
Control-Flow Semantics of Use Cases page 1

Control-Flow Semantics of Use Cases in UML
K.G. van den Berg

Department of Computer Science – University of Twente
P.O. Box 217 – 7500 AE Enschede - the Netherlands

Tel: (+31) 53 489 3783 fax: (+31) 53 489 3247 email: vdberg@cs.utwente.nl
A.J.H. Simons

Department of Computer Science – University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, S1 4DP United Kingdom

Tel: (+44) 114 22 21838 fax: (+44) 114 27 80972 email: a.simons@dcs.shef.ac.uk

Abstract 1

The control-flow for five kinds of use cases is analysed: for common use cases, variant use

cases, component use cases, specialised use cases and for ordered use cases. The control-flow

semantics of use cases – and of the uses-relation, the extends-relation and the precedes-

relation between use cases - is described in terms of flowgraphs. Sequence diagrams of use

cases are refined to capture the control-flow adequately. Guidelines are given for use case de-

scriptions to attain a well-defined flow of control.

Keywords: requirements elicitation, use case modelling, UML, control-flow semantics

1. Introduction

Use cases, as introduced by Jacobson [1], are frequently utilised in the requirements elicita-

tion phase of software development. They are also part of the Unified Modeling Language

UML [2]. The role of use cases in software reuse is discussed by Jacobson [3]. There is a

strong debate about the use of use cases [4],[5]. One of the critical points relates to the se-

mantics of use cases.

The control-flow semantics of use cases – and of the relationships between use cases - is not

very well defined [6],[7]. There are approaches to formalising use cases [8],[9], but these do

not address control flow of use case relations. In this paper, the control-flow semantics of use

cases is described in terms of the well-established theory of control-flow graphs (Fenton &

Whitty [10]). Based on this treatment, some enhancements are proposed to use case modeling

in UML and guidelines are given for the use of relations between use cases.

1
 This paper has been published in Information and Software Technology. © 1999 Elsevier Science B.V.

Received 10 July 1998; received in revised form 15 March 1999; accepted 17 March 1999.

Control-Flow Semantics of Use Cases page 2

First, use case terminology is discussed and control-flow graphs are introduced briefly. Sub-

sequently the mapping of use case diagrams and their relations onto control-flow graphs is

described. Then the flow of control in sequence diagrams with branching is discussed. In the

conclusion, guidelines are given for the descriptions of use cases with extends-relations and

uses-relations based on the given semantics.

1.1. Use Cases

A use case class (or briefly a use case) is a specification of actions, including variants, which

a system (or other entity) can perform, interacting with an actor of the system. A use case is a

specific way of using the system by performing some part of the functionality. A use case in-

stance (also called a scenario) is a specific sequence of actions as specified in a use case car-

ried out under certain conditions. A use case model or diagram contains a collection of related

use cases [1],[2].

We distinguish the following five kinds of use cases. Each of them gives the intended use of

the use case and the relationship. We relate this with the terminology on use cases and their

relationships as being described for Objectory2 by Jacobson [1], for SOMA3 by Graham [11],

in the OPEN4 Modelling Language (OML) reference manual by Firesmith [12], and the Uni-

fied Modelling Language (UML 1.1) semantics document [2].

1. Common use cases. Common parts of use cases are factored out so that these can be

(re)used by other use cases without repeating the description. This type of use cases can

be found in Jacobson (uses-relation), Firesmith (invokes-relation) and in UML (uses-

relation).

2. Variant use cases. In variant use cases, alternatives to the normal use case behaviour are

captured. They are also used for exceptions. This type of use cases can be found in Jacob-

son (extends-relation), Graham (usage-relation) and in UML (extends-relation).

3. Component uses cases. In component use cases, parts of use cases are further refined

leading to a hierarchical decomposition of use cases. This type of use cases can be found

in Graham (composition-relation), Firesmith (invokes-relation), and in UML (refines-

relation).

2
 Objectory: Object Factory for Software Development

3
 SOMA: Semantic Object Modelling Approach

4
 OPEN: Object-oriented Process, Environment and Notation

Control-Flow Semantics of Use Cases page 3

4. Specialised use cases. Use cases may classified in more specialised versions. This type of

use cases is found in Graham (specialisation-relation).

5. Ordered use cases. Ordered use cases deal with situations where the completion of one

use case is required before the following use case can be executed. This type of use cases

is found in Firesmith (precedes-relation).

In OML [12], the invokes-relationship is applied -in examples- to both common use cases and

component use cases. Deviant is the description of Graham [11] of the usage-relation between

use cases (in his terminology scripts) and side-scripts. The side-scripts handle exceptions that

require a redirection of the flow of control. A similar description is found in Jacobson [1] and

UML [2] for the extends-relation. The subscripts - which handle specialised cases – aim at a

specialisation hierarchy as with inheritance.

In this paper, we focus on the control-flow semantics of these five types of relationships be-

tween use cases, and in this context we discuss the uses-relation and the extend-relation as

defined in UML 1.1 5. We now introduce control-flow graphs.

1.2. Control-flow graphs

A control-flow graph [10] (in short flowgraph) is a directed graph. The nodes in the graph

represent actions (activity, method execution) and the arcs indicate the flow of control from

one action to another. A flowgraph has two special nodes: the start node and the stop node.

The stop node has no outgoing arcs and every node in a flowgraph lies on some path from the

start node to the stop node (the one-entry one-exit property). A node with one outgoing arc is

called an action node. A node with two or more outgoing arcs is called a branch node.

Elementary flowgraphs (primes) are the following: selection with IF(c,A), IF(c,A,B),

CASE(c,A,B,…) and iteration with WHILE(c,A) and REPEAT(A,c), with condition c.

The sequence-operation of two flowgraphs A and B, denoted by A;B, is obtained by joining

the stop node of A with the start node of B.

The nesting-operation of flowgraph B onto action node x in A, denoted by A(B on x), is ob-

tained by replacing the outgoing arc of x in A by B. Often, the node x is not specified and

nesting is denoted by A(B).

Flowgraphs that can be fully decomposed with sequencing and nesting into elementary flow-

graphs are called structured flowgraphs. A large number of metrics has been defined to cap-

Control-Flow Semantics of Use Cases page 4

ture properties of flowgraphs, such as complexity, depth of nesting and testability (Fenton &

Pfleeger [13]).

Next, we discuss the control-flow semantics of use cases and each of the relationships be-

tween use cases in terms of control-flow graphs. From now on we use – as far as possible -

the UML-notation and terminology for the description of uses cases and their relations.

2. Control-flow in use cases

In a use case instance, some path – i.e. a contiguous sequence of interactions [12] - in the use

case is taken. An actor requires some functionality of the system; this request provides the

entry point of the use case. By performing a sequence of related actions this functionality is

supplied by the system, either in a normal course of actions, in some variant course of actions,

or by handling exceptions. After this, the exit point of the use case is reached.

The flow of control within each use case can be derived from interaction diagrams, i.e. the

sequence diagram or the corresponding collaboration diagram. In order to clarify the control-

flow, these diagrams are mapped onto flowgraphs. A message m() sent to object Y is repre-

sented by action Y.m(). The sequence of messages is represented by the arcs between the ac-

tions in the flowgraphs. The entry point of the use case is mapped onto the start node of the

flowgraph and the exit point onto the stop node.

2.1. Control-flow with common use cases

Common parts of use cases can be factored out so that these can be (re)used by other use

cases without repeating the description. A use case may then depend on other (subordinate)

use cases, i.e. the uses-relation between use cases. The resultant use case is obtained by plac-

ing the subordinate use cases at the appropriate place in the (superordinate) use case, i.e. the

extension point [1] where the subordinate use case is called. "An extension point is a location

at which the use case can be extended with additional behaviour". In the flowgraph, this is

represented by nesting the subflowgraphs onto the (superordinate) flowgraph (see Table 1).

Here, use case B uses one other use case D. The location of nesting is given by extension

points d in B, i.e. D is called/invoked in d. As with flowgraphs, the control-flow for use cases

with subordinate use cases can be obtained by nesting the sequence diagram of the used use

case onto the sequence diagram of the using use case.

5
 The forthcoming versions of UML (1.2 and 1.3) will provide modified definitions of the relations between use

cases (see the Appendix)

Control-Flow Semantics of Use Cases page 5

use cases relation UML-notation flowgraph
uses

B(D on d)

extension point d in B

Table 1. Mapping of common use cases onto flowgraphs

2.2. Control-flow with variant use cases

In variant use cases, alternatives to the normal use case behaviour are captured. They are also

used for special cases and exceptions. A use case may then be extended with other use cases,

i.e. the extends-relation between use cases. The extensions are subject to conditions. The ac-

tual flow of control in the instantiated use case is determined at ’run-time’.

We follow the description by Jacobson [1] (p 165): ‘What happens when a course is inserted

in this way is as follows. The original use case runs as usual up to the point where the new

case is to be inserted. At this point, the new course is inserted. After the extension has fin-

ished, the original course continues as if nothing had happened. …. The use case is not in-

serted only when the condition is true, but instead always takes place. Actually, the condition

is always checked. If it is true, the whole course with extension is initiated; otherwise the

original course continues directly.’

The mapping onto flowgraphs is given in Table 2. This example is given for one extension

only, i.e. use case B extends use case A at the extension point x and on the condition c. The

extension point x is part of an if-then construct in A. The extension is mapped onto the flow-

graph with a nesting of the flowgraph B onto A in x. The actual flow of control is determined

by the value of c. If the extend condition c is fulfilled then use case B is executed. In the ex-

tended use case A, the extension point x can be just a dummy action node.

B

D

<<uses>> on d

..............extension point d............

entry point

exit point

Control-Flow Semantics of Use Cases page 6

use cases relation UML-notation flowgraph
extends

A(B on x))

in A:
if c then x

extension condition c
extension point x

extends

A(B on x)

in A:
if c then x else D

extension condition c
extension point x

Table 2. Mapping of variant use cases onto flowgraphs

From this it can be seen that a uses-relation is semantically equivalent to an extends-relation

(with if-then) for which the condition is always satisfied.

Another semantics is provided with an if-then-else construct in the extended case A. If the

extend condition is not fulfilled the normal course is followed and action (or use case) D is

executed, followed by the rest of the course in A. If the condition is fulfilled the extending

use case B is executed instead of D, and then the rest of the course in A is taken. Now, the

extending use case can be seen as an alternative to the normal course in use case D. This ex-

tends-relation can be seen as an ’extends-with-alternative’.

As with flowgraphs, the control-flow for use cases with extensions can be obtained by nesting

the sequence diagram of the extension use case onto the sequence diagram of the extended use

case.

2.3. Control-flow with component uses cases

In component use cases, parts of use cases are further refined leading to a hierarchical decom-

position of use cases. For each part it must be specified at which point in the superordinate

A

B

<<extends>> c, x

extension point x

use case D

condition c............

A

B

<<extends>> c, x

extension point
x

condition
c

.........

Control-Flow Semantics of Use Cases page 7

use case the subordinate use case has to be inserted. This is exactly the same situation as de-

scribed for the uses-relation for common use cases. The mapping onto flowgraphs is given in

the section on common use cases.

2.4. Control-flow with specialised use cases

Use cases can be classified in more specialised versions. The specialised use case – the sub

use case - only contains the additional behaviour for the specialisation and inherits the other

behaviour of the unspecialised use case – the super use case. It has to be specified on which

condition the specialised use case should be taken and at which point the behaviour from the

sub use case has to be inserted in the super use case. This is exactly the same situation as de-

scribed for the extends-relation with variant use cases. The mapping onto flowgraphs is given

in the section on variant use cases.

2.5. Control-flow with ordered use cases

Ordered use cases deal with situations where the completion of one use case is required before

the following use case can be executed [12]. A (client) use case may then precede another

(server) use case, i.e. the first use case must be completed first before the second use can be

executed (see Table 3). We use the (not predefined) UML-stereotyped association <<pre-

cedes>> for this relation (or in tables and figures briefly <<p>>).

Precedes is a here defined as a stereotyped association between use cases. It specifies that the

content of the preceded use case is added to the related use case. When an instance of the re-

lated use case has completed its sequence of actions, the sequence continues with the se-

quence of actions of the preceded use case. The mapping onto a control-flow graph is a se-

quencing of control-flow of the use cases.

If a selection has to be made between two component use cases, this selection should be in-

corporated into the superordinate use case. This maps onto an IF-THEN-ELSE flowgraph.

If iteration has to be performed on a component use case, this iteration should be incorporated

into the superordinate use case. This maps onto a WHILE flowgraph.

A use case may be followed by two use cases in a precedence relation (a fork) or a use case

may be preceded by two use cases in a precedence relation (a join) (see the precedence rhom-

bus in Table 3). In this example A precedes B and A precedes C (a fork); furthermore B pre-

cedes D and C precedes D (a join). There is no precedence relation between use case B and C

so that these use cases may be carried out in any order or even in parallel.

Control-Flow Semantics of Use Cases page 8

use cases relation UML-notation flowgraph
preceding

A; B

selection
D = …IF(c, A, B)…

condition c

A, B are components
of superordinate D

iteration
D = …WHILE(c,A)…

condition c

A is component of
superordinate D

precedence
rhombus general:

A ; (B || C) ; D

instances:
A ; B ; C ; D
A ; C ; B ; D
…..

Table 3. Mapping of ordered use cases onto flowgraphs

However, parallel execution of flowgraphs is not covered in flowgraph theory [13]. To handle

the parallelism of the precedence rhombus in the use case model, the rhombus has to be trans-

formed to sequential control-flow graphs. Possible instances with sequencing are given in the

table. Any of the use cases may be empty (dummy use cases): e.g., if A is empty then this

dummy use case provides the (empty) start node of the use case flowgraph; if D is empty then

it provides the stop node of the flowgraph.

use case B

use case A

condition c............

D

use case A

condition c..............

D

A B

<<precedes>>

B

A

C

D

<<p>> <<p>>

<<p>> <<p>>

Control-Flow Semantics of Use Cases page 9

In the requirements elicitation phase, a fork-precedence relation between use cases may be

quite natural to model parallel use cases. However, the precedence rhombus can easily be

confused with a selection between alternative use cases.

3. Interleaving of use cases with uses-relationship

In Jacobson [1] and UML [2], it is described that a use case may have several uses-

relationships with other use cases. The resulting sequence in the instantiated use case will be

obtained by interleaving the used sequences.

Figure 1. Multiple uses-relation between use cases

An example is given in Figure 1. Use case A has 4 subordinate use cases, each indicated with

a (numeric) label. These components are A[1], A[7], A[3] and A[12]. The components lie on

a path (a possible sequence) in use case A. Use case B has 3 components, and use case C has

5 components. Use case C is the using use case, and use cases A and B are the used use cases.

The uses-relation between use cases is expressed by a list of tuples, in which the first compo-

nent refers to the used label and the second component to the using label. A label refers to a

one-entry one-exit use case component. All labels are assumed to be unique. The use case of

the used label is placed onto the use case of the using label. If there is more than one path in a

use case then the uses-relation should be defined for each path separately. We assume that

interleaving has the following properties:

1. The resultant use case does not depend on the order in which the use cases are being used.

C[9,10,4,11,6]

A[1,7,3,12] B[2,8,5]

[7 on 9, 3 on 11]

<<uses>>

[2 on 4, 5 on 6]

<<uses>>

Control-Flow Semantics of Use Cases page 10

2. The uses-relation between use cases preserves the order of the use cases involved, i.e. the

order of components in the resulting use case corresponds to the order of the components

in the using use cases and the used use cases.

There are two conditions to be satisfied to obtain this order preserving interleaving of use

cases:

1. The used labels in the uses-relation must lie on a path in the used use case; in other words

they are a subsequence of the labels in the used case.

2. The using labels in the uses-relation must lie on a path in the using use case; in other

words they are a subsequence of the labels in the using case.

Furthermore, the using labels in the uses-relations must be unique, i.e. no using use case can

use another use case more than once.

The subsequence-condition can be shown in the expanded view on the uses-relation as given

in Figure 2. In the view this condition means that uses-lines between using use case and used

use cases should not cross. The resulting use case consists of A[7], C[10], B[2], A[3], B[5].

The two conditions are fulfilled and the order of components of all use cases involved is pre-

served.

Figure 2. Expanded view on multiple uses-relation between use cases from Figure 1

4. Control-flow in sequence diagrams

The flow of control in use cases can be displayed in interaction diagrams, especially the se-

quence diagrams. However, with branching the flow of control is not always obvious. We

model branching through objects with auxiliary lifelines. Once the condition is not anymore

C[9] C[10] C[4] C[11] C[6]

A[1] A[7]

[7 on 9]

<<uses>>

A[3]

[3 on 11]

<<uses>>

A[12] B[2]

[2 on 4]

<<uses>>

B[8] B[5]

[5 on 6]

<<uses>>

<<p>> <<p>> <<p>> <<p>>

<<p>> <<p>> <<p>> <<p>> <<p>>

Control-Flow Semantics of Use Cases page 11

determinative, the auxiliary lifeline is joined with the main lifeline. The values of the condi-

tions are displayed at each branching point. The flow of control can be read quite easily now

from the sequence diagrams as shown in Figure 3 and Figure 4.

Figure 3. Branching in a sequence diagram with auxiliary lifeline

In Figure 3 the value of condition c is established. If c is true then message n1 is sent to object

x followed by sending n2, otherwise message n3 is sent to x followed by n4. In order to visu-

alise these branches, object x’ is introduced. This object x’ is the same as object x, however

with an own auxiliary lifeline. After sending n2 the flow of control is going back to the main

lifeline of the object x. At sending n3 to object x, on the lifeline of x, there is an (implicit) as-

sumption that condition c is false. We can map this sequence diagram onto flowgraphs. The

corresponding flowgraph in this case is: x.c(); IF(c,(x.n1(); x.n2()), (x.n3(); x.n4)).

Now, there are three types of arrows being used in sequence diagrams: with a message sent to

the target object, a return value to the target object, and – as introduced above – solely the

transfer of control to the target object (which is also implicit with the other arrows). Each of

the arrows may have additionally a guard showing the condition on the flow of control. It is

recommended to indicate the type of arrow being used in the diagrams (by adding the mes-

sage name, return or join/merge/transfer respectively).

Also other objects may be involved in branching. In Figure 4, again the value of condition c is

established. If c is true then message m1 is sent to object y otherwise message m2 is sent to y.

x : ClassX x’ : ClassX

c()

[c = true] n1()

n4()

n2()

join lifelines

n3()

begin of branching on
condition c
with two lifelines of x

[c = false]

end of
branching on
condition c

entry

exit

Control-Flow Semantics of Use Cases page 12

In order to visualise these branches, object y’ is introduced with an auxiliary lifeline. After

sending m2 and m4 the flow of control is going back from the auxiliary lifeline to the main

lifeline of object y. The corresponding flowgraph for this sequence diagram is: x.c(); IF(c,

(y.m1(); y.m3()), (y.m2(); y.m4())). In this example, the flow of control ends at object y,

which provides the exit point of the (partial) sequence diagram.

Figure 4. Branching in a sequence diagram to other object with auxiliary lifeline

4.1. Extension points in sequence diagrams

In the use cases presented in the previous sections there are extension points for relations with

other use cases. Usually, an extension point has to be added to a use case once the need for a

relation with another use case becomes apparent. An extension point z in a sequence diagram

may be modelled by some message sent to a (dummy) object z. If there is a condition on the

relation then this will be indicated on the branches. It must be clear which part of the use case

is involved in the extension as part of the branching. An example is given in Figure 5. The

original use case just contains one message m sent to object x, being the ’normal’ course in the

use case (part a of the figure). The extension of this use case in z is subject to condition c. The

use case can be adapted for the extension with the branching IF c THEN z ELSE x.m() END

(part b of the figure). The sequence diagram of the extending use case can be inserted on the

extension point z (part c of the figure). In terms of flowgraphs, this is a nesting of the flow-

graph of the extending use case onto the flowgraph of the original use case.

x : ClassX y : ClassY y’ : ClassY

c()

[c = true] m1()
begin of branching
on condition c
control transferred
to object y
with two lifelines

[c = false] m2()

m3()

m4()

join lifelines
end of branching
on condition c

entry

exit

Control-Flow Semantics of Use Cases page 13

Figure 5. A sequence diagram with a conditional extension point

The flow of control in use cases may also be described with UML-activity diagrams [2],[14].

The semantics of activity diagrams can be described in terms of control-flow graphs in a

similar way as shown above for sequence diagrams. The rules for nesting and sequencing ac-

tivity diagrams are the same as for control-flow graphs. An example activity diagram is given

in Figure 6 for the sequence diagram in Figure 4.

Figure 6. Activity diagram corresponding to sequence diagram in Figure 4

x : ClassX z :

[c = true]

[c = false]

m()

entry

exit

x : ClassX

m()

entry

exit

x : ClassX

[c = true]

[c = false]

m()

entry

entry

entry

exit

extending
use case

part a part b part c

exit

x.c()

test c

y.m1()

y.m3()

y.m2()

y.m4()

[c = false] [c = true]

Control-Flow Semantics of Use Cases page 14

5. Conclusion and Guidelines

The control-flow semantics of use cases can be described in the well-established model of

control-flow graphs. A prerequisite is that use cases have the one-entry one-exit property. If

not then one may obtain unstructured use cases with an ill-defined flow of control, as the use

of goto-statements in conventional programming may result in spaghetti-code.

The control-flow of the extends-relation and uses-relation between use cases has been de-

scribed in terms of nesting of flowgraphs; the precedes-relation is given as a sequencing of

flowgraphs. It is shown that the uses-relation is semantically equivalent with an unconditional

extends-relation. Parallel execution of use cases cannot be mapped onto standard flowgraphs.

use case relation control-flow semantics

• common

• component

uses behaviour is inserted unconditionally

• variant

• specialised

extends behaviour is inserted conditionally

• ordered precedes behaviour is appended unconditionally

Table 4. Five kinds of use cases with their control-flow semantics

In Table 4 a summary is given of the control-flow semantics for the five kinds of use cases

described in the first part of this paper. Both common use cases and component use cases

have the control-flow semantics of the uses-relation between use cases, whereas variant uses

cases and specialised use cases have the semantics of the extends-relation. Ordered use cases

have the control-flow semantics of a precedes-relation in which behaviour is of one use case

is sequenced (appended) to the behaviour of the preceding use case. Furthermore, we have

augmented the notation for branching in sequence diagrams with auxiliary lifelines to visual-

ise the flow of control.

With the mapping of use cases onto flowgraphs, the corresponding theory of flowgraphs can

be applied to the analysis of use case diagrams, among others with metrics for structuredness,

complexity and testability.

Use cases may be used for deriving tests for the resulting software. The mapping onto flow-

graphs allows the use of testability metrics for a number of test strategies: all-path testing,

Control-Flow Semantics of Use Cases page 15

visit-each loop path testing, simple path testing, branch testing and statement testing. For

structured flowgraphs the set can be derived from the component flowgraphs and the flow-

graphs onto which they are nested [13]. For the analysis of flowgraphs there are several tools

available, such as Prometrix and Qualms (for references, see Fenton & Pfleeger [13]). Metric

values can be obtained with these tools. These static analysers need a front-end in which a

flowgraph representation is derived, in this case from the sequence diagrams of use cases.

Without such analysers, we have to derive tests based on the flow of control in use cases di-

rectly from sequence diagrams, for example in the Rational Rose tool. Then, such a tool

should support conditional behaviour with branching or UML-defined activity diagrams.

From the analysis of use cases with flowgraphs given in this paper, seven guidelines are de-

rived, which - once followed - facilitate reasoning about the flow of control in use cases and

related sequence diagrams:

• Define for each use case and its sequence diagram both the entry point and the exit point.

These points are prerequisites for a well-defined flow of control in use cases with uses-

relationships and extends-relationships.

• Give for each used use case (in a uses-relation) the precise extension point in the using use

case.

• Provide for each extending use case (in an extends-relation) an explicit if-then(-else) con-

struct in the extended use case, together with the extension condition and the extension

point, and - if applicable - the component in the normal use case for which the extension is

an alternative.

• Do not use precedence-forks from use cases (a use case followed by more than one use

cases in a precedes-relation), unless explicit parallelism is required. If used then the re-

lated join use case should be provided.

• Provide an if-then-else construct in the superordinate use case for selection of alternative

component use cases, and a while construct for repetition of a component use case.

• Model branching in sequence diagrams with auxiliary objects with their own temporary

lifeline.

• Label arrows between objects in sequence diagrams with either a message, a return or a

join/merge.

Control-Flow Semantics of Use Cases page 16

Acknowledgement

This paper has been written during the first author’s sabbatical leave in the Department of

Computer Science at the University of Sheffield, where the authors had many discussions on

object-oriented modelling issues. The authors would like to thank Pim van den Broek for his

comments on earlier versions of this paper. The paper also improved through the comments of

the anonymous referees.

References

[1] Jacobson, I., Christerson, M. Jonsson, P. & Övergaard, G. (1992). Object-Oriented Software En-

gineering, A Use Case Driven Approach. Addison-Wesley, Wokingham

[2] Rational (1997). UML Summary, Semantics, Notation Guide, Version 1.1, Rational Software

Corporation

[3] Jacobson, I, Griss, M. & Jonsson, P. (1997). Software Reuse. Architecture, Process and Organi-

zation for Business Success. Addison Wesley Longman

[4] Berard, E.V. (1996). Be Careful With “Use Cases”. http://www.tao.com/pub/html/use_case.html

[5] Cockburn, A. & Fowler, M. (1998). Question Time! about Use Cases. OOPSLA’98. ACM Sig-

plan Notices 33(10) 226-229.

[6] Bergner, K., Raush, A. & Sihling, M. (1998). A Critical Look upon UML 1.0. In: Schader &

Korthaus (Eds.) (1998). The Unified Modeling Language. Physica-Verlag, 92-97.

[7] Övergaard, G. & Palmkvist, K. (1998). A Formal Approach to Use Cases and their Relationships.

Workshop <<UML>> '98. http://www.it.kth.se/~gunnaro/www/index.html

[8] Hsia, P.H., Samuel, J., Gao, J., Kung, D., Toyoshima, Y. & Chen, C. (1994). Formal Approach to

Scenario Analysis. IEEE Software 11(2), March 1994, pp. 33-41

[9] Regnell, B., Andersson, M. & Bergstrand, J. (1996). A Hierarchical Use Case Model with

Graphical Representation. Proceedings ECBS'96, IEEE International Symposium and Workshop

on Engineering of Computer-Based Systems.

[10] Fenton, N.E. & Whitty, R.W. (1986). Axiomatic approach to software metrication through pro-

gram decomposition, Computer Journal, vol. 29, no. 4, pp.329-339

[11] Graham, I. (1995). Migrating to Object Technology. Addison-Wesley, Wokingham

Control-Flow Semantics of Use Cases page 17

[12] Firesmith, D., Henderson-Sellers, B. & Graham, I. (1997). OPEN Modeling Language (OML)

Reference Manual. Sigs, New York

[13] Fenton, N.E. & Pfleeger, S.L. (1996), Software Metrics, A Rigorous & Practical Approach. 2nd

edition. Thomson, London

[14] Fowler, M. & Scott, K. (1997). UML Distilled. Applying the Standard Object Modeling Lan-

guage. Addison-Wesley, Reading.

[15] Booch, G. Rumbaugh, J. & Jacobson, I. (1999). The Unified Modeling Language User Guide.

Addison Wesley Longman

Appendix

In the emerging version of UML 1.2 and 1.3 some major changes are expected with respect to

use cases. Rational profoundly changed the description of the relations between Use Cases in

UML version 1.2 (and 1.3) as compared to version 1.1. The new description can be found in

Booch et al. [15], pp. 226/8. In UML version 1.1 (as described in this paper):

1. The <<extends>> relation between use cases was described as specialisation but was ac-

tually modelling variant behaviour

2. The generalisation relation was abused for both the <<uses>> and the <<extends>> rela-

tion between use cases

3. There was no (proper) specialisation relation between use cases

In the new UML version 1.2 / 1.3:

1. The old <<uses>> is now replaced by <<includes>>. It models common behaviour. It is

denoted by a dependency relation between use cases with the arrowhead pointing to the

included use case (compare the OML invokes)

2. The new <<extends>> is now used to model variant behaviour. It is denoted by a depend-

ency relation between use cases with the arrowhead pointing to the extended use case

3. There is a (proper) specialisation relation between use cases denoted by the generalisation

relation with the (open) arrowhead pointing to the general use case.

The new situation leads to Table 5 (the revision of Table 4 presented in this paper)

Control-Flow Semantics of Use Cases page 18

use case relation control-flow semantics

• common

• component

includes behaviour is inserted unconditionally

• variant extends behaviour is inserted conditionally

• specialised generalisation behaviour is replaced conditionally

• ordered precedes behaviour is appended unconditionally

Table 5. Five kinds of use cases with their control-flow semantics (from UML 1.2/1.3)

