
An Extensible Architecture for Run-time Monitoring of
Conversational Web Services

Konstantinos Bratanis
South East European

Research Centre
Research Centre of
the Univ. of Sheffield

and CITY College
Thessaloniki, Greece

kobratanis@seerc.org

Dimitris Dranidis
Department of

Computer Science
CITY College,

International Faculty of
the Univ. of Sheffield
Thessaloniki, Greece

dranidis@city.academic.gr

Anthony J.H. Simons
Department of

Computer Science
University of Sheffield

Regent Court
211 Portobello Street
Sheffield S1 4DP, UK

a.simons@dcs.shef.ac.uk

ABSTRACT
Trust in Web services will be greatly enhanced if these are
subject to run-time verification, even if they were previously
tested, since their context of execution is subject to contin-
uous change; and services may also be upgraded without
notifying their consumers in advance. Conversational Web
services introduce added complexity when it comes to run-
time verification, since they follow a conversation protocol
and they have a state bound to the session of each consumer
accessing them. Furthermore, conversational Web services
have different policies on how they maintain their state. Ac-
cess to states can be private or shared; and states may be
transient or persistent. These differences must be taken into
account when building a scalable architecture for run-time
verification through monitoring. This paper, building on a
previously proposed theoretical framework for run-time ver-
ification of conversational Web services, presents the design,
implementation and validation of a novel run-time monitor-
ing architecture for conversational services, which aims to
provide a holistic monitoring framework enabling the inte-
gration of different verification tools. The architecture is
validated by running a sequence of test scenarios, based on
a realistic example. The experimental results revealed that
the monitoring activities have a tolerable overhead on the
operation of a Web service.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Service-oriented architecture (SOA); D.2.4 [Software En-
gineering]: Software/Program Verification—Reliability ; D.2.5
[Software Engineering]: Testing and Debugging—Moni-
tors

General Terms
Theory, Design, Experimentation

Keywords
Run-time monitoring, conversational Web services, monitor-
ing architecture, validation

1. INTRODUCTION
Web services typically reveal their behaviour only as a collec-
tion of interfaces. This means that state-related behavioural
errors in Web service implementations are hard to detect, re-
lying on the skill of the service provider to validate all the
necessary protocols. When this is coupled with the likeli-
hood that the provider will frequently wish to update the
service and that the context in which the service executes
will also be subject to rapid change, these factors together
become a major source for errors, when a service is being
invoked as part of a service-based application (SBA). The
combination of rapid change and the lack of a behavioural
specification make it extremely likely that a Web service will
deviate from its expected behaviour at run-time.

Furthermore, the introduction of a defective Web service
within an SBA can have a devastating effect that puts the
sustainability of the SBA at risk. Hence, being able to verify
that the behaviour of Web services conforms to their adver-
tised specifications at run-time is considered critical.

A promising solution to the aforementioned issue is to con-
tinuously monitor a Web service for deviations during run-
time. Run-time monitoring could involve a formal verifica-
tion technique for ensuring conformance of the monitored
Web service. The monitors operating in parallel with the
monitored Web service, observe and record the messages ex-
changed between the service and a service consumer in order
to detect inconsistent behaviour. The intended behaviour of
the service needs to be included in the service specification
and expressed in a machine-readable form.

In [8], where we have presented a framework for run-time
verification for Web services, we have classified stateful ser-
vices into the non-conversational and conversational; the for-
mer accept all operations at all states, whereas the later
accept only a specific protocol. We would like to underline
that a conversational service may be implemented as a state-
less interface with stateful behaviour. For instance, a Web
service that exposes an API to access a travel reservation
system. Although, the Web service itself is stateless, the



reservation system maintains a state, and therefore the ser-
vice may accept only a specific sequence of invocations. We
further distinguished Web services w.r.t. their state modi-
fiability to private-state for services that their state is fully
determined by the sequence of previous invocations, and in
shared-state for which the state cannot be determined by the
previous service invocations. Lastly, we classified services
into transient-state for those services that their state is de-
stroyed after the completion of a session, and to persistent-
state for the ones that their state outlast the duration of the
session.

The focus of the paper is not on a particular monitoring
approach, but on the architecture that could be used for
integrating different monitoring approaches. Thus, in this
paper we present an implementation of a monitoring archi-
tecture for conversational Web services. The architecture
is built in a modular way and is vendor-agnostic, so that
different vendor instantiations can be supported. We distin-
guish services in several categories, depending on how the
session information is stored and handled. We validate the
monitoring architecture by performing monitoring on a pri-
vate and transient state service. Additionally we measure
the overhead of monitoring and test the architecture under
stress conditions.

The paper is structured as follows. Section 2 discusses about
the implementation of the monitoring architecture. Section
3 provides an overview of the modelling formalism. Section 4
presents the evaluation of the monitoring architecture based
on a realistic conversational Web service used as an example.
Some key findings are discussed in section 5 and this work is
contrasted with related work in section 6. In the conclusions
we summarise the main points of our work and provide an
outlook for future research.

2. IMPLEMENTATION OF THE MONITOR-
ING ARCHITECTURE

2.1 Extensible and Open Architecture
The necessity for an open monitoring framework which al-
lows joint monitoring approaches has been also underlined
in [5]. The authors support that there exists a wide range
of methodologies for monitoring Web services and service
orchestrations which are different in the aspects being mon-
itored and the model being utilised. However, most of them
manage to solve small fragments of different monitoring as-
pects and it is therefore necessary to combine the existing
approaches, in order to get the positive aspects of different
solutions and construct more complete monitoring solutions.

One of the primary objectives of the implemented monitor-
ing architecture was to provide a platform for integrating
different monitoring approaches for Web services. Although
in this paper we use the architecture for monitoring the pro-
tocol conformance of a conversational Web service, the ar-
chitecture facilitates the embedding for monitoring of other
aspects of a service as well, such as QoS properties (i.e. re-
sponse time), through plugging-in other monitors that may
be more suitable for verifying particular properties.

Towards the aforementioned direction, it is necessary to
classify the existing approaches for implementing a moni-

tor. Thus, during the design of the monitoring architecture,
we have identified two classes of monitors w.r.t their logical
separation:

i) Heavy-weight monitor: A single monitor supports the
monitoring of different aspects of a Web service. An
intercepted request/response message is used for anal-
ysis for different monitored aspects within the same
monitor, i.e. a monitor that is able to keep track of
the responsiveness, availability and conformance of the
conversational protocol of a service. Such a monitor
depends upon a single session for a monitored service.
However, this type is harder to implement, because it
incorporates more complexity. Furthermore, a failure
of the monitor implies inability to monitor any of the
monitored aspects.

ii) Light-weight monitor: A single monitor supports the
monitoring of one aspect of a Web service. Several
light-weight monitors can be used to monitor diversi-
fied aspects of a service, i.e. three different monitors
are required to monitor the same aforementioned prop-
erties. Although such monitors are not so complex to
implement, the intercepted request/response messages
need to be communicated to each monitor. Further-
more, every monitor has to preserve a session for the
monitored service. However, the failure of a monitor
has an impact only on the monitored aspect addressed
by this monitor, thus the rest of the monitors are not
affected.

Based on the aforementioned classification of the logical sep-
aration for monitor construction, we identify two solutions
to enable dynamically plug-in and unplug monitors:

i) A single service acting as a message gateway for for-
warding all requests/responses of the monitored ser-
vices to specific monitors, which can be added and
removed at run-time;

ii) A pool of different monitor services that are being at-
tached to the monitored services at run-time.

The first approach offers a standardised way for intercept-
ing messages. However, if a monitor needs more informa-
tion, additional interception is necessary. Therefore, the
message gateway service would have to be adjusted. Con-
cerning the second approach, although monitors operate in-
dependently, the lack of a common gateway for intercepting
request/response messages of the monitored services creates
a barrier, since it will be necessary to configure the intercept-
ing mechanism for each individual monitor. Hence, the first
approach is less intrusive, because of a standardised way for
intercepting, for reducing the necessary configuration over-
head for monitoring a service.

The first approach was employed for the implementation of
the monitoring architecture. The interception of request and
response messages, together with the session management,
logging and other joint functionality has been incorporated
into a platform, which supports the deployment of multi-
ple light-weight monitors that do not require to duplicate



Figure 1: The components of the monitoring archi-
tecture.

features, since these features are already provided by the
monitoring platform. Hence, the implementation of moni-
tors becomes simpler, since each monitor has to address only
the monitored aspect built for. This way only a simple inter-
action is associated with the monitored service, and thus fa-
cilitating less complexity regarding configuration overhead.

Another benefit of this approach is that a monitor can be
deployed or suspended without interrupting the operation
of the platform. However, it is necessary to bear in mind
that although a fault occurring in a monitor may not affect
other monitors, a fault occurring in the monitoring platform
implies failure of all monitors, since every monitor depends
upon the platform for its operation.

Figure 1 depicts the components of the architecture. Han-
dlers, discussed in the next section, are used to intercept
traffic from and to the Web services hosted in a Web ser-
vices container. One or separate handlers can be attached
to each Web service. The handler sends the intercepted
messages to the monitoring framework, deployed on an ap-
plication server, through the Message Gateway (MG). MG
is a Web service that receives and forwards the messages,
intercepted by handlers, to individual monitors, which are
responsible for different monitoring aspects.

2.2 Message Interception
An important aspect of the monitoring architecture is the
method used for intercepting the conversation, the exchanged
request/response messages, between a service provider and
a consumer. We consider three different approaches for mes-
sage interception:

• Handler-based Interception: a handler is attached to
the monitored service. The request/response messages
are forwarded first to the handler, thus a handler is
able to intercept them before reaching the monitored
service and the consumer respectively.

• Wrapper-Based Interception: the monitored service is
wrapped within another service. The resulting ser-

vice has the same interface as the monitored service,
and it delegates the messages to the monitored service.
Thus, it is able to intercept the request/response mes-
sages exchanged between the monitored service and
the consumer.

• Proxy-based Interception: an intermediate node acts
as a network proxy. The proxy is able to intercept the
request/response messages passing over the transport
protocol, before they reach their destination.

Since the presented monitoring architecture uses the Mes-
sage Gateway service for delegating intercepted messages to
monitors, it can support all the three approaches. Although
in the presented approaches the intercepted message is sim-
ply forwarded to the Message Gateway service, they have
significant differences that affect the intrusiveness and the
scalability of the monitoring architecture.

In wrapper-based interception, wrappers are independent of
the underlying technology, in which the monitored service
has been implemented, since they forward the request and
response to and from the service. Hence, a wrapper ap-
pears as a consumer to the monitored service. Proxy-based
interception is also independent of the technology, since it
operates on the transport protocol of the communication.
This is not the case however in handler-based interception,
because the handler exists in the same Web service stack
that exposes the monitored Web service. Thus, the han-
dler has to be implemented in the same technology as the
monitored service.

Another issue is the intrusiveness and transparency of the
three approaches to the monitored service. The use of a
wrapping service requires that all consumers change their
binding to use the wrapped services. This is not necessary
with a handler or a proxy, since both are transparent to the
consumer.

If handlers are used, the monitored service will have to be-
come unavailable during the deployment of a handler, be-
cause it would be necessary to change the configuration or
even to recompile the Web service, depending on the under-
lying technology, in order the required handlers to operate
properly. In contrast, the use of a wrapper or a proxy does
not require the monitored service to become unavailable, be-
cause the wrapper is similar to any other consumer accessing
the monitored service, and the proxy is transparent for the
monitored service.

We have selected to explore the handler-based interception
first, since handlers are widely supported by the available
Web service technologies, and therefore require less effort to
integrate with existing service-based applications. We recog-
nise the importance of the other two approaches, wrapper
and proxy based interception, which we plan to explore in
future work.

2.3 Handling of Monitoring Sessions
Monitoring a conversational Web service that is being ac-
cessed concurrently from multiple consumers, requires the
monitor to be able to determine for which session the re-
quest/response messages are processed. In order to address



this issue, session handling facilities were implement in the
monitoring framework.

For each conversation between the monitored service and a
consumer, a new monitoring session is created. Every mon-
itoring session is uniquely identified by a monitoring session
identifier (MSID). The MSID has to be supplied during the
interception and forward of a message to the Message Gate-
way service, in order for the monitoring framework to be
able to identify the monitoring session that the forwarded
message concerns.

2.4 Integration of JSXM Tool as a Monitor
We anticipate that the monitoring architecture presented in
this paper will be of general use to different kinds of stake-
holder involved in the provision and consumption of Web
services, including service providers, service consumers, and
service brokers, as an effective mean to monitor conversa-
tional services during their use. Therefore, the monitoring
architecture was designed to be pluggable, such that it sup-
ports multiple concurrent monitors, which concern different
monitoring aspects. Such an aspect is the behavioural con-
formance of the monitored service to its advertised specifi-
cation during run-time.

In [8], we proposed a verification approach to run-time ver-
ification of behavioural conformance of Web services, which
relies on the publication of a behavioural model for the Web
service, based on the Stream X-Machines (SXM) [9] formal-
ism described in the next section. The approach can be
summarised as follows. A monitor simulates the SXM in
parallel with the live service. The SXM model is animated
with the use of the actual requests arriving at a Web service
as inputs. Consequently, the expected responses are pro-
duced, which are then compared with the actual responses
generated from the Web service.

The JSXM Tool [6] was integrated as a monitor in the im-
plementation of the monitoring architecture. JSXM is a
model-based testing tool implemented in Java, which is able
to perform model animation, test generation and test trans-
formation using an SXM model specified in an XML file.
A portion of the functionality offered by JSXM is exposed
through an API, in order to support animation of SXM mod-
els.

The intercepted request/response messages pass through a
series of transformations, in order to feed the JSXM anima-
tor. The inputs are passed to the JSXM, which animates
the SXM model and generates the outputs for the the given
inputs. The inputs generated as a result of the model an-
imation are compared with the transformed response mes-
sages of the monitored service. If the outputs match, the
monitored service conforms to the SXM model, otherwise a
deviation is detected.

In the aforementioned procedure, the JSXM tool serves as
an oracle for forecasting the expected output of the moni-
tored service. Mismatches are recorded in the monitoring
log. Similarly, other verification tools could be incorporated
as monitors that concern other monitoring aspects.

3. MODELLING CONVERSATIONAL WEB
SERVICES AS SXMS

3.1 Stream X-machines
Stream X-Machines (SXMs) are special instances of the X-
Machines introduced in 1974 by Samuel Eilenberg [9]. SXMs
are a computational model capable of representing both the
data and the control of a system. Although they utilise a
diagrammatic approach of modelling control flow similar to
the finite state machines, SXMs are capable of modelling
non-trivial computation by embedding memory attached to
the state machine. In addition, processing functions are used
for representing transitions between states, instead of simple
input symbols. Processing functions consume input symbols
and read memory values, and generate output symbols while
updating memory values. The introduction of the memory
construct facilitates the reduction of the state explosion,
since the number of states is reduced to critical states for
the correct modelling of the system’s abstract control struc-
ture. Some of the complexity is encapsulated in the tran-
sition functions, which can be later decomposed to simpler
SXMs. This “divide-and-conquer” approach to design allows
a top-down construction of the model.

A (deterministic) SXM [11] is defined as the tuple
(Σ,Γ, Q,M,Φ, F, q0,m0) where:

• Σ and Γ are finite sets, called the input alphabet and
the output alphabet respectively;

• Q is the finite set of states;

• M is a (possibly) infinite set called memory ;

• Φ, which is called the type of the machine, is a finite
set of partial functions (called processing functions) φ
that map input-memory pairs to output-memory pairs,
φ : Σ×M → Γ×M ;

• F is the next state partial function that given a state
and a processing function from the type Φ, provides
the next state, F : Q× Φ→ Q;

• q0 and m0 are the initial state and initial memory re-
spectively.

The most significant advantage of SXMs is a testing method
[11], which allows the verification of the conformance of a
system’s implementation against its specification. Under the
test hypothesis that the system is made of fault-free com-
ponents and the satisfaction of some well defined design-for-
test conditions [11], it is ensured that the system behaviour
is functionally identical to that of the implementation, if
the application of a finite test set, which is generated by the
aforementioned method, produces the same results both in
the specification and the implementation.

For testing purposes the model is used both for test genera-
tion (producing the inputs to test against) and as an oracle
for providing the expected outputs. For the purpose of run-
time monitoring the model is only needed to be used as an
oracle, since the inputs are provided by the monitored sys-
tem.



Figure 2: The state-transition diagram (associated
automaton) of a SXM representing the TravelA-
gency service.

3.2 SXM Models for Web services
Conversational Web services can be easily modelled as SXMs,
since they both consume inputs and generate outputs, while
they modify their internal state.

The construction of a SXM model for a Web service requires
that SXM inputs and outputs are created from the SOAP
request and SOAP response messages of the service respec-
tively. The transition functions of a SXM are specified based
on the Web service operations. Although the transitions
are derived directly from the Web service operations, each
operation may map to one or more transitions (processing
functions) dealing with different branches of the computa-
tion that depend on state (and indirectly on inputs). For
more detailed explanation about modelling Web services as
SXMs refer to [7, 12].

4. VALIDATION
4.1 The Web Service example
During the implementation of the monitoring architecture,
several examples have been constructed for the evaluation of
the implemented architecture. In this paper we present the
TravelAgency, a service that offers functionality for booking
complete travel packages. The TravelAgency service is an
example of a private-transient state conversational service,
since it has been implemented in such a way that its local
state cannot be modified by an external component, and
its state is initialised at the beginning of each session and
destroyed upon completion.

The described service utilises transport-related session man-
agement techniques to manage concurrent consumers, by re-
lying on the underlying HTTP session in order to associate
the state information for each consumer accessing the ser-
vice. Thus, the travel package prepared by a consumer is
stored in the HTTP session. For convenience, we use di-
rectly the HTTP session token as the monitoring session
identifier (MSID). We would like to stress that the service
has been implemented in such a way in order to achieve
a conversational behaviour. In a real system, the Trave-
lAgency service will be a stateless interface which provides
access to the operations of a complete booking system.

Figure 2 illustrates the associated state transition diagram
of the SXM model for the TravelAgency service. The ser-
vice operates as follows: First, a travel package is created
that will store all the travelling preferences of the consumer.

Next, different travelling destinations can be fetched in or-
der to choose a preferred destination. After a destination
has been selected, the available airlines, hotels, and cars can
be fetched in order to customise the travel package. In order
to checkout, an airline and a hotel need to be selected. Op-
tionally the consumer can also select a car. At this stage, the
travel package can be cancelled, modified or booked. Book-
ing the travel package ends the interaction with the service.

Each processing function, presented in Figure 2, has been
specified in the complete SXM specification of the TravelA-
gency service, using the approach that has been presented
in [8]. The complete SXM specification is beyond the scope
of this paper and thus is not included.

4.2 Evaluation Setup
An evaluation of the monitoring architecture was performed
using the TravelAgency service. The aim of this experiment
was to evaluate scalability of the monitoring architecture
w.r.t performance.

The evaluation scenario involves many consumers accessing
the TravelAgency service concurrently. Multiple executions
were done with the monitor enabled and disabled, and with
an increasing number of concurrent consumers. The Trav-
elAgency and the consumers were hosted by different com-
puters located in the same local network, so that the mea-
surements would not be affected by long network delays.

Table 1 presents four interaction scenarios. Each scenario
contains different sequences of operation invocations for the
TravelAgency service, in order for it to be possible to observe
different behaviours. For instance, scenario 1 books a travel
package successfully, therefore it completes successfully the
interaction with the TravelAgency service, whereas scenario
4 fails to book a travel package, because it attempts to invoke
the book() operation, without first invoking the checkout()
operation.

Table 1: Interaction scenarios containing different
execution sequences.

Scenario Effect Execution

1 Booked Succeeds
2 Booked with car Succeeds
3 No hotel is selected Fails
4 No checkout is done Fails

The TravelAgency service has been implemented as a state-
less session Enterprise Java Bean (EJB), which has been
exposed as a Web service using JAX-WS annotations [3].
A handler has been attached to the service, in order to in-
tercept request/response message and then forward them to
the Message Gateway.

JBoss Application Server (JBoss AS) [2] was used for the
deployment of the involved components. JBoss AS embeds
a JAX-WS Web service stack with the use of JBoss WS.
The hardware configuration of the server machine, used for
hosting JBoss AS, was an Intel Core 2 Quad Q8400 with
4GB of ram at 1066MHz running openSUSE 11.2. Both the
TravelAgency service and the monitoring framework were



Figure 3: Average execution time per consumer
complete interaction for each test run.

deployed in the same JBoss AS, resulting in provider-based
monitoring scenario.

In order to produce more accurate and realistic results, we
used profiling techniques that utilise dynamic analysis of a
program, The Eclipse Test and Performance Tools Platform
(TPTP) [1] was used to perform execution time analysis and
thread analysis of the consumers accessing the service.

4.3 Experimental Results
A series of test runs was carried out, by instantiating multi-
ple consumers, which were accessing the TravelAgency ser-
vice concurrently. Before initiating a test run, a restart of
the JBoss AS was performed, in order to avoid the test run
execution being affected from previous trials. In addition,
each test run was performed three times and the average
measurement was considered, in order to produce more ac-
curate results.

Ten test runs were carried out during the experimentation
phase. In each test run the consumer population was grow-
ing linearly, in order to simulate increased traffic on the
TravelAgency service. The consumer population consisted
of all four consumer types. In the first test run only 10 con-
sumers were instantiated, while in every following test run
another 10 consumers were added, resulting in a total of 100
consumers at the final test run.

Instead of measuring the overhead that the monitoring in-
troduces in a single invocation of a service method, we de-
cided to measure the overhead at the interaction level, in or-
der to produce a more realistic evaluation for the impact of
the monitoring activities during the operation of the service.
Thus, for each test run two measurements were performed.
First, the time required for a consumer to complete the in-
teraction with the service was measured. Second, the total
time required for all consumers to complete their interaction
with the service was measured. Both measurements were ex-
ecuted once while the service was not being monitored, and
once with the service being monitored.

Figure 3 shows the recorded measurements concerning the
execution time required for a consumer to complete the in-
teraction with the TravelAgency service, with and without
the monitor. The execution time of each consumer linearly
increases as the consumer population increases.

Figure 4: Average total execution time for all con-
sumer complete interaction for each test run.

Figure 4 depicts the recorded measurements regarding the
execution time required for all consumers to complete their
interaction with the TravelAgency service, with and with-
out the monitor. The total execution time increases linearly
also. The comparison of Figure 4 to Figure 3 reveals that
even if all consumers begin their execution almost simul-
taneously, they also complete their execution at the same
time.

The measurements presented so far demonstrate that there
is a noticeable increase in the time required for concur-
rent consumers to complete their execution. Although the
overhead appears to be significant, it worth noticing that
the monitor achieves to handle all monitored services in a
timely fashion. The overhead was generated due to thread
synchronisation within the handlers used to intercept re-
quest/response messages. The thread synchronisation caused
the consumers threads to suspend at different points of the
execution.

4.4 Error Discovery
Within the scope of the experiment, we observed the abil-
ity of the monitor to detect errors. We evaluated the error
discovery ability of the JSXM monitor w.r.t. behavioural
conformance of the monitored service to its specification.

The first phase of the evaluation concerned consumers fol-
lowing a different interaction protocol (e.g. ClientBookNoCheck-
out), which was not supported by the specification of the
TravelAgency service. In the next phase, we used consumers
following the interaction protocol described in the specifica-
tion. However, we altered the implementation of the Trave-
lAgency service, so that it follows a different interaction pro-
tocol. For instance, allowing it to perform checkout without
having selected a hotel, which is different from the specifi-
cation that requires both an airline and a hotel to be chosen
before continuing to checkout. In both cases the monitor was
successful in detecting the errors in the interaction protocol.

Currently, the monitoring framework lacks the ability to de-
tect lost (dropped) SOAP request/response messages. The
lack of this knowledge may lead to false conclusions that a
service is behaving faulty. A more sophisticated diagnosis
approach based on the aggregated observations from differ-
ent monitors (e.g. timeout monitors) would produce joint
conclusions explaining the cause of the mismatch.



5. DISCUSSION
The monitoring architecture is designed to support effort-
less integration in a service-based application. The moni-
tor can be deployed on the same or a different application
server from the monitored services, and thus execute inde-
pendently. Additionally, the monitor is compatible with any
underlying technology that supports Web services, since it is
agnostic of the particular programming languages used for
implementing the actual service.

The three presented message interception approaches, handler-
based, wrapper-based, and proxy-based interception can be
used within the monitoring architecture, thus, the integra-
tion of the monitoring activity into SOA infrastructures ap-
pears easier. Also, the separation of the interception mecha-
nism from the monitors, allows the monitors to be hosted by
a third-party trusted by both the service provider and the
service consumer for verifying properties of Web services un-
der monitor.

At the current state, we have integrated a monitor (JSXM)
which concerns the monitoring of the functional aspect of
a conversational Web service. The integration of a mon-
itor that concerns the non-functional aspect could reveal
new requirements for the presented monitoring architecture.
Therefore We plan to investigate the integration of non-
functional monitors in further work.

The experimental results have indicated a linear increase in
execution time that depends on the number of concurrent
consumers. It is worth noticing that in a production envi-
ronment interaction is often driven by people, and therefore
it is not realistic that 100 users would complete a 5-turn
transaction in 12 seconds. Nevertheless, in order to improve
the efficiency of monitoring the monitors could execute asyn-
chronously from the monitored service. This solution which
would introduce concurrency and thread synchronisation is-
sues is going to be investigated in future work.

The implementation of long-running transactions requires
the use of persistent-state services, which are able to store
and restore the state of the consumer session, so that a con-
sumer can interrupt service usage and continue at a later
point in time. In order for the monitoring architecture to
support persistent-state services, it is necessary that the
state of each monitor for the monitored service is stored.
Furthermore, additional identification information is needed,
since the underlying transport session will expire, and thus
client identification will not be possible. In addition, main-
taining concurrent monitoring sessions for multiple persistent-
state services is resource intensive, and it is therefore neces-
sary to use caching techniques for the monitoring sessions, in
order to be able to suspend and resume a monitoring session.

The JSXM monitor needs to convert the actual request and
response messages to concrete inputs and outputs compat-
ible with the SXM specification. This means that the re-
quest/response messages need to pass a transformation, in
order to be lifted (abstracted) to a usable representation for
the JSXM monitor. We believe that the need for abstracting
or transforming request/response messages would concern
other types of monitors that could be implemented in the
future. Hence, information could be provided to the monitor

in order to perform the necessary transformations. These in-
formation could be either provided as a configuration in the
monitor, or published together with the Web service descrip-
tion using SAWSDL. Towards similar direction in [14], we
have presented an algorithm to convert inputs, outputs, pre-
conditions and effects (IOPE), published through SAWSDL,
for constructing a stateful EFSM specification of a service
for verification.

6. RELATED WORK
Significant effort has been directed toward the creation of
a viable monitoring framework for Web services. Differ-
ent methodologies have been developed, in order to pro-
vide monitoring facilities for the functional and the non-
functional aspects of Web services.

Li et al [13] proposed a framework for monitoring run-time
interaction behaviour of Web services. Validation of prede-
fined interaction constraints is performed using finite state
automata. Our work differs since we attempt to support
multiple monitoring techniques under a common framework.
Furthermore, the message interception that they employ is
bound to the particular server used for deploying Web ser-
vices. The presented monitoring architecture supports mes-
sage interception independent of the underlying infrastruc-
ture.

Zulkernine et al [17] proposed a framework for performance
monitoring of Web services, which is part of a greater mid-
dleware solution. They also use handlers to intercept mes-
sages and measure the responsiveness of a service. They
present an evaluation of the framework where they measure
the overhead of the monitor w.r.t. the response time of
the service. However, their evaluation is limited to 10 con-
current consumers only, and it appears that the overhead
introduced is significantly greater than in our approach in
some cases. The overhead reported in that work increases
at approximately twice the rate as in our approach.

Simmonds et al [15] proposed a more complete monitoring
framework for checking behavioural correctness of Web ser-
vice conversations. They use UML 2.0 Sequence Diagrams
as a property specification language, which are then trans-
formed to automata by multiple monitors that check the
validity of safety and liveness properties. They intercept
messages with the use of handlers. Although they have im-
plemented a similar approach to interception and handling
of messages, their proposal appears to be specific to the
used application server, since they utilise an event mecha-
nism provided by that server.

Alodib and Bordbar [4] proposed an approach for monitoring
by employing Workflow Graphs as the underlying specifica-
tion language, for generating monitors that are exposed as
Web services. However, they do not suggest a unified archi-
tecture of monitors, but rather a methodology for deriving
and using individual monitors. The experimental results re-
ported are similar to the results of our work.

Guinea et al [10] proposed a monitoring framework that in-
tegrates three different monitoring approaches. The frame-
work is able to report and monitor functional requirements
and quality of service constraints for BPEL processes. This



approach leverages data collection, including message inter-
ception. for monitoring. Although this work aligns with
our objectives w.r.t. the extensibility of the architecture, it
appears to be more applicable for orchestrator-based moni-
toring, since the approach requires internal inspection of the
monitored process.

Wetzstein et al [16] proposed an approach to event-based
monitoring of process metrics across participants in a chore-
ography. Their work is related to Business Activity Moni-
toring (BAM) within Service-Oriented Architectures (SOA).
The authors use a monitoring agreement written in XML to
specify what should be monitored. Our monitoring archi-
tecture is less intrusive, since it does not require any mod-
ification to the execution container as the one presented in
[16].

In contrast with the presented related work, the main con-
tribution of this paper is not the particular monitoring tool
(JSXM), but a monitoring architecture that can be used for
integrating different monitoring approaches or tools. We en-
vision the presented monitoring architecture as a platform
for deploying several monitoring tools, which monitor the
functional as well as the non-functional aspects of conversa-
tional Web services.

7. CONCLUSION
Monitoring conversational Web services involves a variety
of issues such as message interception, session management,
and concurrency. In order to support the integration of dif-
ferent monitoring approaches, it is important to create a
holistic monitoring architecture, which offers the common
facilities required for monitoring of Web services, such as
message interception and session handling.

This work presented an extensible architecture for run-time
monitoring of conversational Web services. The architecture
has been designed and implemented to facilitate integration
with the existing service-oriented architectures, and to al-
low the use of different monitoring approaches. The exper-
imental results revealed that the monitoring activities have
a tolerable overhead on the operation of a Web service.

As future work the efficiency of monitoring will be improved
by resolving concurrency issues. Moreover, we will expand
the monitoring framework to support persistent-state ser-
vices. The wrapper-based and proxy-based interception ap-
proaches will be implemented and evaluated. Finally, we
plan to investigate how the presented monitoring architec-
ture could be extended to a generic framework supporting
the integration of monitors for both non-functional and func-
tional aspects of conversational as well as non-conversational
Web services.

8. REFERENCES
[1] Eclipse test & performance tools platform project,

http://www.eclipse.org/tptp/.

[2] Jboss application server,
http://www.jboss.org/jbossas.

[3] JSR 224: JavaTM API for XML-Based web services
(JAX-WS) 2.0. Technical report, Java Community
Process, http://jcp.org/en/jsr/detail?id=224, 2009.

[4] M. Alodib and B. Bordbar. A Model-Based approach
to fault diagnosis in service oriented architectures. In
2009 Seventh IEEE European Conference on Web
Services, pages 129–138. IEEE, 2009.

[5] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti.
Dynamo + astro: An integrated approach for BPEL
monitoring. In Web Services, IEEE International
Conference on, volume 0, pages 230–237, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

[6] D. Dranidis. JSXM: A Suite of Tools for Model-Based
Automated Test Generation: User Manual. Technical
report, Technical Report WPCS01-09, CITY College,
2009, 2009.

[7] D. Dranidis, D. Kourtesis, and E. Ramollari. Formal
verification of web service behavioural conformance
through testing. Annals of Mathematics, Computing &
Teleinformatics, 1(5):36–43, 2007.

[8] D. Dranidis, E. Ramollari, and D. Kourtesis.
Run-time Verification of Behavioural Conformance for
Conversational Web Services. In 2009 Seventh IEEE
European Conference on Web Services, pages 139–147.
IEEE, 2009.

[9] S. Eilenberg. Automata, languages and machines.
Academic Press, New York, A, 1974.

[10] S. Guinea, L. Baresi, G. Spanoudakis, and O. Nano.
Comprehensive monitoring of BPEL processes. IEEE
Internet Computing, Nov. 2009.

[11] M. Holcombe and F. Ipate. Correct Systems: Building
Business Process Solutions. Springer Verlag, Berlin,
1998.

[12] D. Kourtesis, E. Ramollari, D. Dranidis, and
I. Paraskakis. Discovery and Selection of Certified
Web Services Through Registry-Based Testing and
Verification. IFIP International Federation for
Information Processing, Pervasive Collaborative
Networks. Springer, 2008.

[13] Z. Li, Y. Jin, and J. Han. A runtime monitoring and
validation framework for web service interactions. In
Proceedings of the Australian Software Engineering
Conference, pages 70–79. IEEE Computer Society,
2006.

[14] E. Ramollari, D. Kourtesis, D. Dranidis, and
A. Simons. Leveraging Semantic Web Service
Descriptions for Validation by Automated Functional
Testing. The Semantic Web: Research and
Applications, pages 593–607, 2009.

[15] J. Simmonds, Y. Gan, M. Chechik, S. Nejati,
B. O’Farrell, E. Litani, and J. Waterhouse. Runtime
monitoring of web service conversations. IEEE
Transactions on Services Computing, 99(1):223–244,
2009.

[16] B. Wetzstein, D. Karastoyanova, O. Kopp,
F. Leymann, and D. Zwink. Cross-organizational
process monitoring based on service choreographies. In
Proceedings of the 2010 ACM Symposium on Applied
Computing - SAC ’10, page 2485, Sierre, Switzerland,
2010.

[17] F. H. Zulkernine, P. Martin, and K. Wilson. A
middleware solution to monitoring composite web
Services-Based processes. In Proceedings of the 2008
IEEE Congress on Services Part II, pages 149–156.
IEEE Computer Society, 2008.


