
1

Reliable Web Service Publication and
Discovery through Model-Based Testing
and Verification

Ervin Ramollari1, Dimitris Dranidis2, Anthony J. H.
Simons3
1SEERC, 17 Mitropoleos Str, Thessaloniki, Greece, sname@seerc.org

2City College, Dept. of Computer Science, 13 Tsimiski Str, 54624 Thessaloniki, Greece,
dranidis@city.academic.gr

3The University of Sheffield, Dept. of Computer Science, Western Bank, Sheffield, S10
2TN, UK,a.simons@sheffield.ac.uk

Currently, the issues of trust and dependability on third-party Web services are
becoming key factors to the adoption of service oriented computing in industrial
environments. As a result, robust service testing and verification techniques are
highly important in order for consumers to build confidence on third-party Web
services. In this paper we propose modelling the behaviour of a Web service using
stream X-machines, in order to derive a complete test set and to perform model-
based testing. We apply these techniques in a novel publication and discovery
approach involving all three main actors in a SOA environment, i.e. the service
provider, the service broker, and the service consumer. The provider augments
the service interface description (WSDL) with a stream X-machine (SXM) model
reflecting the Web service behaviour. This model is both utilised by the broker
during publication to derive a test set and verify Web service behavioural
conformance, and by the consumer during discovery to perform service selection
based on model validation.

Keywords
model-based testing, SOA, stream X-machines, validation, Web services.

1. Introduction

Service Oriented Computing is a new computing paradigm that utilizes services as the
key abstraction to support the development of rapid, low-cost and easy composition of
distributed applications even in heterogeneous environments [1]. Services are loosely
coupled, reusable, and implementation-independent software modules with well-
defined interfaces. They can be described, published, discovered, and dynamically
assembled for developing massively distributed, interoperable, evolvable systems.

2

Services are made available by service providers within or outside the boundaries of an
enterprise, and invoked by service consumers.

Currently, the prevailing alternative to implement a Service-Oriented Architecture
(SOA) is the Web services framework, which is founded on widely accepted standards,
such as WSDL for the service interface description, SOAP for the communication
protocol, and UDDI for service discovery. Interaction between the three main parties
that are involved, that is, service consumers, service providers, and service brokers,
occurs as follows: service consumers discover Web services in a UDDI service registry
maintained by service brokers. They retrieve WSDL descriptions of Web services
offered by service providers, who previously published those WSDL descriptions in the
UDDI registry. After the WSDL has been retrieved, the service consumer binds to the
service providers by invoking the service through SOAP.

Given the increasing number of Web services that are being offered by third-party
providers, the issues of trust and dependability on Web services are becoming
increasingly important and considered as key factors to the adoption of service oriented
computing in industry. As a result, robust service testing, verification, and validation
techniques are crucial in order for consumers and integrators to build confidence on
third-party Web services. In other words, service consumers need to ensure that
advertised Web services are what they need, and that their implementations have been
verified. However, one major obstacle in achieving these goals is that the WSDL
standard lacks support for capturing the semantics relating to functional and non-
functional aspects of a service. Therefore, it is not possible to guarantee that a
discovered service advertisement matches a service request in all respects, and this may
lead to inappropriate bindings.

One of the important aspects that the WSDL specification lacks is Web service
behaviour, i.e. the definition of preconditions and effects of each Web service operation
as well as the implied sequencing of these operations. Behavioural specifications are
especially useful in cases of Web services assuming an interaction protocol (stateful
Web services) and Web services operating on persistent data. In this paper we propose
an approach which tries to fill this gap by introducing formal specifications of Web
service behaviour to its interface description. For this purpose we choose stream X-
machines (SXMs) [2], which we consider an intuitive and powerful formalism. Not
only do SXMs allow for unambiguous specification of Web service behaviour, but they
are also highly useful to perform model-based testing of a Web service implementation
under test (IUT). Research on stream X-machine offers a test generation method, which
under certain assumptions is proven to find all faults in the implementation [3, 4]. Our
approach makes use of these benefits requiring the cooperation of all three main
stakeholders in a SOA environment (SOA triangle), i.e. the service provider, the service
broker, and the service consumer. The provider's role is to create a SXM model
reflecting the behaviour of the provided Web service implementation, and add it to
WSDL during the publication process. Based on this model, the broker is able to derive
the necessary test cases, which are run in order to verify behavioural equivalence
between the advertised model and the implementation. Only services with successful
test results are accepted (i.e. checked-in) in the registry. On the other hand, during the
discovery process, the consumer is provided with a number of service candidates
fulfilling the request. Through the provided SXM models, the consumer can validate
the behaviour of candidate services against consumer needs, a process that aids in the

3

selection of the most appropriate service. Therefore, our approach ensures that clients
bind with Web services providing a suitable behaviour, and a verified implementation.

The rest of this paper is structured as follows. Section 2 presents a summary of related
work in model-based testing of Web services and in related publication/discovery
approaches. Section 3 provides a description of the used stream X-machine formalism,
the Web service modelling process, and the associated complete functional testing
method, illustrated with a simplified shopping cart case study. Section 4 provides an
overview of the approach for reliable Web service publication and discovery based on
stream X-machines, described from the perspectives of the service provider, the service
broker, and the service consumer. In the end, Section 5 concludes the paper by
summarizing the main points of the presented work, and suggesting directions for
future work necessary to realise the described approach.

2. Related Work

A number of approaches have been proposed for applying model-based testing to verify
Web services. The authors in [5] propose an algorithm, which translates Web service
descriptions annotated in WSDL-S into an equivalent Extended Finite State Machine
representation, which extends simple Finite State Machines with the addition of a
multi-dimensional structure (memory) and the modification of the state transition
function so that it maps a (input, initial state, initial memory) tuple to a (output, new
state, new memory) tuple. The WSDL-S document is enhanced with references to
OWL-S concepts, as well as to SWRL rules, which explicate the behaviour of
individual Web service operations in the form of inputs, outputs, preconditions, and
effects (IOPE). The resulting EFSM model, consisting of a single state, is then
exploited, using any appropriate test case generation algorithm, to derive an effective
test set for verifying a Web service behavioural conformance.

Keum et al [6] present another model-based testing approach using Extended Finite
State Machines, which extend finite state machines with memory, and with computing
blocks and predicate conditions for state transitions. A procedure is described for semi-
automatically deriving the EFSM model from a WSDL specification and additional
user input. The model covers behavioural aspects of stateful Web services, and the
resulting test cases represent sequences of invocations of Web service operations. The
authors provide experimental results showing that their method has the potential to find
more faults compared to other methods, but notably, with a resulting test case set that is
much larger and takes more time to execute.

Some other works have proposed the application of model-based verification of Web
services in the context of more complete approaches. Bertolino et al [7] describe an
envisaged registry-based Web service verification framework. The provider augments
the WSDL document with behavioural descriptions in a UML 2.0 Protocol State
Machine (PSM) diagram, which is then translated to a Symbolic Transition System
(STS). On the other hand, the broker utilises the attached STS model to automatically
generate the test cases and run them on the provided Web service for behavioural
conformance verification. Upon successful test results the Web service is published in
the UDDI registry as a certified service. For this reason, the authors call their approach

4

an "Audition" framework, where the Web service undergoes a monitored trial before
being put "to stage".

Heckel and Mariani [8] use graph transformation rules to model the behaviour of Web
service operations and apply them in a reliable Web service publication and discovery
approach. Both the behaviour of the advertised service by the service provider and the
requested service by the service consumer need to be modelled in terms of graph
transformation rules. A test case derivation method is employed to verify that the actual
service implementation conforms to the provided model. This verification is performed
by the service broker before services are accepted in the registry, resulting in what the
authors refer to as high-quality service discovery agencies. In addition, during
discovery, the service broker enables matchmaking of request and advertisement
models that are expressed as graph transformation rules, in order to return service
candidates satisfying the consumer's behavioural constraints.

In the approach we propose we find some advantages relative to the aforementioned
approaches. The employed X-machine complete functional testing method can be
proven to reveal all implementation errors, under certain design-for test conditions that
the model and the implementation have to satisfy [3, 4]. Additionally, in contrast to the
approach proposed by Heckel and Mariani, this approach does not require models of
both the service request and service advertisement during service discovery, since
service selection is performed through behavioural validation at the consumer site.
Indeed, it is impractical to assume that the consumer knows in advance the detailed
behaviour of the requested Web service and can create a formal model of that
behaviour.

3. Modelling Web Service Behaviour with Stream X-
Machines

3.1 Stream X-machines

Stream X-machines (SXMs) [2] is a computational model capable of modelling both the
data and the control of a system. SXMs are special instances of X-machines introduced
by Eilenberg [9]. They employ a diagrammatic approach of modelling the control by
extending the expressive power of finite state machines. In contrast to finite state
machines, SXMs are capable of modelling non-trivial data structures by employing a
memory, which is attached to the state machine. Additionally, transitions between states
are not labelled with simple input symbols but with processing functions. Processing
functions represent internal system transitions triggered by input symbols under specific
memory conditions, and produce output symbols while modifying the memory. The
benefit of the addition of a memory structure is that state explosion is avoided and the
number of states is reduced to those states which are considered critical for the correct
modelling of the system’s abstract control structure. A divide-and-conquer approach to
design allows the model to hide some of the complexity in the transition functions,
which are later exposed as simpler SXMs at the next level.

A stream X-machine is defined as an 8-tuple, (Σ, Γ, Q, M, Φ, F, q0, m0) where:

5

- Σ and Γ is the input and output finite alphabet respectively;
- Q is the finite set of states;
- M is the (possibly) infinite set called memory;
- Φ, which is called the type of the machine SXM, is a finite set of partial

functions (processing functions) φ that map an input and a memory state to
an output and a new memory state, φ: Σ x M → Γ x M;

- F is the next state partial function that given a state and a function from the
type Φ, provides the next state, F: Q x Φ → Q (F is often described as a
transition state diagram);

- q0 and m0 are the initial state and memory respectively.

The sequence of transitions (path) triggered by the stream of input symbols is called a
computation. The computation halts when all input symbols are consumed. The result
of a computation is the sequence of outputs symbols produced by this path.

Apart from being formal as well as proven to possess the computational power of
Turing machines [3], SXMs have the significant advantage of offering a testing method
[3, 4] that ensures conformance of an implementation to a specification. This method
generates test sets for a system specified as a SXM whose application ensures that the
system behaviour is identical to that of the specification provided that the system is
made of fault-free components and some explicit design-for-test requirements are met.

In order to allow for specifications of stream X-machines, the XMDL (X-Machine
Definition Language) language was introduced in [10] and fully developed in Kefalas
[11]. XMDL serves as an interlingua for the development of tools supporting Stream X-
machines [12]. An extension of XMDL to support an object-based notation was
suggested in [13]. The object-based extension, called XMDL-O, enables an easier and
more readable specification of Stream X-machines and is employed in this paper for the
specification of the example Web service.

3.2 Shopping cart example

We illustrate our modelling and test set generation method with a simplified version of
a Web service that is intended to provide the backend functionality of a shopping cart to
consumers, also described in a previous paper [14]. Similar Web services are already
being used and made available over the Web, such as the Amazon Shopping Cart Web
service (http://developer.amazonwebservices.com). The ShoppingCart Web service
provides the following operations:

- The login operation allows authentication for using the service. It is invoked with
the input message LoginRequest consisting of the username and the password of
the user. The request message is represented as LoginRequest(user, pwd). The
operation sends back the response message LoginResponse(result), where
result is a boolean value; true indicates successful authentication.

- The addToCart operation adds an item to the shopping cart. It is invoked with the
input message AddToCartRequest consisting of the identifier of the item to be
added. The request message is represented as AddToCartRequest(itemId). The

6

http://developer.amazonwebservices.com/

operation sends back the response message AddToCartResponse(itemId). It is
assumed that all item identifiers are valid and correspond to products that may be
purchased.

- The clearCart operation removes all items from the shopping cart. It is invoked
with the simple request message ClearCartRequest represented as
ClearCartRequest() and it sends back the response message
ClearCartResponse().

- The operation checkout completes the shopping process. It is invoked with the
simple request message CheckoutRequest represented as CheckoutRequest()
and it sends back the response message CheckoutResponse().

The ShoppingCart service is an example of a stateful Web service. This implies that the
availability of Web service operations depends not only on the input, but also on the
internal state of the service, which in turn results from previous operation invocations.
For instance, the client is not allowed to perform any operation before authenticating,
and checking out only makes sense with a non-empty cart. Viewed from another angle,
stateful Web services are a form of conversational Web services, which assume an
interaction protocol defining rules for a suitable sequencing of operation invocations.
Understanding and verifying this interaction protocol is crucial for the interoperability
between a consumer system and a provided Web service. In addition, the ShoppingCart
service operates on persistent data (in contrast to a transformational Web service,
which accepts some user input and returns a result). The presence of persistent data
implies that the result of invoking a Web service depends on the state of the persistent
data (such as the existence of a user account in an accounts database), in addition to the
user input (such as login data). Stream X-machines are suitable to formally model both
the behaviour of single operations (pre-conditions and effects on persistent data), as
well as the expected sequencing of operations for successful interaction.

Some parallels can be drawn between a stateful Web service and a stream X-machine,
given that both accept inputs and produce outputs, while performing specific actions
and moving between internal states. SXM inputs correspond to request messages,
outputs correspond to response messages, and processing functions correspond to
operation invocations in distinct contexts. In addition, the service provider has to define
the memory structure, not only as a substitute for internal state, but also to supply
genuine test data that can become part of the generated test sequences. Figure 1 is the
diagrammatical representation of the stream X-machine model of the ShoppingCart
service. It has to be noted that the transitions on the diagram do not correspond to
operations or messages of the Web service but to processing functions as defined later
on. Furthermore, some transitions that represent exceptional behaviour are not shown in
the diagram for the sake of clarity. For instance, attempting to invoke the operation
addItem while the service is found at state waiting, will exercise the self-transition
faultyAddItem. Similar transitions exist for the rest of the operations and the states.

7

Figure 1 Stream X-machine model of the shopping cart Web service example

The memory in the ShoppingCart service example is used to store information about
valid user accounts and the contents of the shopping cart. The following XMDL-O code
shows the definition of accounts as a set of Account objects and the cart as a set of item
identifiers (strings). For the purpose of testing the system we assume that there are two
valid user accounts.

#class Account {

username: string,
password: string,

}.

#objects:

account1: Account,
account2: Account,
accounts: set_of Account,
cart: set_of string.

#init_values:

account1.username <- "usr1",
account1.password <- "pwd1",
account2.username <- "usr2",
account2.password <- "pwd2",
accounts <- {account1, account2},
cart <- emptySet.

State transitions in SXMs are labelled with processing functions. A processing function
is triggered by an input event, when a specified guard condition holds, produces some
output, and potentially updates (modifies) the memory. The updating of the memory
consists of a sequence of assignments as specified in the update part of the processing
function definition. The following XMDL-O code shows the definition of processing
functions. When modelling Web services, the inputs and the outputs of the processing
functions correspond intuitively to request and response messages of Web services
respectively.

#fun loginOK(LoginRequest(?usr, ?pwd)) =

if ?account \= null and ?pwd = ?account.password
then (LoginResponse(true))
where

8

?account <- head (select(username = ?usr, accounts)).

#fun loginFailed(LoginRequest(?usr, ?pwd)) =

if ?account = null or ?pwd \= ?account.password
then (LoginResponse(false))
where

?account <- head (select(username = ?usr, accounts)).

#fun addItem(AddToCartRequest(itemId)) =

then (AddToCartResponse())
update

cart <- itemId addsetelement cart.

#fun clear(ClearCartRequest()) =

then (ClearCartResponse())
update

cart <- emptySet.

#fun checkOut(CheckOutRequest()) =

if cart \= emptySet
then (CheckOutResponse()).

3.3 Test set derivation

A main strength of modelling systems with SXMs is the existence of a test generation
method which under certain assumptions [3, 4], is proven to find all faults in the
implementation. Examples of faults that can be detected in the implementation include
erroneous transition labels, erroneous next-states, missing states, extra states, etc [15].
The testing method is a generalization of the W-method [16]. It works on the
assumption that the system specification and the implementation can be both
represented as stream X-machines with the same type (i.e. both specification and
implementation have the same processing functions) and satisfies the following design
for test conditions: completeness with respect to memory (all processing functions can
be exercised from any memory value using appropriate inputs) and output
distinguishability (any two different processing functions will produce different outputs
if applied on the same memory/input pair).

When the above requirements are met, the Stream X-machine testing method may be
employed to produce a complete test set of input sequences which can be used for the
verification of the implementation under test. In fact it is proved that only if the
specification and the implementation are behaviourally equivalent, the test set produces
identical results when applied to both of them. Otherwise it is guaranteed that it will
reveal the faults in the implementation.

The first step to constructing the test set of input sequences is based on the application
of the W-method to the associated finite state automaton of the SXM, by considering
processing functions as simple inputs. The test set X for the associated automaton
consists of sequences of processing functions and it is given by the formula:

X = S(Φk+1 ∪ Φk ∪ … ∪Φ ∪ {�})W

9

http://en.wikipedia.org/wiki/%CE%95

Where W is a characterization set, S a state cover of the associated finite state
automaton, and k is the estimated difference of states between the implementation and
the specification. A characterization set is a set of sequences of processing functions for
which any two distinct states of the machine are distinguishable and a state cover is a
set of sequences of processing functions such that all states are reachable from the
initial state. The W and S sets in the ShoppingCart Web service example are:

W = {<hloginOK>, <addItem>, <checkout>}
S = {<�>, <loginOK>, <loginOK, addItem>, <loginOK, addItem,
checkout>}

The derived test set X, e.g. for k = 0, is the following (note that it is not completely
presented):

X = {<loginOK>, <addItem>, <checkOut>, <loginOK, loginOK>,
<loginFailed, loginOK>, <addItem, loginOK>, <clearCart, loginOK>,
<checkOut, loginOK>, <loginOK, addItem>, <loginOK, checkOut>,
<loginOK, loginOK, loginOK>, <loginOK, loginFailed, loginOK>,
<loginOK, addItem, loginOK>, <loginOK, clearCart, loginOK>,
<loginOK, checkOut, loginOK>, <loginOK, loginOK, addItem>,
<loginOK, loginFailed, addItem>, <loginOK, addItem, addItem>,
<loginOK, clearCart, addItem>, <loginOK, checkOut, addItem> …}

The above test-set X consists of sequences of operations. These sequences have to be
converted to sequences of inputs. This is achieved by the fundamental test function as
described in [3]. For instance, the sequence of operations <loginOK, addItem,
addItem> is converted to the following sequence of inputs:

<loginRequest("usr1, "pwd1"),
addToCartRequest("912"),
addToCartRequest("875")>

To complete the process of test set generation and enable a testing engine to execute the
test cases, these abstract test cases have to be mapped to executable test cases that the
testing engine can understand.

4. Reliable Web Service Discovery and Publication Approach

The method described in the previous section for modelling and model-based testing of
Web services using stream X-machines has applicability in a range of scenarios
involving various stakeholders. In this section we describe the use of stream X-machine
formal models in a reliable Web service publication and discovery approach [17, 18].
The approach is founded on the idea that augmenting Web service interface
descriptions (WSDL) with formal behavioural specifications is beneficial in registry-
based testing of provided Web services during publication, and in service selection by
the consumer during discovery.

Figure 2 provides an overview of the proposed approach, which requires the
cooperation of the three main stakeholders in a SOA environment: the service provider,
the service broker, and the service consumer. The following subsections describe the

10

http://en.wikipedia.org/wiki/%CE%95

steps involved in the approach from the perspectives of each of these three
stakeholders.

Figure 3 Overview of the publication and discovery approach

4.1 Provider's perspective

The service provider goes through data-level and behavioural-level analysis to derive a
formal model reflecting the behaviour of the Web service that is to be published, using
the stream X-machine (SXM) formalism [2]. The SXM model, expressed in a markup
language such as XMDL [11], is then linked to the WSDL document of the Web
service. Practically, this may be achieved by adding an SAWSDL annotation [19] that
references the URI of the SXM markup document. The next step by the provider is the
publication of the Web service to a service registry maintained by a broker. The
publication query, which references the semantically annotated WSDL document at the
provider site, initiates the publication procedure at the broker site.

4.2 Broker’s perspective

A key role of the service broker in this approach is to verify the behaviour of the
provided Web service implementation through model-based testing, and upon
successful test results, to accept it in the service registry. This step is necessary to
ensure that the implementation of the provided Web service really conforms to the
advertised behavioural specifications. It is possible that this might not be the case,
either because of insufficient testing at the provider site, or because of malicious intent.
With the attached SXM specification, the broker is able to derive the test sequences for
verification automatically. The theory of complete functional testing from X-machines

11

offers a method for deriving a complete, finite set of test cases, which is proven to find
all faults in the implementation under test [3].

The input sequences and the expected output sequences produced by the testing
algorithm are at the same level of abstraction as the stream X-machine model, so they
need to be mapped to concrete data types (XSD), which can be understood by the Web
service. This is possible if the provider uses a mechanism to link the abstract types in
the XMDL model with the XSD types in the WSDL document. The test cases are then
written in a form of executable tests, which are interpreted and run by a testing engine
that communicates with the Web service under test through SOAP messages. If the test
results are successful, i.e. the expected and produced outputs match, then the Web
service implementation has been shown to be free of faults with respect to the
behavioural specifications. In such a case, an advertisement of the Web service is
created and added to the service registry, otherwise the Web service is rejected as
faulty. The benefit of performing the verification procedure at the broker site, as
opposed to performing it at the consumer site upon discovery, is that it needs to be done
only once. Since only successfully tested Web services are accepted by the broker,
consumers are ensured that the Web services they discover have been verified with
respect to their specifications.

4.3 Consumer's perspective

As a first step during discovery, the service consumer formulates a service request and
submits it to the service registry. In response, the service broker returns a set of
annotated service descriptions that match the service request. Notably, our approach is
not bound to any particular matchmaking mechanism, so that any existing mechanism
may be employed to perform syntactic or semantic matchmaking between the service
request and the service advertisements. The service consumer can take advantage of the
SXM behavioural model provided with each service candidate, in order to perform
service selection. This is a validation process where the consumer ensures that a service
model satisfies his or her requirements. An important validation technique is model
animation, during which the user feeds the model with sample inputs and observes the
current state, transitions, processing functions, memory values, and last but not least,
the outputs. For example, X-System is a prolog-based tool supporting the animation of
stream X-machine models [10]. In addition, model checking may be employed on the
SXM model to check for desirable or undesirable properties, which are specified in a
temporal logic formula. Research on X-machines offers a model-checking logic, called
XmCTL, which extends Computation Tree Logic (CTL) with memory quantifiers in
order to facilitate model-checking of X-machine models [20]. Alternatively, if the
consumer has a SXM model of the required service, it can be validated by state and
transition refinement against the published SXM of the provided service [21].

5. Conclusions

The approach described in this paper is supported in fragments by a number of existing
tools, which have been developed during previous research. However, numerous gaps
exist in the required supporting infrastructure, and future research will address the

12

consolidation of techniques and tools into a single framework with industrial
applicability. The main focus will be on the broker infrastructure, which requires more
substantial work to support automated Web service testing and, possibly, behavioural
matchmaking. We will base our work on a semantically-enhanced, UDDI-based service
registry supporting the SAWSDL specification, as part of the EU-funded STREP
project FUSION [22]. In order to support model-based testing of Web services, we are
planning to integrate the semantic registry with tools for test case generation from
XMDL specifications, and with capabilities for runtime testing of a Web service
implementation. Additionally, in order to support behavioural matchmaking, we are
planning to define an abstract query language for the service consumer and extend the
current matchmaking algorithm of the semantic service registry to match the
behavioural query with the advertised stream X-machine models.

References

1 Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann, F. (2006). Roadmap of
Service Oriented Computing. http://infolab.uvt.nl/pub/papazogloump-2006-96.pdf.
March 2006.

2 G. Laycock. The Theory and Practice of Specification-Based Software Testing.
PhD thesis, Dept of Computer Science, Sheffield University, UK, 1993.

3 Holcombe, M. and Ipate, F. (1998). Correct Systems: Building Business Process
Solutions. Springer-Verlag, Berlin.

4 Ipate, F. and Holcombe, M. (1997). An integration testing method that is proven to
find all faults. International Journal of Computer Mathematics, 63, pp 159-178.

5 Sinha, A. and Paradkar, A. (2006). Model-based functional conformance testing of
Web services operating on persistent data. In TAV-WEB'06, pages 17{22,
Portland, Maine, USA, 2006. ACM.

6 Keum, C., Kang, S., and Ko, I.Y. (2006). Generating test cases for web services
using extended finite state machine. In TestCom 2006, pp 103-117. Springer,
2006.

7 Bertolino, A., Frantzen, I., Polini, A., and Tretmans, J. (2006). Audition of web
services for testing conformance to open speci_ed protocols. Architecting Systems
with Trustworthy Components, LNCS 3938, 2006.

8 Heckel, R. and Mariani, L. (2005). Automatic conformance testing of web
services. In FASE 2005, pp 34-48. Springer, 2005.

9 Eilenberg, S. (1974). Automata, languages and machines. Academic Press, New
York.

10 Kapeti, E. and Kefalas, P. (1999). A design language and tool for X-machine
specification. In Proceedings of the 7th Panhellenic Conference on Information
Techology, Greek Computer Society, Ioannina, 1999.

11 Kefalas, P. (2000). X-machine description language: User manual, version 1.6.
Technical Report WP-CS07-00, CITY College, 2000.

12 Kefalas, P., Eleftherakis, G., and Sotiriadou, A. (2003). Developing tools for
formal methods. In Proceedings of the 9th Panhellenic Conference in Informatics,
pages 625-639, November 2003.

13

13 Dranidis, D., Eleftherakis, G., and Kefalas, P. (2005). Object-based language for
generalized state machines. Annals of Mathematics, Computing and
Teleinformatics (AMCT), 1(3):8-17, 2005.

14 Dranidis, D., Kourtesis, D. and Ramollari, E. (2007). Formal Verification of Web
Service Behavioural Conformance through Testing. In Proceedings. of the 3rd
South-East European Workshop on Formal Methods, Thessaloniki, Greece,
November 2007.

15 F. Ipate and R. Lefticaru. State-based testing is functional testing. Testing:
Academic and Industrial Conference Practice and Research Techniques -
MUTATION, 2007. TAICPART-MUTATION 2007, pages 55-66, 10-14 Sept.
2007.

16 T. S. Chow. Testing software design modelled by finite state machines. IEEE
Transactions on Software Engineering, 4:178-187, 1978.

17 E. Ramollari, D. Kourtesis, D. Dranidis, and A.J.H. Simons. Towards Reliable
Web Service Discovery through Behavioural Verification and Validation. In
Proceedings of the 3rd European Young Researchers Workshop on Service
Oriented Computing (YR-SOC 2008), London, UK, June 2008 (forthcoming).

18 D. Kourtesis, E. Ramollari, D. Dranidis, and I. Paraskakis. Discovery and
Selection of Certified Web Services through Registry-Based Testing and
Verification. In Proceedings of the 9th IFIP Working Conference on Virtual
Enterprises (PRO-VE'08), Poznan, Poland, September 2008 (forthcoming).

19 J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema.
W3C Candidate Recommendation, January 2007. Available at:
http://www.w3.org/TR/sawsdl/.

20 G. Eleftherakis, P. Kefalas, and A. Sotiriadou. Xmctl: Extending temporal logic to
facilitate formal verification of x-machines. Matematica-Informatica, 50:79-95,
2002.

21 A. J. H. Simons. A theory of regression testing for behaviourally compatible object
types. Software Testing, Verification, and Reliability, 16(3):133-156, August
2006.

22 Kourtesis, D. and Paraskakis, I. (2008). Web service discovery in the FUSION
semantic registry. In Proceedings of the 11th International Conference on Business
Information Systems (BIS 2008), May 2008.

14

15

