequence. Variables may not be introduced partway

through a Sequence.

The third example executes the statements in the Sequence for their side effects, and

the Sequence returns no result. By contrast, the fourth example illustrates how a

Return expression may be placed as the last in a Sequence, indicating that it does

return a result, in which case the Sequence must have the same type as the Return

expression.

3.11 Parallel Expression

The Parallel element may be used to define a compound block of statements, which

are all executed in parallel. It is one of four Compound expressions available in OOP

(the others being: Select, Iterate and Sequence). A Parallel element introduces a

concurrent fork, whose separate statements each execute in a separate parallel thread;

but all the threads re-synchronise at the end of the Parallel element, which is a

concurrent join. A Parallel block may also introduce local Variable declarations at

the start of the block. These declarations represent variables that are shared among

the parallel threads, to which access is automatically synchronised.

The grammar for the Parallel element in OOP is:

ReMoDeL: OOP Specification, 20 January 2012 32

<!ELEMENT Parallel (Variable*, (Assign | Create |

 Invoke | Select | Iterate | Sequence)*)>

<!ATTLIST Parallel type NMTOKEN #FIXED "Void">

The attributes of the Parallel element are:

 type – the result type of the Parallel expression (must be Void).

The type of a Parallel expression must be Void, since the competing parallel threads

cannot return values in any orderly fashion. Communication with the rest of the

program is through side effects on variables.

The children of the Parallel element include:

 local Variable declarations (zero to many);

 concurrent thread expressions (zero to many).

If the Parallel element declares local Variables at the start of the block, the concurrent

threads in the rest of the block may contain Identifier expressions having the same

names, through which the values of the variables may be accessed or modified.

Access to these local Variables is automatically synchronised, that is, the threads may

read and write to them independently, without fear of corrupting their state. Local

Variables may be bound to initial values as they are declared; they become unbound

at the end of the block.

Examples of the Parallel element in OOP include:

<Parallel type="Void">

 <Variable name="account" type="Account">

 <Invoke method="getAccount" type="Account">

 <Identifier name="bank" type="Bank"/>

 <Literal value="3002032" type="Natural"/>

 </Invoke>

 </Variable>

 <Invoke method="credit" type="Void">

 <Identifier name="account" type="Account"/>

 <Literal value="200" type="Integer"/>

 </Invoke>

 <Invoke method="debit" type="Void">

 <Identifier name="account" type="Account"/>

 <Literal value="50" type="Integer"/>

 </Invoke>

</Parallel>

In this example, a local Variable account is initialised to an Account instance obtained

from a Bank, and the same account is credited and debited, in no particular order.

Because the account is a synchronised variable, one or other of these threads will

block the other, until it releases the account. Synchronisation is enforced at the level

of the expression accepting the variable as its immediate child.

So in this case, there is not a great advantage in the parallel encoding – the effect is to

allow the credit and debit to happen in an arbitrary order. Compare the above with the

following example:

ReMoDeL: OOP Specification, 20 January 2012 33

<Parallel type="Void">

 <Invoke method="credit" type="Void">

 <Identifier name="savings" type="Account"/>

 <Literal value="200" type="Integer"/>

 </Invoke>

 <Invoke method="debit" type="Void">

 <Identifier name="current" type="Account"/>

 <Literal value="50" type="Integer"/>

 </Invoke>

</Parallel>

In this example, parallel threads are started to credit the Account savings, while

simultaneously debit the Account current. These operations are conceptually

concurrent and may literally overlap, that is, execute simultaneously, although the

implementation of multi-threading will depend on the target architecture.

3.12 Return Statement

The Return element is a kind of Control statement that may be used to return a value

from a method. Return encloses the value to be returned as the result of a method.

Explicit Return expressions are needed in OOP and other imperative programming

models, in which statements are evaluated for their side effects.

The grammar for the Return element is:

<!ELEMENT Return (Literal | Identifier | Operator |

 Assign | Create | Invoke)>

<!ATTLIST Return type NMTOKEN #REQUIRED>

The attributes of the Return element are:

 type – the type of the enclosed expression (required).

The type may be any legal ReMoDeL OOP type name (see section 2), and must be the

same as the type of the enclosed expression, whose value is being returned.

The child of a Return element is:

 any simple expression with a non-Void type

Return elements may only be found in two locations, as determined by the grammar.

A Return element can be:

 the very last element in a Sequence; or

 the immediate child of a Branch in a Select.

If a Sequence contains a Return expression, the Sequence must declare the same type

as the Return expression. If a Branch contains a Return, then every Branch of the

same Select expression must contain a Return, and must have a type that is compatible

with the type declared by the Select expression.

ReMoDeL: OOP Specification, 20 January 2012 34

3.13 Assert Statement

The Assert element is a kind of Control statement that may be used to define a

semantic assertion that is checked at runtime, and which raises an exception if the

assertion is violated. Assert may be used to specify a method precondition, or a

method postcondition, or a data type invariant. Exceptions may later be handled by

Rescue blocks. The behaviour of Assert and Rescue follows the programming by

contract metaphor from the Eiffel programming language.

The grammar for the Assert element is:

<!ELEMENT Assert (Literal | Identifier | Operator | Invoke)>

<!ATTLIST Assert contract CDATA #REQUIRED>

<!ATTLIST Assert when (always | before | after) #REQUIRED>

<!ATTLIST Assert type NMTOKEN #FIXED "Void" >

The attributes of the Assert element are:

 contract – the name of the asserted contract (required);

 when – whether to assert before, after or always (required);

 type – this is always Void (required).

The value of contract is a short descriptive string, labelling the property being

asserted. This always names the positive property asserted, rather than the negative

exceptional condition caused by breaking the property. The value of when is an

enumerated value from the set {before, after, always} denoting whether the assertion

is respectively a precondition, postcondition or datatype invariant. The type of an

assertion is always Void.

Assert elements may be found as children of Class and Interface elements, expressing

datatype invariants. They may also be found as children of Method and Creator

elements, expressing preconditions or postconditions.

The child of an Assert element is:

 any truth-valued expression with a Boolean type.

This can be any literal, identifier, operator expression or method invocation that

asserts a truth-valued property. The asserted expression may refer to local variables,

object fields or formal arguments that are in scope. If the assertion is a postcondition,

it may reason about the prior and posterior states of variables, whose optional state

attribute is set to one of before (prior state) or after (posterior state). Otherwise, all

variables are presumed not to have changed state. A postcondition may refer to the

special identifier result, referring to the result returned by a method.

Examples of the Assert element include:

ReMoDeL: OOP Specification, 20 January 2012 35

<Class name="Person">

 <Assert contract="valid lifespan" when="always" type="Void">

 <Operator symbol="noMoreThan" type="Boolean">

 <Identifier name="age" scope="object" type="Natural"/>

 <Literal value="120" type="Natural"/>

 </Operator>

 </Assert>

 <Field name="age" type="Natural" visible="private"/>

 <!-- class contents omitted for brevity -->

</Class>

This declares a class invariant for the class Person, stating that the age attribute,

which is a Natural number, can never exceed 120, the maximum expected human

lifespan.

<Method name="deposit" type="Void" visible="public">

 <Variable name="amount" type="Integer"/>

 <Assert contract="positive amount" when="before" type="Void">

 <Operator symbol="moreThan" type="Boolean">

 <Identifier name="amount" type="Integer"/>

 <Literal value="0" type="Integer"/>

 </Operator>

 </Assert>

 <Assert contract="balance increased" when="after" type="Void">

 <Operator symbol="equals" type="Boolean">

 <Identifier name="balance" state="after"

 scope="object" type="Integer"/>

 <Operator symbol="plus" type="Integer">

 <Identifier name="amount" type="Integer"/>

 <Identifier name="balance" state="before"

 scope="object" type="Integer"/>

 </Operator>

 </Operator>

 </Assert>

 <!-- method body omitted for brevity -->

</Method>

This example declares a method deposit, which has a precondition to ensure that the

deposited amount is positive; and has a postcondition to ensure that the balance

increased exactly by the amount deposited. Notice how the postcondition uses the

optional state attribute of an Identifier to describe the balance in both its prior and

posterior states, since this variable changes state during the method's execution.

<Method name="squareRoot" type="Natural">

 <Variable name="number" type="Natural"/>

 <Assert contract="result is root" when="after" type="Void">

 <Operator symbol="equals" type="Boolean">

 <Identifier name="result" scope="special" type="Natural"/>

 <Operator symbol="times" type="Natural">

 <Identifier name="number" type="Natural"/>

 <Identifier name="number" type="Natural"/>

 </Operator>

 </Operator>

 </Assert>

 <!-- method body omitted for brevity -->

</Method>

This example declares a postcondition using the special identifier result to refer to the

result of the method. The assertion ensures that squaring the result is equal to the

ReMoDeL: OOP Specification, 20 January 2012 36

original number, whose square root was taken. Notice how there is no need to use the

state attribute in this example, since no variables change state during the execution of

the method.

3.14 Rescue Statement

The Rescue element is a kind of Control statement that may be used to define a

handler for certain exceptions raised in a method. The Rescue block sits outside the

main Sequence of a method body and wraps one or more remedial statements, whose

goal is to restore an object to a clean state. The Rescue element may allow a failed

Method to be subsequently reattempted.

The grammar for the Rescue element is:

<!ELEMENT Rescue (Assign | Create | Invoke |

 Select | Iterate | Sequence | Parallel)*>

<!ATTLIST Rescue restart CDATA #IMPLIED>

<!ATTLIST Rescue type NMTOKEN #FIXED "Void">

The attributes of the Rescue element are:

 restart – the number of restart attempts (optional);

 type – this is always Void (required).

The value of restart, if supplied, is a natural number, representing the number of times

the rescued method may be restarted, before the handler gives up and passes control to

the next exception handler.

Exception handling in ReMoDeL OOP follows Eiffel's programming by contract

metaphor [4], in which methods take appropriate responsibility for dealing with

failure. If a method's precondition is broken, the method is not directly responsible

for this, but raises an exception in the caller. If after being invoked with valid

arguments the method breaks its own postcondition, or its owning class's datatype

invariant, the method is held responsible, so an exception is raised locally. If the

method contains a Rescue block, it may clean up after the failure, to restore the object

to a stable state. It may then either pass the failure up the stack, or attempt to restart,

in the hope of success.

The child of a Rescue element is:

 any simple or compound expression, typically with a Void type.

This can be any statement, but is typically a Sequence of remedial statements. Notice

how the Rescue block cannot return a value; this is because its purpose is to restore

the object to a stable state. It does not replace the action carried out by the method.

The only way for a method to return is if it succeeds normally, possibly after a restart.

Translations into languages like Java and C++ that throw exception objects must

ensure that the generated code obeys the programming by contract rule. Preconditions

should be tested outside any protected try-block for that method; postconditions and

invariants should be tested inside the protected try-block. If an assertion fails, this

ReMoDeL: OOP Specification, 20 January 2012 37

should throw a BrokenContract exception. The catch-handler should expect to deal

with this class of exception. If a restart is possible, the whole method must be

wrapped in a loop, so that it may be reattempted. If no restarts are left, the handler

must raise the same BrokenContract exception again.

Examples of the Rescue element include:

<Rescue restart="1" type="Void">

 <Assign symbol="equals" type="Void">

 <Identifier name="balance" type="Integer" scope="object"/>

 <Operator symbol="plus" type="Integer">

 <Identifier name="balance" type="Integer" scope="object"/>

 <Identifier name="amount" type="Integer"/>

 </Operator>

 </Assign>

</Rescue>

This Rescue block rolls back the effect of a failed withdraw transaction. We may

assume that the balance fell below some minimum value, such that the current

withdraw transaction was refused, because it broke a postcondition. The contained

expression is an assignment, which restores the balance to its previous value, by

adding the amount that was previously deducted. Since restart has the value 1, this

indicates that the method may be reattempted once – but in all likelihood it will fail

again, in which case the same exception will be raised, and the handler will clean up

again, before passing the exception up the call stack.

The Rescue block may refer to all variables that are in scope, including the method's

formal arguments and the object's fields. It cannot refer to local variables in the

method's body, which are out of scope. If a restart is permitted, then the method will

execute with the same values for its arguments (which may not be changed by the

remedial actions). Therefore, any cleaning up may only really affect the object's state,

through its fields and other reachable objects.

ReMoDeL OOP adopts a particular view on exception handling. It is deliberately not

as flexible as languages like Java, C# or C++, which support the throwing and

catching of arbitrary typed exceptions, which may be intercepted by type. This tends

to support "programming control flow by exceptions," which we wish to avoid.

Instead, the notion is that methods should always seek to behave correctly, but if they

cannot, they must fail in a disciplined way. Translations into languages with richer

exception frameworks may assume that all violations of assertions that are

recoverable will raise the exception called BrokenContract. Other violations of

system hardware and the like will raise the exception called SystemError.

ReMoDeL: OOP Specification, 20 January 2012 38

4 Declarations

The kinds of Declaration used in ReMoDeL OOP include all Class, Interface,

Method, Creator, Field and Variable declarations. Significant kinds of Declaration

include Classifier, which defines all things with a namespace; and Property, which

defines named properties with an associated Type. Descendants of Property include

Member, an owned property with an associated visibility, which contrasts with

Variable, a free property that is not a member of a structured type. Figure 2 illustrates

a fragment of the ReMoDeL Metamodel dealing with declarations.

Property Variable

Classifier

Class

Field

1..* args

Declaration

Member

Type

1..* members

1 type

Method

Creator

Interface

Structure

Figure 3: Declarations in the ReMoDeL Metamodel

Program declarations are instances of these metaclasses. For example, class fields,

constructors and methods are respectively instances of the Field, Creator and Method

metaclasses; and any global or local variable definition is an instance of the Variable

metaclass. All the Class, Interface, Basic, Symbolic and Generic types of the

language considered above (see section 2) are also kinds of Declaration.

4.1 Variable Declaration

The Variable element may be used to define named storage for program values.

Variable is used to declare both global and local variables, and also formal arguments

to methods. A Variable is a kind of Property (from which it obtains a property name

and associated typed storage). In all ReMoDeL dialects supporting imperative styles

of programming, Variable also plays an important role in controlling iteration.

The grammar for the Variable element in OOP is:

<!ELEMENT Variable ((Literal | Identifier | Operator |

 Create | Invoke)?,

 (Literal | Identifier | Operator | Create | Invoke)?)>

<!ATTLIST Variable name NMTOKEN #REQUIRED>

<!ATTLIST Variable step (plus | minus | next) #IMPLIED>

<!ATTLIST Variable type NMTOKEN #REQUIRED>

ReMoDeL: OOP Specification, 20 January 2012 39

The attributes of the Variable element are:

 name – the name of the variable (required);

 step – the incremental step (optional; used in iteration);

 type – the type of the variable (required).

The name must be supplied in camelCase, the expected style for all property names.

The step relates to how a variable may be reset automatically during iteration (see

section 3.9). If the Variable is used to control iteration, step must be set to one of the

enumerated values: plus, meaning increment by one; minus, meaning decrement by

one; or next, meaning iterate over the next element of a collection. The type may be

any legal ReMoDeL OOP type name (see section 2).

The Variable element optionally has the children:

 any initial value to bind to the variable (optional);

 a suitable backstop value delimiting a range (optional).

Initial value expressions may be used to initialise a local Variable at the point of

introduction. Initialising a local Variable is usually more convenient than first

declaring it and then assigning a value to it using Assign with a target Identifier

having the same variable name. Local Variable expressions are initialised in the order

they are declared, at the head of the owning Sequence.

Backstop expressions are only used during iteration, to declare a limit to the range of

values, over which the variable may iterate. The initial value is always included in the

iteration; whereas the backstop value is always excluded from the iteration – it is

always "one past the end" of the iteration.

Simple examples of the Variable element include:

<Variable name="amount" type="Integer"/>

<Variable name="primes" type="List[Natural]"/>

These examples show how to declare variables of both simple and structured types.

This is the style to use when declaring formal method arguments (see section 4.3), as

well as local variables. Further examples below show how a local Variable may also

be initialised at the point of declaration:

<Variable name="rate" type="Decimal">

 <Literal value="3.25" type="Decimal"/>

</Variable>

<Variable name="answer" type="Integer">

 <Operator symbol="times" type="Integer"/>

 <Literal value="7" type="Integer"/>

 <Literal value="6" type="Integer"/>

 </Operator>

</Variable>

ReMoDeL: OOP Specification, 20 January 2012 40

<Variable name="pundit" type="Person">

 <Create creator="make" implicit="true" type="Person">

 <Literal value="Ronald" type="String"/>

 <Literal value="Manager" type="String/>

 </Create>

</Variable>

These examples show how variables may be initialised to any general expression.

The first initialises rate with a literal value 3.25; the second initialises answer to the

product of 7 times 6; the third initialises pundit to the result of object creation.

The following examples show the usage of the Variable element during iteration.

Declaring a step attribute is only legal during iteration. The step controls how the

Variable is initialised and re-initialised on each iteration.

<Variable name="member" type="Person" step="next">

 <Identifier name="membership" type="List[Person]"/>

</Variable>

In this first example, the Variable member is initialised to the first element of the

collection of Person objects stored in the variable membership, but will iterate over

each element in the list, until there are no more. This kind of iteration is indicated by

setting step to the value next, indicating general iteration. A more specific kind of

counted iteration is indicated by setting the step to plus or minus:

<Variable name="count" type="Integer" step="plus">

 <Literal value="0" type="Integer"/>

 <Literal value="10" type="Integer"/>

</Variable>

<Variable name="count" type="Integer" step="minus">

 <Literal value="10" type="Integer"/>

 <Literal value="0" type="Integer"/>

</Variable>

These examples show the use of the backstop value. The Variable count is initialised

to the initialisation expression, and iteration will continue until the backstop is

reached. The step value plus indicates that the variable will increment by 1; whereas

the step value minus indicates that the variable will decrement by 1 on each iteration.

Counted iteration always covers a contiguous range and cannot jump in steps larger

than 1. For examples of the context in which these expressions are used during

iteration, see above (see section 3.9).

4.2 Field Declaration

The Field element may be used to define a named field of a Class or Interface. A

Field is a kind of Member (from which it obtains a visibility) and transitively a kind of

Property (from which it obtains a name and a type). A Field may be declared with an

initial default value. If used in an Interface, a Field may only declare a shared

constant value.

The grammar for the Field element in OOP is:

ReMoDeL: OOP Specification, 20 January 2012 41

<!ELEMENT Field (Literal | Identifier | Operator |

 Create | Invoke)?>

<!ATTLIST Field name NMTOKEN #REQUIRED>

<!ATTLIST Field shared (false | true) "false">

<!ATTLIST Field visible (private | protected | public) "private">

<!ATTLIST Field type NMTOKEN #REQUIRED>

The attributes of the Field element are:

 name – the name of the field (required);

 shared – the allocation of the field (optional);

 visible – the visibility of the field (optional);

 type – the type of the field (required).

The name must be supplied in camelCase, the expected style for all property names.

The optional shared attribute, when true, indicates whether the Field is shared by all

instances of the declaring class (also known as static in Java and C++). By default,

shared is false, meaning that the Field is replicated in each instance. The visible

attribute may be set to any of: private (visible in the declaring class), protected (also

visible in descendant classes) or public (visible to all). By default, a Field will be

private. The type may be any legal ReMoDeL FUN type name (see section 2).

The Field element optionally has the child:

 any initial value to bind to the field (optional).

Initial value expressions may be used to declare and initialise a Field at the point of

introduction. In ReMoDeL OOP, the initial value is treated as the default value for

the Field, which may later be replaced during object construction. However, a shared

field may only be initialised in this way. If an Interface is ever given a Field, this

must be declared shared and have an initial value; the Field is then treated as a shared

constant.

Simple examples of the Field element include:

<Field name=”forename” type=”String” visible=”private”/>

<Field name=”age” type=”Natural” visible=”protected”/>

These show class Fields of different types, and with different visibility declarations.

In general, private visibility offers the strictest access control, allowing only methods

of the owning Class to access the Field. Where a Class is part of a hierarchy, granting

the Field protected visibility will allow subclasses to access the Field also.

The following examples show how the above Fields may be given default values, at

the point of introduction:

<Field name=”forename” type=”String” visible=”private”>

 <Literal value="John" type="String"/>

</Field>

ReMoDeL: OOP Specification, 20 January 2012 42

<Field name=”age” type=”Natural” visible=”protected”>

 <Literal value="0" type="Natural"/>

</Field>

Assuming that these Fields are owned by the Class called Person, then any Person

object created without an explicit forename will have the name "John"; and any object

created without an explicit age will have the age 0. Translators will deal with this in

different ways, for example Java supports both default and constructed Field values,

whereas in C++, default values may be supplied using the constructor's initialisation

syntax, and explicit values may be replaced using assignment in the body.

The following example illustrates a shared Field, allocated once for a Class called

SavingsAccount, which is also initialised at the point of declaration:

<Field name=”netRate” type=”Decimal” shared=”true">

 <Operator symbol=”minus”>

 <Invoke method="getGrossRate" type="Decimal">

 <Identifier name="rates"

 scope="object" type="InterestRates"/>

 </Invoke>

 <Invoke method="getTaxRate" type="Decimal">

 <Identifier name="rates"

 scope="object" type="InterestRates"/>

 </Invoke>

 </Operator>

</Field>

This shows how netRate is declared, as an implicitly private Field, and initialised

once for the whole class. Initialisation expressions are most often simple literals, but

may be complex invocations, as shown here. However, they cannot rely on the values

of any other Fields in the same Class, which may not yet have bound values. In this

example, we assume that rates refers to a shared Field declared in the superclass

Account, which is guaranteed to be initialised before netRate in the subclass

SavingsAccount.

A Field may be initialised to the result of object creation. The following makes boss a

shared field, initialised to a particular Person instance:

<Field name="boss" shared="true" type="Person" visible="private">

 <Create creator="make" implicit="true" type="Person">

 <Literal value="John" type="String"/>

 <Literal value="Monkfish" type="String/>

 </Create>

</Field>

Finally, the only kind of Field you may declare in an Interface is one that is shared,

public and initialised. This is a public constant of the interface. The following is an

example of this, possibly declared in Geometry, an interface for geometry:

<Field name=”pi” shared="true" type=”Decimal” visible=”public”>

 <Literal value="3.14159265358979323846" type="Decimal"/>

</Field>

ReMoDeL: OOP Specification, 20 January 2012 43

4.3 Method Declaration

The Method element may be used to define a named method of a Class or Interface.

A Method is a kind of Member (from which it obtains a visibility) and transitively a

kind of Property (from which it obtains a name and a type). A Method may declare

one or more formal arguments and a result type, representing a signature. A Method

may also declare a body expression to compute its result. A Method may also declare

generic type parameters, if it manipulates generic arguments or results. An Interface

may only contain method signatures, also called abstract methods.

The grammar for the Method element is:

<!ELEMENT Method (Generic*, Variable*, Assert*,

 Sequence, Rescue?)>

<!ATTLIST Method name NMTOKEN #REQUIRED>

<!ATTLIST Method abstract (false | true) "false">

<!ATTLIST Method override (false | true) "false">

<!ATTLIST Method visible (private | protected | public) "public">

<!ATTLIST Method type NMTOKEN #REQUIRED>

The attributes of the Method element are:

 name – the name of the method (required);

 abstract – whether the method is abstract (optional);

 override – whether a redefined method (optional);

 visible – the visibility of the method (optional);

 type – the result type of the method (required).

The name must be in camelCase, the expected style for all property names. If the

abstract attribute is true, this indicates that the method is a signature; it may not have

a Sequence body. If the override attribute is true, this indicates that the method is a

redefinition of an existing concrete method; but it is illegal to override a private

Method. The visible attribute may be set to any of: private (visible in the declaring

class), protected (also visible in descendant classes) or public (visible to all). By

default, a Method will be public. The type records the result type of the method and

may be any legal ReMoDeL OOP type name (see section 2).

The Method element has the children:

 Generic – additional generic type parameters (optional, zero-to-many);

 Variable – the formal arguments of the method (optional, zero-to-many);

 Assert – the preconditions and postconditions (optional, zero-to-many);

 Sequence – the method's single body expression (optional, when concrete);

 Rescue – the method's recovery statements (optional).

ReMoDeL: OOP Specification, 20 January 2012 44

A Method need only declare additional generic parameters, over and above the

Generic parameters already declared in its owning Class, if the objects it manipulates

are of some other generic type. A Method may declare zero to many formal

arguments, since the owning object is implicitly the first argument. A Method may

declare zero to many Assert statements, representing its preconditions and

postconditions. If the Method is abstract (a signature), it may not declare any body

Sequence, but if it is concrete (implemented), it must declare a single Sequence

expression, representing the method body. The type of the Sequence must match the

type of the Method, that is, if the method is procedural, the type will be Void and if the

method is functional, some other result type will be declared. The Method may

optionally declare a Rescue statement, containing recovery code.

Simple examples of the Method element include:

<Method name="getAge" type="Natural" visible="public">

 <Sequence type="Natural">

 <Return type="Natural"/>

 <Identifier name="age" scope="object" type="Natural"/>

 </Return>

 </Sequence>

</Method>

<Method name="setAge" type="Void" visible="public">

 <Variable name="age" type="Natural"/>

 <Sequence type="Void">

 <Assign symbol="equals"/>

 <Identifier name="age" scope="object" type="Natural"/>

 <Identifier name="age" type="Natural"/>

 </Assign>

 </Sequence>

</Method>

<Method name="birthday" type="Void" visible="public">

 <Sequence type="Void">

 <Assign symbol="plus"/>

 <Identifier name="age" scope="object" type="Natural"/>

 </Assign>

 </Sequence>

</Method>

These examples illustrate getter and setter methods. The first example illustrates how

to return a result (see section 3.12). The second and third examples illustrate binary

assignment and the unary in-place incrementing assignment (see section 3.4). Note in

the second example how the same Identifier name may be reused to refer both to an

object field and to the related formal argument that was used to supply its value. This

is possible because Identifier distinguishes the scope of the variables that it references.

The following shows how to represent abstract method signatures, as they might

appear in an abstract Class, or Interface declaration.

<Method name="setAge" abstract="true" type="Void"

 visible="public">

 <Variable name="age" type="Natural"/>

</Method>

ReMoDeL: OOP Specification, 20 January 2012 45

<Method name="getAge" abstract="true" type="Natural"

 visible="public"/>

For access methods with no arguments, no child contents are needed; for methods

with arguments, one or more Variable children should be declared. It is also legal to

add Assert statements to signatures.

The following method deposit also has Assert statements expressing its pre- and

postconditions. These ensure that the amount deposited is positive, and that the

balance was updated as a result of calling the method:

<Method name="deposit" type="Void" visible="public">

 <Variable name="amount" type="Integer"/>

 <Assert contract="positive amount" when="before" type="Void">

 <Operator symbol="moreThan" type="Boolean">

 <Identifier name="amount" type="Integer"/>

 <Literal value="0" type="Integer"/>

 </Operator>

 </Assert>

 <Assert contract="balance increased" when="after" type="Void">

 <Operator symbol="equals" type="Boolean">

 <Identifier name="balance" state="after" scope="object"

 type="Integer"/>

 <Operator symbol="plus" type="Integer">

 <Identifier name="balance" state="before" scope="object"

 type="Integer"/>

 <Identifier name="amount" type="Integer"/>

 </Operator>

 </Operator>

 </Assert>

 <Sequence type="Void">

 <Assign symbol="plus" type="Void">

 <Identifier name="balance" scope="object" type="Integer"/>

 <Identifier name="amount" type="Integer"/>

 </Assign>

 </Sequence>

 <Rescue type="Void">

 <Assign symbol="equals" type="Void">

 <Identifier name="balance" state="after" scope="object"

 type="Integer"/>

 <Identifier name="balance" state="before" scope="object"

 type="Integer"/>

 </Assign>

 </Rescue>

</Method>

This example also demonstrates, through the use of a Rescue block, how to roll back

the state of the object, which we assume is an instance of CurrentAccount, to its prior

state, in case the deposit action fails. This Rescue does not specify any restart

attempts, but will simply pass on the failure to the caller.

The body of a Method may refer to all identifiers that are in scope. This includes all

object Fields that are visible to the method, all of the method's formal arguments, and

any local Variables that were introduced. If a Method needs to refer to the whole of

the owning object, this is via the special Identifier called self. Referring to self is

useful when passing the current object as an argument to a foreign method.

ReMoDeL: OOP Specification, 20 January 2012 46

In the context of inheritance, a Method may override an earlier Method having the

same name. In this case, it is possible for the method body of the overriding method

to refer to the earlier version, through the special Identifier called super. This is

known as super-method invocation, and may occur at any convenient point in the

overriding Method:

<Method name="openWith" type="Void" override="true"

 visible="public">

 <Variable name="amount" type="Integer"/>

 <Sequence type="Void">

 <Invoke method="openWith" type="Void">

 <Identifier name="super" scope="special" type="Account"/>

 </Invoke>

 <!-- rest of method body omitted for brevity -->

 </Sequence>

</Method>

We assume that this illustrates the openWith method of a SavingsAccount, which

overrides the same-named method of Account, but uses that class's method to perform

basic account opening actions, before proceeding to do further actions of its own (not

illustrated above).

4.4 Creator Declaration

The Creator element may be used to define a named initialising procedure for a Class.

A Creator is a kind of Member (from which it obtains a visibility) and transitively a

kind of Property (from which it obtains a name and a type). A Creator may declare

one or more formal arguments and always declares a body expression to initialise an

instance of its owning class. The result type of a Creator is always Void, since it is

evaluated for the side effect of object initialisation. A Creator may also declare

generic type parameters, if it accepts generic arguments. A Creator is always

concrete, never abstract. An Interface may not define a Creator.

The grammar for the Creator element is:

<!ELEMENT Creator (Generic*, Variable*, Assert*, Sequence)>

<!ATTLIST Creator name NMTOKEN #REQUIRED>

<!ATTLIST Creator override (false | true) "false">

<!ATTLIST Creator visible (protected | public) "public">

<!ATTLIST Creator type NMTOKEN #FIXED "Void">

The attributes of the Creator element are:

 name – the name of the creator (required);

 override – whether a redefined creator (optional);

 visible – the visibility of the creator (optional);

 type – the result type of the creator (required).

In ReMoDeL OOP, a Creator is a named procedure. The name must be in

camelCase, the expected style for all property names. If the override attribute is true,

this indicates that the Creator is a redefinition of an existing one (with the same

ReMoDeL: OOP Specification, 20 January 2012 47

name). The visible attribute may be set to any of: protected (visible in the defining

class and descendant classes) or public (visible to all), but not private, which makes

no sense in a Creator. By default, a Creator will be public. The type of a Creator is

always Void.

The Creator element has the children:

 Generic – additional generic type parameters (optional, zero-to-many);

 Variable – the formal arguments of the creator (optional, zero-to-many);

 Assert – the preconditions and postconditions (optional, zero-to-many);

 Sequence – the creator's single body expression (optional, when concrete).

A Creator need only declare additional generic parameters, over and above the

Generic parameters already declared in its owning Class, if its arguments are of some

other generic type. A Creator may declare zero to many formal arguments, since the

target object is implicitly the first argument. A Creator may declare zero to many

Assert statements, representing its preconditions and postconditions; but it makes no

sense to Rescue a Creator, since no valid object has yet been created that could be

restored. A Creator must declare a single Sequence expression, representing the

initialising body. The initialising expressions are all Assign statements.

Simple examples of the Creator element include the default creator, which has no

arguments:

<Creator name="create" type="Void" visible="public">

 <Sequence type="Void"/>

</Creator>

This will perform no initialisation beyond whatever default values were declared for

the owning Class's fields. The default creator is usually called create by convention.

It need not be redefined for each class, unless it is desired to override the default

initialisation rules (see section 4.2). Another example is the standard creator, which

initialises an object's fields from a set of arguments:

<Creator name="make" type="Void" visible="public">

 <Variable name="temperature" type="Integer"/>

 <Variable name="scale" type="String"/>

 <Sequence type="Void">

 <Assign symbol="equals" type="Void">

 <Identifier name="temperature"

 scope="object" type="Integer"/>

 <Identifier name="temperature" type="Integer"/>

 </Assign>

 <Assign symbol="equals" type="Void">

 <Identifier name="scale" scope="object" type="String"/>

 <Identifier name="scale" type="String"/>

 </Assign>

 </Sequence>

</Creator>

ReMoDeL: OOP Specification, 20 January 2012 48

This is the most common kind of Creator. Note how simple Assign statements are

used to perform the initialisation. By convention, the standard creator is always

called make. It is common for make to be redefined in each subsequent subclass, as

further initialisation arguments are added. The following illustrates the Creator for a

Student, which extends the Creator for a Person (see section 2.4):

<Creator name="make" override="true" type="Void" visible="public">

 <Variable name="forename" type="String"/>

 <Variable name="surname" type="String"/>

 <Variable name="gender" type="Character"/>

 <Variable name="age" type="Natural"/>

 <Variable name="registration" type="Natural"/>

 <Create creator="make" type="Person">

 <Identifier name="super" scope="special" type="Person"/>

 <Identifier name="forename" type="String"/>

 <Identifier name="surname" type="String"/>

 <Identifier name="gender" type="Character"/>

 <Identifier name="age" type="Natural"/>

 </Create>

 <Assign symbol="equals" type="Void">

 <Identifier name="registration" scope="object"

 type="Natural"/>

 <Identifier name="registration" type="Natural"/>

 </Assign>

</Creator>

It delegates to the superclass creator to perform most of the initialisation (of Fields

that were declared in the superclass), and then it initialises the last Field that was

declared in the subclass Student. Where a Creator invokes the inherited Creator, the

super-creation instruction must always appear first in the Creator body. This is

because many translations insist on this convention.

4.5 Package Declaration

ReMoDeL OOP uses the ReMoDeL Package and Namespace Model for organising

class and interface definitions into separate packages. See the separate model

specification [3] for full details.

A ReMoDeL OOP package is declared using the Package element to wrap the

contents of the package. A skeleton example is the following:

<Package model="OOP" name="People" location="example.people">

 <!-- other definitions inserted here -->

</Package>

This declares that the definitions contained within belong to the package whose

namespace is People, whose contents are to be stored at the logical location

example.people and that the package model type is OOP. This information may be

interpreted differently by different translators: they may use the namespace identifier

to qualify all definitions, or use the logical location to store all compiled definitions at

a given physical location under a root directory for the target language.

ReMoDeL: OOP Specification, 20 January 2012 49

In OOP, a package expresses its dependency upon other packages using the Consult

dependency, after which each class or interface refers to other types using explicit

Employ, Inherit and Satisfy references. This is because most translations need to

express reference dependencies between classes and interfaces at a finer-grained level

than whole package scope:

<Consult model="OOP" package="People" location="example.people"/>

<Consult model="OOP" package="Banks" location="finance.banks"/>

<Consult model="OOP" package="Equity" location="finance.equity"/>

<Class name="SavingsAccount" visible="public">

 <Inherit refer="Account" kind="Class" from="Banks"/>

 <Satisfy refer="Asset" kind="Interface" from="Equity"/>

 <Employ refer="Person" kind="Class" from="People"/>

 <!-- rest of class definition omitted for brevity -->

</Class>

The only package that is conventionally imported into the current namespace using

the global Import dependency instruction is the Core package:

<Import model="OOP" package="Core" location="lib.core"/>

This contains the basic types: Byte, Boolean, Character, Integer, Short, Long,

Natural, Decimal, Void and the classes Object, String and the root Interface.

Importing this package allows class and interface types to employ all the basic types

without declaring explicit Employ dependencies. In translations, most of these types

are built-in types, but some translations will need to import the String datatype for

each class in the current package.

While it would be possible to import other packages globally, this would lead to

translations with very long import clauses at the head of each class file. In any case,

even though this would obviate the need to declare explicit Employ dependencies

upon the used types, classes still need to express their Inherit and Satisfy

dependencies upon other classes or interfaces explicitly.

4.6 Program Declaration

In ReMoDeL OOP, the notion of a program is deliberately flexible. A program

consists of a set of class and interface declarations, possibly originating from various

packages, of which one class will serve as the driver of the system. In principle, we

adhere to Meyer’s tenet that “real systems have no top” [4], that is, we should expect the

main entry point of an object-oriented system to change from time to time, indeed, for

there to be possibly many different entry points into the system.

For this reason, any class having a default creator called create and a method of no

arguments called execute may be chosen as the entry point. In this way, more than

one class may serve as the entry point on different occasions, so long as the tools

know which class to choose, when generating the system. If there are many candidate

driver classes, the name of the chosen driver must be supplied as a parameter to the

generation tools. If there is only one candidate driver, the tools should be able to

detect this automatically.

Generators will produce a short main program that first constructs a default instance

of the driver class using the creator create, and then invokes the execute method to set

ReMoDeL: OOP Specification, 20 January 2012 50

the whole system running. The create creator is responsible for creating and initialising

the other objects that constitute the system. The execute method initiates processing

among the objects of the system. Whereas Eiffel has a similar approach, in which a root

creation procedure creates and also initiates the system [4], we prefer to distinguish

constructing the system from executing it, treating these as separate steps, since in certain

languages (such as C++), it is problematic to think of executing a system that has not yet

finished being constructed.

An example skeleton of a Driver class is illustrated below (the name of the class is not

significant), showing how both the creator and the method must be declared public:

<Class name="Driver" visible="public">

 <Creator name="create" type="Void" visible="public">

 <!-- creator body omitted for brevity -->

 </Creator>

 <Method name="execute" type="Void" visible="public">

 <!-- method body omitted for brevity -->

 </Method>

 <!-- other fields and methods omitted -->

</Class>

How the result of the computation is communicated to the end-user is a matter for

different translations and may depend on the supplied core libraries. The OOP model

is expected to be supplied with a number of standard libraries, including an I/O library

with the package name InOut. This is expected to define standard input and output

stream classes, which behave in a similar way across different translations. Every

effort will be made to ensure a common semantics for OOP translations.

5 References

[1] World Wide Web Consortium (W3C), Extensible Markup Language (XML)

1.0, 5
th

 edition, eds. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F.

Yergeau, 26 November, 2008. http://www.w3.org/TR/2008/REC-xml-20081126/

[2] A. J. H. Simons, ReMoDeL Functional Programming Model Specification,

Technical Report, Department of Computer Science, University of Sheffield, 2011.

[3] A. J. H. Simons, ReMoDeL Package and Namespace Model Specification,

Technical Report, Department of Computer Science, University of Sheffield, 2011.

[4] B. Meyer, Object-Oriented Software Construction, 2
nd

 Edition, Prentice Hall,

1997.

http://www.w3.org/TR/2008/REC-xml-20081126/

