
Experiences Using Z2SAL

Maria Ulfah Siregar, John Derrick, Siobhan North, Anthony J.H. Simons
Verification and Testing Laboratory, Dept. of Computer Science, The University of Sheffield, United Kingdom

Email: acp12mus@sheffield.ac.uk

Abstract—The Z notation is a language that can be
used for writing formal specifications of a system since
it is based on mathematical notation and logic. However,
there is less tool support for this language that one might
wish for. In this paper, Z2SAL, a translator for Z which
translates the Z notation into a SAL input language, is
explored. The generated SAL file can be used further
by an existing model checker, specifically ones provided
in the SAL tool suite. This paper describes experiences
during conducting several experiments on the Z2SAL
translator.

I. INTRODUCTION

To date, computer applications have been used al-

most in every aspect of human life. Nevertheless, one

needs those applications can do their jobs accurately,

particularly safety-critical system.

To achieve that aim, several decades ago, natural

language and graphics were used to draw system

flowcharts and to write specifications. It turned out

that natural language is inadequate as a vehicle for

specification due to its imprecision. The alternative,

which is the use of a programming language to write

a specification is equally flawed in that it forces one

to work at the wrong level of abstract [1].

Therefore, there is a role for a method of writing a

specification that is not only precise enough but also

implementation free. Moreover, such a method, if it is

equipped with a proof theory, can help us to describe

properties of specifications easily by conducting ’rigor-

ous arguments’ [1]. It needs a certain level of formality

and for specifications to be written at a suitably high

level of abstraction. Thus, mathematical notation is

used which is based on set theory, logic, functions and

relations to write those specifications. Notations used

to do this are called specification languages or formal
methods. Indeed, although their use is not widespread

in every sphere, ’formal methods are recommended by

many standards bodies concerned with Safety-Critical

systems and for some they are mandatory’ [2].

As a formal language, the use of Z can make a

specification free from ambiguity. In addition, it can

make such a specification be analysed mechanically

[3].

Whilst there has been increasing interest in the use

of Z, the tool support for Z is limited. There are many

aspects to this situation, such as the abstraction and the

logic of the language are undecided [3]. One of such

deficiencies in tools is validating the intended meaning

of a Z specification or model checking it [4], [5].

In this paper, we discuss the provision of a trans-

lation of the Z notation, in a tool called Z2SAL,

into a format that an existing tool can be applied on.

This exploration involves several experiments on the

translator.

On providing a translator for Z into an input lan-

guage of an existing tool, Symbolic Analysis Labora-
tory (SAL) was chosen since it has similar represen-
tation of many aspects of Z [7], such as the module
mechanism of SAL represents appropriately a Z state
transition system [6]. SAL also supports expressive
mathematics which is a necessity in model checking

an expressiveness of Z specification [6]. Moreover,

there exists many different tools that use the SAL
input language [5] which has been offered freely by

SRI under academic licence such that attracts users to

engage in international groups. SAL provides several

tools reflecting its functions such as simulator of a

system, model checker either symbolic or bounded,

deadlock checker, etc. Some of them are detailed on

I-A2.

The structure of this report is as follows. Section I-A

describes the related works, this is followed by Section

I-B, which discusses our experiments with Z2SAL.

The next is Section II which concludes this paper and

is followed by Acknowledgement and References.

A. Related Works

In this section, we discuss the existing work on

Z2SAL and the translation of Z notation into a SAL

input language.

The idea of translating Z into a SAL input language

is due to Smith and Wildman [6] at the University of

Queensland, Australia. However, since the basic idea

given in [6], the ideas have been implemented in a

tool set, and the current Z2SAL has been extended

in a different direction. In doing this, it has also had

to tackle optimization issues [5], and thus is quite

different from the ideas as originally envisaged.

1) Z2SAL: Z2SAL translates a Z specification into

a SAL module. In this module, it groups a number

of definitions including types, constants and modules

to describe the states transition system [7]. A SAL

module has general format as follows:

State : MODULE =
BEGIN
INPUT ...
LOCAL ...
OUTPUT ...
INITIALIZATION [...]
TRANSITION [...]

END

ICACSIS 2014

225 978-1-4799-8075-8/14/$31.00 c©2014 IEEE

There are several challenges to the translation of

Z into the SAL input language [5]. First is bounding
the infinite. Z supports fully abstract (non-grounded,

non-constructive) specification styles, while SAL input

language is a concrete and grounded language. For

example, Z supports the built-in numerical types Z, N

and N1, whose ranges are infinite. On the other hand,

the SAL has the similar unbounded types INTEGER,

NATURAL and NZNATURAL, which can only be used

as the base types of finite sub ranges in the ac-

tual specification. Z also supports basic types which

have the semantics of un-interpreted sets, such as

[TAPE, NAME]. Therefore, the translations provided

by Z2SAL should define a finite number for those sets.

The mismatched formal paradigms is the second

challenge. Z and SAL have very different styles of

specification and description. A Z specification is built-

up increasingly, which consists of state and operational

schemas. It views locally and functionally such that

every operational schema operates on its input and

output variables, or on variables of the state schema.

In contrast to this, a SAL specification is created

as a ’monolithic finite state automaton’ such that

all inputs, outputs and local variables are compiled

into the aggregate states and all operations act upon

guard transitions from one state configuration to other

state configurations [5]. Thus, this mismatch could be

approached by re-ordering all the information in a

Z specification. Another mismatch is Z specifications

often use partial functions. This is to express incom-

plete operations of operational schemas and to express

the associative data types, maps of the state schema,

whose sizes are dynamics. By contrast, as SAL is

based on Binary Decision Diagrams (BDDs), SAL

always needs a representation of a function given as a

total function. This means one needs a work-around in

order to represent partial functions in Z specifications,

which frequently exist, as total functions in SAL.

Furthermore, a set cannot be treated as a monolithic

of SAL, but as a ’polylithic collection of judgements’

over its elements instead. Thus, several operations in

a set need to be expressed differently, such as the

cardinality of a set which is not supported by SAL.

The last challenge is the issue of non-computable
specifications. A Z specification naturally supports

non-constructive styles of specification. These styles

need to be expressed in computable specification in

SAL, which essentially are different. Normally, a SAL

specification consists of a series of update assignments

to primed variables, which indicates posterior variable

states. In contrast, in a Z specification this direction of

constructive approach is not necessary. Z2SAL adopts

an assertion of posterior existence of variables and

restricts their values in the precondition. This needs

a searching for suitable precondition values.

Currently, the tool has two operating modes, which

it will either translate a single Z specification into the

input format of SAL for model checking purposes,

or translate a pair of Z specifications for refinement

checking purposes [8]. The translated output is placed

in the same directory as the source. More information

relating to Z2SAL can be found on related references.

The Z language syntax can also be read further on

[14].

2) SAL: SAL is a framework for combining dif-

ferent tools for abstraction, program analysis, theorem

proving and model checking towards the calculation

of properties (symbolic analysis) of transition systems

[9]. Thus, SAL is used to change the perception

and implementation of model checkers and theorem

provers which previously based on verification to

based on calculation of properties such as abstraction,

slicing and composition [10].

As an intermediate language which serves as a

medium for representing the state transition semantics

of systems with their own source languages, SAL has

been integrated with several loosely coupled back-end

components. These components relate to each other by

using well-defined interfaces [10].

The SAL environment contains a simulator for finite

states specifications based on BDDs which allows

users to explore different execution paths of a SAL

specification [11]. By doing such an exploration, users

will be more confident of their model before verifica-

tion is done on such a model.

Regarding model checking, SALenv contains a sym-

bolic model checker called SAL-smc (simple model
checker). Users can specify properties in LTL and CTL

temporal logics. In addition to SAL-smc, SALenv also

contains SAL-bmc (bounded model checker) which

only supports LTL formulas. By using bounded model

checker, SAL can search on a state space on a given

depth. When a property is invalid, a counter-example

will be produced, otherwise, it will be proven. The

SAL language syntax can be read further on [9].

B. Experiments with Z2SAL

We have conducted several experiments with

Z2SAL by providing Z specifications, and translat-

ing them with Z2SAL. The generated SAL could be

processed further either by simulating or verifying

them with SAL simulator or SAL model checker.

Due to the page limitation, only few of them will be

presented here, particularly specifications which have

modification in their original specifications.

1) Experiment with Hotel Specification: This spec-

ification is taken from [12, p. 55-57]. The specifi-

cation has one basic/ given type, GUEST, and has

a data type definition HOTELROOM whose values

are from Room1 until Room15. It also has an-

other data type definition RESPONSE which values

are no room vacant, not a guest, success,

wrong number, and add to tab ok. The state

schema of this specification is:

ICACSIS 2014

226 978-1-4799-8075-8/14/$31.00 c©2014 IEEE

Hotel
current guest : PGUEST
unoccupied room, occupied room :
PHOTELROOM
occupies : GUEST ↔ HOTELROOM
tab : HOTELROOM ↔ N

current guest = dom occupies
occupied room = ran occupies
unoccupied room =
HOTELROOM \ occupied room

There are new types which are formed by relating a

basic type to a defined type, such as occupies whose

domain is GUEST and whose range is HOTELROOM.

This relation gives information about guests and their

occupied rooms. There is also another relation, tab
which relates HOTELROOM and a natural number. By

the relation, every guest knows the price they should

pay for their room.

The specification includes a relational composition

which relates two relations to create a new relation.

This new relation treats the domain values of the

first relation as its domain and the range values

of the second relation as its range. For example,

occupies;tab, this operation will give us a new

relation relating each guest to their bill. The schema

that has this operator is DepartGuest:

DepartGuest
ΔHotel
guest? : GUEST
bill! : N
reply! : RESPONSE

∃ b : N • (guest? ∈ current guest
guest?(occupies o

9 tab)b
b = bill! ∧ occupies′ = {guest?} −� occupies
tab′ = tab ∧ reply! = success)

The schema also contains a non-constructive, orig-

inated from Z styles, predicate in the second lines of

the existential quantifier block.

Based on our experiment, Z2SAL cannot translate

it. Thus, this predicate should be written in another

way around as follows:

(guest?,b) ∈ (occupies;tab)

There is another schema that also contains the non-

constructive predicate as above schema, as written

below:

room? tab n

Thus, the related schema after its first line predicate

modification is as follows:

TABLE I
EXPERIMENTS ON SOLVING THE OUT OF MEMORY ERROR

Max size of GUEST Max size of HOTELROOM Result

3 15 Fail

2 15 Fail

2 8 Success

1 15 Success

3 8 Success

AddToTab
ΔHotel
room? : HOTELROOM
charge? : N
reply! : RESPONSE

∃ n : N • (room?, n) ∈ tab
room? ∈ occupied room
tab′ = ({room?} −� tab)∪
{room? �→ (charge? + n)}
occupies′ = occupies ∧ reply! = add to tab ok

Indeed, these constructive writing are easy to read

and understand. Both of those which are rewritten in

other way around predicates express the constructive

predicates which are supported by SAL model checker.

Although this specification can be verified by SAL

model checker, it cannot be simulated by SAL simula-

tor, due to ran out of memory. Originally, there are 15

rooms on HOTELROOM defined in Z specification and

there are three guests on GUEST defined by Z2SAL.

There are three alternatives to combat the problem.

The first is to reduce the size of GUEST. The second is

the same as the first, but is done on HOTELROOM. The

third is to reduce the size of both those given type.

All of our attempts are given on Table I. These ex-

periments were conducted on a machine with Intel(R)

Core (TM) i5-2320 CPU 3.00 GHz.

2) Experiment with Telephone Network Specifica-
tion: This specification is taken from [13, p. 31-34].

The specification has one given type [PHONE]. It has

one defined data type Status whose values are Yes
and No. In order to translate this specification, several

modifications must be taken place first.

Firstly, it contains a generic constant, such as:

[X]
disjoint : PPPX

∀ cons : PPX • cons ∈ disjoint ⇔
(∀ c1, c2 : cons • c1 �= c2 ⇒ c1 ∩ c2 = ∅)

A generic constant which is a generic construct sup-

ported by Z is used to define a parameter without

explicit type. Some mathematical tool kits are defined

by this generic constructor.

Unfortunately, to date, Z2SAL has not supported

yet the generic constructs. To solve this problem, the

generic constant was deleted and all occurrences of

ICACSIS 2014

227 978-1-4799-8075-8/14/$31.00 c©2014 IEEE

following predicate:

cons ∈ disjoint

in other schemas were deleted and were replaced by:

∀ c1,c2: cons • c1 �= c2 ⇒ c1 ∩ c2 = ∅

and referred to appropriate cons. For example, a state

schema below:

TN
reqs, cons : PCON

cons ⊆ reqs ∧ cons ∈ disjoint

it contains the predicate taken from the generic con-

stant. The schema will be changed into:

TN
reqs, cons : PCON

cons ⊆ reqs
∀ c1, c2 : cons • c1 �= c2 ⇒ c1 ∩ c2 = ∅

CON is a connection in a set of PHONE.

Secondly, there are schemas which consist of a pred-

icate referring to other schema and having parameters,

namely schema references. For example, a schema as

below:

efficientTN
TN

¬ (∃ cons0 : PCON • cons ⊂ cons0 ∧
TN [cons0/cons])

and this schema:

ΔTN
TN
TN′

¬ (∃ cons1 : PCON •
(cons \ cons1) ⊂ (cons \ cons′)
efficientTN′ [cons1/cons′])

For those schemas, changes were made by defining

those schemas without including those references. For

the first schema, TN[cons0 / cons] was replaced

by all the contents of TN schema. Next, changing

cons into cons0. Here is the new efficientTN
schema:

efficientTN
TN

¬ (∃ cons0 : PCON • cons ⊂ cons0 ∧
cons0 ⊆ reqs
∀ c1, c2 : cons0 • c1 �= c2 ⇒ c1 ∩ c2 = ∅)

and below is the ΔTN schema:

ΔTN
TN
TN′

¬ (∃ cons1 : PCON •
(cons \ cons1) ⊂ (cons \ cons′)
¬ (∃ cons0 : PCON • cons1 ⊂ cons0 ∧
cons0 ⊆ reqs
∀ c1, c2 : cons0 • c1 �= c2 ⇒ c1 ∩ c2 = ∅))

Thirdly, this specification also includes theta symbol

which is used to bind information. The predicate is:

Θ TN’ = Θ TN

The schema consisting of the predicate is:

Engaged
ΔTN
engaged! : Status
other! : PHONE

θTN′ = θTN
(engaged! = Yes) ⇒ ({ph?, other!} ∈ cons)
(engaged! = No) ⇒ ph? �∈ (∪ cons)

Z2SAL does not support this tag, so it was rewritten

into its definition of laws based on [14, p. 62] and

replaced by two lines of predicates as follows:

reqs’ = reqs ∧ cons’ = cons

These refer to laws of Θ [14]:

ΘS′ = ΘS ⇔ x′1 = x1 ∧ ... ∧ x′n = xn

Lastly, Z2SAL has a standard meaning for a delta

schema which says that variables in the state schema

can change their after operational values. Therefore,

the related schema only knows all variables that are

listed in the state schema, state schema variables, so

does the predicates. This is a convention but not en-

forced by the semantics. And indeed, in this specifica-

tion, there is another meaning of a delta schema which

is to add predicates not defined in the state schema.

To overcome this problem, add all the variables and

predicates of the delta schema into other schemas

that refer to this schema, and keep those that are

listed in the state schema. The delta schema (ΔTN)

was renamed into another name, DeltaTN, and its

contents are as follows:

DeltaTN
TN
TN′

ph? : PHONE

¬ (∃ cons1 : PCON •
(cons \ cons1) ⊂ (cons \ cons′)
¬ (∃ cons0 : PCON • cons1 ⊂ cons0 ∧
cons0 ⊆ reqs
∀ c1, c2 : cons0 • c1 �= c2 ⇒ c1 ∩ c2 = ∅))

ICACSIS 2014

228 978-1-4799-8075-8/14/$31.00 c©2014 IEEE

The operational schemas which call such a different

meaning of ΔTN schema are also modified appropri-

ately. For example, the Engaged schema above will

be modified into:

Engaged
ΔTN
engaged! : Status
other! : PHONE
ph? : PHONE

reqs′ = reqs ∧ cons′ = cons
(engaged! = Yes) ⇒ ({ph?, other!} ∈ cons)
(engaged! = No) ⇒ ph? �∈ (∪ cons)
¬ (∃ cons1 : PCON •
(cons \ cons1) ⊂ (cons \ cons′)
¬ (∃ cons0 : PCON •
cons1 ⊂ cons0 ∧ cons0 ⊆ reqs
∀ c1, c2 : cons0 •
(c1 �= c2) ⇒ (c1 ∩ c2 = ∅)))

Z2SAL has also been updated by revising its trans-

lation for universal quantifier which appears on this

specification. The predicate with this quantifier is as

follows:

∀ c1, c2 : cons • (c1 �= c2) ⇒ (c1 ∩ c2 = ∅)

Previously, it was translated by Z2SAL as follows:

(FORALL(q 1 : CON, q 2 : CON) :
(q 1/ = q 2 =>
set{PHONE; }!intersection(q 1, q 2) =
set{PHONE; }!empty)AND
set{CON; }!contains?(cons, q 1)AND
set{CON; }!contains?(cons, q 2)))

Based on the Z book [15, p . 31]

∀ x : a | p.q

this is equivalent to:

∀ x : a.p => q

Thus, the translation was revised and the new transla-

tion is as follows:

(FORALL(q 1 : CON, q 2 : CON) :
((set{CON; }!contains?(cons, q 1)AND
set{CON; }!contains?(cons, q 2))
AND(q 1/ = q 2)) =>
(set{PHONE; }!intersection(q 1, q 2) =
set{PHONE; }!empty)))

which is equivalent to:

(FORALL(q 1 : CON, q 2 : CON) :
(set{CON; }!contains?(cons, q 1)AND
set{CON; }!contains?(cons, q 2)) =>
((q 1/ = q 2) =>
(set{PHONE; }!intersection(q 1, q 2) =
set{PHONE; }!empty)))

However, this generated SAL cannot be simulated

by SAL simulator due to ran out of memory. Several

experiments have been tried, such as deleting one by

one the invariant, deleting both the invariants, but all

of these did not work. After the size of PHONE was

changed into 1, default is three; this SAL can be

simulated successfully.

3) Experiment with One Increment Specification:
This specification is obtained from [12, p. 94]. The

specification includes a user-defined function to add

one to other natural numbers. This function, f, needs

one argument whose type is natural number and returns

a result which is also a natural number. Here is the full

specification:

f : N → N

∀ n : N • f (n) = n + 1

State
number : N

Init
State′

number′ = 0

Increment
number? : N
result! : N

result! = f (number?)

Z2SAL can translate this specification into its SAL.

However, the generated SAL cannot be run by SAL

simulator due to the existing of empty initial set.

Based on the evaluation, this error might be occurred

since the invariant could yield false. After modified the

specification as follows, it can be simulated by SAL

simulator.

max : N
f : N → N

max = 3
∀ n : N • (n > max ⇒ f (n) = n)
(n <= max ⇒ f (n) = n + 1)

State
number : N

Init
State′

number′ = 0

ICACSIS 2014

229 978-1-4799-8075-8/14/$31.00 c©2014 IEEE

Increment
number? : N
result! : N
ΞState

(number? > max ⇒ result! = number?)
(number? <= max ⇒ result! = f (number?))

4) Experiment with Inverse Relation in Hotel Spec-
ification: This specification is almost the same as

specification in Experiment 1. The difference is in

this specification one operational schema is added. The

schema is as follows:

WhoWhichRoom
ΞHotel
room? : HOTELROOM
guest! : GUEST
reply! : RESPONSE

∀ g : GUEST • ((g, room?) ∈ occupies) ⇒
guest! = g

We then rewrote the predicate by using inverse

relational operator as follows:

(room?, guest!) ∈ occupies∼

and it works. It means that Z2SAL has also supported

inverse relational operation. However, from our experi-

ment using this operator on function instead of relation

as above example, there was a problem, Z2SAL cannot

translate the specification.

5) Results and Discussion: For the first experiment,

the specification contains non-constructive predicates.

In order to enable the translation, those predicates

are rewritten in another way around which is more

constructive.

For the second experiment, the generic constant is

deleted and any occurrence of its predicate in other

schemas is replaced appropriately, so does with theta

operator, and schema references. We do the same

for another meaning of delta schema, change it into

the ordinary delta schema and add manually other

variables or predicates which are not included in the

state schema.

For the third experiment, based on our investigation,

it is identified that the invariant is sometimes false

since the function is not really total. Z2SAL defines

the maximum number for the natural number used

here which is 4. This maximum number is one above

the maximum number specified in the Z specification.

Thus, for this maximum natural number, it will not be

mapped to any number and it gives false. In order to

avoid the problem, the specification should be modified

to make it never reach the number more than its Z

defined maximum one which is 3. If such a number is

reached then it returns the maximum number defined

by Z2SAL in generated SAL. Otherwise, the output is

the same as this number.

For the last experiment, as mention above, it seems

Z2SAL has supported inverse relational operation, but

not for all types of variables. For example, variables

formed by functions are not translated at this moment.

II. CONCLUSION AND FUTURE WORKS

As stated previously, the aim of this paper is to

report experiences during conducting several experi-

ments with the Z2SAL tool. This study has shown

that Z2SAL is rich enough with tags accepted by Z

LATEX styles and supports many parts of Z, such as set,

sequence (although needs further testing), relations and

functions, several mathematical operator, horizontal

schema writing as well as vertical one, also accepts

more than one Z package styles. In these experiments,

oz and zed package styles were used. Therefore, a

specification which contains Z language is written by

using LATEX styles either oz or zed package styles. For

the translation strategies of those Z language into SAL

language, could be read on [5]. We cannot describe it

here due to the page limitation. Based on this finding,

we could declare that the Z2SAL is not complete since

it has not supported all parts of Z language. Due to

this incompleteness, our research has aims to explore

parts of Z that has not been translated by Z2SAL and to

suggest those parts to be able to translation by Z2SAL.

The second major finding is that if Z2SAL does

not support such tags or definition of Z language, we

could rewrite them by using their similar meaning.

This might be applied to schema calculus which is not

supported yet by Z2SAL, but we could rewrite them

by using a direct single schema definition as usual.

Third, it seems that some errors found are merely

a consistency preservation of Z2SAL and SAL model

checker, such that Z2SAL avoids to translate a non-

constructive style of Z specification which is appro-

priate with SAL’s common expressions writing, the

constructive style. We have also found that sometimes

the unable to run by SAL simulator is a technical

deficiency, for example the size of memory on the

used machine. This issue relates to the state space

explosion problem in model checking. We have taken

into account the issue of ran out of memory by inves-

tigating the use of abstraction as a means to enable

model checking can verify arbitrary Z specifications.

Fourth, although we have not yet proved it formally

due to there is no a common semantic module for Z

and SAL, we think the Z2SAL is sound. We could

claim that based on our experiments, for almost all

translations of Z language into SAL language, both

of them have equivalent meanings. However, some

awareness of the differences between the Z language

and SAL language should be taken into consideration

for that soundness. For example, Z language supports

infinite types in contrast to SAL language. Thus,

such as N, Z2SAL must translate the infinite N of Z

specification into the finite of that type which can be

recognized by SAL.

ICACSIS 2014

230 978-1-4799-8075-8/14/$31.00 c©2014 IEEE

ACKNOWLEDGMENT

The first author would like to thank John Derrick,

Siobhan North and Anthony Simons since this paper is

initially based on their Z2SAL, and to Graeme Smith

and Kirsten Winter for inspiring us with the use of

abstraction in model checking Z specification. The

first author would also like to thank ISIHEMORA the

Republic of Indonesia for its financial support.

REFERENCES

[1] Potter, B., Till, D., and Sinclair, J.: An introduction to formal
specification and Z. Prentice Hall PTR (1996)

[2] West, M.M.: Issues in Validation and Executability of Formal
Specifications in the Z Notation. Thesis of University of Leeds
(2002)

[3] Jackson, D.: Abstract model checking of infinite specifications.
FME’94: Industrial Benefit of Formal Methods. Springer, 519–
531 (1994)

[4] Malik, P., Groves, L. and Lenihan, C.: Translating z to alloy.
ASM, Alloy, b and Z. Springer, 377–390 (2010)

[5] Derrick, J., North, S., and Simons, A.J.H.: Z2SAL: a
translation-based model checker for Z. Formal aspects of
computing. Springer, 23 1, 43–71 (2011)

[6] Smith, G. and Wildman, L.: Model checking Z specifications
using SAL. ZB 2005: Formal Specification and Development
in Z and B. Springer, 85–103 (2005)

[7] Derrick, J., North, S., and Simons, A.J.H.: Issues in imple-
menting a model checker for Z. Formal Methods and Software
Engineering. Springer, 678–696 (2006)

[8] Simons, AJH: The Z2SAL User Guide. Accessed from
http://staffwww.dcs.shef.ac.uk/people/A.Simons/z2sal/userguide.html
(2012)

[9] De Moura, L., Owre, S. and Shankar, N.: The SAL lan-
guage manual. Computer Science Laboratory, SRI International,
Menlo Park, CA, Tech. Rep. CSL-01-01 (2003)

[10] Bensalem, S., Lakhnech, Y. and Owre, S.: Computing abstrac-
tions of infinite state systems compositionally and automatically.
Computer Aided Verification. Springer, 319–331 (1998)

[11] de Moura, L.: SAL: tutorial. Computer science laboratory, SRI
International (2004)

[12] Rann, D. and Turner, J. and Whitworth, J.: Z: a Beginner’s
Guide. CRC Press (1994)

[13] Hayes, I. and Flinn, B.: Specification case studies. Prentice-
Hall International London (1987)

[14] Spivey, J.M.: The Z notation. Prentice Hall New York (1989)
[15] Woodcock, J. and Davies, J.: Using Z: specification, refine-

ment, and proof. Prentice-Hall, Inc. (1996)

ICACSIS 2014

231 978-1-4799-8075-8/14/$31.00 c©2014 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

