

ReMoDeL

Package and
Namespace

Model Specification

Version: 0.5

Date: 02 November 2011

Anthony J H Simons
Department of Computer Science
University of Sheffield

ReMoDeL: PKG Specification, 2 November 2011 2

1 Introduction .. 3

1.1 Model Scope .. 3

1.2 Model Semantics ... 3

1.3 Common Metamodel ... 4

1.4 XML Conventions ... 4

2 Packages and Dependency ... 5

2.1 Package Declaration .. 5

2.2 Import Dependency ... 7

2.3 Consult Dependency ... 8

3 Classifiers and Reference ... 10

3.1 Employ Reference ... 10

3.2 Inherit Reference ... 11

3.3 Satisfy Reference ... 12

4 Logical to Physical Mapping ... 14

4.1 Mapping Package Models to Files .. 14

4.2 Mapping Generated Code to Files ... 15

4.3 Mapping Library Packages to Files ... 15

4.4 Mapping Dependency Declarations .. 16

4.5 Mapping Namespace Declarations .. 17

4.6 Mapping Qualified Package Access .. 19

5 References .. 20

ReMoDeL: PKG Specification, 2 November 2011 3

1 Introduction

This document describes the specification for ReMoDeL PKG, a dialect of XML [1]

used to encode the Package and Namespace Model. This is a foundational model,

used as a core subset by other ReMoDeL XML dialects.

1.1 Model Scope

The Package and Namespace Model is intended to support a common language for

organising models and software artefacts in packages. Different ReMoDeL XML

dialects may support quite different kinds of model, ranging from high-level

conceptual models to low-level implementation models, but all dialects expect some

kind of over-arching organisation of model artefacts into packages, to manage the

partitioning of artefacts across different logical and physical spaces and to provide a

common scheme for cross-referencing these artefacts from other packages.

ReMoDeL PKG was developed in order to satisfy common requirements for package

and namespace management across all ReMoDeL XML dialects. The language has

grown in response to the need to reuse whole models and model artefacts at different

levels of granularity. By providing a single ReMoDeL PKG dialect, the aim is to

foster a common approach to managing packages and namespaces, and remove this

concern from the specification of other ReMoDeL dialects, which may instead refer to

this specification.

1.2 Model Semantics

ReMoDeL PKG handles issues of identification across different kinds of model, and

within each kind of model. At the outermost layer, it must distinguish between

artefacts that belong to different kinds of model (such as OOP, DBQ, FUN). Within

any given model, the main areas of concern are to find flexible ways of labelling

model artefacts that belong to different namespaces; and to find ways of mapping

logical namespaces to physical storage locations on a computer’s backing store.

Since each ReMoDeL dialect has a unique 3-letter identifier, it was easy to satisfy the

first requirement by labelling packages according to the primary kind of model they

represent. Packages that include artefacts from subsidiary model-kinds that are

explicit subsets of the primary model-kind (for example, PKG is a subset of many

other model-kinds) may do so; and packages then use the identifier for the primary

model-kind.

Namespaces were more of a challenge, since we desired to support translations into

languages that use both flat namespaces and hierarchical namespaces. In the end, we

chose a mapped model, in which flat namespace identifiers could be mapped to

logical location identifiers, expressing the abstract hierarchical structure of the

namespace. The location information may also be used to create physical directory

structures for storing translated models and generated code.

Referring to artefacts in different namespaces uses a dependency language to express

the logical provenance of the referenced artefact. The language distinguishes the

wholesale importing of foreign packages from the reuse of individual artefacts from

ReMoDeL: PKG Specification, 2 November 2011 4

foreign packages. Imported elements are typically unique in the using context, but

may also be distinguished through their namespace identifiers.

1.3 Common Metamodel

The XML elements and attributes defined in this syntax model correspond to

concepts, attributes and relationships in the ReMoDeL Metamodel. The deliberate

consequence of this is that XML elements may be mapped directly onto metamodel

classes. Elements are not defined in isolation, but may be organised in a conceptual

hierarchy according to their similarities and differences. This is intended to support

parsers that build syntax trees directly from instances of the metamodel classes, as

well as parsers that use conventional XML trees.

A model will be constructed from the terminal elements in the conceptual hierarchy.

A consequence of this is that certain XML element names will be reserved to denote

abstract concepts in the metamodel, which are never actually present in any instance

of the model. These abstract elements are nonetheless defined as part of the model,

since they may correspond to strongly typed nodes in syntax trees derived directly

from the metamodel.

The intention is for all ReMoDeL XML dialects to be mapped onto a common

metamodel. The terminal elements used across different languages, though they may

be different, will nonetheless share certain similarities, expressed through their

relationships with common abstract elements.

1.4 XML Conventions

ReMoDeL PKG adopts all the W3C conventions for XML [1]. Identifier symbols

must observe the rules of Unicode identifiers, attribute values must be enclosed in

quotes and special characters must be escaped as entity references. Apart from this,

ReMoDeL imposes a certain “house style” on identifiers:

 The names of all XML elements are presented in CapitalCase, similar to type

names in the Java programming language.

 The names of all XML attributes are presented in camelCase, similar to

variable names in the Java programming language.

The use of hyphens and underscores as part of identifier names goes against the house

style and is strongly discouraged. The use of digits as part of the body of an identifier

is legal, but also generally discouraged, unless the application clearly demands this.

ReMoDeL: PKG Specification, 2 November 2011 5

2 Packages and Dependency

ReMoDeL uses a single kind of Package that adapts to every XML dialect used in the

project. A package is just one kind of Classifier, an abstract concept that defines a

namespace. Classifiers depend on various kinds of Declaration (such as Type or

Property declarations) according to different flavours of Dependency. The ancestry

of these elements is illustrated in the fragment of the ReMoDeL Metamodel shown in

figure 1.

Element

Declaration

/contents *

Classifier

Package

Dependency

Import

Consult

has *

Type

/on *
Property

Figure 1: Package Dependency in the ReMoDeL Metamodel

All ReMoDeL packages are defined as instances of the Package metaclass. A

package encapsulates elements known as the package’s contents, different kinds of

Element that vary according to the model-kind. By virtue of being a kind of

Classifier, a package defines a unique namespace (within its model-kind), which is

used as a namespace for the package’s contents. The intention is that, within each

model-kind, package names refer to unique packages; and within each package,

element names refer to unique elements.

Relationships between packages (and other kinds of element) are expressed as

instances of children of the abstract Dependency metaclass. Import and Consult

describe coarse-grained package-level dependencies between one Package and

another. Further fine-grained dependencies also exist (see section 3).

2.1 Package Declaration

The Package element is used to declare a package, the modular translation unit used

in ReMoDeL to encapsulate the contents of a model. Packages are used to impose

model-kinds and logical namespaces upon ReMoDeL models. They may also be

translated into equivalent packages or modules in a target language.

ReMoDeL: PKG Specification, 2 November 2011 6

The Package element is the root of every model. XML tools should expect to validate

a root Package element in the XML file storing the package. Packages are complete

once defined, in the sense that there is no other location where further contents may

be found for the same package. This does not prevent tools from building a package

incrementally, but does mean that the clients of a package must be able to assume that

it is the whole package. Packages are usually named, but one package (the default

package) may be unnamed; its location is also empty, and is assumed to be the current

working directory.

The grammar for the Package element is:

<!ELEMENT Package (ANY*)>

<!ATTLIST Package model NMTOKEN #REQUIRED>

<!ATTLIST Package name NMTOKEN #IMPLIED>

<!ATTLIST Package location CDATA #IMPLIED>

<!ATTLIST Package library (false | true) false>

The attributes of the Package element are:

 model – the model-kind of the package (required);

 name – the namespace defined by the package (optional);

 location – the abstract location for the package (optional);

 library – true, if this package is a standard library (optional).

The model must be given as a model-kind used to identify models in the ReMoDeL

project. Examples include: OOP, FUN, DBQ, PKG, always in UPPERCASE. The

name, when supplied, must be given in CapitalCase (see section 1.4) and defines a

namespace that must be unique for the model-kind. Namespaces are the abbreviated

short names by which ReMoDeL packages are recognised. The location, when

supplied, must be given as an abstract pathname consisting of lowercase identifiers

separated by periods. Locations are hierarchical identifiers by which ReMoDeL

packages are recognised. The library flag is false by default, but set to true to

indicate a library package (a model that describes predefined library code).

The children of the Package element are multiple, and vary from model to model:

 any kind of model element (optional, zero-to-many).

For example a FUN package might define a collection of Basic, Variable and

Function elements, whereas an OOP package might define a collection of Class,

Interface, Basic and Symbolic elements. There is no significance to the order of a

package’s contents, although the definition-before-usage style is preferred. Library

packages only declare the signatures of the elements they contain, since they serve to

describe predefined code, and no new code is generated from them.

Examples of the Package element include:

ReMoDeL: PKG Specification, 2 November 2011 7

<Package model=”OOP” name=”Core” location=”lib.core”

 library=”true”>

 <!-- contents omitted -->

</Package>

<Package model=”OOP” name=”Util” location=”lib.util”

 library=”true”>

 <!-- contents omitted -->

</Package>

These are library packages in the OOP model called Core and Util. They are stored at

abstract locations lib.core and lib.util, which may translate to directory trees with a

shared root. Further examples include:

<Package model=”FUN” name=”List” location=”lib.util.list”

 library=”true”>

 <!-- contents omitted -->

</Package>

<Package model=”FUN” name=”Main” location=”my.work.proj.main”>

 <!-- contents omitted -->

</Package>

These are packages for the FUN model. The abstract location lib.util.list must be

completely disjoint with similarly named OOP locations lib.core, lib.util. The last

example shows a user-defined package. Finally, one unnamed package may exist:

<Package model=”OOP”>

 <!-- contents omitted -->

</Package>

This is the default package in the OOP model. There can only be one default package

for each model. This is stored in the root directory (for the model) and may map to

generated code in the root directory (for the target language).

2.2 Import Dependency

The Import element is used to import the contents of a foreign package. This is a

coarse-grained dependency that relates the current (home) package to another

(foreign) package. The instruction is interpreted as opening the foreign package and

including its contents in the namespace of the home package, as if they had been

defined there. It is most useful in ReMoDeL dialects where all dependencies are

handled at package-level (such as FUN). In other ReMoDeL dialects (such as OOP),

detailed dependencies between types are also recorded.

The grammar for the Import element is:

<!ELEMENT Import EMPTY>

<!ATTLIST Import model NMTOKEN #IMPLIED>

<!ATTLIST Import package NMTOKEN #REQUIRED>

<!ATTLIST Import location CDATA #REQUIRED>

The attributes of the Import element are:

 model – the model-kind of the package (optional);

ReMoDeL: PKG Specification, 2 November 2011 8

 package – the name of the package to be imported (required);

 location – the abstract location for the named package (required).

The model, when supplied, must be given as one of a finite number of model-kind

identifiers used in the ReMoDeL project, in UPPERCASE. By default, the foreign

model-kind is assumed to be the same as the home model-kind. The value of package

is a package name in CapitalCase (see section 1.4). The value of location is an

abstract pathname consisting of lowercase identifiers separated by periods.

The Import element has no children. As a matter of style, package imports are listed

at the head of the home package’s contents.

Simple examples of the Import element include:

<Import model=”OOP” package=”Core” location=”lib.core”/>

<Import model=”FUN” package=”List” location=”lib.util.list”/>

These import the named packages into the namespace of the current unspecified

package. These examples use the explicit model-kind attribute. Further examples of

the Import element used in a package context include:

<Package model=”FUN” name=”Main” location=”my.work.proj.main”>

 <Import package=”List” location=”lib.util.list”/>

 <!-- other contents omitted -->

</Package>

<Package model=”OOP” name=”Sorting” location=”example.sorting”>

 <Import package=”Util” location=”lib.util”/>

 <!-- other contents omitted -->

</Package>

These examples import the named foreign packages into the home context described

by the containing Package elements. In both cases, the model-kind of the imported

packages is left implicit, and is inferred to be the same as the home package.

2.3 Consult Dependency

The Consult element is used to open a foreign package, without importing its contents

into the current namespace. This is a coarse-grained dependency that relates packages

to other packages. It is a more subtle instruction than the Import declaration, an

advance notification that the home package depends on elements from the foreign

package. Consult may be used with other dependency declarations that request

individual declarations from the consulted package.

The grammar for the Consult element is:

<!ELEMENT Consult EMPTY>

<!ATTLIST Consult model NMTOKEN #IMPLIED>

<!ATTLIST Consult package NMTOKEN #REQUIRED>

<!ATTLIST Consult location CDATA #REQUIRED>

The attributes of the Consult element are:

ReMoDeL: PKG Specification, 2 November 2011 9

 model – the model-kind of the package (optional);

 package – the name of the package to be consulted (required);

 location – the abstract location for the named package (required).

The model, when supplied, must be given as one of a finite number of model-kind

identifiers used in the ReMoDeL project, in UPPERCASE. By default, the foreign

model-kind is assumed to be the same as the home model-kind. The value of package

is a package name in CapitalCase (see section 1.4). The value of location is an

abstract pathname consisting of lowercase identifiers separated by periods.

The Consult element has no children. As a matter of style, package consultations are

listed at the head of the home package’s contents.

Simple examples of the Consult element include:

<Consult model=”OOP” package=”Util” location=”lib.util”/>

<Consult model=”FUN” package=”List” location=”lib.util.list”/>

These consult the named packages from the namespace of the current unspecified

package. These examples use the explicit model-kind attribute.

A further example of the Consult element used in a package context is:

<Package model=”FUN” name=”Main” location=”my.work.proj.main”>

 <Consult package=”List” location=”lib.util.list”/>

 <Consult package=”Func” location=”higher.func”/>

 <!-- other contents omitted -->

 <Employ refer=”List” kind=”Record” from=”List”/>

 <Employ refer=”head” kind=”Function” from=”List”/>

 <Employ refer=”tail” kind=”Function” from=”List”/>

 <Employ refer=”map” kind=”Function” from=”Func”/>

 <Employ refer=”filter” kind=”Function” from=”Func”/>

 <!-- other contents omitted -->

</Package>

This example consults two packages named List and Func, opening the abstract

locations where these packages are to be found. At some later point, various Employ

dependencies refer to the exact elements to be used. This allows translations to

selectively import the declarations from the foreign packages, rather than importing

all declarations wholesale. The Employ element is defined below (see section 3.1)

and describes a usage-dependency on some element from the named package.

ReMoDeL: PKG Specification, 2 November 2011 10

3 Classifiers and Reference

In certain ReMoDeL dialects, it is necessary to express dependency at a finer scale

than the coarse-grained package-level dependency described above (see section 2).

This is particularly true in languages that generate code in modular units that are

smaller than a package, such as ReMoDeL OOP, which is modularised around Class

and Interface datatypes. These translation units are invariably kinds of Classifier, so

the notion of dependency is defined at this level, for all classifiers.

Declaration

Classifier

Package

Dependency

Reference

has *

Type

/on *
Property

Consult

Inherit

Satisfy Employ

Figure 2: Reference Dependency in the ReMoDeL Metamodel

The finer-grained dependencies described here are all kinds of cross-reference. These

are modelled as children of the abstract Reference dependency and include the

Employ, Inherit and Satisfy dependencies. All of these presume that the appropriate

packages have been consulted, such that the cross-referenced names may be mapped

to their full definitions in the foreign packages.

3.1 Employ Reference

The Employ element is used to express a usage reference dependency upon a

declaration. This is a fine-grained dependency that relates a classifier to another

declaration. For example, a structured type such as a class may refer to a primitive

type or another class as part of its definition, so may need to express this dependency.

Employ is used in a context where the foreign package has been consulted (see 2.3).

The grammar for the Employ element is:

<!ELEMENT Employ EMPTY>

<!ATTLIST Employ refer NMTOKEN #REQUIRED>

<!ATTLIST Employ kind NMTOKEN #IMPLIED>

<!ATTLIST Employ from NMTOKEN #REQUIRED>

The attributes of the Employ element are:

ReMoDeL: PKG Specification, 2 November 2011 11

 refer – the identifier of the related declaration (required);

 kind – the metaclass of the related declaration (optional);

 from – the package owning the related declaration (required).

The refer identifier is the employed element’s usual name, either in camelCase (if a

property) or in CapitalCase (if a classifier – see section 1.4). The value of kind is the

metaclass of the employed element. The value of from is the name of the package

owning the element.

The Employ element is a reference, and has no children.

Examples of the Employ element include:

<Employ refer=”List” from=”Lists”/>

<Employ refer=”head” kind=”Function” from=”Lists”/>

<Employ refer=”Set” kind=”Class” from=”Util”/>

<Employ refer=”HashSet” from=”Util”/>

These examples illustrate how to represent a usage dependency upon some other kind

of element that is known to exist in the named package. The package identifier can

only be understood in the context of a previous consultation. The name allows the

exact element to be identified. The metaclass specifier is used to speed up access to

the named element (by filtering the metaclass kind).

Different ReMoDeL dialects may use the Employ element in different ways, referring

to declarations both outside and within the same package. This is determined by how

much explicit dependency information the model requires.

3.2 Inherit Reference

The Inherit element is used to express an inheritance reference dependency upon

another classifier. This is a fine-grained dependency that relates a classifier to another

classifier. For example, a class may inherit from a parent class, whose inherited fields

and methods are added to the child class. Other kinds of classifier could support an

inheritance relationship. Inherit is used in a context where the foreign package has

been consulted (see 2.3).

The grammar for the Inherit element is:

<!ELEMENT Inherit EMPTY>

<!ATTLIST Inherit refer CDATA #REQUIRED>

<!ATTLIST Inherit kind NMTOKEN #IMPLIED>

<!ATTLIST Inherit from NMTOKEN #REQUIRED>

The attributes of the Inherit element are:

 refer – the identifier of the related declaration (required);

 kind – the metaclass of the related declaration (optional);

ReMoDeL: PKG Specification, 2 November 2011 12

 from – the package owning the related declaration (required).

The refer identifier is the inherited classifier’s usual name in CapitalCase (see section

1.4). The value of kind is the metaclass of the inherited classifier. The value of from

is the name of the package owning the classifier.

The Inherit element is a reference, and has no children.

Examples of the Inherit element include:

<Inherit refer=”Person” kind=”Class” from=”People”/>

<Inherit refer=”Account” from=”Finance”/>

These examples each represent an inheritance dependency upon another classifier that

is known to exist in the named package. The package identifier can be understood

only in the context of a previous consultation. The metaclass specifier may speed up

searching for the referenced classifier.

3.3 Satisfy Reference

The Satisfy element is used to express an interface-satisfaction reference dependency

upon another classifier. This is a fine-grained dependency that relates a classifier to

another classifier. For example, a class may satisfy an interface, whose signatures it

supports; and an interface may extend another interface, adding to its signatures,

thereby also satisfying the other interface. Satisfy is used in a context where the

foreign package has been consulted (see 2.3).

The grammar for the Satisfy element is:

<!ELEMENT Satisfy EMPTY>

<!ATTLIST Satisfy refer CDATA #REQUIRED>

<!ATTLIST Satisfy kind NMTOKEN #IMPLIED>

<!ATTLIST Satisfy from NMTOKEN #REQUIRED>

The attributes of the Satisfy element are:

 refer – the identifier of the related declaration (required);

 kind – the metaclass of the related declaration (optional);

 from – the package owning the related declaration (required).

The refer identifier is the satisfied classifier’s usual name in CapitalCase (see section

1.4). The value of kind is the metaclass of the satisfied classifier. The value of from

is the name of the package owning the classifier.

The Satisfy element is a reference, and has no children.

Examples of the Satisfy element include:

<Satisfy refer=”List” from=”Util”/>

<Satisfy refer=”Asset” kind=”Interface” from=”Finance”/>

ReMoDeL: PKG Specification, 2 November 2011 13

These examples each represent an interface satisfaction reference dependency upon

another classifier that is known to exist in a given package. The package identifier

can only be understood in the context of a previous consultation.

ReMoDeL: PKG Specification, 2 November 2011 14

4 Logical to Physical Mapping

The logical structure for packages described in previous sections is intended to

support an intuitive mapping to physical directories and files. The various XML files

representing ReMoDeL models need to be stored in predictable locations. Likewise,

the code generated from models in different target languages will need to be stored

according to a similar scheme. The expectation is that target language compilers will

be able to observe the same modular structure as described for logical ReMoDeL

packages. In this way, generated modules will be able to refer to each other and also

to predefined library modules, which will be found in predictable locations.

4.1 Mapping Package Models to Files

Packages are expected to be stored in XML files, whose names are derived from the

logical names of the packages, and placed in a directory, whose structure is

determined from the type of the model. For example, the package model:

<Package model=”OOP” name=”Core” location=”lib.core”

 library=”true”>

 <!-- contents omitted -->

</Package>

is expected to be stored in a file named Core.xml that is placed inside a directory with

the hierarchical structure xml/oop, so giving the complete path: xml/oop/Core.xml for

the package model. Similarly, the package model:

<Package model=”FUN” name=”List” location=”lib.util.list”>

 <!-- contents omitted -->

</Package>

is expected to be found in the directory xml/fun and have the file name Lists.xml, so

giving the complete path: xml/fun/Lists.xml for the package model. Directory paths

consist of identifiers in lowercase separated by the platform’s file separator character.

Package file names are capitalised by convention. Some operating systems may

choose to disregard case.

The reason for this particular directory structure is because the tools processing

models and possibly generating code will generally wish to access both model files

and files in proprietary programming languages (such as Java, C++ or SQL), which

will be placed in a similar directory structure. As a result, the tools will most likely be

launched in a working directory above this structure.

Tools will read and write files placed in different directories according to the type of

data. The file-type for model files is initially xml, and then models are distinguished

further by the kind of model, here reflected in the intermediate directories oop or fun.

This allows for the eventual possibility that packages in different models may be

given the same simple package names. Package names must be guaranteed to be

unique within a given model, but may be reused across models.

ReMoDeL: PKG Specification, 2 November 2011 15

4.2 Mapping Generated Code to Files

Generated code is expected to be stored in files, whose names are derived from the

name of the compilation unit in the target language, and placed in a directory, whose

structure is determined from the target language and the hierarchical structure of the

package. Complete paths may vary in style and length according to the preference of

the target language. For example, the following package model:

<Package model=”FUN” name=”Func” location=”higher.func”>

 <!-- contents omitted -->

</Package>

may contain logical models of higher-order functions, with names such as map, filter

and reduce. The translation of these into Haskell assumes that the whole package will

become a single module, with the logical Haskell module name: Higher.Func, which

is usually mapped to a directory structure: Higher/Func.hs by Haskell compilers.

The complete path is however: haskell/Higher/Func.hs, since this must also include

the target language name as the prefix of the path. This is used to distinguish software

generated for Haskell from software generated for Lisp or ML, which may use the

prefix names lisp and ml respectively.

Languages that use whole packages as their translation units will typically adopt this

approach. Languages that use smaller translation units will adopt a slightly different

approach. For example the following package model:

<Package model=”OOP” name=”Finance” location=”example.finance”>

 <!-- contents omitted -->

</Package>

may contain logical models of classes and interfaces, with names such as Asset,

Account and CurrentAccount. The translation of these into Java assumes that each

will be placed in a separate file, with names such as: Asset.java, Account.java and

CurrentAccount.java. To reflect the logical package structure, each of these will also

be declared as belonging to the Java package: example.finance and so must be placed

in a similar sub-directory structure. The target language name is added as the prefix

of the directory path, yielding the complete paths:

java/example/finance/Asset.java

java/example/finance/Account.java

java/example/finance/CurrentAccount.java

In general, the case conventions must be appropriate to the target language. The C#

language generally prefers capitalised names for package related pathnames. The

only fixed convention is that the target language type is always given in lowercase as

the prefix to any path. For code generated in C++ or C#, conventional prefix names

may be used, such as cplus and csharp, since symbols are illegal in pathnames.

4.3 Mapping Library Packages to Files

As part of any ReMoDeL installation, standard libraries will be provided for each

final target language. Standard libraries are useful, in that they provide the boilerplate

code that is used in every generated system, and so reduce the workload for code

generators. They also provide the middleware for linking language-independent

ReMoDeL: PKG Specification, 2 November 2011 16

interfaces to the native standard libraries in each target language. For example, the

ReMoDeL OOP Core package defines a standard String model with a standard set of

methods. This must be mapped onto a library String class in each target language,

which serves as a wrapper or adapter around the native String provided by each target

language, which may otherwise provide a slightly different interface in every target

language.

Library package models must be accessible by the ReMoDeL tools, which may need

to check expressions against published interfaces in library models. For this reason,

library packages are described using the same package syntax, but need only contain

signatures for the elements they contain. For example, the library package model:

<Package model=”OOP” name=”Core” location=”lib.core”

 library=”true”>

 <!-- contents omitted -->

</Package>

is frequently referenced by other OOP package models, and may be found at the

standard location: xml/OOP/Core.xml as stated above. It defines a set of foundation

classes and interfaces that belong to the logical package lib.core, including classes

such as Object, String, SystemError and BrokenContract.

Likewise, target language compilers must be able to find the predefined library code

corresponding to these models. The target code for these classes and interfaces is

therefore placed in predictable locations, similar to the scheme described above for

generated code (see section 4.2). For example, in the Java translation, the following

paths must lead to predefined library classes:

java/lib/core/Object.java

java/lib/core/String.java

java/lib/core/SystemError.java

java/lib/core/BrokenContract.java

The conventions for library files should be similarly predictable for translations into

other languages that use package-sized translation units.

4.4 Mapping Dependency Declarations

Dependency declarations will be translated according to the conventions of the target

language. This could happen in a variety of ways:

 the language may not have an internal language for expressing dependencies,

but may require an external configuration file, e.g. Eiffel;

 the language may refer to packages by standard names and from these will

construct absolute pathnames leading to foreign code, e.g. Java or Haskell;

 the language may express every dependency explicitly and generators may

construct relative pathnames leading to all referenced code, e.g. C++.

Where possible, the distinction between importing and consulting a package should be

preserved. This will have different effects in different target languages. For example,

in Haskell, the translation of a PKG Import declaration:

ReMoDeL: PKG Specification, 2 November 2011 17

<Import model=”FUN” package=”Func” location=”higher.func”/>

is the following:

import Higher.Func

This includes all the contents of the imported module in the current namespace. To

get the effect of PKG Consult with limited Employ directives:

<Consult model=”FUN” package=”Func” location=”higher.func”/>

<Employ refer=”map” kind=”Function” from=”Func”/>

<Employ refer=”filter” kind=”Function” from=”Func”/>

you have to generate the following Haskell translation, which only includes the named

functions in the current namespace:

import Higher.Func (map, filter)

In an object-oriented language like Java, the translation of a PKG Import declaration

affects more than one generated class file. For example, importing the whole Core

library package:

<Import model=”OOP” package=”Core” location=”lib.core”/>

must always be translated as:

import lib.core.*;

at the head of every generated Java file in the home package. To get the effect of

PKG Consult with limited Employ directives:

<!-- Dependency expressed at package level -->

<Consult model=”OOP” package=”Core” location=”lib.core”/>

<!-- Dependency expressed later in some class -->

<Employ refer=”Object” kind=”Class” from=”Core”/>

<Employ refer=”String” kind=”Class” from=”Core”/>

you have to fold these declarations into selective import statements at the head of

every dependent class or interface:

import lib.core.Object;

import lib.core.String;

It may also be possible to support kinds of dependency that do not import the named

declarations into the home package’s namespace (see below).

4.5 Mapping Namespace Declarations

A namespace is simply a way of distinguishing two code entities whose simple names

might otherwise clash. Even a simple flat namespace model allows every code entity

to be referenced by a qualified binary naming scheme: prefix:name if ever the need to

disambiguate a simple name arises. ReMoDeL packages offer the possibility of

generating a flat namespace from the package name, or a hierarchical namespace from

the package location. Different target languages may support flat namespaces,

ReMoDeL: PKG Specification, 2 November 2011 18

hierarchical namespaces or even no namespaces at all. The following illustrates how

to handle the translation of namespaces in each of these situations.

For example, in a Java translation, the ReMoDeL package location is used as a

hierarchical namespace for the generated class. Given the package declaration:

<Package model=”OOP” name=”Finance” location=”example.finance”>

 <!-- contents omitted -->

</Package>

every generated class in that package should then be placed in this Java namespace,

using a package declaration at the head of each class file, whose hierarchical structure

mimics the directory location of the file:

package example.finance;

Client Java code in any other namespace than this will typically have to import

declarations from this namespace, before it may use these classes. Some other target

languages in this family include Haskell and C#.

By contrast, the usual idiom in C++ is to use a flat namespace, which is unrelated to

the location of the code. For this, the ReMoDeL package name is used to define a

C++ namespace:

namespace Finance {

 // Other C++ definitions placed in here

}

Client C++ code in any other namespace than this will need using declarations to

identify the classes from this namespace:

using Finance::Account;

using Finance::SavingsAccount;

Note that this can be completely independent of the file dependency issue. In C++,

whereas every file dependency (on home or foreign declarations) must be recorded

explicitly (see above), using declarations need only be generated for foreign

declarations that live in a different namespace.

Finally, a few target languages do not yet support namespaces, in which case

translations have to simulate namespaces using special naming conventions. One

example is the Eiffel language, which supports packaged software clusters, yet these

all exist in a single default namespace. This proved to be an issue when porting Eiffel

to the .NET environment. The chosen solution was to lengthen all identifiers,

qualifying all names with an additional prefix, corresponding to the flat namespace

name. In Eiffel, the above classes would simply be defined as:

class FINANCE_ACCOUNT ...

class FINANCE_SAVINGS_ACCOUNT...

Thereafter, they would be used as usual in the target language. The only issue for

translators in this context is to maintain a map from simple to qualified names.

ReMoDeL: PKG Specification, 2 November 2011 19

4.6 Mapping Qualified Package Access

While the usual approach to translation expects target languages to import, or

selectively import elements from foreign packages into the home package, ReMoDeL

also supports the possibility of referring to elements by their fully qualified package

names. This can be for two reasons:

 because it is desired not to import the element into the current namespace,

which would seemingly pollute the namespace;

 because it is desired to refer unambiguously to elements that have clashing

simple names, but come from different namespaces.

In this case, the foreign package must always be consulted in ReMoDeL. This has the

effect of making the declarations in that package available, should the current

translation need to refer to elements within it. For example, the Consult declaration:

<Consult model=”OOP” package=”Core” location=”lib.core”/>

has the effect of making the elements in this library package available. The normal

approach thereafter is to use Employ directives; but if this is not done, the types and

variables in the package may still be referred to using fully qualified names in XML.

For this, the package name is used as a simple flat namespace prefix, which maps to

the full hierarchical namespace, in a style appropriate to each target language:

 Core:Object maps to lib.core.Object

 Core:String maps to lib.core.String

 Finance:Account maps to example.finance.Account

 Finance:Asset maps to example.finance.Asset

 Func:map maps to Higher.Func.map

 Func:filter maps to Higher.Func.filter

 List:head maps to Lib.Util.List.head

 List:tail maps to Lib.Util.List.tail

The notion is that simply prefixed names would be translated to the equivalent fully

qualified names in the target language, wherever they are encountered. This kind of

qualification may be used wherever a simple property name or classifier name was

otherwise expected, for example:

<Variable name=”account” type=”Finance:CurrentAccount”/>

This shows how to disambiguate which CurrentAccount class is denoted in a context

where the Finance package has been consulted, along with another package that also

defines another CurrentAccount. In Java, this would be translated into:

ReMoDeL: PKG Specification, 2 November 2011 20

example.finance.CurrentAccount account;

In other words, the fully qualified name would be used in all cases. In this way, it is

possible to refer unambiguously to the CurrentAccount type from either package

without confusion.

The same approach generalises to other constructions using qualified variable names

or qualified function names. For example, the following assumes that the FUN

package lib.util.list has been consulted, but names have not been imported:

<Apply function=”List:head” type=”Integer”>

 <Identifier name=”list” type=”List:List[Integer]”/>

</Apply>

In Haskell, this would be translated into a special qualified import statement:

import qualified Lib.Util.List as List

and then the code translation would use List.head, List.List as the locally qualified

names for the head function and List record type. The Variable, Identifier and Apply

elements used in these examples are documented elsewhere [2].

Of course, processing namespaces in the body of a ReMoDeL model puts a greater

burden on the model transformation tools, which need to be sensitive to XML prefixes

wherever they encounter any kind of type name, variable name or function name.

This may require more sophisticated multiple passes through the model, if special

qualified forms of import statement are required, as in Haskell.

5 References

[1] World Wide Web Consortium (W3C), Extensible Markup Language (XML)

1.0, 5
th

 edition, eds. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F.

Yergeau, 26 November, 2008. http://www.w3.org/TR/2008/REC-xml-20081126/

[2] A. J. H. Simons, ReMoDeL Functional Programming Model Specification,

Technical Report, Department of Computer Science, University of Sheffield, 2011.

http://www.w3.org/TR/2008/REC-xml-20081126/

