
Z2SAL - building a model checker for Z

John Derrick, Siobhán North and Anthony J. H. Simons

Department of Computing, University of Sheffield, Sheffield, S1 4DP, UK
J.Derrick@dcs.shef.ac.uk

Abstract. In this paper we discuss our progress towards building a
model-checker for Z. The approach we take in our Z2SAL project involves
implementing a translation from Z into the SAL input language, upon
which the SAL toolset can be applied. The toolset includes a number of
model-checkers together with a simulator. In this paper we discuss our
progress towards implementing as complete as a translation as possible,
the limitations we have reached and the optimizations we have made.
We illustrate with a small example.
Keywords: Z, model-checking, SAL.

1 Introduction

Z has, for some time, lagged behind other specification languages in its provision
of tools. There are a number of reasons for this, although most are connected
with the language itself and its semantics: its expressivity has made it more
difficult to build tractable tools. However, recently a number of projects have
begun to tackle this defficiency. These include the CZT (Community Z Tools)
project [8], our own work [6], as well as related work such as ProZ [9], which
adapts the ProB [7] tool for the Z notation, and that of Bolton who has used
Alloy to verify data refinements in Z [1].

Our concern is that of providing a model-checking [4] tool via translation
of Z specifications into the input language of an appropriate toolset. Here we
choose the SAL [5] tool-suite, designed to support the analysis and verification of
systems specified as state-transition systems. Its aim is to allow different verifica-
tion tools to be combined, all working on an input language designed as a format
into which programming and specification languages can be translated. The in-
put language provides a range of features to support this aim, such as guarded
commands, modules, definitions etc., and can, in fact, be used as a specification
language in its own right. The tool-suite currently comprises a simulator and
four model checkers including those for LTL and CTL.

The original idea of translating Z into SAL specifications was due to Smith
and Wildman [10]. In [6] we described the basics of our implementation, which
essentially is a Java based compiler of a subset of Z into SAL. Here we discuss
the implementation in broader scope, describing how different parts of the Z
mathematical toolkit are translated.

The aim of [10] was to preserve the Z-style of specification including predi-
cates where primed and unprimed variables are mixed, and the approach of the

Z mathematical toolkit to the modelling of relations, functions etc., as sets of
tuples. Given this theoretical basis (the translation in [10] was not optimized for
implementation) the actual implementation has preserved this general approach
but has increasingly diverged as optimization issues have been tackled.

The general scheme of the translation is that a Z specification is translated
to a SAL module, which groups together a number of definitions including types,
constants and modules for describing a state transition system. The declarations
in a state schema in Z are translated into local variables in a SAL module,
and any state predicates become appropriate invariants over the module and its
transitions.

A SAL specification defines its behaviour by specifying transitions, thus it is
natural to translate each Z operation into one branch of a guarded choice in the
transitions of the SAL module. The predicate in the operation schema becomes
a guard of the particular choice. The guard is followed by a list of assignments,
one for each output and primed declaration in the operation schema.

As would be expected the work to be done in such a translation is in trans-
lating the mathematical toolkit; yet a naive translation quickly produces SAL
input which is infeasible to simulate or model-check. Thus our work has opti-
mized the translation as much as possible by using appropriate combinations of
the inbuilt SAL types. Much of our discussion below concerns these issues.

The structure of the paper is as follows. The basic architecture of our imple-
mentation is described in Section 2. Section 3 gives an overview of the approach
to translation, and more specifics about translating the mathematical toolkit is
given in Section 4. Finally, Section 5 discusses the use of the tool.

2 The Z2SAL architecture

The Z2SAL tool is currently implemented in Java directly (rather than using
the CZT components) in order to rapidly prototype and evaluate a number of
ideas. At present it works by scanning a Z LATEXsource file in a single pass into
something which is basically a list of schema class instances with associated
classes representing the named constants, types and variables and one expres-
sion structure to represent the restrictions derived from the constraints in the
axiomatic definitions. The use of a single scan is feasible because we restrict the
Z we accept to definition before use of all identifiers (which in practice is not a
significant limitation).

Having parsed the Z a certain amount of optimisation is performed with a
view to producing efficient SAL. Given we are producing output for use with a
model-checker, the first step is to turn any aspect that might be unbounded into
a finite size. In order to keep the state space to a minimum the size of any basic
types we use is also restricted as far as possible. Thus if Z is used in Z a type
called INT will be declared in the SAL output which ranges between one less
than the smallest constant used in the Z to one more than the largest. Given
types from the Z specification have to be assigned explicit values in the SAL

output, and by default they are set to consist of a type with three elements but
this can be varied by supplying the parser with a different value as a parameter.

The combination of small fixed ranges for basic types and giving all constants
a value allows us to optimize expressions derived from both the constraints of
the schemas and the axiomatic definitions. The latter are optimized first. Z ex-
pressions are initially parsed into a conventional tree but this is immediately
transformed into a list of subtrees which represents the series of conjoined pred-
icates. This is both a natural way to represent the predicate in a Z schema and a
convenient structure to modify when combining predicates derived from different
sources, something we have to do in various places starting with the predicates
of all the axiomatic definitions.

This combined predicate is scanned both to eliminate redundant predicates
and to restrict all the variables constrained by any axiomatic definitions to as
small a range as possible. In an earlier release (see [6]) we dealt with these vari-
ables by giving them arbitrary values and treating them as constants, however,
it turned out that the properties of the resulting SAL were too dependent on
the translator’s choice. Thus here we restrict their type as far as possible using
the conditions imposed by the axiomatic definitions constraints. Sometimes the
type restriction process allows a variable to be restricted to a single value, and
at that point it is transformed into a constant, removing the need for a SAL
predicate, and this in turn can lead to further optimization. If, during this pro-
cess a Z predicate proves to be unsatisfiable, the translator terminates under the
assumption that the Z specification is erroneous. Any predicates remaining, ones
that cannot be converted into restrictions of type, are then added to the state
schema predicates and the variables are added to those of the state schema.

Next, all the variables are scanned to identify any types that must be con-
structed in SAL. For example (see Appendix A) to express rented : PERSON ↔
TITLE in SAL we have to create a symbolic name for a SAL product type
PERSON__X__TITLE : TYPE = [PERSON, TITLE] for use in the declaration
rented: set{PERSON__X__TITLE}!Set since the product type cannot be used
directly in the instantiation of the set context. So, unless the type is named
elsewhere, we have to generate an artificial name for it, which is declared early
in the SAL output. Finally the schema predicates are scanned, to optimize them
and also to identify any extra declarations we need, including those required by
a count context (see below), which is used to express set cardinality.

Having cleaned up the Z as far as possible, in the manner just described, the
SAL is generated. First the named types and constants are generated. The order
of these is insignificant in SAL but, from a human point of view, it is useful to
have them in the same order as they appear in the original Z. To this end a
list of identifiers in order of first use is kept by the lexical analyser and can be
used to order the initial declarations in the SAL correctly. After this the types
and counters generated by the translator are generated, the state invariant and
finally the operation schemas, transformed into transitions, are exported. Here
again we maintain the same order for readability.

3 Overview of the translation strategy

A specification in the SAL input language consists of a number of context files, in
which all the declarations are placed. In our translation, we use a master CONTEXT
for the main Z specification and refer to other context files, which define the
behaviour of the mathematical toolkit. The master context includes declarations
of the basic types and constants; and declares the finite state automaton, known
as a MODULE, which represents the Z state schema as a collection of local state
variables and the Z operation schemas as transitions of the automaton, acting
on the local, input and output variables.

Types: We adopt the following scheme for the translation of Z types:

Z SAL translation
Built-in types such as N etc Finite subranges of SAL equivalent types

Given sets Enumerated finite type in SAL
Free types Constructed type in SAL

So, in the example in Appendix A, the given type [PERSON] is trans-
lated to: PERSON : TYPE = {PERSON__1, PERSON__2, PERSON__3}; SAL con-
structed types may be recursive, but some implementations of the SAL tools
cannot process recursive definitions because they expand all recursive construc-
tions infinitely as the definitions are compiled to BDDs. This problem may be
fixed in future releases of the SAL toolset. We assume for the moment that the
input does not contain recursively-defined data types.

Constants and axiomatic definitions: The most direct way to translate
constants and axiomatic definitions is to declare them as a SAL local variable,
within the module clause. However, this multiplies the state space of the system,
but with many of the states being over-constrained. We thus attempt to identify
suitable exact values for constants in the translation, which can often be done by
looking at predicates which involve the constant elsewhere in the specification.

State and initialisation schemas: The Z state schema is converted into
LOCAL variable declarations within the MODULE clause, with a corresponding
DEFINITION clause to represent the schema invariant. This defines a local ab-
breviation invariant__ for a boolean equation expressing constraints on the
values of local variables; and could also include further constraints resulting
from axiomatic definitions. The Z initialization schema is translated in a non-
constructive style into a guarded command in the INITIALIZATION clause of the
SAL module, with the invariant as part of the guard.

Operation Schemas: The translation of Z operation schemas into SAL
consists of three stages. First, all input and output variables are extracted and
converted into their cognate forms in SAL. In addition, each operation schema
is converted into a single transition, such that the Z schema predicate becomes
the guard for the guarded command, expressing the relationship between the
primed and unprimed versions of variables. The primed invariant__’ is added
to the guard, to indicate that the invariant must hold after firing each transition.
Finally, a catch-all ELSE branch is added to the guarded commands, to ensure
that the transition relation is total (for soundness of the model checking).

In Z. input and output variables are locally scoped to each operation schema,
but exist in the same scope in the SAL MODULE clause, therefore we prefix input
and outputs by the name of the Z schema from which they originate (additionally,
outputs use an underscore decoration rather than a !).

Thus the example in Appendix A is translated into the following SAL frag-
ment (we have elided parts of the translation - the complete output is in Appendix
B). In particular, the assignment of updated values occurs before the --> in the
transitions in this non-constructive style of encoding.

example : CONTEXT = BEGIN

PERSON : TYPE = {PERSON__1, PERSON__2, PERSON__3};

NAT : TYPE = [0..4];

...

State : MODULE =

BEGIN

LOCAL members : set {PERSON;} ! Set

LOCAL rented : set {PERSON__X__TITLE;} ! Set

LOCAL stockLevel : [TITLE -> NAT]

INPUT RentVideo__p? : PERSON

INPUT AddTitle__t? : TITLE

...

OUTPUT CopiesOut__copies_ : NAT

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ = ...

INITIALIZATION [

members = set {PERSON;} ! empty AND

stockLevel = function{TITLE, NAT; TITLE__B, 4}!empty AND invariant__

-->

]

TRANSITION [

RentVideo :

...

-->

members’ IN { x : set {PERSON;} ! Set | TRUE};

rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};

stockLevel’ IN { x : [TITLE -> NAT] | TRUE}

[]

AddTitle :

...

ELSE -->

END

4 The mathematical toolkit

The heart of the translation deals with the Z mathematical toolkit, which pro-
vides a rich vocabulary of mathematical data types, including sets, products, re-
lations, functions, sequences and bags. The challenge is to represent these types,
and the operations that act upon them, efficiently in SAL, whilst still preserving

the expressiveness of Z. The basic approach is to define one or more context files
for each data type in the toolkit. For example, the set-context implements a set
as a function from elements to BOOLEAN. This is a standard encoding for sets,
optimized for symbolic model checkers that use BDDs as the core representation
[2, 3]. A set is not a single, monolithic entity, but rather a polylithic membership
predicate over all of its elements. Set operations are defined in the following
style:

union(setA : Set, setB : Set) : Set =
LAMBDA (elem : T) : setA(elem) OR setB(elem);

However, the encoding causes problems when calculating the cardinality of
sets. In [10] cardinality is defined as the search for a relation between sets and
natural numbers. However, we found that this was inefficient when implemented
[6]. We also tried two other encodings for counted sets, which relied on brute-
force enumeration of elements. Since then, we have removed the size? function
altogether from the standard, efficient set-context and provide this in a sepa-
rately generated countN-context, parameterized over arbitrary N elements. This
separation of concerns provides brute-force counting only when the specification
actually requires this. For example, three possible elements may be counted by
the size? function from the count3-context:

count3{T : TYPE; e1, e2, e3 : T} : CONTEXT =
BEGIN
Set : TYPE = [T -> BOOLEAN];
size? (set : Set) : NATURAL =
IF set(e1) THEN 1 ELSE 0 ENDIF +
IF set(e2) THEN 1 ELSE 0 ENDIF +
IF set(e3) THEN 1 ELSE 0 ENDIF;

END

A similar strategy was adopted for encoding relations. The initial idea was
to define relations as sets of pairs. We found that the SAL parser rejected type-
instantiation with anything other than a simple symbolic type name, which
initially limited the use of constructed product-types, but we later adopted the
work-around of defining symbolic aliases for each product-type.

The standard relation-context is parameterized over the domain and range
element-types, and internally defines two pair-types, two set-types for the domain
and range, and two set-types for the relation and inverse relation, followed by
operations on relations:

relation{X, Y : TYPE; } : CONTEXT =
BEGIN
XY : TYPE = [X, Y];
YX : TYPE = [Y, X];
Domain : TYPE = [X -> BOOLEAN];
Range : TYPE = [Y -> BOOLEAN];
Relation : TYPE = [XY -> BOOLEAN];

Inverse : TYPE = [YX -> BOOLEAN];
...
domain (rel : Relation) : Domain =
LAMBDA (x : X) : EXISTS (y : Y) :
LET pair : XY = (x, y) IN rel(pair);

END

This translation makes maximally-efficient use of the direct encoding of sets
as boolean functions, for example, using internal variables (introduced by LET)
to facilitate the toolset’s manipulation of symbolic structures.

There was the option of re-implementing all of the set operations again in
the relation-context; however, for efficiency we provide definitions only for the
additional operations upon relations. In our example, specific relation operations
(such as domain) are selected from this relation-context, whereas standard set-
operations (such as contains?) are selected from a set-context, treating the
same relation as a set of pairs:

... relation {PERSON, TITLE;} ! domain(rented) ...

... set {PERSON__X__TITLE;} ! contains?(rented,
(RentVideo__p?, RentVideo__t?)) ...

The success of this partitioning approach motivated our splitting the com-
plete definition of relations over three contexts, according to the number of types
related. The standard context provides all operations on relations between two
distinct base types. A separate context provides all operations on relations closed
over a single type (such as identity, transitive closure); while a third context de-
fines relational composition, relating three types. The translator exports these
contexts only if they are needed.

In translating Z functions, we could either model them as sets of pairs,
thereby easing the integration into the models for sets and relations, or use
the SAL built-in function type. Timing experiments confirmed that using native
SAL functions was far more efficient. However, SAL functions are total . To sup-
port the more commonly-occurring partial functions in Z we adopt a totalizing
strategy, in which every type appearing in a function signature is extended with
a bottom value. This is typically an extra symbolic value (such as TITLE__B) for
basic types and an out-of-range value for numeric types. Partial Z functions are
converted into total SAL functions, in which some domain or range values are
bottom. At the same time, extra invariants are added to the translation of Z op-
eration schemas to assert that input and output variables never take the bottom
value. This approach was more scalable than defining two versions of each type,
with and without bottom.

The function-context is parameterized over the domain and range element-
types, but also includes value-parameters for the bottom element of each of these
types. This allows operations on functions to recognize undefined cases. The con-
text defines the function-type, but also pair-types for the corresponding relation
and inverse relation, and supplies a convert operation to convert a SAL-function
back into our preferred encoding for a relation as a set of pairs:

function {X, Y : TYPE; xb : X, yb : Y} : CONTEXT =
BEGIN
XY : TYPE = [X, Y];
YX : TYPE = [Y, X];
Function : TYPE = [X -> Y];
Relation : TYPE = [XY -> BOOLEAN];
Inverse : TYPE = [YX -> BOOLEAN];
Domain : TYPE = [X -> BOOLEAN];

...
convert (fun : Function) : Relation =
LAMBDA (pair : XY) : fun(pair.1) = pair.2
AND pair.1 /= xb AND pair.2 /= yb;

END

Since this encoding is quite different from the relation encoding, we re-implemented
some of the standard operations on relations, to optimize these for functions, eg:

image (fun : Function, set : Domain) : Range =
LAMBDA (y : Y) : EXISTS (x : X) :
set(x) AND fun(x) = y AND y /= yb;

Here, maximal use is made of native function application, which is extremely
efficient in SAL, while including extra side-constraints to rule out mappings that
would include bottom. To simplify the definition of these and other operations
on functions, a global constraint fun(xb) = yb is asserted in the main context.

Z distinguishes many function types for plain, injective, surjective and bijec-
tive functions (in total and partial combinations). The strategy in SAL is not
to create additional function types, which would either require duplication of all
function operations, or would prevent treating e.g. an injective function just as
a plain function. Instead, the Z definitions of each function type are converted
into predicates, that are added to the system invariant. For example, a (partial)
surjective function is constrained by the predicate:

surjective? (f : Function) : BOOLEAN =
FORALL (y : Y) : EXISTS (x : X) : f(x) = y;

and the extra conjunction is added to constrain myFun in the invariant:

DEFINITION invariant__ = ...
AND function{Dom, Ran, dom__b, ran__b}! surjective?(myFun)...

The predicates must be coded in such a way that they are not violated if the
functions are in fact empty, as is typical at the start of a simulation.

Finally, the SAL contexts encoding Z sets, functions and relations also include
a number of optimized operations for dealing with common Z cases. For example,
the insertion of single elements into sets is expressed in Z as the union of a set
with a constructed singleton set. In SAL, this can be achieved much more simply
with an extra insert operation in the set-context:

insert (set : Set, new : T) : Set =
LAMBDA (elem : T) : elem = new OR set(elem);

Likewise, the Z style of replacing maplets in functions using the override operator
is handled much more efficiently by providing an extra insert operation in the
function-context:

insert (fun : Function, pair : XY) : Function =
LAMBDA (x : X) : IF x = pair.1
THEN pair.2 ELSE fun(x) ENDIF;

These special cases are identified in our parser. Similar special operations are
supplied for empty and universal sets, singleton sets and empty functions.

5 Use of the tool

The SAL toolset uses a command line interface, as does our translator. The
translator accepts the LATEX markup as defined in the Z standard, and the
translator output is a plain SAL file. We have work in progress to port the
translator to accept the ZML markup for Z, using the ASTs constructed by the
parser produced by the CZT project [8]. We also have work in progress to build
a GUI interface to the command-line tools and interpret the results, which are
rather dense at the moment.

Simulation: The SAL translation of the example can be simulated by run-
ning the sal-sim tool and loading the SAL file. The compilation process takes
about 6-7 seconds for this example on a standard desktop. Our example creates
11664 initial states, most of which are due to assigning all possible values to
the INPUT and OUTPUT variables (since we initialise the LOCAL variables to fixed
values). While it is necessary to represent all possible input conditions for the
first simulation step, we could reduce the number of initial states by constraining
the unused values of output variables. The simulation is triggered by repeated
calls to the (step!) function and the number of resulting states may be viewed:

Step 0 1 2 3 4 5
States 11664 221040 1752048 7918848 24593328 61568640

As well as displaying n of the states found at each step, it is possible to see
an arbitrary trace through the system, by a command which selects a random
trace. For example, after five steps, a trace is returned that shows how the system
performed the following:

Step Transition Updates
0 Init members, rented , stockLevel = ∅
1 AddTitle stockLevel(TITLE 2) = 3
2 AddMember PERSON 2 ∈ members
3 AddMember PERSON 3 ∈ members
4 RentVideo (PERSON 3, TITLE 2) ∈ rented
5 Else no change

From this, it can be seen that the system acquired some videos and members
and rented a title to one of the members. The final step selected the default
ELSE-transition, a nullop that is always possible, in case a simulation deadlocks.

Model Checking: The SAL toolkit has several simple and bounded model-
checkers that support both LTL and CTL temporal logics. At the moment, we
add theorems by hand to the end of the translated SAL file. Eventually, we
expect to add an extension to Z to express theorems in temporal logic.

Suppose that we want to show that videos eventually get rented to members
of the video club. In SAL, we propose the negation of this as a theorem:

th1 : THEOREM State |- G(set {PERSON__X__TITLE;}!empty?(rented));

This says that ”the State module allows us to derive that the relation rented
is always empty,” using the LTL operator G for always. We run this through the
model checker and this generates the smallest counterexample that proves the
desired property:

Step Transition Updates
0 Init members, rented , stockLevel = ∅
1 AddTitle stockLevel(TITLE 2) = 3
2 AddMember PERSON 1 ∈ members
3 RentVideo (PERSON 1,TITLE 2) ∈ rented

For our example, the time taken is again about 6-7 seconds, however, the
majority of time is taken up compiling the example, and the execution time to
find the counterexample was 0.17 seconds. Proper evaluation and scalability is
left for future work.

6 Conclusion

In conclusion, we have achieved a fairly efficient translation of Z into SAL,
demonstrating the benefits of encodings that are close to SAL’s internal BDD
structures and giving heuristics for reducing the initial state-space. New results
reported in this paper include the translation of schema invariants and the op-
timized datatypes for the Z mathematical toolkit. We have also identified some
problems in handling constructed and recursive types in SAL. Future work will
include translating the rest of the mathematical toolkit.
Acknowledgements: This work was done as part of collaborative work with the
University of Queensland, and in particular, Graeme Smith and Luke Wildman.
Tim Miller also gave valuable advice on the current CZT tools.

References

1. C. Bolton. Using the Alloy Analyzer to Verify Data Refinement in Z. Electronic
Notes in Theoretical Computer Science, 137(2):23–44, 2005.

2. Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers, 35(8):677–691, 1986.

3. Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Comput. Surv., 24(3):293–318, 1992.

4. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
5. L. de Moura, S. Owre, and N. Shankar. The SAL language manual. Technical

Report SRI-CSL-01-02 (Rev.2), SRI International, 2003.
6. John Derrick, Siobhán North, and Tony Simons. Issues in implementing a model

checker for z. In Zhiming Liu and Jifeng He, editors, ICFEM, volume 4260 of
Lecture Notes in Computer Science, pages 678–696. Springer, 2006.

7. M. Leuschel and M. Butler. Automatic refinement checking for B. In K. Lau
and R. Banach, editors, International Conference on Formal Engineering Methods,
ICFEM 2005, volume 3785 of LNCS, pages 345–359. Springer-Verlag, 2005.

8. Tim Miller, Leo Freitas, Petra Malik, and Mark Utting. CZT Support for Z Ex-
tensions. In Judi Romijn, Graeme Smith, and Jaco Pol, editors, Integrated Formal
Methods, IFM 2005, volume 3771 of LNCS, pages 227–245. Springer-Verlag, 2005.

9. Daniel Plagge and Michael Leuschel. Validating Z Specifications using the ProB
Animator and Model Checker. Integrated Formal Methods, 4591:480–500, 2007.

10. G. Smith and L. Wildman. Model checking Z specifications using SAL. In H. Tre-
harne, S. King, M. Henson, and S. Schneider, editors, International Conference of
Z and B Users, volume 3455 of LNCS, pages 87–105. Springer-Verlag, 2005.

Appendix A

The following defines a video shop and the process of renting videos etc.

[PERSON ,TITLE]

State
members : P PERSON
rented : PERSON ↔ TITLE
stockLevel : TITLE 7→ N

dom rented ⊆ members
ran rented ⊆ dom stockLevel

Init
State ′

members ′ = ∅
stockLevel ′ = ∅

RentVideo
∆State
p? : PERSON
t? : TITLE

p? ∈ members
t? ∈ dom stockLevel
stockLevel(t?) > #(rented B {t?})
(p?, t?) 6∈ rented
rented ′ = rented ∪ {(p?, t?)}
stockLevel ′ = stockLevel
members ′ = members

AddTitle
∆State
t? : TITLE
level? : N

stockLevel ′ = stockLevel ⊕ {(t?, level?)}
rented ′ = rented
members ′ = members

DeleteTitle
∆State
t? : TITLE

t? 6∈ ran rented
t? ∈ dom stockLevel
stockLevel ′ = {t?} −C stockLevel
rented ′ = rented
members ′ = members

AddMember
∆State
p? : PERSON

p? 6∈ members
stockLevel ′ = stockLevel
rented ′ = rented
members ′ = members ∪ {p?}

CopiesOut
ΞState
t? : TITLE
copies! : N

t? ∈ dom stockLevel
copies! = #(rented B {t?})

Appendix B

This following is the SAL output from the translation of the above.

example : CONTEXT = BEGIN

PERSON : TYPE = {PERSON__1, PERSON__2, PERSON__3};

TITLE : TYPE = {TITLE__1, TITLE__2, TITLE__3, TITLE__B};

PERSON__X__TITLE : TYPE = [PERSON, TITLE];

NAT : TYPE = [0..4];

PERSON__X__TITLE__counter : CONTEXT = count12 {PERSON__X__TITLE;

(PERSON__1, TITLE__1), (PERSON__1, TITLE__2), (PERSON__1, TITLE__3),

(PERSON__1, TITLE__B), (PERSON__2, TITLE__1), (PERSON__2, TITLE__2),

(PERSON__2, TITLE__3), (PERSON__2, TITLE__B), (PERSON__3, TITLE__1),

(PERSON__3, TITLE__2), (PERSON__3, TITLE__3), (PERSON__3, TITLE__B)};

State : MODULE =

BEGIN

LOCAL members : set {PERSON;} ! Set

LOCAL rented : set {PERSON__X__TITLE;} ! Set

LOCAL stockLevel : [TITLE -> NAT]

INPUT RentVideo__p? : PERSON

INPUT RentVideo__t? : TITLE

INPUT AddTitle__t? : TITLE

INPUT AddTitle__level? : NAT

INPUT DeleteTitle__t? : TITLE

INPUT AddMember__p? : PERSON

INPUT CopiesOut__t? : TITLE

OUTPUT CopiesOut__copies_ : NAT

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ = (set {PERSON;} ! subset?(relation {PERSON, TITLE;} !

domain(rented), members) AND

set {TITLE;} ! subset?(relation {PERSON, TITLE;} ! range(rented),

function {TITLE, NAT; TITLE__B, 4} ! domain(stockLevel)) AND

stockLevel (TITLE__B) = 4 AND

RentVideo__t? /= TITLE__B AND

AddTitle__t? /= TITLE__B AND

AddTitle__level? /= 4 AND

DeleteTitle__t? /= TITLE__B AND

CopiesOut__t? /= TITLE__B AND

CopiesOut__copies_ /= 4)

INITIALIZATION [

members = set {PERSON;} ! empty AND

stockLevel = function {TITLE, NAT; TITLE__B, 4} ! empty AND invariant__

-->

]

TRANSITION [

RentVideo :

set {PERSON;} ! contains?(members, RentVideo__p?) AND

set {TITLE;} ! contains?(function {TITLE, NAT; TITLE__B, 4} !

domain(stockLevel), RentVideo__t?) AND

stockLevel (RentVideo__t?) > PERSON__X__TITLE__counter !

size?(relation {PERSON, TITLE;} ! rangeRestrict(rented, set

{TITLE;} ! singleton(RentVideo__t?))) AND

NOT set {PERSON__X__TITLE;} ! contains?(rented, (RentVideo__p?,

RentVideo__t?)) AND

rented’ = set {PERSON__X__TITLE;} ! insert(rented, (RentVideo__p?,

RentVideo__t?)) AND

stockLevel’ = stockLevel AND

members’ = members AND

invariant__’

-->

members’ IN { x : set {PERSON;} ! Set | TRUE};

rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};

stockLevel’ IN { x : [TITLE -> NAT] | TRUE}

[]

AddTitle :

stockLevel’ = function {TITLE, NAT; TITLE__B, 4} ! insert(stockLevel,

(AddTitle__t?, AddTitle__level?)) AND

rented’ = rented AND

members’ = members AND

invariant__’

-->

members’ IN { x : set {PERSON;} ! Set | TRUE};

rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};

stockLevel’ IN { x : [TITLE -> NAT] | TRUE}

[]

DeleteTitle :

NOT set {TITLE;} ! contains?(relation {PERSON, TITLE;} !

range(rented), DeleteTitle__t?) AND

set {TITLE;} ! contains?(function {TITLE, NAT; TITLE__B, 4} !

domain(stockLevel), DeleteTitle__t?) AND

stockLevel’ = function {TITLE, NAT; TITLE__B, 4} ! domainSubtract(set

{TITLE;} ! singleton(DeleteTitle__t?), stockLevel) AND

rented’ = rented AND

members’ = members AND

invariant__’

-->

members’ IN { x : set {PERSON;} ! Set | TRUE};

rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};

stockLevel’ IN { x : [TITLE -> NAT] | TRUE}

[]

AddMember :

NOT set {PERSON;} ! contains?(members, AddMember__p?) AND

stockLevel’ = stockLevel AND

rented’ = rented AND

members’ = set {PERSON;} ! insert(members, AddMember__p?) AND

invariant__’

-->

members’ IN { x : set {PERSON;} ! Set | TRUE};

rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};

stockLevel’ IN { x : [TITLE -> NAT] | TRUE}

[]

CopiesOut :

members = members’ AND

rented = rented’ AND

stockLevel = stockLevel’ AND

set {TITLE;} ! contains?(function {TITLE, NAT; TITLE__B, 4} !

domain(stockLevel), CopiesOut__t?) AND

CopiesOut__copies_’ = PERSON__X__TITLE__counter ! size?(relation

{PERSON, TITLE;} ! rangeRestrict(rented, set {TITLE;} !

singleton(CopiesOut__t?))) AND

invariant__’

-->

members’ IN { x : set {PERSON;} ! Set | TRUE};

rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};

stockLevel’ IN { x : [TITLE -> NAT] | TRUE};

CopiesOut__copies_’ IN { x : NAT | TRUE}

[]

ELSE -->

]

END;

END

