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Preface

We are proud to present the papers from the 15th Refinement Workshop, co-
located with FM 2011 held in Ireland on June 20th, 2011.

Refinement is one of the cornerstones of a formal approach to software en-
gineering: the process of developing a more detailed designor implementation
from an abstract specification through a sequence of mathematically-based steps
that maintain correctness with respect to the original specification.

This 15th workshop continued a 20+ year tradition in refinement workshops
run under the auspices of the British Computer Society (BCS)FACS special
interest group. After the first seven editions had been held in the UK, in 1998
it was combined with the Australasian Refinement Workshop toform the Inter-
national Refinement Workshop, hosted at The Australian National University.
Six more editions have followed in a variety of locations, all with electronic
published proceedings and associated journal special issues, see the workshop
homepage atwww.refinenet.org.uk for more details.

Like the previous two editions, the 15th edition was co-located with the FM
international conference, which again proved to be a very productive pairing of
events. This volume contains 11 papers selected for presentation at the work-
shop following a peer review process. The papers cover a widerange of topics
in the theory and application of refinement. Previous recentworkshops have ap-
peared in as ENTCS proceedings, this year we are publishing with EPTCS for
the first time, and we would like to thank the editorial board (and in particular
Rob van Glabbeek) for their help and cooperation in making this happen. This
edition had a small Program Committee, whose names appear below, and we
thank them for their work.

A special issue of the journal Formal Aspects of Computing isplanned con-
taining developments and extensions of the best workshop papers.

The organisers would like to thank everyone: the authors, BCS-FACS, EPTCS,
and the organisers of FM 2011 for their help in organising this workshop, the
participants of the workshop, and the reviewers involved inselecting the papers.
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Discovery of Invariants through
Automated Theory Formation ∗

Maria Teresa Llano† Andrew Ireland
Heriot-Watt University

School of Mathematical and Computer Sciences

Alison Pease
University of Edinburgh

School of Informatics

Refinement is a powerful mechanism for mastering the complexities that arise when formally mod-
elling systems. Refinement also brings with it additional proof obligations – requiring a developer to
discover properties relating to their design decisions. With the goal of reducing this burden, we have
investigated how a general purpose theory formation tool, HR, can be used to automate the discovery
of such properties within the context of Event-B. Here we develop a heuristic approach to the auto-
matic discovery of invariants and report upon a series of experiments that we undertook in order to
evaluate our approach. The set of heuristics developed provides systematic guidance in tailoring HR
for a given Event-B development. These heuristics are based upon proof-failure analysis, and have
given rise to some promising results.

1 Introduction

By allowing a developer to incrementally introduce design details, refinement provides a powerful mech-
anism for mastering the complexities that arise when formally modelling systems. This benefit comes
with proof obligations (POs) – the task of proving the correctness of each refinement step. Discharging
such proof obligations typically requires a developer to supply properties – properties that relate to their
design decisions. Ideally automation should be provided to support the discovery of such properties,
allowing the developer to focus on design decisions rather than analysing failed proof obligations.

With this goal in mind, we have developed a heuristic approach for the automatic discovery of in-
variants in order to support the formal modelling of systems. Our approach, shown in Figure 1, involves
three components:

• a simulation component that generates system traces,

• an Automatic Theory Formation (ATF) component that generates conjectures from the analysis of
the traces and,

• a formal modelling component that supports proof and proof failure analysis.

Crucially, proof and proof failure analysis is used to tailor the theory formation component.
From a modelling perspective we have focused on Event-B [1] and the Rodin tool-set [2], in particular

we have used the ProB animator plug-in [14] for the simulation component. In terms of ATF, we have
used a general-purpose system called HR [4]. Generating invariants from the analysis of ProB animation
traces is an approach analogous to that of the Daikon system [9]; however, while Daikon is tailored for
programming languages here we focus on formal models. We come back to this in §6.

∗The research reported in this paper is supported by EPSRC grants EP/F037058 and EP/F035594.
†Maria Teresa Llano is partially funded by a BAE Systems studentship.



2 Discovery of Invariants through Automated Theory Formation

Figure 1: Approach for the automatic discovery of invariants.

Our investigation involved a series of experiments, drawing upon examples which include Abrial’s
“Cars on a Bridge” [1] and the Mondex case study by Butler et al. [3] . Our initial experiments high-
lighted the power of HR as a tool for automating the discovery of both system and gluing invariants
– system invariants introduce requirements of the system while gluing invariants relate the state of the
refined model with the state of the abstract model. However, our experiments also showed significant
limitations: i) selecting the right configuration for HR according to the domain at hand, i.e. selection of
production rules and the number of theory formation steps needed to generate the missing invariants, and
ii) the overwhelming number of conjectures that are generated. This led us to consider how HR could be
systematically tailored to provide practical support during an Event-B development. As a result we de-
veloped a set of heuristics which are based upon proof-failure analysis. These heuristics have given rise
to some promising results and are the main focus of this paper. Although we show here the application of
our technique in the context of Event-B, we believe our approach can be applied to any refinement style
formal modelling framework that supports simulation and that uses proof in order to verify refinement
steps.

The remainder of this paper is organised as follows. In §2 we provide background on both Event-B
and HR. The application of HR within the context of Event-B is described in §3, along with the limitations
highlighted above. In §4 we present our heuristics, and describe their rationale. Our experimental results
are given in §5, while related and future work are discussed in §6.

2 Background

2.1 Event-B

Event-B promotes an incremental style of formal modelling, where each step of a development is un-
derpinned by formal reasoning. An Event-B development is structured around models and contexts. A
context represents the static parts of a system, i.e. constants and axioms, while the dynamic parts are rep-
resented by models. Models have a state, i.e. variables, which are updated via guarded actions, known
as events, and are constrained by invariants.

To illustrate the basic features of a refinement consider the two events shown in Figure 2, which
are part of the Mondex development [3]. The Mondex system models the transfer of money between
electronic purses. The event StartFrom handles the initiation of a transaction on the side of the source
purse. In order to initiate a transaction, the source purse must be in the idle state (waiting state) and
after the transaction has been initiated the state of the purse must be changed to epr (expecting request).
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As shown in Figure 2, in this step of the refinement the abstract model represents the state of purses by
disjoint sets, i.e. the variables eprP and idleFP, while the concrete model handles these states through a
function, i.e. the variable statusF, which maps a purse to an enumerated set that represents the current
state, i.e. the constants IDLEF and EPR.

Abstract event
StartFrom =̂

any t, p1
where

p1 ∈ idleFP
...

then
eprP := eprP ∪ {p1}
idleFP := idleFP \ {p1}
...

end

Concrete event
StartFrom =̂

refines StartFrom
any t, p1
where

p1 7→ IDLEF ∈ statusF
...

then
statusF(p1) := EPR
...

end

Figure 2: Abstract and concrete views of event StartFrom.

Note that the keyword refines specifies the event being refined, while the keywords any, where and
then delimit event parameters, guards and actions respectively. Note also that the concrete event on the
right represents a refinement of the abstract event on the left.

In order to verify this refinement an invariant is required that relates the concrete and abstract states –
these are known as gluing invariants. In the case of the events given above, the required gluing invariant
takes the form:

idleFP = statusF−1[{IDLEF}] (1)

This invariant states that the abstract set idleFP can be obtained from the inverse of the function
statusF evaluated over the enumerated set IDLEF. A similar gluing invariant would be required for the
abstract set eprP and the function statusF. Within the Rodin toolset1, the user is required to supply such
gluing invariants. Likewise, invariants relating to state variables within a single model must also be
supplied by the user – what we refer to here as system invariants. To illustrate, the following disjointness
property represents an invariant of the abstract event above:

eprP ∩ idleFP = ø

From a theoretical perspective such invariants are typically not very challenging. They are how-
ever numerous and represent a significant obstacle to increasing the accessibility of formal refinement
approaches such as Event-B.

2.2 Automated theory formation and HR

Lenat developed one of the earliest examples of a discovery system in mathematics; Automated Math-
ematician (AM) [12] and its successor Eurisko [13]. Despite subsequent methodological criticism of

1Rodin provides an Eclipse based platform for Event-B, with a range of modelling and reasoning plug-ins, e.g. UML-B
[23], ProB model checker and animator [14], B4free theorem prover (http://www.b4free.com).



4 Discovery of Invariants through Automated Theory Formation

Lenat’s work [22], he did show us that it is possible to formalise heuristics for discovery in mathematics.
Colton has developed this intuition in his HR machine learning system2 [4]. HR performs descriptive
induction to form a theory about a set of objects of interest which are described by a set of core con-
cepts (this is in contrast to predictive learning systems which are used to solve the particular problem
of finding a definition for a target concept). Based on Colton’s observation that it is possible to gain an
understanding of a complex concept by decomposing it via small steps into simpler concepts, Colton
defined production rules which take in concepts and make small changes to produce further concepts.

HR constructs a theory by finding examples of objects of interest, inventing new concepts, making
plausible statements relating those concepts, evaluating both concepts and statements and, if working in
a mathematical domain, proving or disproving the statements. Objects of interest are the entities which a
theory discusses. For instance, in number theory the objects of interest are integers, in group theory they
are groups, etc. Concepts are either provided by the user (core concepts) or developed by HR (non-core
concepts) and have an associated data table (or table of examples). The data table is a function from an
object of interest, such as the number 1, or the prime 3, to a truth value or a set of objects.

Each production rule is generic and works by performing operations on the content of one or two
input data tables and a set of parameterisations in order to produce a new output data table, thus forming
a new concept. The production rules and parameterisations are usually applied automatically according
to a search strategy which has been entered by the user, and are applied repeatedly until HR has either
exhausted the search space or has reached a user-defined number of theory formation steps to perform.
Production rules include:

• The split rule: this extracts the list of examples of a concept for which some given parameters hold.

• The negate rule: this negates predicates in the new definition.

• The compose rule: combines predicates from two old concepts in the new concept.

• The arithmetic rule: performs arithmetic operations (+, -, ∗, ÷) on specified entries of two con-
cepts.

• The numrelation rule: performs arithmetic comparisons (<, >, ≤, ≥) on specified entries of two
concepts.

Each time a new concept is generated, HR checks to see whether it can make conjectures with it.
This could be equivalence conjectures, if the new concept has the same data table as a previous concept;
implication conjectures, if the data table of the new concept either subsumes or is subsumed by that of
another concept, or non-existence conjectures, if the data table for the new concept is empty.

Thus, the theories HR produces contain concepts which relate the objects of interest; conjectures
which relate the concepts; and proofs which explain the conjectures. Theories are constructed via theory
formation steps which attempt to construct a new concept and, if successful, formulate conjectures and
evaluate the results. HR has been used for a variety of discovery projects, including mathematics and
scientific domains (it has been particularly successful in number theory [6] and algebraic domains [19])
and constraint solvers [8, 21].

As an example, we show how HR produces the concept of prime numbers and the conjecture that
all prime numbers are non-squares. Figure 3 shows the data tables used by HR for the formation of the
concept of prime numbers.

In order to generate this concept, HR would take in the concept of divisors (b|a where b is a divisor
of a), represented by a data table for a subset of integers (partially shown in Figure 3 for integers from

2HR is named after mathematicians Godfrey Harold Hardy (1877 - 1947) and Srinivasa Aiyangar Ramanujan (1887 - 1920).
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Divisors

integer
divisor

b|a
1 1
2 1
2 2
3 1
3 3
. .
. .

10 1
10 2
10 5
10 10

size < 1 >
−→

Tau function

integer
number of divisors
|{b : b|a}|

1 1
2 2
3 2
4 3
5 2
6 4
7 2
8 4
9 3

10 4

split< 2 = 2 >
−→

Primes
2 = |{b : b|a}|

integer
2
3
5
7

Figure 3: Steps applied by HR to produce the concept of prime numbers.

1 to 10). Then, HR would apply the size production rule with the parameterisation < 1 >. This means
that the number of tuples for each entry in column 1 are counted, and this number is then recorded for
each entry. For instance, in the data table representing the concept of divisors, 1 appears only once in the
first column, 2 and 3 appear twice each, and 10 appears four times. This number is recorded next to the
entries in a new data table (the table for the concept Tau function). HR then takes in this new concept
and applies the split production rule with the parameterisation < 2 = 2 >, which means that it produces
a new data table consisting of those entries in the previous data table whose value in the second column
is 2. This is the concept of a prime number.

After this concept has been formed HR checks to see whether the data table is equivalent to, sub-
sumed by, or subsumes another data table, or whether it is empty. Assuming the concept of non-square
numbers has been formed previously by HR, the data tables of both the concept of prime numbers and
the concept of non-square numbers, shown in Figure 4, are compared.

Prime numbers
2 = |{b : b|a}|

2
3
5
7

Non-square numbers
¬(exists b.(b|a & b∗b = a))

2
3
5
6
7
8
10

Figure 4: Data tables for the concepts of prime and non-square numbers.

HR would immediately see that all of its prime numbers are also non-squares, and so conjectures that
this is true for all prime numbers. That is, it will make the following implication conjecture:

2 = |{b : b|a}|︸ ︷︷ ︸ ⇒ ¬(exists b.(b|a & b∗b = a))︸ ︷︷ ︸
prime number non-square number
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3 Automated theory formation for Event-B models with HR

In this section we show how gluing invariant (1) introduced in the example of §2.1 can be generated
through the use of theory formation and, in particular, with the HR system.

3.1 Construction of conjectures in the domain of the Mondex system

HR’s input consists of a set of core concepts that describe the domain. With respect to Event-B models,
these core concepts are represented by the state of the system, i.e. variables, and by the static information
given in the context of the model, i.e. constants and sets. Furthermore, a concept is composed of a series
of examples. Here, animation traces are used to provide HR with a list of examples for each of the
concepts of an Event-B model. As mentioned before, we use ProB [14] to animate the models. For the
purpose of the example, in Figure 5 we introduce some of the core concepts with their respective data
tables – which were generated through the animation of the model with the ProB system.

state(A)
S0
S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
...

S58
S59

status(A)
IDLEF
EPR
EPA

ABORTEPR
ABORTEPA

ENDF
IDLET
EPV

ABORTEPV
ENDT

purseSet(A)
purse1
purse2
purse3
purse4
purse5

idleFP(A,B)
S5 purse3
S6 purse3
S6 purse5
S7 purse5
S8 purse5

S19 purse4
S25 purse5
S29 purse1
S30 purse1
S31 purse1
S38 purse5
S39 purse5
S40 purse5
S44 purse5
S45 purse5
S52 purse5
S53 purse5
S54 purse5

statusF(A,B,C)
S5 purse3 IDLEF
S6 purse3 IDLEF
S6 purse5 IDLEF
S7 purse3 EPR
S7 purse5 IDLEF
S8 purse3 EPR
S8 purse5 IDLEF
...

...
...

S29 purse1 IDLEF
S29 purse5 ABORTEPR
S30 purse1 IDLEF
S30 purse5 ABORTEPR
S31 purse1 IDLEF
S31 purse5 ABORTEPR

...
...

...
S59 purse1 ABORTEPA

Figure 5: Core concepts supplied to HR

Then, HR applied all possible combinations of concepts and production rules in order to generate
new concepts and form conjectures. After the 433 step, HR formed the concept of the set of purses
whose status in function statusF maps to IDLEF by applying the split production rule. The application
of this step is illustrated in Figure 6. An intermediate output is generated with all tuples of concept
statusF whose third column matches the parameter IDLEF. Since the third column is the same for all
tuples of the intermediate concept, this column is removed from the final output concept.

Immediately after the generation of new concepts, HR looks for relationships with other existing
concepts. As shown in Figure 7, HR found that the new concept has the same list of examples as concept
idleFP, which gives rise to the following equivalence conjecture:

∀A,B.(state(A) ∧ purseSet(B) ∧ idleFP(A,B) ⇔ status(IDLEF) ∧ statusF(A,B, IDLEF))

which can be represented in Event-B as (1).
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Input
statusF(A,B,C)

S5 purse3 IDLEF
S6 purse3 IDLEF
S6 purse5 IDLEF
S7 purse3 EPR
S7 purse5 IDLEF
S8 purse3 EPR
S8 purse5 IDLEF
...

...
...

S29 purse1 IDLEF
S29 purse5 ABORTEPR
S30 purse1 IDLEF
S30 purse5 ABORTEPR
S31 purse1 IDLEF
S31 purse5 ABORTEPR

...
...

...
S59 purse1 ABORTEPA

split<3,IDLEF>
−→

Intermediate
statusF(A,B,IDLEF)
S5 purse3 IDLEF
S6 purse3 IDLEF
S6 purse5 IDLEF
S7 purse5 IDLEF
S8 purse5 IDLEF

S19 purse4 IDLEF
S25 purse5 IDLEF
S29 purse1 IDLEF
S30 purse1 IDLEF
S31 purse1 IDLEF
S38 purse5 IDLEF
S39 purse5 IDLEF
S40 purse5 IDLEF
S44 purse5 IDLEF
S45 purse5 IDLEF
S52 purse5 IDLEF
S53 purse5 IDLEF
S54 purse5 IDLEF

−→

Output
statusF IDLEF(A,B)
S5 purse3
S6 purse3
S6 purse5
S7 purse5
S8 purse5
S19 purse4
S25 purse5
S29 purse1
S30 purse1
S31 purse1
S38 purse5
S39 purse5
S40 purse5
S44 purse5
S45 purse5
S52 purse5
S53 purse5
S54 purse5

Figure 6: Split rule applied to obtain the concept of purses whose status in function statusF is IDLEF.

statusF IDLEF(A,B)
S5 purse3
S6 purse3
S6 purse5
S7 purse5
S8 purse5
S19 purse4
S25 purse5
S29 purse1
S30 purse1
S31 purse1
S38 purse5
S39 purse5
S40 purse5
S44 purse5
S45 purse5
S52 purse5
S53 purse5
S54 purse5

⇔

idleFP(A,B)
S5 purse3
S6 purse3
S6 purse5
S7 purse5
S8 purse5

S19 purse4
S25 purse5
S29 purse1
S30 purse1
S31 purse1
S38 purse5
S39 purse5
S40 purse5
S44 purse5
S45 purse5
S52 purse5
S53 purse5
S54 purse5

Figure 7: Formed equivalence conjecture.

3.2 Challenges in applying HR

For the domain of the Mondex system a total of 4545 conjectures were generated after 1000 formation
steps. As can be observed, this is a considerable set of conjectures to analyse. In general, using HR for
the discovery of invariants presented us with three main challenges:

1. The HR theory formation mechanism consists of an iterative application of production rules over
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existing and new concepts. In order for HR to perform an exhaustive search, all possible combina-
tions of production rules and concepts must be carried out. However, there is not a fixed number
of theory formation steps set up for this process, since this varies depending on the domain, i.e.
some domains need more theory formation steps than others. This represented a challenge for the
use of HR in the discovery of invariants since it was possible that an invariant had not been formed
only because not enough formation steps were run.

2. Some production rules are more effective in certain domains than others. Selecting the appropriate
production rules results in the construction of a more interesting theory. For instance, if we are
looking at a refinement step in an Event-B model that introduces a partition of sets we expect the
new invariants to define properties over the new sets; therefore, production rules like the arithmetic
production rule will not be of much interest in the development of the theory associated to the
refinement step. Automatically selecting appropriate production rules requires knowledge about
the domain; therefore, a technique was needed in order to perform this selection.

3. Finally, as highlighted in our example, HR produces a large number of conjectures – in our ex-
periments some where in the range of 3000 to 12000 conjectures per run – from which only a
very small set represented interesting invariants of the system. Thus, our main challenge was to
find a way of automatically selecting the conjectures that are interesting for the domain among the
conjectures obtained from HR.

In order to overcome these challenges, we have developed an approach that uses proof failure analysis
to guide the search in HR. In the next section, we introduce this approach and illustrate its application,
based on our running example from the Mondex case study.

4 Proof failure analysis and HR

In order to use HR, a user must first configure the system for their application domain. This involves
the user in selecting production rules and conjecture making techniques, as well as deciding how many
steps HR should be run. In the example introduced in §3.1, the application of the split production rule
with respect to the concept statusF, for the value IDLEF, is an informed decision, based upon the user’s
knowledge of the model. On its own, HR does not have the capability of applying this type of reasoning.
Often particular combinations of these parameters turn out to be useful for different domains. Finding
the right combination is largely a process of trial and error.

Here we have developed a heuristic approach with the aim of automating this trial and error process.
Our heuristics exploit the strong interplay between modelling and reasoning in Event-B. In the context
of the discovery of invariants through theory formation, we use the feedback provided by failed POs to
make decisions about how to configure HR in order to guide the search for invariants. Specifically, our
approach consists of analysing the structure of failed POs so that we can automate:

1. the prioritisation in the development of conjectures about specific concepts,
2. the selection of appropriate production rules that increase the possibilities of producing the missing

invariants and,
3. the filtering of the final set of conjectures to be analysed as possible candidate invariants.

4.1 Heuristics

Our heuristics constrain the search for invariants by focusing HR on concepts that occur within failed
POs. We use two classes of heuristics – those used in configuring HR, i.e. Pre-Heuristics (PH), and
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those used in selecting conjectures from HR’s output, i.e. Selection Heuristics (SH). Below we explain
each class of heuristics in turn:

4.1.1 HR configuration heuristics

We use two overall heuristics when configuring HR for a given Event-B refinement:

PH1. Prioritise core and non-core concepts that occur within the failed POs as follows:.

Goal concepts: concepts that appear within the goals of the failed POs.
Hypotheses concepts: concepts that appear within the hypotheses of the failed POs.
Other concepts: concepts that do not appear within the failed POs.

PH2. Select production rules which will give rise to conjectures relating to the concepts occurring within
the failed POs, i.e.

Split rule: is selected if members of finite sets occur.
Arithmetic rule: is selected if there are occurrences of arithmetic operators, e.g. +,-,*,/.
Numrelation rule: is selected if there are occurrences of relational operators, e.g. >,<,≤,≥.

In addition, because of the set theoretic nature of Event-B, the compose, disjunct and negate pro-
duction rules are always used in the search for invariants – where compose relates to conjunction
and intersection, disjunct relates to disjunction and union and negate relates to negation and set
complement.

Below we provide the rationale for these heuristics:

• As explained in §2.2, HR uses the agenda mechanism to organise the theory formation steps. The
purpose of PH1 is to give higher priority to core and non-core concepts that occur within the failed
POs, which means HR will generate related conjectures earlier within the theory formation process
by having the prioritised concepts in the top of the agenda.
Furthermore, we have observed that in most cases, we are able to identify the missing invariants
by focusing in the first instance on the concepts that arise within the goals of the failed POs. As
a result, such concepts are assigned the highest priority in the application of heuristic PH1. The
concepts associated to the hypotheses follow in order of interest, while the remaining concepts are
given the lesser priority.

• The missing invariants that are required in order to overcome proof failures will typically have
strong syntactic similarities with the failed POs. This is the intuition behind PH2, which selects
production rules that focus HR’s theory formation process on such syntactic similarities.

As will be shown in §5, the empirical evidence we have gathered so far supports our rationale.

4.1.2 Conjecture selection heuristics

In order to prune the set of conjectures generated by HR, we use the following five selection heuristics:

SH1. Select conjectures that focus purely on prioritised core and non-core concepts.

SH2. Select conjectures where the sets of variables occurring on the left- and right-hand sides are
disjoint.

SH3. Select only the most general conjectures.
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SH4. Select conjectures that discharge the failed POs.

SH5. Select conjectures that minimise the number of additional proof failures that are introduced.

The rationale for these heuristics is as follows:

• SH1 initiates the pruning of uninteresting conjectures by selecting those that describe properties
about the prioritised core and non-core concepts (as identified by PH1). Furthermore, the selected
conjectures should focus purely on the prioritised concepts; this means that we are interested only
in equivalence and implication conjectures of the forms:

α ⇔ β
α ⇒ β
β ⇒ α

where α relates to a prioritised core or non-core concept and β to any other concept. All non-
existence conjectures associated with the prioritised concepts are selected. Note that this selection
criteria still gives rise to a large set of conjectures. However, as explained in the rationale of PH1
in §4.1.1, in most cases we have identified the missing invariants by focusing first on the concepts
associated to the goals of the failed POs. For the selection process the same reasoning is followed
and, therefore, heuristics SH1 to SH5 are focused first on conjectures associated to the concepts
of the goals identified by the application of PH1. If no candidate invariants are found, or if old
failures are still not addressed by the identified invariants, then the selection process starts again
from SH1 to SH5 but focused on the conjectures associated with the concepts of the hypotheses.

• SH2 further prunes the set of conjectures by selecting only those that do not use the same vari-
able(s) in both sides of the conjecture. The reason for this is that invariants in Event-B typically
express relationships between different variables of the model.

• SH3 is used to eliminate redundancies amongst the set of selected conjectures by removing those
that are logically implied by more general conjectures.

• SH4 is used to select candidate invariants which discharge the given failed POs.

• Potentially, overcoming one proof failure via the introduction of missing invariants may give rise
to new proof fails. SH5 selects conjectures that discharge the failed POs, whilst minimising the
number of new failed POs that are introduced. This iterative approach to discovering all the miss-
ing invariants is typical of Event-B developments, as described in Section 5 of [3], where invariant
discovery is manual. Of course, if a development is incorrect, then this process will not terminate.
We return to the issue of working with incorrect developments in §6.

Note that the selection conjectures must be applied in order from SH1 to SH5 so as to optimise the
selection procedure.

4.2 Worked example

We now illustrate the application of our heuristics by returning to the refinement step described in §3.1.
Recall that the gluing invariant (1) was required in order for the correctness of the refinement to be
proved. When this invariant is missing from the model, an unprovable guard strengthening (GRD) PO3,
as shown in Figure 8, is generated. The failed PO shows that the guard p1 ∈ idleFP of the abstract event
is not implied by the guards of the concrete event.

3 A GRD PO verifies that the guards of a refined event imply the guards of the abstract event.
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Failed PO:
p1 7→ IDLEF ∈ statusF
t ∈ startFromM
p1 = from(t)
Fseqno(t) = currentSeqNo(p1)
`
p1 ∈ idleFP

Figure 8: Failed GRD PO resulting from a missing gluing invariant

We start the process of invariant discovery with the application of heuristic PH1. We extract the list
of core concepts that occur in the failed PO, giving them higher priority within the theory formation
process. The extracted concepts are:

idleFP, statusF, status, startFromM, from, FSeqno and currentSeqNo

Except for status, all these concepts explicitly occur within the PO. Note that status is added because
the constant IDLEF is a representative of the set status.

Regarding non-core concepts, the hypothesis p1 7→ IDLEF ∈ statusF in the failed PO suggests that
function statusF maps an arbitrary purse to the status IDLEF. This is an example of a non-core concept.
This concept is obtained through the application of the split production rule over the concept statusF on
the value IDLEF. No other non-core concepts are identified in the PO.

The next step is the selection of the production rules. The following production rules are used in the
invariant discovery process:

compose, disjunct, negate and split

The compose, disjunct and negate production rules are always used in the search, as defined by
heuristic PH2. The split production rule is selected because hypothesis p1 7→ IDLEF ∈ statusF makes
reference to a member of the finite set status: namely, the constant IDLEF. Thus, the split production
rule is applied over the finite set status and the values to split are all the members of the set, i.e.: IDLEF,
EPR, EPA, ABORTEPR, ABORTEPA, ENDF, IDLET, EPV, ABORTEPV and ENDT.

After the application of the PH heuristics, the initial configuration of HR is complete. By running
HR for 1000 steps, 2134 conjectures were formed. This should be compared with the 4545 conjectures
that are generated if our PH heuristics are not used to configure HR.

Now turning to the SH heuristics, SH1 selects conjectures that relate to the prioritised concepts that
appear within the goal of the failed PO. In our example, this focuses on conjectures that involve the
concept idleFP. After applying SH1 we obtained:

4 equivalences, 2 implications and 79 non-exists conjectures

The application of SH2 removes conjectures whose left- and right-hand sides are not disjoint with
respect to the variable occurrences. The application of SH2 yields the following results:

1 equivalence, 2 implications and 79 non-exists conjectures

Through the application of SH3, less general conjectures are removed. Applying this heuristic pro-
duces:

1 equivalence, 2 implications and 46 non-exists conjectures
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SH4 selects only conjectures that discharge the failed PO, the results of this step are:

1 equivalence, 0 implications and 0 non-exists conjectures

Only one conjecture discharges the failed PO. Furthermore, this conjecture does not introduce any
additional failures; therefore, it represents an invariant. Within HR the invariant takes the form:

∀A,B.(state(A) ∧ purseSet(B) ∧ idleFP(A,B) ⇔ status(IDLEF) ∧ statusF(A,B, IDLEF))

which translates into the missing gluing invariant (1). It should be noted that this conjecture was
formed by HR after one theory formation step. This shows that, in this example, our heuristics guided
HR to discover interesting conjectures early within the theory formation process.

5 Experimental results

The experiments we carried out were divided into two stages. The first stage involved the development
of our heuristics, and was based upon four relatively simple Event-B models, as described below:

1. Traffic light system: This model represents a traffic light circuit that controls the sequencing of
lights. It is composed of an abstract model and involves a single refinement. The abstract model
controls the red and green lights, while the refinement introduces a third light to the sequence, i.e.
an amber light.

2. Two representations of a vending machine:

• Set-like representation: This model of a vending machine controls the stock of products
through the use of states. It is composed of an abstract and a concrete model. The abstract
model represents the states of products using state sets, while the refinement introduces a
status function that maps products to their states.

• Arithmetic-like representation: This model of the vending machine uses natural numbers to
represent the stock and money held within the machine. While the abstract model deals with
a single product, the refinement introduces a second product to the vending machine.

3. Refinements 1 and 2 of Abrial’s cars on a bridge system [1]: Models a system that controls the flow
of cars on a bridge that connects a mainland to an island. At the abstract level, cars are modelled
leaving and entering the island, the first refinement introduces the requirement that the bridge only
supports one way traffic, while the second refinement introduces traffic lights.

We used the second stage of our experiments to evaluate the heuristics developed during stage one.
Here the experiments were performed on more complex Event-B models:

1. Refinement 3 of Abrial’s cars on a bridge system [1]: The third refinement of this system models
the introduction of sensors that detect the physical presence of cars.

2. The Mondex system [3]: Models an electronic purse that allows the transfer of money between
purses. This development is composed of one abstract model and nine refinement steps. We
targeted the third, fourth and eighth refinement steps. The third refinement handles dual state
sets in both sides of a transaction in order to handle information locally. The fourth refinement
introduces the use of messaging channels between purses and the eighth refinement introduces a
status function that maps purses to their states instead of using state sets.
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In the work reported in [3], it was highlighted that the manual analysis of failed POs was used to guide
the construction of gluing invariants. In particular, this was illustrated in the third step of the refinement
in which, through the analysis of failed POs, and after three iterations of invariant strengthening, the set
of invariants needed to prove the refinement between levels three and four were added to the model. As
part of our experiments we attempted the re-construction of the Mondex system in Event-B based on the
development presented in [3]. In the following section we present the results obtained by the application
of our approach to the refinement between levels three and four of the Mondex system, and we show that
these results are similar to the ones obtained through the interactive development [3].

5.1 The Mondex system

In level three of the Mondex system a transaction is permitted to be in one of four states: idle, pending,
recover or ended, while the refinement in level four introduces dual states to a transaction so that each
side has their own local protocol state. In order to evaluate our approach, we introduced the model in
level 4 with only basic typing invariants. The absence of the invariants produces the failed POs shown in
Figure 9.

PO1:
p1 ∈ purse
t ∈ epr
t ∈ epv ∪ abortepv
p1 = from(t)
a ∈ N
a = am(t)
a ≤ bal(p1)
`
t ∈ idle

PO2:
p1 ∈ purse
p2 ∈ purse
t ∈ epv
t ∈ epa ∪ abortepa
a ∈ N
a = am(t)
p1 = from(t)
p2 = to(t)
`
t ∈ pending

PO3:
t ∈ epv
t ∈ abortepa
`
t ∈ pending

PO4:
t ∈ epa
t ∈ abortepv
`
t ∈ pending

PO5:
p1 ∈ purse
t ∈ abortepa
t ∈ abortepv
a ∈ N
a = am(t)
p1 = from(t)
`
t ∈ recover

Figure 9: First set of failed POs.

We start the invariant discovery process with the application of heuristic PH1. The set of core con-
cepts selected from the failed POs are:

idle, pending, recover, purse, epr, epv, abortepv, from, am, bal, epa, abortepa and to

Moreover, from the analysis of the predicates in the failed POs, we identify the following non-core
concepts:

epv ∪ abortepv and epa ∪ abortepa

These concepts are identified from hypotheses t ∈ epv ∪ abortepv and t ∈ epa ∪ abortepa within PO1
and PO2, respectively. Note that t does not represent a concept in the domain, it represents an arbitrary
transaction passed as a parameter to the event associated with the failed POs. For this reason, only the
right hand sides of the membership relations are selected as interesting non-core concepts.

The process continues with the selection of the productions rules. Based on the failed POs shown in
Figure 9, the following production rules are selected for the search:

compose, disjunct, negate and numrelation
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The compose, disjunct and negate production rules are always used in the search as stated in heuristic
PH2. The numrelation production rule is selected because hypothesis a≤ bal(p1) within PO1 expresses
a property based on the relational operator ≤. After the pre-heuristics have been applied HR is run for
1000 steps, resulting in 7296 conjectures.

The selection heuristics are now applied over this set of conjectures. Heuristic SH1 suggests looking
at the prioritised concepts associated to the goals of the failed POs. From the goals of the POs shown
in Figure 9, we identified the concepts idle, pending and recover. Thus, we look for the conjectures
associated to each of these concepts. The results from the application of this heuristic are shown in Table
1. This table also shows the results of applying heuristics SH2, SH3 and SH4 over each of the selected
concepts.

Heuristic Concept Equivalences Implications Non-exists

SH1
idle 7 27 24
pending 6 27 35
recover 9 51 41

SH2
idle 0 27 24
pending 0 27 35
recover 2 51 41

SH3
idle 0 6 17
pending 0 8 26
recover 2 3 30

SH4
idle 0 2 0
pending 0 2 0
recover 1 0 0

Table 1: Results of the application of selection heuristics SH1, SH2, SH3 and SH4.

As can be observed, after applying the four initial selection heuristics we have narrowed the set
of selected conjectures to a total of five conjectures: two implications involving the concept idle, two
implications for concept pending and one equivalence about the concept recover.

The final step in the discovery process is the selection of the conjectures that produce the smaller
number of new failed POs. The two implications associated with concept idle discharge PO1 and produce
one extra failed PO. We believe that in this kind of situation it is the user who has to decide which one is
the most appropriate conjecture according to his/her knowledge about the model. Thus, we present both
conjectures as candidate invariants and leave the decision of which one to select to the user. Regarding the
two implications associated with concept pending, one of them discharges PO2 and PO3 and produces
two new failed POs, while the other one discharges PO4 but produces three new failed POs. As there are
no other conjectures that help to overcome the failures produced by PO2, PO3 and PO4, both conjectures
are suggested as candidate invariants. Finally, the equivalence conjecture associated with concept recover
discharges PO5 and it does not produce any extra failures, so this conjecture is also suggested as a
candidate invariant. The set of invariants represented by the conjectures obtained from HR in this first
iteration of our approach is shown in Figure 10(a) 4.

After the new set of invariants is introduced to the model, six new failed POs are generated. We then
start the analysis again by applying our approach based on the new set of failed POs. This new iteration
results in the discovery of five new invariants. Again, when these invariants are added to the model, one

4Note that we have given the equivalent set theoretic representation of these conjectures instead of using the universally
quantified format provided by HR. This is because some experiments, for instance the development of the Mondex system
carried out in [3], have shown that the automatic provers do better with quantifier-free predicates.
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new failed PO is generated. We discovered one new invariant after a third iteration of our approach. No
further failed POs are generated when this invariant is added to the model. Figures 10(b) and Figure
10(c) shows the invariants obtained after the second and the third iteration, respectively.

epr ⊆ idle
(idleF ∪ epr) ⊆ idle
epv ∩ (epa ∪ abortepa) ⊆ pending
epa ∩ (epv ∪ abortepv) ⊆ pending
abortepa ∩ abortepv = recover

(a)

idleF ⊆ idle
idleT ∩ (epa ∪ abortepa) = ∅
idleT ∩ (epv ∪ abortepv) = ∅
epv ∩ abortepv = ∅
epa ∩ abortepa = ∅

(b)

epr ∩ idleF = ∅
(c)

Figure 10: Invariants obtained through three iterations.

The invariants shown in Figure 10 are a subset of the invariants suggested in [3] for this step of the
refinement. In total we obtained 11 invariants from the 17 used in [3]. However, it is important to note
that we have addressed all the failures produced when proving consistency between the refinement levels.
Our hypothesis, is that the extra invariants used in [3] represent new requirements of the system, which
are out of the scope of our technique since we only target invariants needed to prove the refinement steps.

5.2 Summary of results

Table 2 summarises the results of the application of our approach in each of the Event-B models used
during the development and the evaluation stages. Notice that all the experiments were performed over
models with only basic typing invariants. This means that neither gluing nor system invariants were
present in the models when using our technique. The table shows for each refinement step, the number
of failed POs that arose, as well as the number of gluing and system invariants discovered through our
approach. We also record the number of iterations involved in the invariant discovery process.

Event-B model Step Failed POs Invariants
Automatically discovered

Glue System Total Iteration

Development set

Traffic light Level 1-2 2 2 0 2 1
Vending machine (Arith) Level 1-2 6 3 0 3 1
Vending machine (sets) Level 1-2 6 3 0 3 1

Cars on a bridge
Level 1-2 2 1 0 1 1
Level 2-3 6 0 5 5 1

Evaluation set

Level 3-4 7 0 5 5 1

Mondex

Level 3-4
5 4 0 4 1
6 1 4 5 2
1 0 1 1 3

Level 4-5
3 0 3 3 1
5 0 4 4 2
4 0 2 2 3

Level 8-9 14 10 0 10 1

Table 2: Automatically discovered invariants.

In Table 3 we compare our results with the actual invariants given in the literature for the models of
the cars on a bridge [1] and the Mondex system [3]; the other developments are not compared because
they are of our own authorship (note that the invariants of the refinement from levels four to five of the
Mondex system are not given in the literature). All automatically discovered invariants are subsets of the
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invariants given in the literature; however, it is important to highlight that the automatically discovered
invariants were sufficient to prove all the refinement steps in our experimental models.

As it can be observed from Table 3, the automatic discovery of gluing invariants through the use of
theory formation and the HR system has provided promising results. In most cases, the set of gluing
invariants discovered through our technique was almost identical to the set of gluing invariants provided
in the literature. Regarding system invariants, it can be observed that the last refinement of the cars on a
bridge system shows a big gap between the invariants given in the literature and those found automatically
with our approach. As mentioned previously, we believe that this difference can be explained by the
introduction of new requirements, resulting in the need for extra properties in the model.

Event-B model Step Given in Literature Automatically discovered
Glue System Total Glue System Total

Cars on a bridge
Level 1-2 1 1 2 1 0 1
Level 2-3 0 6 6 0 5 5
Level 3-4 0 23 23 0 5 5

Mondex
Level 3-4 8 9 17 5 5 10
Level 4-5 - - - 0 9 9
Level 8-9 10 0 10 10 0 10

Table 3: Comparison between hand-crafted and automatically discovered invariants.

Figure 11, shows all the invariants that were discovered through the application of our approach. The
invariants for refinement three of the Mondex system are omitted since they are shown in §5.1.

available = productStatus−1[{AVAILABLE}]
limited = productStatus−1[{LIMITED}]
soldOut = productStatus−1[{SOLDOUT}]

(a) Vending machine (sets) invariants

stock = stockMilk + stockPlain
sold = soldMilk + soldPlain
givenCoin = EMPTY COIN⇔ coin = NO COIN

(b) Vending machine (arith) invariants

n = a + b + c
ml tl = green⇒ c = 0
il tl = green⇒ a = 0
ml tl = red⇒ ml pass = 1
il tl = red⇒ il pass = 1
il tl = green⇒ ml tl = red
ml out 10 = TRUE⇒ ml tl = green
il out 10 = TRUE⇒ il tl = green
IL IN SR = on⇒ A > 0
IL OUT SR = on⇒ B > 0
ML IN SR = on⇒ C > 0

(c) Cars on a bridge invariants

epr ∩ reqM ⊆ epv ∪ abortepv
epv ∩ valM ⊆ epa ∪ abortepa
endT = endF ∪ ackM
reqM ∩ idleF ⊆ epv ∪ abortepv
valM ∩ idleT = ∅
epr ∩ valM = ∅
epr ∩ abortepa = ∅
valM ∩ idleF = ∅
abortepa ∩ idleF = ∅
(d) Mondex invariants (ref 4)

idleFP = statusF−1[{IDLEF}]
eprP = statusF−1[{EPR}]
epaP = statusF−1[{EPA}]
aborteprP = statusF−1[{ABORTEPR}]
abortepaP = statusF−1[{ABORTEPA}]
endFP = statusF−1[{ENDF}]
idleTP = statusF−1[{IDLET}]
epvP = statusF−1[{EPV}]
abortepvP = statusF−1[{ABORTEPV}]
endTP = statusF−1[{ENDT}]

(e) Mondex invariants (ref 8)

r light = TRUE ∨ amber light = TRUE⇔ red light = TRUE
g light = TRUE⇔ green light = TRUE

(f) Traffic light invariants

Figure 11: Automatically discovered invariants
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6 Related and future work

As far as we are aware, automated theory formation techniques have not been investigated within the
context of refinement style formal modelling. The closest work we know of is Daikon [9], a system
which uses templates to detect likely program invariants by analysing program execution traces. The
quality of the invariants generated by both approaches depends in part upon the quality of the input data
– ProB animation traces in our work and program test suites for Daikon. Like HR, Daikon is configurable.
However, while HR is a general purpose theory formation tool, Daikon has been designed with program
analysis in mind. It should also be stressed that Daikon is a system, whereas the work presented here is
an initial investigation into developing an invariant generation tool for refinement based formal methods.

Within automated theory formation there are a number of alternative tools to HR that could be ex-
plored. For instance, IsaCoSy [11], IsaScheme [20], the CORE system [16] and MathsAid [17]. Un-
derlying the first three of these systems is a notion of term synthesis, i.e. the automatic generation
of candidate conjectures based upon application of domain knowledge. IsaCoSy and IsaScheme sup-
port the discovery of theorems within the context of mathematical induction, while MathsAid provides
broader support for the development of mathematical theories. The CORE system has a strong software
verification focus, supporting the automatic generation of frame and loop invariants for use in reasoning
about pointer programs. What distinguishes these approaches from HR is that they do not rely upon an-
imation/execution traces, instead they follow a generate-and-test approach, where the “test” component
involves theorem proving. Coupled with its configurability, the trace analysis capability led us to use HR
for our investigations.

As noted above, animation is key to our approach, where the quality of the invariants produced
by HR strongly depends on the quality of the animation traces. The ProB animator provided good
animation traces for most of our experiments; however, we found two areas where further improvements
are required:

1. We believe that increasing the randomness in the production of the traces would improve our
results.

2. ProB preferences only allows for the creation of sets with a few elements, as well as very limited
integer ranges. This restricted some of the traces we were able to generate, and thus impacted
negatively on the invariants that could be discovered. Specifically, this limitation arose during our
analysis of the Mondex case study.

The process of finding a “correct” refinement will typically involve exploring many “incorrect” re-
finements. While the work reported here focuses on supporting the verification of correct refinements,
we are currently investigating how counter-examples generated by ProB could be combined with HR in
order to provide useful feedback to a developer when faced with an incorrect refinement.

Longer-term, we are looking to use theory formation within our REMO [10] formal modelling plan-
ning system. That is, when faced with a refinement failure, we aim to use theory formation, automatically
tailored by refinement plans [15], to suggest modelling alternatives. Of course, such “modelling alterna-
tives” are only suggestions, ultimately users must select which is most appropriate to their needs.

Currently, the animation traces obtained from the ProB animator are automatically converted into
HR’s input, i.e. a domain file with the list of examples for each of the concepts (variables, constants and
sets) is created. However, the automation of the heuristics is still under development. Automating the
configuration heuristics involves the prioritisation of concepts in the domain file and the creation of a
macro file. The macro file records the search strategy that will be applied by HR (usually supplied by
the user). Here is where the production rules selected by our proof failure analysis are specified. The
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automation of the selection heuristics requires integration with a theorem prover and the Rodin toolset.
HR uses the Otter theorem prover [18] to prove the conjectures. We will exploit the use of the Otter
theorem prover in HR for the selection of the most general conjectures (heuristic SH3), while the Rodin
toolset will be used to obtain the status of the POs after the candidate invariants have been introduced into
the model (heuristics SH4 and SH5). As future work, we aim to automate this process and, as mentioned
before, integrate it with our REMO tool.

7 Conclusions

We have described an investigation into how the HR theory formation tool can be used to automatically
discover the kinds of invariants that developers typically have to supply in order to verify Event-B refine-
ments. The key contribution of our work is the development of a set of heuristics. Using proof-failure
analysis to prune the wealth of conjectures HR discovers, these heuristics have proven highly effective
at identifying missing invariants. While more experimentation is required, we believe that our heuristics
provide a firm foundation upon which to further explore techniques that support formal refinement –
techniques that suggest design alternatives, whilst removing the burden of proof failure analysis from
developers.

Acknowledgements: Our thanks go to Alan Bundy, Gudmund Grov and Julian Gutierrez for their
feedback and encouragement with this work. Also, we want to thank Jens Bendisposto and the ProB
development team for their assistance, and Simon Colton and John Charnley for their help in using the
HR system.
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We propose a mechanism for the vertical refinement of bigraphical reactive systems, based upon a
mechanism for limiting observations and utilising the underlying categorical structure of bigraphs.
We present a motivating example to demonstrate that the proposed notion of refinement is sensible
with respect to the theory of bigraphical reactive systems; and we propose a sufficient condition for
guaranteeing the existence of a safety-preserving vertical refinement. We postulate the existence of
a complimentary notion of horizontal refinement for bigraphical agents, and finally we discuss the
connection of this work to the general refinement of Reeves and Streader.

1 Introduction

Refinement is the process of gradually developing a specification towards a suitable implementation,
through a series of steps in which more concrete entities are shown to be as acceptable as the more
abstract entities preceding it in the chain of refinement steps, based upon what may be observed of
these entities. The utility of this method has been demonstrated through many years of application in
academic and industrial settings. In this paper we attempt to bring these well-studied benefits to a new
class of systems — namely, bigraphical reactive systems. We focus primarily on vertical refinement [3],
where the aim is to relate models constructed with respect to different semantics.

A bigraphical reactive system [21, 19] (BRS) is a model construction paradigm proposed by Milner
and colleagues that aims to enable modelling of interactive systems within a cohesive theoretical frame-
work. While the primary long-term focus of bigraphs is on models of ubiquitous and context-aware
systems [1], they have demonstrated value in other areas such as biological applications [15, 5, 6] and
business processes [12, 25]. Bigraphical reactive systems also capture the syntactic and semantic struc-
ture of many formalisms associated with process modelling, providing a unifying meta-calculus within
which to relate many of these well-developed theories. Already encodings into various bigraphical re-
active systems have been demonstrated for amongst others the λ -calculus [20], CCS [19], the Mobile
Ambients calculus [14], several variants of the π-calculus [14, 4, 8], Fusion Calculus [10] and Petri Nets
[16].

Bigraphical reactive systems consist of two graphs (hence the name bigraph) modelling the orthog-
onal notions of locality and connectivity which together capture the static structure of a system, and a
set of reaction rules that may selectively rewrite portions of the bigraph in order to capture the dynamic
behaviour of that system. We will introduce bigraphs and bigraphical reactive systems (assuming no
prior knowledge) in Section 2.
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(a) Place Graph (b) Link Graph

Figure 1: The constituent place (1a) and link (1b) graphs that form a particular bigraph.

The usual notion of “observation” in a BRS is derived from the above notion of dynamic behaviour: a
BRS gives rise to an LTS, the labels of which are simply the least context enabling reaction. The present
effort towards refinement takes this connection between static structure and dynamic behaviour to heart,
and attempts to short-circuit the LTS in favour of a more directly structural mechanism of refinement.
This makes sense uniquely for bigraphs exactly because of the close correspondence between structure
and dynamics. The primary contribution of this paper is to introduce such a mechanism as a small step
towards bringing the well-established benefits of refinement to models constructed within the bigraph
formalism. Additionally, we give a sufficient condition for an abstraction functor (Section 4) to give rise
to a safe refinement, and show that this notion of refinement corresponds with (and indeed, in part is an
instance of) the general refinement of Reeves and Streader [23, 24].

1.1 Structure of the paper

The remainder of this paper is structured as follows: We review bigraphs (assuming no prior knowledge)
in Section 2. In Section 3 we introduce a running example that will be used to illustrate all of the concepts
presented. In Section 4 we present our definition of vertical refinement for bigraphical reactive systems
and show that the proposed refinement preserves safety properties with respect to the abstraction functor
upon which it is parametrised. Additionally, we present a sufficient condition for an abstraction functor
to give rise to a safe refinement. Finally, in Section 5 we discuss a candidate horizontal refinement
mechanism for bigraphical agents, derived from the general refinement of Reeves and Streader [23, 24],
and discuss the connection of this work to general refinement.

2 Bigraphical Reactive Systems

Bigraphical reactive systems is a graphical formalism emphasising the orthogonal notions of locality
and connectivity. A BRS is a category of bigraphs and a set of reaction rules that may be applied to
rewrite these bigraphs. We provide here a short, informal introduction to the anatomy of a BRS without
assuming any prior knowledge. For a complete treatment of bigraphs and BRSs, readers are referred to
[21, 19].
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Figure 2: The bigraph resulting from the combination of the place and link graphs in Fig. 1a and Fig.
1b. This bigraph is an agent of the BRSnoti f y example BRS with signature Σ = {Z,U,F,N} that we will
introduce in Section 3.

2.1 Static Structure

The most basic construction within the static fragment of bigraphical reactive systems is the node. This
follows from normal definition of a node within graph theory. To nodes we assign controls, which are
drawn from a signature Σ, the set of controls. We sometimes use a convenient shorthand such that we
may refer to a node as being an “X node”, by which we really mean a node that has been assigned the
control X. Nodes may be nested to arbitrary depth to form a tree that is known as the place graph (Fig.
1a). We represent this nesting by containment, as shown in Fig. 2. We distinguish between controls
of two kinds: active and passive ones; we shall see later how active controls admit dynamic behaviour
beneath them whereas passive controls do not. Every tree of nodes is contained by a region (the dotted
border in Fig. 2). Bigraphs permit multiple regions (a place forest).

To controls (and therefore nodes) we assign a fixed arity, which defines the number of ports that a
given node possesses. A port is a connection point on a node; it must always be connected to other such
connection points by the link graph. The link graph (Fig. 1b) is an undirected hypergraph over the ports
of the nodes of the place graph. A single (hyper) edge may connect arbitrarily many ports on different
nodes.

Within the place graph, in addition to regions and nodes, there may also exist holes (known as sites
in some bigraphs literature), which are expressed visually as shaded grey nodes (as in Fig. 3a). A hole is
a location into which a region of another bigraph may be inserted by composition. It may be helpful to
think of bigraphs with holes as “contexts” and those without as “processes” or “terms”.

Present also within Fig. 3 are names that represent (named) points at which edges of the link graph
may be fused to form a single (hyper) edge. In the intuition of contexts and terms, names of bigraphs
roughly correspond to unstructured names, as in the π-calculus. By convention, outer names are drawn
upwards, and inner names are drawn downwards. Outer names are analogous in the link graph to regions
in the place graph, while inner names are analogous to holes. Through composition of link graphs, sets
of inner and outer names that agree are matched and joined.

Definition 1 (Interface). An interface is a pair 〈 j,X〉 where 0 ≤ j, indicating the number of holes or
regions, and X is a set of (inner or outer) names.

Definition 2 (Bigraph). A bigraph is a 5-tuple:

(V,E,ctrl, prnt, link) : 〈k,X〉 → 〈m,Y 〉
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(a) A : 〈2,{x,y}〉 → 〈1, /0〉 (b) B : 〈0, /0〉 → 〈2,{x,y}〉 (c) A◦B : 〈0, /0〉 → 〈1, /0〉

Figure 3: The composition of two bigraphs A and B with their respective interfaces

Here V is the set of nodes, E is the set of hyperedges, ctrl is the control map that assigns controls (and
therefore arities) to nodes, prnt is the parent map that defines the tree structure in the place graph and
link is a link map that defines the link structure. The inner interface 〈k,X〉 indicates that the bigraph has
k holes, and a set of inner names X. The outer interface 〈m,Y 〉 indicates that the bigraph has m regions
and a set of outer names Y .

Definition 3 (Composition). Bigraphs are composed separately in the place and the link graphs. The
interfaces of the bigraphs must be compatible in order for composition to be defined, i.e., the sets of
names and the number of regions/holes must be the same. Fig. 3 illustrates the composition A ◦B of
bigraphs A and B. In the place graph, we insert contents of the left-most region of B into hole 0 of A, and
the contents of the right-most region of B into hole 1 of A. Regions are numbered left-to-right: we insert
the contents of region 0 into hole 0 etc. In the link graph, links are spliced together where there is name
agreement between the inner and outer names of the bigraphs being composed. We may refer to A in this
case as being a context into which B is inserted.

Definition 4 (Tensor Product). There exists an additional way in which to combine bigraphs, namely
the tensor product A⊗B, where A and B are bigraphs. Where A and B do not share any inner or outer
names, this just involves juxtaposing their place graphs, taking the union of their names, and increasing
the indices of holes in B to make them unique with respect to A. This definition obscures some technical
details. It is recommended that readers interested in following the proofs in Section 4.1 refer to [21] for
a precise definition.

2.2 Notation

We introduce a rudimentary term language for representing bigraphs that should be familiar to most
readers accustomed to the notation for process algebras. The present language is not complete, i.e.,
it cannot express every bigraph, but it can express the ones we will use in examples. It is a subset
of a complete such language [18]. We will use this term language in conjunction with the graphical
representation used in Fig. 2.

Definition 5 (Bigraph Term Language).

p ::= κ(n1, . . . ,nar(κ)).p | p| p | −i | nil

Where κ ∈ Σ.
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(a) κ(n1, . . . ,nar(κ)).p (b) a.−0 (c) a.nil|b.nil

Figure 4: Example bigraph terms with their associated graphical representation

The term language requires some explanation — κ(n1, . . . ,nar(κ)).p is prefixing (Fig. 4a), indicating
a node assigned the control κ . The arity of κ is given by ar(κ). The sequence n1, . . . ,nar(κ) are the ports
of the node. Finally, the suffix p is the term that is nested inside this node. p| p is juxtaposition of terms
(Fig. 4c), placing them as siblings within the place graph. −i is a hole (Fig. 4b), indexed by some integer
0≤ i. Finally, nil is the nil terminator which is simply the empty graph in the graph representation.

2.3 Dynamics

Having introduced the basic structure of bigraphs, the static portion of a BRS, we now introduce the
reactive portion of a BRS that imbues a system with dynamic behaviour. This relies on reaction rules
that define rewriting that may be applied to a bigraph. A reaction rule (R,R′,η) consists of a redex R,
a reactum R′ and an instantiation map η , where the redex is a bigraph to be matched and the reactum
is the bigraph with which the matched portion of the bigraph should be replaced. The instantiation map
indicates how parameters matched by holes in the redex should manifest in the reactum after matching.
Where the instantiation map is unambiguous (e.g., it is the identity map), we may just write R→ R′.
Definition 6 (Reaction). Matching of a particular reaction rule (R,R′,η) against a particular bigraph G
and rewriting it into some other bigraph G′ proceeds by decomposition of the bigraph into a context C,
a match R (the redex), and a set of parameters d (for portions of the bigraph that are matched by holes
in the redex). This decomposition is then reassembled with the reactum R′ replacing the matched portion
of G, with select parts of d substituted into the holes of R′, forming the resulting bigraph G′.

G =C ◦R.d→C ◦R′.η(d) = G′

We require further that the context C be active, that is, that every control above holes of C are active (see
CCS example below).

We have suppressed details of the handling of names here by using the notation “R.d”; we have also
suppressed details in the phrase “with select parts of d” and not explained the use of the map η . We refer
the reader to [21] or [19] for details. The present paper can be read without understanding these details,
as reaction in our examples always take the form of the following special case:

a =C ◦R◦d→C ◦R′ ◦d .

Definition 7 (Bigraphical Reactive System). We use the notation BG(Σ,R) to denote a bigraphical
reactive system with a signature Σ (the set of constituent controls), and a set of reaction rules R. More
formally, BG(Σ,R) is an spm category [21] in which the objects are interfaces and the arrows are
bigraphs (which we refer to as agents of BG(Σ,R)), equipped with a set of reaction rules R.
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Figure 5: The process send(a).recv(b).nil| recv(a).send(b).recv(a).nil

Figure 6: The RCCS reaction rule

As an example, we introduce a very simple calculus in the style of the Calculus of Communicating
Systems (CCS) [17], where we first give an encoding of the terms as bigraphs, and then define a reaction
rule that imbues these terms with dynamic behaviour. Interested readers are referred to [21] for a real
encoding of CCS.

Our calculus defines sequencing (t.P), parallel composition (t | t), and sending and receiving on
a named channel (“x!” and “y?”, respectively, where x and y are channel names). The encoding of
these constructs into the bigraphical term language in Definition 5 is straightforward — these primitives
are already defined in terms of the bigraphical term language, except for “send” and “receive” which
we straightforwardly encode as nodes with controls send and recv, each with arity 1. Fig. 5 gives
a graphical representation of the process send(a).recv(b).nil| recv(a).send(b).recv(a).nil. According
to our encoding, sequencing is represented by prefixing, parallel composition by juxtaposition, actions
(such as send and recv) by passive controls, and channels by outer names. This is by no means the only
encoding possible, but this technique is one of the most straightforward.

Having developed the encoding of our calculus within bigraphs, we can give a reaction rule RCCS

that will (through repeated rewriting) reduce the term as far as possible based upon agreement between
parallel processes as to which action should be taken next:

RCCS
def
= recv(x).−0|send(x).−1→−0|−1

This rule is presented graphically in Fig. 6. It essentially “peels off” the outer layers of the terms
where a send and a recv action are linked to the same channel name, rewriting the entire bigraph to the
juxtaposition of whatever was nested inside those send and recv controls (i.e. the parts of the bigraph
matched by the holes in the redex). As an example, the CCS reaction a!.b?|a?.c!→ b?|c! becomes the
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bigraphical reaction

send(a).recv(b).nil| recv(a).send(c).nil→ recv(b).nil|send(c).nil

3 Example

Aside from their role as a meta-calculus for the study of process modelling formalisms, bigraphical
reactive systems are intended to provide a basis upon which to construct models of the kinds of context-
aware and ubiquitous systems that are becoming increasingly popular. Consequently, we introduce an
example based on modelling a context-aware social network notification system, such that a user is
notified whenever a friend is in the same physical location.

We will give this example without using the link-graph part of bigraphs to keep it simple. We em-
phasise that the example generalises to a more interesting one in which connectivity counts — where
notification is dependent not only on physical co-location but also on whether or not users and friends
are virtually connected through their laptops and phones.

We will subsequently extend this to a system in which not all friends, but rather only particular
designated “special friends”, trigger notifications, and show that (and in what sense) the latter system is
a refinement of the former.

The example system captures the dynamics of some physical environment (consisting of discrete
zones within which we can detect the presence of a user by some mechanism that is outside the scope of
this model) in which a user’s friends move from zone to zone. When one of the user’s friends is present
in the same zone as the user, a notification is given, modelled by adding a “notification” node to the zone.

3.1 The abstract system: BRSnoti f y

We first define controls Z (Zone), U (User), F (Friend), N (Notification) and S (Special friend marker).
Every control has arity 0 and every control is active; altogether we have a signature

ΣN = Z,U,F,N

The bigraphs of our systems are thus arbitrary trees over these controls. We shall of course be interested
only in those where Z are inner nodes and the remaining controls are leaves.

With these particular bigraphs in mind, we give reaction rules reconfiguring a bigraph by allowing
nodes with control F — friends — to move between nested zones as follows. These rules are illustrated
graphically in Fig. 7.

M1 = Z.(F|−0)|Z.−1 → Z.−0|Z.(F|−1)

M2 = Z.(Z.(F|−0)|−1) → Z.(Z.−0|F|−1)

M3 = Z.(Z.−0|F|−1) → Z.(Z.(F|−0)|−1)

Reaction rules are here given on the form “R→ R′” rather than the more precise (R,R′,η); recall from
the above introduction to bigraphs that we use the former form whenever η is inconsequential (in this
case, it is the identity map).

We extend the movement rules M with an additional rule R1 for notifications to be issued when a U
(user) and F (friend) node exist within the same zone. This reaction rule is illustrated in Fig. 8.

ΣN = ΣM ∪{U,N}
R1 = Z.(U|F|−0) → Z.(U|F|N|−0)
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(a) M1

(b) M2

(c) M3

Figure 7: Reaction rules M1, M2 and M3 that allow f riend nodes to move between zones.

Let BRSnoti f y be the bigraphical reactive system formed by the addition of the reaction rule R1 to the
set of movement rules M:

BRSnoti f y = BG(ΣN ,M∪{R1})

3.2 The concrete system: BRSselective

We now create a second bigraphical reactive system, this one refining (both intuitively and in a sense to
be made precise) the system BRSnoti f y just introduced. In this new system, instead of simply notifying
whenever any friend is present in the same zone as the user, we wish only to issue a notification in the

Figure 8: Reaction rule R1
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Figure 9: Reaction rule R2

presence of a particular designated friend, distinguished by the presence of an S (special friend marker)
inside the friend node in question. Consequently, we define the set of controls ΣS for BRSselective to
include (in addition to the controls of ΣN) the S control. The modified reaction rule R2 is presented
graphically in Fig. 9.

ΣS = ΣN ∪{S}
R2 = Z.(U|F.S|−0)→ Z.(U|F.S|N|−0)

BRSselective = BG(ΣS,M∪{R2})

At an intuitive level, this BRS refines the one of the previous sub-section. In the following section, we
shall define exactly in what sense this is the case.

4 Vertical BRS Refinement

We recall the distinction here between horizontal and vertical refinement. Vertical refinement is con-
cerned with moving between differing levels of abstraction, or indeed completely independent modelling
languages, whereas horizontal refinement instead aims to relate models specified at the same fundamen-
tal level of abstraction, and within the same modelling setting. When we refer to the refinement of a
BRS, we mean a vertical refinement, indeed, this is the only meaningful interpretation, as a BRS is the
category consisting of (infinitely) many actual agents of the same general shape. We will later return
(briefly) to what it would mean for an agent to be refined, that is, to a horizontal refinement between two
agents of the same BRS (each of which would be bigraphs, representing — for example — two CCS
processes).

To summarise the distinction between horizontal and vertical refinement in the setting of BRSs: In
the former case, we are talking about what we can observe of all such agents, whereas in the latter we are
referring to what we can observe of the behaviour of a single agent. In the present section, we consider
vertical refinement; we comment on horizontal refinement in the subsequent section.

4.1 Safe refinements

First, what observations can you make of bigraphical agents? While the notion of a trace is familiar
within refinement literature, within bigraphical reactive systems it is unclear exactly what might corre-
spond to an action within the usual definition of a trace. Consequently, we formulate a trace of a BRS
such that each element of the trace is a bigraphical agent (i.e., a bigraph of that BRS). Therefore the no-
tion of trace is not one of a system exhibiting behaviour in the form of some observable actions, rather,
it is the entire state of the model as it changes over time such that every element of the trace is a bigraph,
related to the next element of the trace by the application of some reaction rule. While this may seem
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very crude at first glance, it is important to remember that the dynamic behaviour of a bigraph is derived
from reaction rules and the structure in a perhaps more direct manner than in many other calculi. As
such, it makes sense to consider the abstract specification to comprise, by itself, an entire observation —
cf. the structure of agents of BRSnoti f y above.

If an observation is a complete agent of the abstract specification, what then is an observation of an
agent of the concrete system? We leave that to the system constructor, merely insisting that the observa-
tions one makes of concrete implementation agents must somehow be a function of their structure. Thus,
observations of concrete agents are given by a structure-preserving map from concrete agents to abstract
ones. In the parlance of category theory, this is called a “functor”, a functor that we shall in this instance
call an abstraction functor.

Definition 8 (Trace, observation). For a given BRS A, a trace is a (possibly infinite) sequence of bi-
graphs (agents) 〈a1,a2, . . .〉, such that for each ai and ai+1 in the sequence there is a reaction ai →
ai+1. If s = 〈s1, . . . ,sn〉 and t = 〈t1, . . .〉 are traces and sn → t1, we may form the composite trace
s; t = 〈s1, . . . ,sn, t1, . . .〉. In this case we say that t is an extension of s. We write Tr(A) for the set of
all traces of a given BRS A. If F : A→ A′ is a functor and 〈a1,a2, . . .〉 ∈ Tr(A) is a trace of A, we apply
F pointwise to obtain a trace F(t) = 〈F(a1),F(a2), . . .〉.

Note that Tr(x) is by definition prefix-closed; that is, for any trace t ∈ Tr(x), every prefix t ′ of t is
also in Tr(x).

Of course, not just any functor will do: to have a refinement, the dynamic behaviour of the concrete
implementation must be allowed by the dynamic behaviour the abstract specification allows on its agents,
the observations. Altogether, our notion of refinement follows from the usual trace equality, however,
because a BRS tends to permit too much observation, our bigraphical notion of refinement requires as a
side condition that there exist an abstraction functor F : C→ A such that for any trace 〈c0,c1, . . .〉, F gives
rise to a trace 〈F(c0),F(c1), . . .〉. We present vertical refinement as the conjunction of two constituent
definitions, separating the preservation of orthogonal safety and liveness properties through refinement.

Definition 9 (Safe Vertical Refinement).

A
safe

vF C def
= F(Tr(C))⊆ Tr(A)

This definition satisfies the “reduction of nondeterminism” role of refinement, in that it is always
valid to simply pick one alternative and implement it in C when presented with nondeterministic choice
in A.

Lemma 1. Safe Vertical Refinement is transitive and reflexive for the identity functor.

Proof. Reflexivity is trivial. Suppose A
safe

vF C and C
safe

vG D. Then FG(Tr(D))⊆ F(Tr(C))⊆ Tr(A).

We proceed to illustrate safe refinement using the two BRSs above, then give a sufficient condition
for an abstraction functor to yield a safe refinement.

Recall our claim that BRSselective, which issues notifications upon co-location with “special friends”
is a refinement of BRSnoti f y, which does so upon co-location with any friend. The latter employs an
additional control S. This indicates that our abstraction functor must (at the very least) ensure that all
nodes of control S must be hidden, renamed or removed so as to ensure that the codomain of F is
BRSnoti f y (i.e. that F can transform any agent of BRSselective into a valid agent of BRSnoti f y).

By this reasoning, we arrive at an abstraction functor “pattern” that is likely applicable to many other
BRSs. We call this the hiding functor. Its essential function is to simply hide, for a given signature Σ,
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all nodes that have been assigned controls from some particular set of controls H. This includes joining
any children of nodes that will be hidden to parents that will remain visible after the application of the
hiding functor. For our example, the hiding set H = {S} (i.e. the designated “special” friend control).

Definition 10 (Hiding Functor). We define an abstraction functor FΣ,H : BG(Σ)→ BG(Σ \H) for hid-
ing, parametrised by Σ, the signature of the “implementation” BRS, and H, a set of controls to be
hidden. On objects, this functor is the identity. On arrows, its action is FΣ,H((V,E, prnt,ctrl, link)) def

=
(V ′,E,ctrl′, prnt ′, link), where

– V ′ = {v ∈V |ctrl(v) /∈ H}
– ctrl′ = ctrl �V ′, and

– prnt ′(l) def
=

{
prnt(l) where ctrl(prnt(l)) /∈ H
prnt ′(prnt(l)) otherwise

This “hiding functor” is an abstraction functor for our example system. Recalling the definition of a
bigraphical agent (and therefore of an arrow in the category BRSnoti f y or BRSselective) given in Definition
2, the purpose of this hiding functor is to exclude any nodes that have a control that is in the set of
hidden controls H, exclude these controls from the control map ctrl, and recursively recreate the parent
map prnt such that any children of a node with a control in H is attached to its most immediate place-
graph ancestor that is not marked with a control in H. We call the abstraction functor for our example
notification system A f riend , which is defined as the hiding functor above, instantiated with H = {S}.

While the hiding functor has the flavour of a forgetful functor — it dispenses with structure — it
cannot reasonably be called so as it is not faithful. Many distinct configurations (e.g. special-friend
controls) will map to the same bigraph. This is a technical distinction only; we use “hiding” in no special
sense, except as a name for abstraction functors of this general shape.

It is easy to prove that with A f riend as abstraction functor, BRSselective is indeed a safe refinement of
BRSnoti f y. However, instead of proving so directly, we shall instead provide a general theorem about
abstraction functors: When they preserve reaction, and in particular, when they preserve just reaction
rules, they give rise to safe refinement.

Theorem 1. Let F : C→ A be an abstraction functor. If F preserves reaction, that is, if c→ c′ implies

F(c)→ F(c′), then A
safe

vF C.

Proof. Immediate from Definition 9 of safe refinement.

From this theorem it becomes apparent that an abstraction functor may be any functor at all that
obeys this property.

The terminology deceives, here: The guarantee that the concrete system has no more behaviour than
the abstract one is in fact upheld by the abstraction functor preserving behaviour.

Of course, proving that a functor preserves reaction need not at all be easy. Fortunately, we can
exploit the connection between static structure and dynamic behaviour of bigraphs: a functor which
preserves the reaction rules, structurally, will also preserve (dynamic) reaction, and will thus be a safe
refinement.

Theorem 2 (Safe Abstraction Functors). Let A = BG(Σ,R) and C = BG(Σ′,R ′) be BRSs. A functor

F : C→ A yields a safe vertical refinement A
safe

vF C if it satisfies the following conditions.

1. It preserves and respects tensor.

2. It preserves active contexts.
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3. It preserves reaction rules: For any reaction rule (R,R′,ρ) ∈R ′ (a) the F-image (F(R),F(R′),ρ)
is a rule in R; and (b) for any parameter d of that rule, ρ(F(d)) = F(ρ(d)).

Proof. Suppose c1, . . . ,cn is a trace of C. It is sufficient to prove that for each i < n, there is a reaction
F(ci)→ F(ci+1). We know that ci→ ci+1, so there is some reaction rule (R,R′,ρ) ∈R ′, context E of C,
and some set of names Z s.t.

ci = E ◦ (R⊗1Z)◦d → E ◦ (R′⊗1Z)◦ρ(d) = c′i

Where ρ(d) is the instantiation of parameters (see [21] for details). But then, because (F(R),F(R′),ρ)
is a rule of R, we compute and find ai = F(ci) = F(E ◦ (R⊗1Z)◦d) = F(E)◦ (F(R)⊗1F(Z))◦F(d)→
F(E)◦(F(R′)⊗1F(Z))◦ρ(F(d))=F(E)◦(F(R′)⊗1F(Z))◦F(ρ(d))=F(E ◦(R′⊗1Z)◦ρ(d))=F(c′i)=
a′i

We remark that the three conditions of this Theorem appear to be good candidates for a definition of
a morphism of parametric reactive systems, as suggested in the forthcoming [7].

It is straightforward to verify that for our example BRSs, BRSselective and BRSnoti f y, the hiding functor
does in fact satisfy the three conditions of this Theorem. Thus we have the following corollary:

Corollary 1. BRSselective is a sound refinement of BRSnoti f y with respect to the abstraction functor A f riend ,
that is,

BRSnoti f y
safe

vA f riend BRSselective

The
safe

v relation captures safety properties of the system being refined (i.e. it does not permit a
refined model any undesirable extra behaviour, provided that the abstraction functor does not hide any
“undesirable” behaviour). However, it does not guarantee that the system does anything at all (i.e. an
empty trace is a safe refinement of any system). To guarantee that some additional liveness properties
are preserved by refinement, it is necessary to extend our definition.

4.2 Live refinements

In order to guarantee that a given concrete system actually exhibits any of the desirable behaviour of
the abstract system that it refines, we must define a notion of liveness. Whereas in a process algebraic
setting it might be possible to rely on the presence of a particular output (or all possible outputs) to define
“desired” observable behaviour, within a bigraphical setting the lack of any primitive notions of “input”
or “output” (it is up to the system designer to define what these concepts mean with respect to a particular
model) means that it is necessary to explicitly choose such “desirable” behaviours.

In the absence of an intrinsic notion of desirable behaviour, we further parametrise our notion of live-
ness, already parametric in terms of the abstraction functor F , on the admissible traces. This parametri-
sation on the notion of admissibility is akin to those used in [13, 11].

Definition 11 (Live Vertical Refinement). Let F : C→ A be an abstraction functor, let C ⊆ Tr(C) be
the admissible traces for C, and let similarly A ⊆ Tr(A), the admissible traces of A. We then say that
(C,C) is a live refinement of (A,A) iff for every trace s of Tr(C), whenever F(s) has an extension t ′ to an
admissible trace F(s); t ′ ∈ A, then there exists an extension s′ of s to an admissible trace s;s′ ∈ A with
F(s′) = F(t ′). In this case we write:

(A,A)
live

vF (C,C) .
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If we wish to take the admissible traces A of the abstract system A as canonical, we can define C as
those traces whose F-images are admissible.

Lemma 2. Live Vertical Refinement is transitive.

Proof. Suppose (A,A)
live

vF (C,C) and (C,C)
live

vG (D,D), and suppose FG(t);u′ ∈ A. Then u′ has a pre-
image s′ with G(t);s′ ∈ C; but then s′ has a pre-image t ′ with t; t ′ ∈ D.

Let us provide a suitable set of admissible traces for our running example, BRSnoti f y. For this BRS,
the obvious notion of admissibility (think “successful”) is when notification has occurred. So we define
the set of admissible traces as simply those finite traces in which the user has been notified, that is, in
which the final agent contains the notification control next to the user and his friend:

Snoti f ied
def
= {〈a1, . . . ,an〉 ∈ Tr(BRSnoti f y) | ∃C. an =C ◦ (U|F|N)}

For BRSselective, we transfer the notion of admissiblity:

Sselective
def
= {t ∈ Tr(BRSnoti f y) | F(t) ∈ Snoti f ied}

The selective system BRSselective under these notions of admissibility is in fact not a live refinement of
the original one BRSnoti f y. One might think so: After all, one can extend a trace to admissibility simply
by moving the special friend next to the user. Unfortunately, there need not be a special friend, and even
if there were, the abstract system might extend to admissibility by moving a (non-special) friend next to
the user. We will now show this in detail, thus proving of the following proposition:

Proposition 1. (BRSnoti f y,Snoti f y) 6
live

vA f riend (BRSselective,Sselective).

Proof. Consider an agent Z.(U|F) of BRSselective. Applying A f riend we find simply A f riend(Z.(U|F)) =
Z.(U|F), which succeeds after just one reaction

Z.(U|F)→ Z.(U|F|N)

by reaction rule R1. Now, if we actually had a live refinement, we should be able to match this reaction
in BRSselective. A simple inspection of the rules however prove that this is not possible.

This is, however, not a show-stopper, rather it is a welcome demonstration of the utility of such a
vertical refinement mechanism. We could remedy this situation by introducing into BRSselective an addi-
tional reaction rule that spontaneously adds the designated friend marker S to any friend F. However, this
seems to contradict the intuition of the model, so in this instance it is perhaps better to leave BRSselective
unmodified and accept that there are (known) conditions under which this BRS cannot progress to a
successful state.

Having defined our two separate (live and safe) refinement relations, we can complete the definition
of safe and live vertical refinement:

Definition 12 (Safe and Live Vertical Refinement).

(A,A)vF (C,C)
def
= A

safe

vF C ∧ (A,A)
live

vF (C,C)
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5 Discussion & related work

Having introduced our notion of vertical BRS refinement and shown the conditions under which it is safe
and live with respect to the chosen abstraction functor, we now discuss potential approaches to horizontal
refinement and related work. As it happens, both topics take us to the general refinement of Reeves and
Streader [23, 24].

General horizontal refinement recognises three components to refinement: entities E, i.e., the spec-
ifications and implementations being refined; contexts Ξ, which are the environment within which the
entities interact; and a user, which defines the possible observations O(−) that can be made of an entity
within a particular context. Refinement is then the relation

AvΞ,O C def
= ∀x ∈ Ξ.O([C]x)⊆ O([A]x) ,

where Ξ is the set of contexts, O is a map assigning observations to entities in contexts, and [−]x inserts
an entity into context x.

Interestingly, our proposed notion of bigraphical vertical refinement falls under the umbrella of gen-
eral horizontal refinement. Entities would be BRSs (like BRSnoti f y and BRSselective); contexts Ξ would
be just the trivial context, which leaves the entity unchanged. Finally, the observation map O is in our
case simply Tr(−), the map that takes a BRS to the traces observable of it. We do not think this is a
coincidence. It seems intuitive that horizontal refinement of an entire class of agents would correspond
to vertical refinement.

What about general vertical refinement, then? The definition of vertical refinement within the general
refinement framework [24] relies upon a notion of layers, representing a level of abstraction in terms of
(EL,ΞL,OL), where EL is a set of entities, ΞL is a set of contexts and OL is an observation function.
Vertical refinement is then defined in terms of a Galois-connection that interprets high-level entities as
low-level ones and vice versa.

The analogy of this notion with our use of an abstraction functor F : C → A should be apparent:
If we could find that functor F to be one of an adjoint pair, we would be in an analogous situation.
Unfortunately, it remains unclear if such an adjunction would retain the intuition behind the Galois-
connection of general vertical refinement: morphisms (i.e., bigraphs) do not measure approximation;
they represent the agents under investigation. In particular, the hiding functors used for the example in
the present paper do not appear to be part of adjoint pairs.

Leaving vertical refinement behind, what is then a good notion of horizontal refinement for bigraphs?
Returning to general horizontal refinement, bigraphs actually do come with a notion of entity, context,
and observation, namely agents (roughly, bigraphs with no holes/inner names), bigraph contexts (bi-
graphs with holes/inner names), and an LTS (given a BRS). We have in the present paper by-passed the
LTS as the notion of observation, following the bigraphical connection by structure and dynamics to its
extreme conclusion, using the structure of the abstract specification as the observations.

For horizontal refinement, this approach appears not sensible: We would after all be relating agents
of the same BRS. Important examples (like CCS-process refinement) cannot be expressed within this
particular approach, which should guide the development of other horizontal refinement strategies for
bigraphical agents. One obvious choice seems now to be the LTS intrinsic to BRSs. We have yet to
pursue this option; we caution that while BRS LTSs have been successful in recovering semantics of
various process algebras and other models of concurrency, it has been less successful in providing useful
semantics for pervasive systems, one of our key interests.

However, even leaving the question of suitable observations open, we would likely find a notion
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inside general horizontal refinement by taking

avO c def
= ∀x ∈ Ξ.O(x◦ c)⊆ O(x◦a) ,

where a and c are agents of some BRS B; Ξ is the set of contexts of that BRS, and O is some notion
of the semantics of agents of B, perhaps traces of the LTS of B, or perhaps some other notion. Indeed,
early indications are that this approach would be promising in recovering (for example) CCS process
refinement, contingent upon an appropriate notion of observation.

5.1 Related Work

Restricting the set of controls admissible under a certain control, or requiring a control to be present
is well-studied in bigraphs (e.g., [2, 21, 19, 22]). However, that study has invariably focused on en-
suring that the bigraphical LTS theory is retained under such additional constraints, and are thus only
superficially related to the present paper.

Goldsmith & Creese [9] explore an approach to refinement within bigraphs (and particularly within
Spygraphs, a specialisation of bigraphs). They observe the ease with which one may derive an LTS for
a BRS that is labeled exclusively by the trivial context id (equivalent to a τ action in a process algebraic
setting). These kinds of contextual labels are not helpful for analysis, as they capture no behaviour. Sim-
ilarly, the LTS semantics of bigraphs share the same intentionality inherent in the graphical presentation.
While Goldsmith & Creese suggest (to good effect in a CSP setting) that it may be appropriate to perform
hiding at a process-level before considering a transition into bigraphs, this would seem inappropriate for
many modelling situations (e.g., those which have no convenient term or process representation). While
the transformation on bigraphical reactive systems proposed by that work may give rise to a refinement
that is appropriate for some situations, we aim instead in this present work to work directly within the
structure of bigraphs so as to ensure generality. As bigraphs attempt to be both a modelling formalism
and a general meta-calculus for existing process calculi, it seems appropropriate that the notion of refine-
ment we introduce should be similarly general, in the hope that we may recover calculus-specific notions
of refinement within this general setting.

6 Conclusion

We have presented a vertical refinement mechanism for bigraphical reactive systems that adds refine-
ment to the toolbox of model builders working within a bigraphical setting. The addition of a sufficient
condition for safe abstraction functors, and the accompanying observation that it is the preservation of
behaviour with respect to reaction that guarantees that a refinement exhibits no undesirable behaviour,
provides a firm foundation from which to explore the limits and utility of this kind of vertical refinement.

We have pointed out a clear connection to the existing work on generalising refinement across many
modelling formalisms, and therefore it seems appropriate (given the application of BRSs as a meta-
calculus) that our notion of vertical refinement is also in some sense general. We leave for future work
the exploration of further mechanisms for horizontal refinement within a bigraphical setting, noting that
such a notion would very likely fall within the model of general refinement, and thus likely generalise
well to other modelling formalisms encoded within bigraphical reactive systems.
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In previous work we have described how refinements can be checked using a temporal logic based
model-checker, and how we have built a model-checker for Z byproviding a translation of Z into the
SAL input language. In this paper we draw these two strands ofwork together and discuss how we
have implemented refinement checking in our Z2SAL toolset.

The net effect of this work is that the SAL toolset can be used to check refinements between Z
specifications supplied as input files written in the LATEXmark-up. Two examples are used to illustrate
the approach and compare it with a manual translation and refinement check.
Keywords: Z, refinement, model-checking, SAL.

1 Introduction

In this paper we discuss the development of tool support for refinement checking in Z. In doing so we
draw on two strands of work - one on providing a translation ofZ into the input language of the SAL
tool-suite, and the other on using model checking to verify refinements in state-based languages.

The SAL [18] tool-suite is used in both strands, and is designed to support the analysis and veri-
fication of systems specified as state-transition systems. Its aim is to allow different verification tools
to be combined, all working on an input language designed as aformat into which programming and
specification languages can be translated. The input language provides a range of features to support this
aim, such as guarded commands, modules, definitions etc., and can, in fact, be used as a specification
language in its own right. The tool-suite currently comprises a simulator and four model checkers [4]
including those for LTL and CTL.

Our work on the first strand has resulted in a translation toolwhich converts Z specifications to a
SAL module, which groups together a number of definitions including types, constants and modules for
describing a state transition system. The declarations in astate schema in Z are translated into local
variables in a SAL module, and any state predicates become appropriate invariants over the module and
its transitions.

A SAL specification defines its behaviour by specifying transitions, thus it is natural to translate each
Z operation into one branch of a guarded choice in the transitions of the SAL module. The predicate
in the operation schema becomes a guard of the particular choice. The guard is followed by a list of
assignments, one for each output and primed declaration in the operation schema. This methodology has
been implemented in a tool-set, as described in [9, 8].

Our work on the second strand has derived a methodology for verifying a refinement using a model-
checker by combining two specifications in a special way and verifying particular CTL properties for this
combination. Specifically, [21, 22, 10] described how refinements in Z and other state-based languages
could be verified by encoding downward and upward simulations as CTL theorems - the simulation
conditions being the standard way to verify refinements in state-based languages such as Z, B etc.

The contribution we describe in this paper is to implement this methodology in our Z to SAL trans-
lation toolkit. This extension to the tool enables two Z specifications to be input in LATEXformat, and for
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a refinement check to be performed. Internally this is achieved by translating each specification from
LATEXto a single SAL specification upon which appropriate CTL theorems can be verified using the SAL
CTL witness model-checker sal-wmc.

The purpose of this paper is to describe how this is done, using two examples as way of illustration.
The structure of the paper is thus as follows. In Section 2 andSection 3 we provide background on
refinement and the Z to SAL translation respectively. How specifications can be combined to enable
a model checker to verify a refinement is described in Section4, and this section also describes our
implementation of this methodology. To illustrate the process we present a slightly more complicated
example in Section 5 and we conclude in Section 6.

2 Refinement

Data refinement [5, 6] is a formal notion of development, based around the idea that a concrete specifi-
cation can be substituted for an abstract one as long as its behaviour is consistent with that defined in the
abstract specification.

Each language, method or notation has its own variants. In Z,refinement is defined so that the
observable behaviour of a specification is preserved. This behaviour is in terms of the operations that are
performed, and their input and output values. Values of the state variables are regarded as being internal,
and thus refinement can be used to change the representation of the state of a system. Hence the term
data refinement.

In a state-based setting such as provided by Z, data refinements are verified by defining a relation
(called aretrieve relation) between the two specifications and verifying a set ofsimulation conditions.
The retrieve relation shows how a state in one specification is represented in the other. For refinement to
be complete, a relation, rather than simply a function, is required [6].

In general, there are two forms the simulation conditions take, depending on the interpretation given
to an operation, specifically that given to the operation’s guard or precondition [6]. The two interpreta-
tions are often called theblockingandnon-blockingsemantics. We consider the latter, i.e., the standard,
approach in this paper.

For any interpretation, there are two simulation rules for refinement which are together complete,
i.e., all possible refinements can be proved with a combination of the rules. The first rule, referred to as
downward(or forward) simulation[6, 5], requires that

initialisation the initial states of the concrete specification are relatedto abstract initial states

applicability the concrete operations are enabled (at minimum) in states related to abstract states where
the corresponding abstract operations are enabled, and

correctness the effect of each concrete operation is consistent with therequirements of the correspond-
ing abstract operation.

We do not consider the alternative kind of simulation known as anupwardsimulation in this paper,
although there is nothing to stop the the appropriate methodology being implemented in our tool suite.

Definition 1 A Z specification with state schema CState, initial state schema CInit and operations
COp1 . . .COpn is a downward simulation of a Z specification with state schema AState, initial state
schema AInit and operations AOp1 . . .AOpn, if there is a retrieve relation R such that the following hold
for all i : 1..n.
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1. ∀CState• CInit ⇒ (∃AState• AInit∧R)
2. ∀AState; CState• R∧preAOpi ⇒ preCOpi
3. ∀AState; CState; CState′ • R∧preAOpi ∧COpi ⇒ (∃AState′ • R′∧AOpi)

The use of a retrieve relation allows the state spaces of the abstract and concrete specifications to
be different - the retrieve relation documents their relationship. The first condition ensures appropriate
initial states are related, and the second that the concreteoperations are defined whenever abstract ones
are (modulo the retrieve relation). The third conditions ensures that the concrete operations have an effect
that is consistent with the abstract, whilst also allowing non-determinism to be reduced.

As an example refinement, consider the following simple specification. It defines two operations that
add and remove an input from a setsof some given typeT.

[T] max: N

A= [s : PT
∣∣ #s≤ max] AInit = [A′ ∣∣ s′ =∅]

AEnter
∆A
p? :T

#s< max
p? 6∈ s
s′ = s∪{p?}

ALeave
∆A
p? :T

p?∈ s
s′ = s\{p?}

A simple data refinement replaces the setsby an injective sequencel as follows (assuming the same
T andmax):

C= [l : iseq T
∣∣ #l ≤ max] CInit = [C′ ∣∣ l′ = 〈〉]

CEnter
∆C
p? :T

#l < max
p? 6∈ ranl

l′ = l a 〈p?〉

CLeave
∆C
p? :T

p?∈ ranl
l′ = l ↾ (T \{p?})

It is easy to see that the second specification is a downward simulation of the first, using as retrieve
relation the following:

R== [A; C
∣∣ s= ranl]

Our task is to build a tool that can automatically check this kind of refinement.
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3 Z2SAL

The original idea of translating Z into SAL specifications was due to Smith and Wildman [20], however,
our implementation has increasingly diverged from the original idea as optimization issues have been
tackled. In [9, 8] we have described the basics of our implementation, which provides a bespoke parser
and generator, written in Java, to translate from the LATEX encoding of Z into the SAL input language.

A Z specification written in the state-plus-operations style is translated into a SAL finite state au-
tomaton, following a template-driven strategy with a number of associated heuristics. The Z-style of
specification is preserved in this strategy, including postconditions that mix primed and unprimed vari-
ables arbitrarily, possibly asserting posterior states innon-constructive ways. We also preserve the Z
mathematical toolkit’s approach to the modelling of relations, functions and sequences as sets of tuples,
permitting interchangeable views of functions, sequencesand relations as sets.

A specification in the SAL input language consists of a collection of separate input files, known
ascontexts, in which all the declarations are placed. At least onecontextmust contain the definition
of a module, an automaton to be simulated or checked. In our translationstrategy, we use a master
contextfor the main Z specification and refer to othercontextfiles, which define the behaviour of data
types from the mathematical toolkit. The mastercontextconsists of a prelude, declaring types and
constants, followed by the main declaration of a SALmodule, defining the finite state automata, which
implements the behaviour of the Z state and operation schemas. The states of the SAL translation are
created by aggregating the variables from the Z state schema, and the transitions are created by turning
the operation schemas intoguarded commands, triggered by preconditions on input and local (state)
variables, and asserting postconditions on local and output variables.

The implementation of this basic strategy is presented in [8], here we recap on its salient points
on two examples. Consider the first specification above. Upontranslation the specification becomes a
context, here calleda.

Thebuilt-in types of Z are translated into finite subranges in SAL, according to a scheme described
in [8]. For example,N is translated to:

NAT : TYPE = [0..4];

The basic typesof Z are converted into finite, enumerated sets in SAL, consisting of three sym-
bolic ground elements by default (but sometimes with an extra bottomelement to deal with partiality of
functions etc.). For example, the given typeT is translated to:

T : TYPE = {T__1, T__2, T__3};

Where the Z specification expresses predicates involving the cardinality of sets, the translator gen-
erates a bespoke counting-context for sets containing up tothe maximum number of symbolic ground
elements generated for the set, as described in [8]. For thisexample, acount3 context is generated; the
instantiation for counting up to three elements of typeT is named:

T__counter : CONTEXT = count3 {T; T__1, T__2, T__3};

The bounding constantmaxis an uninterpreted constant in Z, which we translate in SAL as a local
variable, which can in principle take any value in theNAT type’s range. This leads to some simulation
states where the limits of the system’s behaviour are reached quickly (e.g. ifmax= 0), but other states in
which all three elements may be added to the sets.

State and initialisation schemas.The state variables from the Z state schema are translated into
the local variables of the SALmodule, which together constitute the aggregate states of the automaton.
The state predicate is treated as follows: we define a correspondingDEFINITION clause to represent the
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schema invariant. This is achieved by introducing an extralocal boolean variable, calledinvariant__,
and declaring a formula for this in thedefinitionsub-clause.

The Z initialization schema is translated in a non-constructive style into a guarded command in the
INITIALIZATION clause of the SAL module, with the invariant as part of the guard. Thus, for the above
example, we get the following translation.

State : MODULE =

BEGIN

LOCAL max : NAT

LOCAL s : set {T;} ! Set

INPUT p? : T

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ = (T__counter ! size?(s) <= max)

INITIALIZATION [

s = set {T;} ! empty AND

invariant__

-->

]

The challenge of the translation strategy is to deal efficiently with the large vocabulary of mathemati-
cal data types such as sets, products, relations, functions, sequences and bags. The translation tool has to
represent these efficiently in SAL, whilst preserving the expressiveness and flexibility of the Z language.

The basic approach is to define one or more context files for each data type in the toolkit. For
example, the set mathematical data type in Z is translated into a SAL context, which models the set as
a boolean-valued membership predicate on elements (following Bryant’s optimal encoding of sets for
translation into BDDs, [2, 3]). All other set operations arebased on this encoding:

set {T : TYPE; } : CONTEXT = BEGIN

Set : TYPE = [T -> BOOLEAN];

empty : Set = LAMBDA (elem : T) : FALSE;

...

contains? (set : Set, elem : T) : BOOLEAN =

set(elem);

...

union(setA : Set, setB : Set) : Set =

LAMBDA (elem : T) : setA(elem) OR setB(elem);

...

END

Similar contexts are defined for the function, relation and sequence data types. Whereas Z sets
and relations are modelled as boolean maps, Z functions and sequences are modelled using SAL’s total
functions. We adopt a totalising strategy, introducing bottom elements for types that participate in the
domain or range of functions, or range of sequences.

Translating the Z operation schemas.Each operation schema in Z contributes in two ways to the
SAL translation. Firstly, an operation schema may optionally declare input, or output variables (or both),
which are extracted and declared in the prelude of themoduleclause, as SALinput andoutputvariables.
Secondly, the predicate of each operation schema is converted into aguarded commandin thetransition
sub-clause, the last sub-clause in themoduleclause.
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The input and output variables are understood to exist in thelocal scope of each operation schema,
which has consequences in the translation. The SAL translation eventually substitutes the suffix ‘_’‘ _’
for ‘!’ in the output variables, since the latter is reserved.

The computation performed by each operation schema is expressed as aguarded commandin the
transition sub-clause. The name of the schema is used for the transitionlabel, which aids readability.
Theguarded commandhas the general syntactic form:label : guard --> assignments.

The guards for each transition include the primedinvariant__’ as one of the conjuncts, which
asserts the state predicate in the posterior state of every transition. This, combined with the assertion of
the unprimedinvariant__ in the initial state, ensures that the state predicate holdsuniversally.

Finally, a catch-allELSE branch is added to the guarded commands, to ensure that the transition rela-
tion is total (for soundness of the model checking). In practice, this allows model-checking to complete,
even if the simulation blocks at a given point. Admitting theELSE-transition allows simulations to pass
through states in which theinvariant__’ fails to hold. Normally, this does not matter, since we can
also ensure thatLOCAL state variables are not modified, whenever theELSE-transition is taken.

However, a new soundness problem emerged when admittingbottomvalues, as part of a totalising
strategy for partial types. Our previous practice was to assert thatINPUT variables never tookbottom
values, as part of the invariant. However, a loophole was discovered that allowed the system to pass
through states in which the invariant did not hold (due to selecting bottom values for inputs) and then
recover in the following cycle, in which the invariant held once more, but undefined values had been
accepted as inputs from the previous cycle. Ideally, we would have liked to rule out invalid inputs in the
ELSE-transition, but the SAL tools do not permit this.

Instead, we now assert both the primedinvariant__’ and unprimedinvariant__ in the guard to
each transition, so closing the loophole. In practice, simulations can still pass through states where the
invariant fails to hold, but they are then forced to pass throughELSE-transitions repeatedly, until some
valid input is selected. The new translation is once again sound, but simulations may have more latent
cycles. Thus for the transition component of our example we have the following:

TRANSITION [

AEnter :

T__counter ! size?(s) < max AND

NOT set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! insert(s, p?) AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE}

[]

ALeave :

set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! remove(s, p?) AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE}

[]

ELSE --> s’ = s
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]

A similar translation is produced forC, this time producing a SAL input file using contexts defined
to model Z sequences; see Appendix A.

4 Model-checking a refinement

A series of approaches to model-checking a refinement is described in [21, 22, 10] by Smith and Derrick
with varying degrees of sophistication. They all work by taking two specifications,A andC say, and
building a combined systemM which encodes the behaviour of both in such a way that it is possible
to write CTL properties to check the various aspects that areneeded for simulation conditions to hold.
There are variations to this approach as follows.

1. Three different combinations are formed,Minit , Mapp, Mcorr, one for each of the three downward
simulation conditions (and a similar methodology for upward simulations);

2. One combination is formed,M, encoding all three properties to be checked in one system.

These two approaches need the candidate retrieve relation to be passed to the tool, thus a final ap-
proach is

• Additionally have the model-checker search to find if such a retrieve relation exists.

For efficiency reasons (and here to aid readability) we describe our implementation of the first ap-
proach, again restricting ourselves for brevity to downward simulations. Thus in the approach we de-
scribe, which is an abbreviated discussion of [22], here three systems are formed and if all three checks
are satisfied then the concrete system is indeed a downward simulation of the abstract system with the
chosen retrieve relation.

To illustrate the approach, we use the example specified above, noting that although for readability
we describe it as a combination of Z schemas, in our implementation the combination acts at the level
of combining SAL modules. We will combine the two specifications into one system so that we can
encode the simulation conditions on the combined system, thus the combined specification includes all
the abstract and concrete variables. The methodology assumes the state variables of the abstract and
concrete systems are disjoint (as in fact they are in our example), but if not, then renaming is applied first
to achieve it.

Initialisation. The simulation condition on initial states requires that for each concrete initial state,
we are able to find an abstract initial state related by the retrieve relationR. To encode this condition we
initialise Minit so that the concrete part of the state is initialised. Hence in our example, the combined
system’s state and initialisation are as follows:

Minit

s : PT
l : iseq T

#s≤ max
#l ≤ max

Init init

M′
init

l′ = 〈〉

To check whether an abstract initial state exists that is related to any particuar concrete initial state,
we use just one operation (normally calledInitAinit ) which changes the abstract part of the state to an
initial value and leaves the concrete part unchanged. In ourexample this operation is then:
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[∆Minit
∣∣ s′ =∅ ∧ l′ = l]

For any non-trivial specificationInitAinit is total, thus we do not need the ”catch-all” ELSE branch in
the SAL model-checker which is needed for non-total systemsas described above. Then, with a system
with one operation the required initialisation condition holds if the operation can be performed such that
the resulting abstract and concrete parts of the state are related byR. That is, we require that there exists
a next state such thats= ranl, i.e.:

EX (s= ranl)

Applicability. Applicability conditions in refinements check the consistency of the operations’ pre-
conditions. To encode this as a temporal formula we introduce a variableev to the combined state to
denote the name of the last operation that occurred, and, as in [22], we use a differentfont for the val-
ues of typeev. Since we will need an additional operation to ensure totality, the combined state for an
applicability check in our example will be the following:

Mapp

s : PT
l : iseq T
ev: {AEnter,CEnter,ALeave,CLeave,Choose}
#s≤ max
#l ≤ max

The applicability condition requires that if abstract and concrete states are related by the retrieve
relation, then the concrete operation must be applicable whenever the abstract one was. For the sake
of efficiency we initialise to states which are already related by the retrieve relation, that is, here of the
form1:

Initapp= [M′
app

∣∣ s′ = ranl′]

Operations are then specified, one for each abstract or concrete operation, each shadowing the be-
haviour of the original operation, and only specifying the values of that operation (egAEnterapp defines
values for variables that originate from the abstract specification). In addition, we introduce aChoose
operation.

AEnterapp

∆Mapp

p? :T

#s< max
p? 6∈ s
s′ = s∪{p?}
ev′ = AEnter

ALeaveapp

∆Mapp

p? :T

p?∈ s
s′ = s\{p?}
ev′ = ALeave

1The value ofevcan be left underspecified.
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CEnterapp

∆Mapp

p? :T

#l < max
p? 6∈ ranl

l′ = l a 〈p?〉
ev′ = CEnter

CLeaveapp

∆Mapp

p? :T

p?∈ ranl
l′ = l ↾ (T \{p?})
ev′ = CLeave

Chooseapp =̂ [∆Mapp | ev′ = Choose]

The applicability check can now be written in CTL as follows.

(EX (ev= AEnter)⇒ EX (ev= CEnter))∧ (EX (ev= ALeave)⇒ EX (ev= CLeave))

Correctness. A similar methodology is applied to check the correctness condition, and here we
use the same combined state and initialisation as used for applicability, as well as the same totalisation
Choose:

Mcorr =̂ Mapp

Initcorr =̂ Initapp

Choosecorr =̂ Chooseapp

The downward simulation correctness condition requires that any after-state of a concrete operation
is related by the retrieve relation to an after-state of the abstract operation. To encode this correctly one
needs to ensure that each operation in the combined state does not alter variables from the portion of
state it is not representing. Thus we have operations of the form:

AOpcorr =̂ [AOpapp | l′ = l]
COpcorr =̂ [COpapp | s′ = s]

This allows us to perform the operationsCOpcorr andAOpcorr in sequence so that the abstract part
of the final state reached is identical to that which could have been reached by performing onlyAOpcorr,
and the concrete part is identical to that which could have been reached by performing onlyCOpcorr. The
correctness condition is then:

EX (ev= AEnter)⇒ AX (ev= CEnter⇒ EX (ev= AEnter ∧ R))
∧

EX (ev= ALeave)⇒ AX (ev= CLeave⇒ EX (ev= ALeave ∧ R))

Implementation in SAL. The above is described in terms of combinations of Z specifications, al-
though, of course, it is implemented in terms of combining SAL modules in our tool-suite.

The process of combining the two LATEX Z specifications plus retrieve relation into a single SAL
specification in order to check the downward simulation conditions was achieved using an extension to
our Z to SAL parser. When translating a single Z specificationto SAL our compiler first parses the Z, then
transforms it into an internal SAL representation and finally the SAL file is generated. In extending the
tool-set to combine two specifications in the manner described above the major modification was to the
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middle phase, the transformation from Z to SAL. Nevertheless the process of parsing two specifications
sequentially required some modification for a number of issues.

For example, declarations in the abstract and concrete state schemas need to be checked to ensure
that they contain distinct identifiers, but where types and constants occur in both specifications they
have to be identical to cope with SAL’s strict type checking.Neither of these problems caused much
difficulty since, e.g., there already was a mechanism to ensure that a variable name used in two different
Z operations did not lead to a conflict in the SAL translations(where all variables had the same scope).
In our simple, single specification, translation this is achieved by prefixing the variable name by the
name of its transition wherever an ambiguous name is detected and the same mechanism was used when
producing a single combined specification. The only modification was that variables from axiomatic
definitions were prefixed by the specification name rather than the transition name.

Treating types declared in two different specifications as the same was slightly more complicated
as types from the abstract specification occurring in the concrete had to be identified. In our single
translation types are canonical, for reasons explained in [8] and this had to be maintained in the combined
translation without the parser rejecting a concrete specification which contains an apparently second
declaration of a type which has been declared in the abstractspecification. This problem also occurred
with identical constants in both specifications.

Having parsed the two specifications, the retrieve relationis read in and parsed as a single Z operation
with everything from both the abstract and concrete specifications in scope.

The process of transforming a single Z specification into SALconsists of fixing the finite ranges of
all the types, eliminating redundant predicates, giving initial values to all the constants and identifying
any named types that would have to be generated in SAL. In transforming two specifications into one
SAL specification the finite ranges were fixed to the widest required by either specification but apart
from that the process is essentially simple. The two sets of initial declarations were combined and the
two lists of operation schemas in Z became a single list of transitions in SAL. The resulting structure is
that of our internal representation of any SAL specificationand a SAL text file could be generated from
it in the standard way.

The result produced by our tool-kit of the two SAL modules forthe correctness condition is given in
Appendix B. It is then a trivial matter to check the required theorem on it.

5 A further example

A further example, which provides a comparative analysis with the manual approach to refinement check-
ing, is given by the following (now standard) example.

The Marlowe box office allows customers to book tickets in advance using theBook operation –
mpool is the set of tickets, and if a ticket is available (mpool 6= ∅) then one is allocated then and there.
When the customer arrives, operationArrive presents this ticket.Ticketis the set of all tickets, and a free
type adds a possibly null ticket, andtkt models which tickets have been allocated.

[Ticket] MTicket::= null
∣∣ ticket〈〈Ticket〉〉

Marlowe
mpool: PTicket
tkt : MTicket

MInit
Marlowe

tkt= null
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MBook
∆Marlowe

tkt= null
mpool6=∅
tkt′ 6= null
ticket−1(tkt′) ∈ mpool
mpool′ = mpool\ {ticket−1(tkt′)}

MArrive
∆Marlowe
t! : Ticket

tkt 6= null
tkt′ = null
t! = ticket−1(tkt)
mpool′ = mpool

In an alternative description - the Kurbel - customers stillbook tickets in advance. However, now if
there is an available ticket then this is simply recorded by the operationBookprovided the customer has
not already booked. Only when the customer actually arrivesat the box office, is the ticket allocated by
Arrive. kpool is the pool of tickets andbkddenotes whether a ticket has been booked.

Booked::= yes
∣∣ no [Ticket]

Kurbel
kpool: PTicket
bkd: Booked

KInit
Kurbel

bkd= no

KBook
∆Kurbel

bkd= no
kpool 6=∅
bkd′ = yes
kpool′ = kpool

KArrive
∆Kurbel
t! : Ticket

bkd= yes
kpool 6=∅
bkd′ = no
t! ∈ kpool
kpool′ = kpool\ {t!}

The Marlowe specification is a downward simulation of the Kurbel (and in fact Kurbel is an upward
simulation of Marlowe). The retrieve relation linking the two that one is tempted to write down is the
following:

R
Marlowe
Kurbel

bkd= no⇒ tkt= null ∧ kpool= mpool
bkd= yes⇒ tkt 6= null ∧ kpool= (mpool∪{ticket−1(tkt)})

In [22] a hand translation of these specifications into SAL was performed, followed by a merging into
a single SAL specification - also performed by hand. A naturalquestion to ask therefore is to what
extent our automatic translation and combination is comparable with the manual process. The above
candidate retrieve relation was used in the manual process,which revealed a failure to pass the necessary
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refinement conditions - both specification and retrieve relation needing adjustment before the Marlowe
was shown to be a valid downward simulation of the Kurbel.

It is interesting to note that the results of the automatic translation were broadly comparable to the
manual one, and in fact due to our optimizations show slight reduction in state space size (see table be-
low). The automatic combination essentially identical to the manual. The latter is to be expected - the
combination is essentially simple once the specifications have been converted into SAL.

Step Manual Auto
0 1344 840
1 3360 6072
2 8544 6072
3 8544 6072
4 8544 6072

6 Conclusion

This work contributes on one hand to the strand of work on providing tool support for Z, and on the other
hand to automatic refinement checking.

Recent work on providing tool support for Z includes the CZT (Community Z Tools) project [16],
our own work [9], as well as related work such as ProZ [19], which adapts the ProB [15] tool for the Z
notation.

Work on automatic refinement checking includes that of Bolton who has used Alloy to verify data
refinements in Z [1]. There have also been a number of encodingof subsets of Z-based languages in the
CSP model checker FDR [11, 17, 14], which checks that refinement holds between two specifications by
comparing the failures/divergences semantics of the specifications; and simulation-based refinement can
be encoded as a failures/divergences check [7, 13, 12].

Clearly there is much to be done in terms of further work here,not least some performance charac-
terisations of when such an approach produces feasible state spaces.

Acknowledgements:This work was done as part of collaborative work with Graeme Smith and Luke
Wildman of the University of Queensland. Tim Miller also gave valuable advice on the current CZT
tools.
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Appendix A

Here is the SAL translation of the concrete specification from Section 2

c : CONTEXT = BEGIN

NAT : TYPE = [0..4];

T : TYPE = {T__1, T__2, T__3, T__B};
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State : MODULE =

BEGIN

LOCAL max : NAT

LOCAL l : sequence {T; T__B, 3} ! Sequence

INPUT p? : T

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ = (sequence {T; T__B, 3} ! injective?(l) AND

sequence {T; T__B, 3} ! valid?(l) AND

p? /= T__B AND

sequence {T; T__B, 3} ! size?(l) <= max)

INITIALIZATION [

l = sequence {T; T__B, 3} ! empty AND invariant__

-->

]

TRANSITION [

CEnter :

sequence {T; T__B, 3} ! size?(l) < max AND

NOT set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! append(l, p?) AND

invariant__ AND

invariant__’

-->

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE}

[]

CLeave :

set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! remove(l,p?) AND

invariant__ AND

invariant__’

-->

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE}

[]

ELSE --> l’ = l

]

END;

END

Appendix B

The result of automatically combining the two SAL modules from Z specifications given in Section 2:

r2corr : CONTEXT = BEGIN

NAT : TYPE = [0..5];

T : TYPE = {T__1, T__2, T__3, T__B};

EVENT__ : TYPE = {AEnter, ALeave, CEnter, CLeave, Choose__};

T__counter : CONTEXT = count4 {T; T__1, T__2, T__3, T__B};

State : MODULE =

BEGIN

LOCAL max : NAT
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LOCAL max : NAT

LOCAL s : set {T;} ! Set

INPUT p? : T

LOCAL l : sequence {T; T__B, 3} ! Sequence

LOCAL ev__ : EVENT__

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ =

(T__counter ! size?(s) <= max AND

sequence {T; T__B, 3} ! injective?(l) AND

p? /= T__B AND

sequence {T; T__B, 3} ! valid?(l) AND

sequence {T; T__B, 3} ! size?(l) <= max)

INITIALIZATION [

(s = sequence {T; T__B, 3} ! range(l))

-->

]

TRANSITION [

AEnter :

T__counter ! size?(s) < max AND

NOT set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! insert(s, p?) AND

ev__’ = AEnter AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

[]

ALeave :

set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! remove(s, p?) AND

ev__’ = ALeave AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

[]

CEnter :

sequence {T; T__B, 3} ! size?(l) < max AND

NOT set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! append(l, p?) AND

ev__’ = CEnter AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}
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[]

CLeave :

set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! remove(l,p?) AND

ev__’ = CLeave AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

[]

Choose__ :

ev__’ = Choose__ AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

]

END;

END
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The paper discusses the role of interpretations, understood as multifunctions that preserve and reflect
logical consequence, as refinement witnesses in the generalsetting ofπ-institutions. This leads to
a smooth generalization of the “refinement by interpretation” approach, recently introduced by the
authors in more specific contexts. As a second, yet related contribution a basis is provided to build
up a refinement calculus of structured specifications in and across arbitraryπ-institutions.

1 Introduction

The expressionrefinement by interpretationwas coined in [MMB09b] to refer to an alternative approach
to refinement of equational specifications in which signature morphisms are replaced bylogical inter-
pretationsas refinement witnesses.

Intuitively, an interpretation is a logic translation which preserves and reflects meaning. Actually, it
is a central tool in the study of equivalent algebraic semantics (see,e.g., [Wój88, BP89, BP01, BR03,
Cze01]), a paradigmatic example being the interpretation of the classical propositional calculusinto the
equational theory of boolean algebras(cf. [BP01, Example 4.1.2]). Interestingly enough, and in the
more operational setting of formal software development, the notion of interpretation proved effective
to capture a number of transformations difficult to deal within classical terms. Examples include data
encapsulation and the decomposition of operations into atomic transactions [MMB09b].

A typical refinement pattern that is not easily captured by the classical approach concerns refinement
of a subset of operations into operations defined over more specialized sorts. This kind of transformation
induces the loss of the functional property on the operations’ component of signature morphisms. For
example, there is not a signature morphismσ to guide a refinement where a specification with operations
g : s′ → s and f : s′ → s is transformed into one with operationsg : s′ → snew and f : s′ → s, since
this translation naturally induces a mapσsort(s) = {s,snew} which violates the definition of signature
morphism.

The approach seems also promising in the context of new, emerging computing paradigms which
entail the need for more flexible approaches to what is taken as a valid transformation of specifications,
as in, for example, [BSR04]. Later, in [MMB09a], the whole framework was generalized from the
original equational setting to address deductive systems of arbitrary dimension. This made possible, for
example, to refine sentential into equational specifications and the latter into modal ones. Moreover, the
restriction to logics with finite consequence relations wasdropped which resulted in increased flexibility
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along the software development process. The interested reader is referred to both papers for a number of
illustrative examples.

On the other hand, the notion of an institution [GB92], proposed by J. Goguen and R. Burstall in the
late 1970s, has proven very successful in formalizing logical systems and their interrelations.

This paper aims at lifting the use of logic interpretations to witness refinement of specifications at
an institutional level. This is made in the context ofπ-institutions [FS88] which deal directly with
syntactic consequence relations rather than with semantical satisfaction, as in the original definition of an
institution [GB92]. π-institutions are particularly useful in formalizing deductive systems with varying
signatures, which are only indirectly handled by the methods of abstract algebraic logic, as in [BP01] on
which our first generalization [MMB09a] is based. In general, π-institutions provide a more operational
framework with no loss of expressiveness as any classical institution can be suitably translated.

Refinement by interpretation is proposed here at two different levels: amacrolevel relating different
π-institutions, and themicro level of specifications inside a particular, although arbitrary, π-institution.
The former discusses what is an interpretation of institutions and provides the envisaged generalization of
this approach to refinement of arbitrary deductive systems.The latter, on the other hand, corresponds to a
sort of local refinement witnessed by interpretations thought simply as multifunctions relating sentences
generated by different signatures within the same institution.

As a second, although related, contribution, the paper laysthe basis for a refinement-by-interpretation
calculus of structured specifications in an arbitrary (and across)π-institution(s). That both levels can be
addressed and related to each other comes to no surprise: a main outcome of institution theory is precisely
to provide what [AN94] describes aseffective mechanisms to manipulate theories in an analogous way
as our deductive calculi manipulate formulas.

The remainder of this paper is organized as follows.π-institutions and a notion of interpretation
between them are reviewed in section 2. Then, section 3 characterizes refinement by interpretation in
this context, whereas the local view is discussed in section4. The structure of a refinement calculus is
discussed in section 5. Section 6 concludes and highlights some pointers to related work.

2 π-institutions and interpretations

In broad terms, an institution consists of an arbitrary category Sign of signatures together with two
functorsSEN andMOD that give, respectively, for each signature, a set of sentences and a category
of models. For each signature, sentences and models are related via a satisfaction relation whose main
axiom formalizes the popular aphorismtruth is invariant under change of notation[Dia08]. Such a very
generic way to capture a logical system was originally motivated by quite pragmatic concerns: to provide
an abstract, language-independent framework for specificifying and reasoning about software systems,
in response to the explosion of specification logics. Several current specification formalisms, notably,
CAFEOBJ [DF02], CASL [MHST03] and HETS [MML07] were designed to take advantage of such a
general framework.

π-institutions, proposed by J. Fiadeiro and A. Sernadas in [FS88], fulfill a similar role, replacing
semantical satisfaction by a syntactic consequence relation à la Tarski. Therefore, aπ-institution intro-
duces, for each signature, a closure operator on the set of its sentences capturing logical consequence. As
remarked by G. Voutsadakis in [Vou03]π-institutionsmay be viewed as the natural generalization of the
notion of a deductive system on which a categorical theory ofalgebraizability, generalizing the theory
of [BP01] may be based. In the sequel we review the basic definition and adopt Voutsadakis’s notion of
interpretation to define refinement by interpretation in such a general setting.
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Definition 1 A π-institution I is a tuple〈Sign,SEN,(CΣ)Σ∈|Sign|〉 where

• Sign is a category of signatures and signature morphisms;

• SEN : Sign→ Set is a functor from the category of signatures to the category of small sets giving,
for eachΣ ∈ |Sign|, the setSEN(Σ) of Σ-sentences and mapping each f: Σ1 → Σ2 to asubstitution
SEN( f ) : SEN(Σ1)→ SEN(Σ2);

• for eachΣ ∈ |Sign|, CΣ : P(SEN(Σ)) → P(SEN(Σ)) is a mapping, calledΣ-closure, such that,
for all A,B⊆ SEN(Σ) andΣ1,Σ2 ∈ Sign;

(a) A⊆CΣ(A)

(b) CΣ(CΣ(A)) =CΣ(A)

(c) CΣ(A)⊆CΣ(B) for A⊆ B

(d) SEN( f )(CΣ1(A))⊆CΣ2(SEN( f )(A))

Note that theΣ-closure operator of aπ-institution is not required to be finitary.

Definition 2 A π-institution I′ = 〈Sign′,SEN′,(C′
Σ)Σ∈|Sign′ |〉 is asub-π-institution of I = 〈Sign,SEN,

(CΣ)Σ∈|Sign|〉 if Sign′ is a sub-category of Sign and, for eachΣ ∈ |Sign′|, SEN′(Σ) ⊆ SEN(Σ) and the
Σ-closure C′Σ is the restriction of CΣ.

Roughly speaking, the notion of logical interpretation underlying [MMB09a] is that of [BP89]: a
multifunction (i.e., a set-valued function) relating formulas which preserves and reflects logical conse-
quence. Note that the expressive flexibility of interpretations comes precisely from their definition as
multifunctions. A corresponding definition, to be used in the sequel, was proposed, in the context of
π-institutions, in [Vou03]:

Definition 3 Given twoπ-institutions I= 〈Sign,SEN,(CΣ)Σ∈|Sign|〉 and I′ = 〈Sign′,SEN′,(C′
Σ)Σ∈|Sign′|〉,

a translation〈F,α〉 : I → I ′ consists of a functorF : Sign→ Sign′ together with a natural transformation
α : SEN→ P SEN′F.

A translation〈F,α〉 : I → I ′ is asemi-interpretationif, for all Σ ∈ |Sign|, Φ∪{φ} ⊆ SEN(Σ),

φ ∈CΣ(Φ) ⇒ αΣ(φ) ⊆C′
F(Σ)(αΣ(Φ)) (1)

It is an interpretationif,

φ ∈CΣ(Φ) ⇔ αΣ(φ) ⊆C′
F(Σ)(αΣ(Φ)) (2)

Finally, we say that a translation〈F,α〉 interprets aπ-institution I, if there is aπ-institution I0 =
〈Sign0,SEN0,(C0

Σ)Σ∈|Sign0|〉 for which〈F,α〉 is an interpretation.

Note that a translation depends only on the categories of signatures and the sentence functors in-
volved, but not on the family of closure operators. A translation is aself-translationif F is the identity
functorId. On the other hand, it is said to be afunctional translationif, for everyΣ∈ |Sign|, φ ∈ SEN(Σ),
|αΣ(φ)| = 1. Additionally, it is anidentity translation, if for everyΣ ∈ |Sign|, φ ∈ SEN(Σ),

αΣ(φ) = {φ} (3)
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3 Refining π-institutions by interpretation

In software development the process ofstepwise refinement[ST88b] encompasses a chain of successive
transformations of a specification

S0 ; S1 ; S2 ; · · ·; Sn−1 ; Sn

through which a complex design is produced by incrementallyadding details and reducing under-spe-
cification. This is done step-by-step until the class of models becomes restricted to such an extent that
a program can be easily manufactured. The discussion on whatcounts for a valid refinement step,
represented bySi ; Sj , is precisely the starting point of this line of research.

The minimal requirement to be placed on a refinement relation, besides being a pre-order to allow
stepwise construction, is preservation of logical consequence. In the framework ofπ-institutions this
corresponds to the following definition:

Definition 4 (Syntactic refinement) Let I= 〈Sign,SEN,(CΣ)Σ∈|Sign|〉 and I′= 〈Sign′,SEN′,(C′
Σ)Σ∈|Sign′|〉

be twoπ-institutions. I′ is a syntactic refinement of I if Sign is a sub-category of Sign′ and, for each
Σ ∈ |Sign|, SEN(Σ)⊆ SEN′(Σ) and CΣ(Φ)⊆C′

Σ(Φ) for Φ ⊆ SEN′(Σ).
Clearly, aπ-institution is a syntactic refinement of any of itsπ-sub-institutions. Refinement by interpre-
tation, on the other hand, goes a step further:

Definition 5 (Refinement by interpretation) Consider twoπ-institutions I= 〈Sign,SEN,(CΣ)Σ∈|Sign|〉
and I′ = 〈Sign′,SEN′,(C′

Σ)Σ∈|Sign′ |〉 and let〈F,α〉 : I −→ I ′ be a translation. I′ is a refinement by inter-
pretationof I via 〈F,α〉, written as I;〈F,α〉 I ′, if

• there is aπ-institution I0 = 〈Sign′,SEN′,(C0
Σ)Σ∈Sign′〉 that interprets I under translation〈F,α〉;

• for all Σ ∈ |Sign|, Φ ⊆ SEN(Σ),

φ ∈CΣ(Φ) ⇒ αΣ(φ)⊆C′
F(Σ)(αΣ(Φ))

Clearly, a syntactic refinement is a refinement by interpretation for a self, identity, functional inter-
pretation, withF = Id. The following Lemma establishes an useful characterization of refinement via
interpretation:
Lemma 1 Let I= 〈Sign,SEN,(CΣ)Σ∈|Sign|〉 and I′ = 〈Sign′,SEN′,(CΣ)Σ∈|Sign′ |〉 be twoπ-institutions and
〈F,α〉 : I −→ I ′ a translation. Then, I;〈F,α〉 I ′ if I ′ is a syntactic refinement of some interpretation of I
through〈F,α〉.
Proof. SupposeI ′ is a syntactic refinement of an arbitrary interpretationI0 of I along〈F,α〉. Clearly the
first condition in the definition of refinement by interpretation is met. For the second, letΣ ∈ Signand
Φ∪{φ} ⊆ SEN(Σ). Assumeφ ∈CΣ(Φ). Then

αΣ(φ)⊆C0
F(Σ)(αΣ(Φ))

because〈F,α〉 is an interpretation. On the other hand,I ′ being a syntactic refinement ofI0,

C0
F(Σ)(αΣ(Φ)) ⊆C′

F(Σ)(αΣ(Φ))

Thus,αΣ(φ) ⊆C′
F(Σ)(αΣ(Φ)).

2

Definition 5 subsumes the corresponding notion introduced in [MMB09a] for k-dimensional deduc-
tive systems, because everyk-dimensional deductive system〈L ,⊢L 〉 over a countable set of variables
V, gives rise to a specificπ-institution IL = 〈SignL ,SenL ,(CLΣ)Σ∈|SignL |〉, built in [Vou02] as follows:
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(i) SignL is the one-object category with objectV. The identity morphism is the inclusioniV : V →
FmL (V), whereFmL (V) denotes the set of formulas constructed by recursion using variables
in V and connectives inL in the usual way. Compositiong · f is defined byg · f = g⋆ f , where
g⋆ : FmL (V)→ FmL (V) denotes the substitution uniquely extendingg to FmL (V).

(ii) SENL : SignS → Setmaps V toFmk
L (V) and f : V →V to FmL (V) ( f ⋆)k : Fmk

L (V)→ Fmk
L (V).

It is easy to see thatSENS is indeed a functor.

(iii) Finally, CL is the standard closure operatorCV : P(FmL (V)) → P(FmL (V)) associated with
〈L ,⊢L 〉, i.e.,CV(Φ) = {φ ∈ Fmk

L (V) : Φ ⊢S φ} for all Φ ⊆ Fmk
L (V).

Example 1 Theπ-institution of modal logic S5G forms a (syntactic) refinement of the one for classical
propositional calculus (CPC). Actually, consider the modal signatureΣ = {→,∧,∨,¬,⊤,⊥, 2}. Modal
logic K is defined as an extension of CPC by adding the axiom2(p→ q)→ (2p→2q) and the inference
rule p

2p. Logic S5G, on the other hand, enriches the signature of K with the symbol 3, and K itself with
the axioms2p → p, 2p → 22p and3p → 23p, cf. [BP01]. Hence, since the signature of both
systems contains the signature of CPC and their presentations extend that of CPC with extra axioms
and inference rules, we have CPC; K and CPC; S5G (actually, CPC; K ; S5G). Hence, through
these refinements, one may capture more complex, modally expressed requirements introduced along the
refinement process.

Given an interpretationτ : FmL (V) −→ P(FmL ′(V ′)) between two deductive systems〈L ,⊢L 〉
and〈L ′,⊢L ′〉, let us define〈Fτ ,τ〉 as the translation betweenπ-institutionsIL andIL ′ , whereFτ is a
functor between single object categories, mapping, at the object level,V to V ′. As expected,

Lemma 2 An l-deductive system〈L ′,⊢L ′〉 is an interpretation of a k-deductive system〈L ,⊢L 〉 through
an interpretationτ , iff 〈Fτ ,τ〉 interprets theπ-institution IL in IL ′ .

Proof. Assume〈L ,⊢L 〉 (respectively,〈L ′,⊢L ′〉) are defined over a countable set of variablesV (re-
spectively,V ′). Being an interpretation between deductive systems,τ is a multifunctionτ : FmL (V)−→
P(FmL ′(V ′)) such that, for allΓ∪{φ} ⊆ FmL (V),

Γ ⊢L φ ⇔ τ(Γ) ⊢L ′ τ(φ) (4)

According to the construction ofIL , detailed above, this is equivalent to

φ ∈CV(Γ) ⇔ τ(φ)⊆CV′(τ(Γ)) (5)

2

Hence, it is immediate to check that

Corollary 1 An l-deductive system〈L ′,⊢L ′〉 is a refinement of a k-deductive system〈L ,⊢L 〉 through
an interpretationτ , iff theπ-institution IL ′ is a refinement of IL through〈Fτ ,τ〉.

As a final remark, note that, in a very precise sense, Definition 5 also covers the case of classical
institutions. Actually, aπ-institution corresponding to a classical one can always bedefined: for each
signatureΣ and set of formulasΨ, takeCΣ(Ψ) as the set of sentences satisfied in all models validating
Ψ.
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4 The local view

Having discussed refinement by interpretation ofπ-institutions, we address now the same sort of refine-
ment applied to specifications inside an arbitraryπ-institution. Such is thelocal view. Given an arbitrary
π-institution I = 〈Sign,SEN,(CΣ)Σ∈|Sign|〉, a basic, orflat specification is defined as

SP = 〈Σ,Φ〉

whereΣ ∈ |Sign| andΦ ⊆ SEN(Σ). Its meaning is the closure ofΦ, i.e.,CΣ(Φ). D. Sannella and A.
Tarlecki in [ST88a] define specification over an arbitrary institution along similar lines, but taking, as
semantic domain, classes of models instead of logical consequence relations.

As expected, any morphismσ : Σ −→ Σ′ in Signentails a notion oflocal refinement;σ in I given
by

〈Σ,Φ〉;σ 〈Σ′,Φ′〉 if σ(Φ)⊆CΣ′(Φ′) (6)

For σ an inclusion, this may be regarded as a form of syntactic refinement.
Specifications may also be connected by interpretations which, again, correspond to multifunctions

preserving and reflecting consequence. Formally,

Definition 6 Let〈Σ,Φ〉 and〈Σ′,Φ′〉 be two specifications over aπ-institution I= 〈Sign,SEN,(CΣ)Σ∈|Sign|〉
and i : SEN(Σ) −→ P(SEN(Σ′)) a multifunction fromSEN(Σ) to SEN(Σ′) . Then i is a(local) semi-
interpretationof 〈Σ,Φ〉 in 〈Σ′,Φ′〉 if, for all φ ∈ SEN(Σ),

φ ∈CΣ(Φ) ⇒ i(φ) ⊆CΣ′(Φ′) (7)

It is a (local) interpretationof 〈Σ,Φ〉 in 〈Σ′,Φ′〉 if,

φ ∈CΣ(Φ) ⇔ i(φ) ⊆CΣ′(Φ′) (8)

Finally, we say that i(locally) interprets〈Σ,Φ〉, if there is a specification〈Σ0,Φ0〉 on which〈Σ,Φ〉 is
interpreted by i.

Adopting expression “φ is true inspecification〈Σ,Φ〉” to abbreviate the fact thatφ ∈CΣ(Φ), defini-
tion (8) can be read asφ is true in〈Σ,Φ〉 iff i(φ) is true in〈Σ′,Φ′〉.

Definition 7 Let SP= 〈Σ,Φ〉 be a specification and i: SEN(Σ) −→ P(SEN(Σ′)) a translation which
interprets SP. A specification SP′ = 〈Σ′,Φ′〉 refines SP via local interpretation i, written as SP;i SP′, if
for all φ ∈ SEN(Σ),

φ ∈CΣ(Φ) ⇒ i(φ) ⊆CΣ′(Φ′) (9)

Given aσ : Σ → Σ′ ∈ Sign, SEN(σ) : SEN(Σ) → SEN(Σ′) induces a translation that maps each
φ ∈ SEN(Σ) into {SEN(σ)(φ)}. In the sequel we identify this translation simply withSEN(σ).

Definition 8 A signature morphismσ : Σ → Σ′ ∈ Sign isconservativeif for any Φ ⊆ SEN(Σ), SEN(σ)
interprets〈Σ,Φ〉 in SPσ = 〈Σ′,SEN(σ)(Φ)〉.

Observe thatSEN(σ) is always a semi-interpretation fromSPto SPσ . Moreover, note that conservative-
ness is a stronger notion than that of interpretability.
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Theorem 1 Let σ : Σ → Σ′ ∈ Sign be a conservative signature morphism, SP= 〈Σ,Φ〉 a specification
over I andΦ′ ∈ SEN(Σ′). Then,

SEN(σ)(Φ)⊆CΣ′(Φ′) implies that SP;SEN(σ) 〈Σ′,Φ′〉 (10)

In practice, new specifications are built from old through application of a number of specification
constructors. As a minimum set we consider operators to jointwo specifications, to translate one into
another, and to derive one from another going backward alonga signature morphism. The following
definition characterizes along these lines a notion of structured specification in an arbitraryπ-institution.

Definition 9 Structured specifications over an arbitraryπ-institution I = 〈Sign,SEN,(CΣ)Σ∈|Sign|〉 are
defined inductively as follows, taking flat specifications asthe base case.

• For a signatureΣ, the union of specifications SP1 = 〈Σ,Φ1〉 and SP2 = 〈Σ,Φ2〉 is defined as

union(SP1,SP2) = 〈Σ,Φ1∪Φ2〉

• The translation of specification SP= 〈Σ,Φ〉 through a morphismσ : Σ → Σ′ in Sign is defined as

translate SPthrough σ = 〈Σ′,SEN(σ)(Φ)〉

• The derivation of aΣ specification from SP′ = 〈Σ′,Φ′〉 through a morphismσ : Σ → Σ′ in Sign is
defined as

derive SP′ through σ = 〈Σ,Ψ〉
whereΨ = {ψ | SEN(σ)(ψ) ∈CΣ′(Φ′)}.

Of course, it is desirable that refinement be preserved by horizontal composition of specifications. In
particular, refinement by interpretation should be preserved by all specification constructors in Definition
9. The result is non trivial. Forunion we have,

Lemma 3 Let i : SEN(Σ)−→ P(SEN(Σ′)) be a local interpretation, and SP1 = 〈Σ,Φ1〉, SP2 = 〈Σ,Φ2〉
specifications such that SP1;i SP′1 and SP2;i SP′2. If i interpretsunion(SP1,SP2), thenunion(SP1,SP2);i

union(SP′1,SP′2).

Proof. For all φ ∈ SEN(Σ), we reason

SP1 ;i SP′1 ∧ SP2 ;i SP′2

⇔ { definition}
φ ∈CΣ(Φ1)⇒ i(φ)⊆CΣ′(Φ′

1) ∧ φ ∈CΣ(Φ2)⇒ i(φ)⊆CΣ′(Φ′
2)

⇒ {CΣ,CΣ′ monotonic}
φ ∈ (CΣ(Φ1)∪CΣ(Φ2))⇒ i(φ) ⊆ (CΣ′(Φ′

1)∪CΣ′(Φ′
2))

⇔ { definition}
union(SP1,SP2);i union(SP′1,SP′2)

2

The remaining cases are not straightforward. Actually, achieving compatibility entails the need for
imposing some non trivial conditions on morphisms.
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5 Towards a refinement calculus

Having defined refinement by interpretationacrossπ-institutions andinsidean arbitraryπ-institution,
this section sketches their interconnections. Our first step is to define how a specification in an institution
I translates toI ′ along an interpretation.

Definition 10 Let ρ = 〈F,α〉 : I −→ I ′ be a translation betweenπ-institutions I and I′ and SP= 〈Σ,Φ〉
a specification in I. The translation̂ρ(SP) of SP throughρ is defined by

ρ̂ 〈Σ,Φ〉 = 〈F(Σ),αΣ(Φ)〉 (11)

Next lemma answers the following question: is refinement by interpretation over arbitraryπ-institutions
preserved by the specification constructors?

Lemma 4 The definition of specification translation is structural over the specification constructors
given in definition 9, i.e.

ρ̂ (union(SP1,SP2)) = union(ρ̂(SP1), ρ̂(SP2))

ρ̂ (translate SPthrough σ) = translate ρ̂(SP) through F(σ)

ρ̂ (derive SP′ through σ) = derive ρ̂(SP′) through F(σ)

Proof. For the first case letSP1 = 〈Σ1,Φ1〉 andSP2 = 〈Σ2,Φ2〉. Then,

ρ̂ (union(SP1,SP2))

= { definition ofunion}
ρ̂ 〈Σ,Φ1∪Φ2〉

= { definition ofρ̂}
〈F(Σ),α(Φ1∪Φ2)〉

= { α is a natural transformation}
〈F(Σ),α(Φ1)∪α(Φ2)〉

= { definition ofunion}
union(〈F(Σ),α(Φ1)〉,〈F(Σ),α(Φ2)〉)

= { definition ofρ̂}
union(ρ̂(SP1), ρ̂(SP2))
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Consider now the second case (the third being similar):

ρ̂ (translate SPthrough σ)

= { definition oftranslate}
ρ̂ 〈Σ′,σ(Φ)〉

= { definition of ρ̂}
〈F(Σ′),αΣ′(σ(Φ))〉

= { α is a natural transformation}
〈F(Σ′),P(σ)(αΣ(Φ))〉

= { definition oftranslate}
translate 〈F(Σ′),αΣ(Φ)〉 through F(σ)

= { definition of ρ̂}
translate ρ̂(SP) through F(σ)

Note a slight abuse of notation: the extension ofρ̂(SP) in the conclusion is actually through the powerset
extension ofF(σ).
2

6 Conclusions and related work

In software development, one often has to resort to a number of different logical systems to capture
contrasting aspects of systems’ requirements and programming paradigms. This paper usesπ-institutions
to formalize arbitrary logical systems and lifts to such level a recently proposed [MMB09b, MMB09a]
approach to refinement based on logical interpretation.

Refinement by interpretation is formulated at both a global (i.e., acrossπ-institutions) and local
(i.e., between specifications inside an arbitraryπ-institution) level. The paper introduces a notion of
structured specification and shows that, at both levels, refinement by interpretation respects the proposed
specification constructors. Actually, the institutional setting not only makes it possible to go a step further
from [MMB09a] in generalizing the concept to arbitrary logics, but also provides a basis to build up a
refinement calculus of “institution-independent”, structured specifications.

We close the paper with a few remarks onrefinement by interpretationin itself and some pointers to
related work.

The idea of relaxing what counts as a valid refinement of an algebraic specification, by replacing
signature morphismsby logic interpretationsis, to the best of our knowledge, new. The piece of re-
search initiated with [MMB09b] up to the present paper was directly inspired by the second and third
author’s work on algebraic logic as reported, respectively, in [Mar06] and [Mad08], where the notion
of an interpretationplays a fundamental role (see,e.g., [BP89, BP01, BR03, Cze01]) and occurs in dif-
ferent variants. In particular, the notion ofconservative translationintensively studied by Feitosa and
Ottaviano [FD01] is the closest to our own approach.

Refinement by interpretation should also be related to the extensive work of Maibaum, Sadler and
Veloso in the 70’s and the 80’s, as documented, for example, in [MSV84, MVS85]. The authors resort
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to interpretations between theories and conservative extensions to define a syntactic notion of refinement
according to which a specificationSP′ refines a specificationSP if there is an interpretation ofSP′ into
a conservative extension ofSP. It is shown that these refinements can be vertically composed, therefore
entailing stepwise development. This notion is, however, somehow restrictive since it requires all maps
to be conservative, whereas in program development it is usually enough to guarantee that requirements
are preserved by the underlying translation. Moreover, in that approach the interpretation edge of a
refinement diagram needs to satisfy a number of extra properties.

Related work also appears in [FM93, Vou05] where interpretations between theories are studied, as
in the present paper, in the abstract framework ofπ-institutions. The first reference is a generalization of
the work of Maibaum and his collaborators, whereas the second generalizes toπ-institutions the abstract
algebraic logic treatment of algebraic semantics on sentential logics. Notions of interpretation between
institutions also appear in [Bor02] and [Tar95] under the designation ofinstitution representation. Dif-
ferently from the one used in this paper, borrowed from [Vou03], they are not defined as multifunctions.
The work of José Meseguer [Mes89] ongeneral logics, where a theory of interpretations between logical
systems is developed, should also be mentioned.

We believe this approach to refinement through logical interpretation has a real application potential,
namely to deal with specifications spanning through different specification logics. Particularly deserving
to be considered, but still requiring further investigation, are observational logic [BHK03], hidden logic
[Roş00, MP07] and behavioral logic [Hen97]. As remarked above, the study of refinement preservation
by horizontal composition remains a challenge and a topic ofcurrent research.

Other research topics arise concerns the ways in whichglobal and local levels interrelate. For ex-
ample, we are still studying to what extent a local refinementby interpretation of a specification in a
π-institution I , lifts to another local refinement of its translation induced by a global interpretation from
I to anotherπ-institution I ′.
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doi:10.1007/978-3-7643-8708-22.

[FD01] H. A. Feitosa & I. M. L. D’Ottaviano (2001):Conservative translations. Ann. Pure Appl. Logic
108(1-3), pp. 205–227, doi:10.1016/S0168-0072(00)00046-4.

[FM93] J. Fiadeiro & T. S. E. Maibaum (1993):Generalising Interpretations between Theories in the con-
text of (pi-) Institutions. In: Proceedings of the First Imperial College Department of Computing
Workshop on Theory and Formal Methods, Springer-Verlag, London, UK, pp. 126–147. Available at
http://portal.acm.org/citation.cfm?id=647322.721361.

[FS88] J. Fiadeiro & A. Sernadas (1988):Structuring Theories on Consequence. In D. Sanella & A. Tarlecki,
editors:Recent Trends in Data Type Specification. Specification of Abstract Data Types (Papers from
the Fifth Workshop on Specification of Abstract Datac Types,Gullane, 1987), Lecture Notes in Com-
puter Science332, Springer-Verlag, Berlin.

[GB92] J. Goguen & R. Burstall (1992):Institutions: abstract model theory for specification and program-
ming. J. ACM 39(1), pp. 95–146, doi:10.1145/147508.147524.

[Hen97] R. Hennicker (1997):Structural specifications with behavioural operators: semantics, proof methods
and applications. Habilitationsschrift.

[Mad08] Alexandre Madeira (2008):Observational Refinement Process. Electr. Notes Theor. Comput. Sci.
214, pp. 103–129, doi:10.1016/j.entcs.2008.06.006.

[Mar06] Manuel A. Martins (2006): Behavioral Institutions and Refinements in Gen-
eralized Hidden Logics. J. UCS - Journ. of Universal Computer Sci-
ence 12(8), pp. 1020–1049, doi:10.3217/jucs-012-08-1020. Available at
http://www.jucs.org/jucs_12_8/behavioral_institutions_and_refinements.

[Mes89] J. Meseguer (1989):General Logics. In J. Bairwise & H.J. Keisler et all, editors:Logic Collo-
quium’87, 87, Elsevier, pp. 275–330.

[MHST03] T. Mossakowski, A. Haxthausen, D. Sannella & A. Tarlecki (2003):CASL: The Common Algebraic
Specification Language: Semantics and Proof Theory. Computing and Informatics22, pp. 285–321,
doi:10.1.1.10.2965.

[MMB09a] M.A. Martins, A. Madeira & L.S. Barbosa (2009):Refinement by Interpretation in a General Setting.
In E. Boiten J. Derrick & S. Reeves, editors:Proc. Refinement Workshop 2009, ENTCS, Elsevier, pp.
105–121, doi:10.1016/j.entcs.2009.12.020.

[MMB09b] M.A. Martins, A. Madeira & L.S. Barbosa (2009):Refinement via Interpretation. In: 7th IEEE
International Conf. on Software Engineeering and Formal Methods, Hanoi, Vietnam, IEEE Computer
Society Press, doi:10.1109SEFM.2009.35.
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Simulink/Stateflow charts are widely used in industry for the specification of control systems, which
are often safety-critical. This suggests a need for a formal treatment of such models. In previous
work, we have proposed a technique for automatic generation of formal models of Stateflow blocks
to support refinement-based reasoning. In this article, we present a refinement strategy that supports
the verification of automatically generated sequential C implementations of Stateflow charts. In
particular, we discuss how this strategy can be specialised to take advantage of architectural features
in order to allow a higher level of automation.

1 Introduction

MATLAB Simulink [24] is a graphical notation widely used in the automotive and avionics indus-
tries; it supports the specification of control systems in a level of abstraction convenient for engineers.
A Simulink diagram consists of blocks and wires connecting the inputs and outputs of the blocks.

Stateflow [25] is an extension of Simulink that supports the specification of state transition systems,
providing a new Simulink block, namely, a Stateflow chart. It is a variant of Statecharts [12], which
extends standard state-transition systems by introducing new features, such as hierarchy and parallelism.

While Simulink diagrams are typically used to specify aspects of a system that can be modelled
by differential equations relating inputs and outputs, Stateflow charts usually model the control aspects.
There is a wide range of tools that support Simulink and Stateflow. These include a simulation and
analysis tool, a verification and validation tool, a code generator and a prototyping tool [24, 25, 23].

The extensive use of Simulink/Stateflow in the development of safety-critical systems, associated
with certification standards [3, 9] that recommend the use of formal methods for the specification, design,
development and verification of software, makes a formal treatment of these notations extremely useful.

We are concerned with the assessment of the correctness of implementations of Stateflow charts. A
frequent approach to this problem is based on the verification of automatic code generators [4, 27, 13].
We propose an orthogonal approach based on the verification of implementations with respect to a model
of the chart. An overview of our approach is given in Figure 1.

This approach consists of deriving formal models of a Stateflow chart and its implementation, and
applying the refinement calculus to check the correctness of the model of the implementation with respect
to the model of the chart. This is particularly suited for situations where automatically generated code is
not applicable or convenient, for instance, in situations where hardware and performance requirements
require changes in the generated code. Moreover, Simulink and Stateflow are frequently updated, and
these updates can have a heavy impact on the cost of the verification of any code generator.

In [16], we propose an operational model of Stateflow charts, provide translation rules for deriving
such models, and discuss a tool that automatically generates the model of a Stateflow chart. The model of
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Figure 1: An approach for the verification of implementations of Stateflow charts.

a Stateflow chart is formed by the composition of two processes: the first models the general semantics of
Stateflow [25], and the second models specific aspects of a chart. The model of the semantics of Stateflow
chart is structured in a way that facilitates the inspection and comparison to the informal semantics found
in [25], as no formal analysis can be made because the semantics of Stateflow is available in an informal
way [25] or is hidden in the simulation tool.

The refinement calculus is enough for the purpose of verifying such models. However, the expertise
required for such verification is often not available. Moreover, the complexity of Stateflow and the size
of real charts potentially renders the manual application of the refinement calculus infeasible. We aim
in our approach to hide as much of the formalism as possible, to allow it to be used in real scenarios by
engineers and programmers. For that to be achieved, we must provide means for the refinement to be
established at least in a semi-automatic way.

We propose a verification strategy for sequential automatically generated implementations of discrete-
time Stateflow charts with respect to models of Stateflow constructed (automatically) as described in [16].
This technique is closely related to that proposed in [5] for verification of implementations of Simulink
diagrams. Our work extends those results to cover a larger class of diagrams and implementations.

The implementations that we consider are those that follow the architectural pattern employed by the
code generator provided by MATLAB. There are other code generators [22, 27], but as far as we know,
they all cover a limited subset of the Stateflow notation. Fixing the architecture of the implementation
allows us to specialise the details of the strategy to increase its level of automation.

Our models for Stateflow charts are specified in Circus [29], a formal notation that integrates Z [30],
CSP [21], Dijkstra’s language of guarded commands [8], and the refinement calculus [17]. These mod-
els are particularly adequate for refinement-based verification techniques. Our technique uses the Circus
refinement laws to provide a tactic of refinement that can be used to prove the correctness of an imple-
mentation in a highly automated way. Soundness of the technique stems from soundness of the laws.

This article is structured as follows. Section 2 introduces the background material necessary for
the presentation of our strategy. Section 3 discusses the architecture of automatically generated im-
plementations of Stateflow charts and provides general guidelines for deriving Circus models of these
implementations. Section 4 describes our refinement strategy for the verification of implementations of
Stateflow charts. Section 5 assesses our contributions, examines related work, and discusses directions
for future developments.

2 Background material

In this section, we introduce the Stateflow and Circus notations, and our formal models of Stateflow charts.
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N
du: y = −u;

P
du: y = u;

2

[u >= 0]
1

[u < 0]

[u >= 0]

Figure 2: Absolute value chart.

2.1 Stateflow charts

Figure 2 shows our running example: a Stateflow chart adapted from an example supplied with the tool.
The chart has one input variable (u) and one output variable (y); it outputs in y the absolute value of u.

A Stateflow chart is built from a series of components, such as states, transitions, junctions, data and
events. States are represented by rectangles with round corners; in our example, the boxes marked with
P and N are states. States, as well as charts, can have substates, which are arranged in a sequential or
parallel decomposition. A state with a sequential decomposition has at most one substate active at any
given time, while a state with a parallel decomposition has all of its substates active or inactive at once.

A state has a set of actions associated with it, namely, entry, during, exit, on, and binding actions.
Entry, during and exit actions are executed when the state is entered, executed, and exited, respectively;
on actions are executed in the same situations as during actions, with the additional requirement that a
particular event is being processed; and binding actions bind a particular event or data to the state. In our
example, both P and N have a during action. In P, u is assigned to y, and in N, -u is assigned to y.

Two states (within a state or chart with sequential decomposition) can be connected by one or more
transitions; they are indicated by arrows and can be guarded by events and conditions. There are two
types of actions associated with a transition: condition and transition actions. Condition actions are
executed when the guard of the transition (event and condition) is true, and transition actions are executed
when the transition leads to a state being exited.

Transitions are classified according to the relative position between its source and target states; inner
transitions have the target state as a substate of the source state, and outer transitions do not. There is a
special type of transition, called default transition, that has no source; it is used to indicate the default
path to be taken when a state or chart is first entered. In our example, we have one default transition, and
five outer transitions. Three of the transitions are guarded by a condition: u>=0, u<0, or u>=0.

A transition path is formed by a series of transitions linked by junctions which are represented by
circles. There are two junctions in our example; they form two transition paths. A transition path is
completed only when a state is reached by following all the transitions in the path. When a transition
path is completed, the source of the path is exited, the transition actions of the path are executed, and
the target state is entered. Additionally, there is a special type of junction, called history junction, which
records the most recently activated substate of the state that contains it.

In the example in Figure 2, initially, the chart is inactive; the first time it is executed, it is activated



68 Refinement-based verification of Stateflow charts

channel in, in1, in2,out : seqN
processMerger =̂ begin

stateS == [y : seqN]
InitS == [S ′ | y′ = 〈〉]
Merge =̂ x1,x2 : seqN •



if#x1 = 0−→ y := ya x2
8#x2 = 0−→ y := ya x1
8#x1 6= 0 ∧ #x2 6= 0−→


ifhead x1≤ head x2−→ y := ya 〈head x1〉 ; Merge(tailx1,x2)
8head x1 > head x2−→ y := ya 〈head x2〉 ; Merge(x1, tailx2)
fi




fi




• InitS ; in1?x1−→ in2?x2−→Merge(x1,x2) ; out!y−→Skip
end
processSplitSorter =̂ . . .

processParallelSorter =̂




SplitSorter
J{| in1, in2 |}K

Merger


\{| in1, in2 |}

Figure 3: The ParallelSort specification.

and one of its two states is entered depending on whether u is greater than or equal to zero (state P) or
not (state N). In the next execution, if the sign of u has changed, a transition takes place from one state to
the other. If there is no change, the during action of the active state assigns the absolute value of u to y.

Before presenting the Circus model of this chart, we give, in the next section, an overview of Circus.

2.2 Circus

We present the main Circus features using the example in Figure 3. It models a parallel sorter that reads
a sequence of natural numbers through the channel in, and writes on the channel out an ordered version
of the input sequence. A detailed presentation of Circus can be found in [29].

A Circus specification is a sequence of paragraphs: Z paragraphs (axiomatic definitions, schemas,
and so on), channel and channel set declarations, and process definitions. The first paragraph of our
example defines four channels in, in1, in2, and out, which communicate sequences of natural numbers,
that is, elements of the type seqN. The second paragraph is a basic process definition. It provides the
name of the process (Merger), the definition of its state using a schema S, an action InitS defined by an
operation schema, an action Merge, and a main action (after a •), which defines, using the previously
defined actions, the overall behaviour of the process.

In general, Circus actions are written using a mixture of Z and CSP constructs, and guarded com-
mands. In our example, the main action initialises the state using InitS, reads a value x1 through the
channel in1, reads a value x2 through in2, calls Merge with the values x1 and x2 as parameters, and
outputs the state variable y through out.

The schema S has only one component y of type seqN, that is, the set of sequences of natural num-
bers. The schema InitS specifies an initialisation operation over S that sets y to the empty sequence (〈〉).
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Like in Z, we use y′ to refer to the value of y after the operation.
The action Merge takes two sequences x1 and x2 of natural numbers, and appends them to the state

variable y, so that if both input sequences are ordered, the final sequence in y is also ordered. The
specification of Merge uses a conditional and assignments from the guarded commands language. If one
of the sequences is empty, the non-empty sequence is appended. When both sequences are not empty,
Merge compares the first element of each sequence (head x1≤ head x2), appending the smallest of them
to y, and recursively calls Merge on the rest of the sequence that had the smallest element (tailx1 or
tailx2), and the whole of the other sequence.

Processes encapsulate their state and interact with other processes through channels. The usual
CSP operators can be used to combine processes. The fourth paragraph in Figure 3 defines the pro-
cess ParallelSorter as the parallel composition of the processes SplitSorter and Merge, communicating
over the channels in1, in2. The process SplitSorter in the third paragraph is omitted; it splits a sequence
of natural numbers in two, sorts each sequence in parallel, and outputs them through channels in1 and
in2. In the definition of ParallelSorter, the channels in1 and in2 are hidden, thus yielding a process
whose interface contains only the channels in and out.

In the next section, we have another example of a process; the model of the chart in Figure 2.

2.3 A formal model of Stateflow charts

In this section, we describe the Circus operational models of Stateflow charts that we can generate au-
tomatically. In these models, the execution of one step of the chart is initiated by reading inputs, and
concluded by writing outputs, and synchronising on a channel called end cycle. A more detailed de-
scription can be found in [15, 16].

Our models consist of two Circus processes in parallel. The first, Simulator, represents the simulator,
and is the same for every chart. The second, the chart process, represents a particular chart. The simulator
and the chart processes communicate over the channels in the set interface plus the channel end cycle,
with the channels in interface hidden. Figure 4 shows the structure of the automatically generated model
of the chart in Figure 2.

The chart process P AbsoluteValue uses a data model that defines the state, transition, and junction
identifiers, as well as the states, transitions, and junctions as bindings of specific schemas. These are
constants that capture information about the structure of the chart. They are represented by the first
rectangle in Figure 4. These constants are collected in four other constants defined within the chart
process: identifier, states, transitions, and junctions. The constant identifier records the identifier of the
chart and states, transitions, and junctions are partial functions that map identifiers to the corresponding
binding. These constants are declared using a schema StateflowChart whose definition is omitted in
Figure 4. Their values are fixed in the process chart.

Next, the chart process defines a series of schemas that specify components of the state and cor-
responding initialisation operations. Information about which states are active and which states are
recorded in the history junctions is recorded in the schema SimulationData, and chart variables are
recorded in the schema SimulationInstance. These schemas are conjoined to define the schema State that
specifies the state of the process. We adopt the convention of prefixing a v to the name of the chart
variable to clarify the nature of the name.

Next, the chart process defines a series of Circus actions that can be divided into four groups: actions
that correspond to state and transition actions, actions that correspond to calculation of triggers and
conditions, actions that read inputs and write outputs, and actions that output the structure of the chart.
All these actions are grouped to define AllActions, which is used in the main action as shown in Figure 5.
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Constant definitions: identifiers and bindings

process Simulator

Execute transitions actions

Enter state actions

Execute state actions

Exit state actions

Execute chart actions

Local event execution actions

Main action: recursive execution of the step

Step of execution action

Constants: Diagram Structure

State: status of chart states

Actions 1: state and transition actions

Actions 2: triggers and conditions

Actions 3: chart inputs and outputs

Actions 4: output of the structure of the chart

Main action: recursive offering of all actions

AllActions: external choice of the actions above

process P_AbsoluteValue

process AbsoluteValue     (P_AbsoluteValue || Simulator)\interface

Figure 4: Structure of the model of the chart in Figure 2

• (InitState) ; µX •



 µY •




((AllActions4 (interrupt chart−→Skip)) ; Y)
@
end cycle−→Skip




 ; X




end

Figure 5: Main action of the chart process shown in Figure 4

The main action of the chart process is shown in Figure 5; it initialises the state, and recursively offers
the actions in AllActions, with the additional possibility that any of these actions can be interrupted at
any time by a communication over the channel interrupt chart. The possibility of interruption accounts
for the occurrence of early return logic in the chart, that is, the interruption of the execution of the
chart brought about by a state inconsistency produced by a local event broadcast. The main action has
two nested recursions: the internal one corresponds to the actions that are offered to one particular step
of simulation, and can be terminated by a synchronisation over the channel end cycle. The external
recursion corresponds to the recursive execution of simulation steps.

The process Simulator does not have a state; it declares a series of actions that model the execution
of transitions, as well as the processes of entering, executing and exiting states. The execution of a chart
is then defined in terms of the previous actions. A chart can be executed multiple times in the same time
step due to the occurrence of multiple input events or the broadcast of a local event. In the first case,
an action encodes the execution of the chart for each active event in the appropriate order and is used
to define the step of execution. In the second case, we define an action that captures the occurrence of
a broadcast and executes the chart under the appropriate setting. This action is called whenever a state
or transition action is executed. All these actions are combined to define the step of execution of the
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Program

Procedure 

initialization

Procedure 

calculate_step

Procedure 

calculate_outputs

Main procedure

initialization

calculate_outputs

BlockIO D_Work ExternalInputs ExternalOutputs

calculate_step

Figure 6: Architcture of the implementations of Stateflow charts

simulator, which is called recursively in the main action of the process Simulator.
In the next section we discuss an approach to modelling implementations of charts.

3 Implementations of Stateflow charts

Figure 6 shows the structure of implementations of Stateflow charts generated automatically by Real
Time Workshop/Stateflow Coder. In general, the implementations produced consist of a series of struc-
tures that define the state of the chart (inputs, outputs, local variables, events, execution state, and so on)
and a series of procedures. The procedures can be divided into those that implement the execution of
the chart, which are relevant for our verification, and those that calculate the next time step. Since we
capture time using synchronisation, we restrict our attention those of the first kind depicted in Figure 6
as calculate outputs, initialization and calculate step.

The procedure calculate outputs implements the execution of the chart, initialization ini-
tialises the variables of the program, and calculate step implements the control of the execution of
the chart according to the number of active events. The main procedure of the implementation initializes
the program and repeatedly calculate the outputs using the procedure calculate step. In the case of
a C implementation, the procedures shown in Figure 6 are implemented as C functions whose names re-
flect the name of the chart. In our example, for instance, the procedure calculate outputs is implemented
as the C function AbsoluteValue output.

Of particular interest to us is how the implementation models information regarding the status of the
states. This is done in two different ways, according to the type of decomposition of the states. In this
discussion, we regard the chart as a state. If the state has a parallel decomposition, its status is modelled
by a single variable in the structure D Work X, where X is the name of the chart. This variable is called
is active S, where S is the name of the state; it has a numerical type (uint8 T), but, in fact, it is used as
a boolean variable, that is, if its value is zero the state is not active, otherwise, it is active.
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D Work AbsoluteValue == [is active c1 AbsoluteValue, is c1 AbsoluteValue : N]
. . .
processAbsoluteValue =̂ begin
stateAbsoluteValue state == [AbsoluteValue DWork : D Work AbsoluteValue; . . .]
AbsoluteValue DWork is c1 AbsoluteValue =̂ x : N • AbsoluteValue DWork :=

〈|is active c1 AbsoluteValue == AbsoluteValue DWork.is active c1 AbsoluteValue,
is c1 AbsoluteValue == y|〉

. . .
AbsoluteValue output =̂ tid : Z •





ifAbsoluteValue DWork.is active c1 AbsoluteValue = 0−→
AbsoluteValue DWork is active c1 AbsoluteValue(1);


ifAbsoluteValue B.SineWave1≥ 0−→
AbsoluteValue DWork is c1 AbsoluteValue(AbsoluteValue IN P)
8¬ (AbsoluteValue B.SineWave1≥ 0)−→
AbsoluteValue DWork is c1 AbsoluteValue(AbsoluteValue IN N)
fi




8¬ (AbsoluteValue DWork.is active c1 AbsoluteValue = 0)−→
. . .
fi




;

AbsoluteValue Y y(AbsoluteValue B.y)




. . .
• AbsoluteValue initialize ; µX • Input ; AbsoluteValue output ; Output ; end cycle−→X

Figure 7: Circus model of the implementation of the chart in Figure 2

If the state has a sequential decomposition, its status is modelled by two variables in D Work X.
The variable is active S is as described above. The variable is S records a number that identifies which
substate is active at the time, its value is zero if there are no active substates. If a state is a child of a state
with a sequential decomposition, no variable of the form is active S is created, as the information about
its status is already recorded in the variable is P, where P is the name of its parent state.

In our example, we have only states with sequential decompositions. The status of the chart is
recorded by is active c1 AbsoluteValue and is c1 AbsoluteValue. There is no need for vari-
ables that record the status of P and N, as this information can be obtained from is c1 AbsoluteValue.

We model the implementation as a series of schemas and a single process. Figure 7 gives a partial
view of the model of the implementation of our example. Schemas model the records in the implemen-
tation. For instance, D Work AbsoluteValue is modelled by the schema D Work AbsoluteValue.

For each of the relevant C function in the implementation, we define a Circus action that models it.
In Figure 7, we present the Circus action that models the function AbsoluteValue output. The main
action of the process is fixed and consists of calling the initialisation action (AbsoluteValue initialize for
our example), and recursively reading the inputs (with the action Input), producing the outputs (with the
action AbsoluteValue output), offering the outputs (with the action Output), and signalling the end of the
“time-step” by synchronising on end cycle. The actions Input and Output abstract as communications
the shared variables used to implement inputs and outputs.

In the modelling of the functions, we map C constructs to similar Circus constructs. Loops are
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Data 

refinement
Normalisation

Parallelism

elimination
Simplification

Fully automated

Proof obligation: retrieve relation is 

a total surjective function from the 

concrete state to the abstract state

Proof obligation: rewriting guards 

in conditionals and expressions

Structuring

Figure 8: Overview of the refinement strategy

modelled using recursion. In general, the translation of implementation constructs is direct, except for
the assignment to a variable of a structure. Since we cannot write b.f := v (as a translation of b.f =

v), for a variable b of type binding, we define Circus actions that specify the assignment of a binding
to the variable, as the action AbsoluteValue DWork is c1 AbsoluteValue in Figure 7. This action takes
one parameter x of type N, and assigns a binding of the schema D Work AbsoluteValue to the state
component AbsoluteValue DWork. The binding is formed by associating each component of the schema
to a value, the component is active c1 AbsoluteValue is associated to the value of the same component,
and is c1 AbsoluteValue is associated to the value of the parameter.

In the next section, we discuss a refinement strategy that supports the verification of the models of
implementations just described with respect to the models discussed in Section 2.3.

4 Refinement Strategy

Our refinement strategy consists of five phases: data refinement, normalisation, parallelism elimination,
simplification, and structuring. Figure 8 illustrates the strategy; it identifies the fully automated phases
and the proof obligations that stem from the other phases.

In the data refinement phase, we modify the state of the chart process in order to conform to the state
of the implementation model. The normalisation phase transforms the parallel composition of the chart
and simulation processes into a single process whose main action initialises the state and recursively
offers an action that encodes a step of execution of the chart. The parallelism elimination phase collapses
the parallel actions that occur in the resulting process. This is necessary because the parallelism in the
diagram model reflects the operational semantics of Stateflow, not a parallel design for a program. In the
simplification phase, we simplify expressions and predicates, and move assumptions through the model
to eliminate unreachable branches of alternations. Finally, in the structuring phase, we rewrite the main
action to match the functions of the implementation, and therefore the actions of its model.

The strategy proposed in this section is generic enough to be applied to a large class of charts and
implementations. It takes advantage of restrictions on the architecture of the implementation to support
a high degree of automation. We consider here only sequential implementations of Stateflow diagrams.
The steps of the strategy are, however, useful in the refinement to parallel implementations as well.

In the sequel, we describe the details of each phase. They define procedures to apply existing and
novel Circus refinement laws whose soundness guarantees the soundness of our verification strategy.
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ConcreteState
AbsoluteValue state

AbsoluteValue DWork.is c1 AbsoluteValue ∈ {0,1,2}

Figure 9: Restricted concrete state

4.1 Data refinement

In this phase, we construct a retrieve relation between the abstract state of the chart process and the con-
crete state of the implementation model. With that, we use the Circus calculus to construct a refinement
of the chart process, and so preserve its structure, and transform the assignments, operation schemas,
and communications. Precisely, we follow the procedure below for constructing retrieve relations that
are total surjective functions from concrete to abstract states. They allow us to proceed with the data
refinement in a calculational fashion.

The state components of the implementation model belong to one of four groups: execution spe-
cific data, like AbsoluteValue DWork in our example, local variables (like AbsoluteValue B), input
variables (like AbsoluteValue U), and output variables (AbsoluteValue Y). Additionally, we can
restrict the components of the concrete state to take values only over the appropriate sets. For exam-
ple, Figure 9 shows the state of our implementation model with one additional invariant; it requires that
is c1 AbsoluteValue takes values from {0,1,2}.

The retrieve relation maps the execution specific data to the components of SimulationData, and the
local, input and output variables to components of SimulationInstance. The correspondence between
the input and output variables is trivial. It is obtained by equating the concrete variables to the abstract
variable whose name is the same except for a prefix v . The specification of the relation between the
execution specific data of the concrete state and the function state status in SimulationData is obtained
by using a set comprehension where, for each state identifier s, we define a boolean active that determines
its status from the concrete state. These conditions can be calculated as follows. For a chart name
C, and each component of D Work C (in our example, the schema D Work AbsoluteValue) named
is active name (is active c1 AbsoluteValue, for example), where name is the name of state (or chart),
we have the following condition.

s = name ∧ active = (if C DWork.is active name > 0 then True else False)

For instance, the condition for is active c1 AbsoluteValue equates s to c AbsoluteValue, and active to
True or False depending on whether the value of is active c1 AbsoluteValue is greater than zero or not.

For each component of the schema D Work C of the form is name, where name is the name of a
state (or chart), we formulate a condition in the following way. For each substate X of name, we define
the condition below.

s = s X ∧ active = (if C DWork.is name = C IN X then True else False)

In our example, the condition for the state P equates s to s P, and active to True or False depending
on whether the value of is c1 AbsoluteValue is AbsoluteValue IN P or not. All these conditions are
composed in a disjunction as shown in the definition of the retrieve relation for our example in Figure 10.
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RetrieveFunction
P AbsoluteValue S
ConcreteState

state status = {s : domstates; active : B •
s = s N ∧ active = if AbsoluteValue DWork.is c1 AbsoluteValue =

AbsoluteValue IN N then True else False ∨
s = s P ∧ active = if AbsoluteValue DWork.is c1 AbsoluteValue =

AbsoluteValue IN P then True else False ∨
s = c AbsoluteValue ∧ active =

if AbsoluteValue DWork.is active c1 AbsoluteValue > 0 then True else False}
state history = {}
v u = AbsoluteValue U.u
v y = AbsoluteValue B.y

Figure 10: Total surjective functional retrieve relation

Since our example does not contain history junctions, the implementation has no state components
that model the state component state history of the chart process. The model of the chart establishes that
this state component is the empty partial function, therefore we equate state history to the empty set.

The retrieve relation in Figure 10 is functional because each abstract state component is defined by a
function of a component of the concrete state. Since no restriction is imposed on the concrete state for the
applicability of the function, the relation is also total. Moreover, for every abstract state A, it is possible
find a concrete state that is related to A by the retrieve relation because the functions are invertible.

Using this retrieve relation, we apply the laws of simulation [6, 19] to obtain a Circus process
C P AbsoluteValue by data refinement of P AbsoluteValue, and to refine the process AbsoluteValue
to a process CAbsoluteValue, as shown in Figure 11. We define the constant ss to increase the readability
of C P AbsoluteValue. This function is defined as the characterisation of state status in Figure 10.

The main action does not change, but components of the actions that it uses are transformed. For
example, Activate and InitState are data refined to operate over the concrete state. Figure 11 shows part of
the definition of CInitState (the data refinement of the schema InitState); it shows the part of the predicate
that defines the operation. The actions condition P N, Inputs, and Outputs are also data refined; the first
has the component v u rewritten to AbsoluteValue U.u, the second has the assignment transformed into
an action that assigns a value to a component of a schema binding (as mentioned in Section 3), and the
third has the component v y substituted by AbsoluteValue B.y, in accordance with the retrieve relation.

In the next section, we describe how to collapse the parallel composition in CAbsoluteValue.

4.2 Normalisation

In this phase, we first collapse the parallelism between the chart and simulator processes in the process
CAbsoluteValue, and rewrite the main action of the resulting new process to a normal form: an initiali-
sation action, followed by a recursive action. This allows us to focus on the body of the recursion that
characterises one step of execution.
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processC P AbsoluteValue =̂ begin

StateflowChart

identifier = c AbsoluteValue
states = {(s P,S P),(s N,S N),(c AbsoluteValue,C AbsoluteValue)}
transitions = {(t P N,T P N), . . . ,(t 6 N,T 6 N)}
junctions = {(j5,J5),(j6,J6)}
ss : SID 7→B

ss = {s : domstates; active : B •
s = s N ∧ active = if AbsoluteValue DWork.is c1 AbsoluteValue = AbsoluteValue IN N

thenTrue else False ∨
s = s P ∧ active = if AbsoluteValue DWork.is c1 AbsoluteValue = AbsoluteValue IN P

thenTrue else False ∨
s = c AbsoluteValue ∧ active = AbsoluteValue DWork.is active c1 AbsoluteValue}

stateConcreteState

CActivate == [∆ConcreteState; x? : SID | . . .]
CInitState == [ConcreteState ′ | AbsoluteValue DWork′.is active c1 AbsoluteValue = False ∧ . . .]

. . .
condition P N =̂ if((AbsoluteValue U.u<A 0) 6= 0)−→ . . . . . .
Inputs =̂ (read inputs−→ (i u?x−→AbsoluteValue U u(x)))
Outputs =̂ (write outputs−→ (o y!(AbsoluteValue B.y)−→Skip))

• (CInitState) ; µX •



 µY •




((AllActions4 (interrupt chart−→Skip)) ; Y)
@
end cycle−→Skip




 ; X




end

process CAbsoluteValue =̂ Simulator J interface∪{|end cycle |} KC P AbsoluteValue

Figure 11: Data refinement of the processes shown in Figure 4
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•







(CInitState);

µX •




µY •







AllActions
4
(interrupt chart−→Skip)


 ; Y

@
end cycle−→Skip







; X




J{AbsoluteValue B,AbsoluteValue DWork} | interface∪{|end cycle |} | {}K
(µX • Step ; X)




\ interface

Figure 12: Combined main action after merging the two processes.

•




(CInitState);

µX •




µY •







AllActions
4
(interrupt chart−→Skip)


 ; Y

@
end cycle−→Skip




J . . .K
Step




\ interface ; X




Figure 13: Main action after the normalisation phase (We abbreviate the parallelism).

We construct the new process by taking the state of the chart process (the simulator process is state-
less), and combining the main actions of the chart and simulator processes in the same way the processes
were combined, as shown in Figure 12. This is a direct application of the definition of the semantics of
process parallelism in Circus.

Next, we move the schema action CInitState out of the parallel composition, distribute the hiding
over the sequential composition, and eliminate the hiding over CInitState. The external recursion in the
first action of the parallel composition, and the recursion in the second action are then merged. This
is possible because Step necessarily terminates in a synchronisation over the channel end cycle, since
this channel is in the synchronisation set, and this synchronisation stops the inner recursion, and starts a
new cycle of the external recursion. We are left with the action in Figure 13, which calls CInitState, and
recursively executes the parallel composition of a recursion (the recursion over Y in Figure 12), and the
action Step, with the channels in interface hidden.

4.3 Parallelism elimination

In this phase, we eliminate the parallelism still embedded in the main action. The parallel action inside
the recursion of Figure 12 reads an input event, reads the input variables, executes the chart, writes the
outputs, and ends the cycle. In general, the step of execution involves a series of communications over
channels that may or may not be in the synchronisation set. Communications over channels not in the
synchronisation set are moved outside the parallel composition, and the others are used to select an action
from AllActions (or trigger an interruption). We proceed as follows to evaluate the communications and
remove the parallelism.
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•




(CInitState);

µX •




input event?ie−→





i u?x−→AbsoluteValue U u(x);

µY •




(
AllActions4
(interrupt chart−→Skip)

)
; Y

@
end cycle−→Skip







J . . .K





ExecuteChart(ie)
4(

interrupt simulator−→
interrupt chart−→Skip

)


 ;

write outputs−→ end cycle−→Skip







\ interface




; X




Figure 14: Main action after the communications over input event and read inputs are treated.

By expanding the definition of Step in Figure 13, we have two communications one after the other.
The first is a communication over the channel input event that is not in the synchronisation set, and the
second is a synchronisation over read inputs, which is in the synchronisation set. We move the commu-
nication outside the parallel composition, unfold the recursion over Y , and resolve the communication
on the channel read inputs. This produces a prefixing action identical to the body of the action Inputs in
Figure 11. Because the communication is hidden, we eliminate it and obtain the action in Figure 14.

The actions that can be selected can be an atomic information request, as exemplified by read inputs,
a non-atomic information request, or a Stateflow action request. In the first case, as already shown, the
parallelism can be removed by resolving the communication. In the case of a non-atomic request (for
instance, a trigger action of Figure 4), the action is composed of two communications. To eliminate the
parallelism we resolve them; this potentially involves resolving a conditional expression that selects the
appropriate value to communicate. A Stateflow action request consists of a communication that identifies
the appropriate action, a series of Circus actions that encode the Stateflow action, and a synchronisation
that indicates completion. In this case, the initial communication and the final synchronisation are treated
as usual. The encoding of the Stateflow action contains assignments and local event broadcasts. Assign-
ments are moved out of the parallel composition, and broadcasts produce a recursive execution of the
chart, which can be treated using the same strategy.

The strategy for eliminating parallelism can be seen as a two level strategy. The first level is guided
by the structure of the simulator process, which potentially leads to the execution of an action of the
chart process, and the second level is guided by a chart process action that has been executed. Since the
simulator process is the same for all charts, we explore its structure to define the refinement strategy.The
same is not true for the chart process, but due to the simple structure of the actions in the chart process,
we can explore the limited patterns that occur.

At the end, we obtain a main action whose structure is as shown in Figure 16. There, we have already
simplified expressions, which is the objective of the next phase.
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 µY •




AllActions ; Y
@
end cycle−→Skip






J . . .K


status!(states(c AbsoluteValue).identifier)?active−→


ifactive = True−→(
ExecuteActiveChart(states(c AbsoluteValue), ie);
write outputs−→ end cycle−→Skip

)

8active = False−→(
ExecuteInactiveChart(states(c AbsoluteValue), ie);
write outputs−→ end cycle−→Skip

)

fi










\ interface

Figure 15: Parallel action of the main action in Figure 14 after further refinement steps.

4.4 Simplification

In the simplification phase, we transform expressions and eliminate unreachable branches of conditional
statements. The simplification of expressions takes advantage of the constants that model the structure
of the chart, as well as state invariants. For instance, Figure 15 contains an expression that appears
frequently in communication resolutions: states(c AbsoluteValue).identifier. It evaluates to the identifier
of the state whose identifier is c AbsoluteValue, but this is exactly c AbsoluteValue, thus we simplify it.

After these simplifications are carried, we obtain a main action as in Figure 16. The last branch of the
second conditional has the guard: AbsoluteValue DWork.is c1 AbsoluteValue 6= AbsoluteValue IN N.
Since AbsoluteValue IN N=2, the invariant of the concrete state implies that

AbsoluteValue DWork.is c1 AbsoluteValue = 1 ∨ AbsoluteValue DWork.is c1 AbsoluteValue = 0

Therefore, since AbsoluteValue IN P is a constant defined as 1, we replace the above guard with

AbsoluteValue DWork.is c1 AbsoluteValue = AbsoluteValue IN P ∨
AbsoluteValue DWork.is c1 AbsoluteValue = 0

This guard is then broken in two, and a new branch is added to the conditional statement. We proceed
in this way for every guard defined by a disjunction that checks the status of a state. This simplification
is applied whenever the status of a state in a sequential decomposition is checked because our model
always includes a branch whose guard is an inequality. It is necessary because, while our model contains
only binary conditionals, the implementations may have conditionals with more than two branches.

We traverse the resulting action and for each conditional statement found, we attempt to simplify
the guard. If we can simplify a guard to false, we eliminate the branch. If the guard is true, we reduce
the whole conditional to the action it guards; this is correct, because all our conditionals are of the form
ifb−→ . . .8¬ b−→ . . .fi. If a conditional statement cannot be simplified, it should match a conditional
statement in the model of the implementation. For example, the first conditional statement in Figure 16
corresponds to the first conditional statement of the action AbsoluteValue output in Figure 7.
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• CInitState; µ X • input event?ie−→ i u?x−→AbsoluteValue U u(x);


ifss(c AbsoluteValue) = False−→ . . .
8ss(c AbsoluteValue) = True−→


ifAbsoluteValue DWork.is c1 AbsoluteValue = AbsoluteValue IN N−→


if((AbsoluteValue U.u≥A 0) 6= 0)−→


ifAbsoluteValue DWork.is c1 AbsoluteValue = AbsoluteValue IN P−→
Deactivate P; Deactivate N; Activate P;


if(AbsoluteValue U.u<A 0) 6= 0)−→ . . .
8¬ (((AbsoluteValue U.u<A 0) 6= 0))−→ . . .
fi




8AbsoluteValue DWork.is c1 AbsoluteValue 6= AbsoluteValue IN P−→
Deactivate N; Activate P;


if((AbsoluteValue U.u<A 0) 6= 0)−→ . . .
8¬ (((AbsoluteValue U.u<A 0) 6= 0))−→ . . .
fi




fi




8¬ (((AbsoluteValue U.u≥A 0) 6= 0))−→AbsoluteValue B y(− AbsoluteValue U.u);


if((AbsoluteValue U.u<A 0) 6= 0)−→


ifAbsoluteValue DWork.is c1 AbsoluteValue = AbsoluteValue IN N−→
. . .

8AbsoluteValue DWork.is c1 AbsoluteValue 6= AbsoluteValue IN N−→
. . .

fi




8¬ (((AbsoluteValue U.u<A 0) 6= 0))−→ . . .
fi




fi




8AbsoluteValue DWork.is c1 AbsoluteValue 6= AbsoluteValue IN N−→


if((AbsoluteValue U.u<A 0) 6= 0)−→


ifAbsoluteValue DWork.is c1 AbsoluteValue = AbsoluteValue IN N−→ . . .
8AbsoluteValue DWork.is c1 AbsoluteValue 6= AbsoluteValue IN N−→ . . .
fi




8¬ (((AbsoluteValue U.u<A 0) 6= 0))−→ . . .
fi




fi




fi




; X

Figure 16: Partially simplified main action of process AbsoluteValue.

The fourth conditional statement in Figure 16 is an example of a statement that can be simplified. The
guard of the first branch is AbsoluteValue DWork.is c1 AbsoluteValue = AbsoluteValue IN P, but this
is inside a branch whose guard is AbsoluteValue DWork.is c1 AbsoluteValue = AbsoluteValue IN N,
and since is c1 AbsoluteValue cannot have both values (and no statement modifies this component be-
tween the two branches), the first guard is false, and that branch can be eliminated. In this way, we put the
model of the chart in the same shape as the model of the implementation, and once this is achieved, the
structuring phase takes place. Formalisation of this strategy using refinement requires a law to introduce
assumptions based on the guards of the conditional, laws to distribute and use assumptions, and finally
a law to remove an assumption when it is no longer needed. These are standard laws that are valid in
Circus as shown in [19].
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4.5 Structuring

The structuring phase identifies each component of the main action that corresponds to an auxiliary
action in the model of the implementation. It introduces this extra action in the process CAbsoluteValue,
and uses the copy rule to replace the component of its main action by a call to it. The rationale behind
this phase is to match the main action to that of the model of the implementation.

For instance, we compare the action AbsoluteValue output in the model of the implementation to the
subactions of the main action obtained from the previous phase. We identify a subaction that is a match,
introduce its definition, and substitute the name AbsoluteValue output in the main action. The result of
all this should be exactly the model of the implementation (as shown in Figure 7 for our example). If
this is not the case, the verification has failed: either the program is wrong, or it does not conform to the
architectural pattern that we can handle.

The detailed application of this strategy to our example can be found in [14].

5 Conclusion

We have proposed a refinement-based verification strategy for implementations of Stateflow charts. This
strategy is guided by the structure of the models of Stateflow charts described in [16]. We have also
discussed how such a strategy can take advantage of the architecture imposed on generated code.

We have provided a procedure for obtaining retrieve relations that support the data refinement of the
specification in a calculational style, thus rendering the data refinement phase also suitable for automa-
tion. In the case of the normalisation and parallelism elimination phases, the possibility of automation
stems from the fixed structure of our models. The simplification phase can be semi-automated because
the main action consists of a number of nested if-statements, and assumptions generated by the guards of
the conditional statements (among others) can be moved into the associated action, potentially falsifying
some of the conditions in an internal conditional statement. Finally, the structuring phase can be guided
by matching actions from the model of the implementation to subactions of the action being refined.

The refinement strategy for Simulink presented in [5] consists of four steps that systematically col-
lapse the massive parallelism of the diagram specification to match the processes of the implementation
model, prove that each of the procedures in the implementation refine the action that specifies it in the
corresponding process, and finally, prove that the parallel programs refine the process that specifies the
system. The main actions of component processes are put in a normal form where they are defined as
the iterative execution of a step that consists of reading the inputs in interleaving, calculating the outputs
and updating the state, writing the outputs in interleaving, and synchronising on the channel end cycle.

Our strategy has a similar nature, however, it is worth mentioning some important differences. Our
models of Stateflow charts owe their parallelism to the separation between the structure of the model
and the operational semantics of the simulator, not to any implicit or explicit parallelism in the chart.
Therefore, while in [5] collapsing the parallelism is guided by the implementation model, in our strategy
it is performed until there are no parallel actions left. The beginning of our parallelism elimination
phase is similar to the process of putting the main action in a normal form in the strategy for Simulink
diagrams. The equivalent step in our model is, however, not as linear as in [5]. The decision to end
the cycle comes from the action inherited from the simulator process. Nevertheless, by the end of the
parallelism elimination phase, we have a process whose main action is in the normal form of [5]. This
suggests that not only our models can be integrated to the models of Simulink diagrams, but also that our
strategy can be used to put a Stateflow block in the normal form prescribed in [5]. This will support the
integrated use of these verification techniques for Simulink diagrams involving Stateflow blocks.
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There are several approaches to the formal analysis of Stateflow diagrams. These works aim at the
analysis of diagrams, not of their implementations. Operational and denotational semantics are proposed
in [11] and [10]; these support static analysis, interpretation, and compilation of Stateflow charts. Trans-
lations of Stateflow into notations that support model checking are presented in [1], [26], [22], and [7].
Verification in these approaches is based on temporal logics and bisimulation, rather than refinement,
thus verification of implementations is not the objective. An approach based on Z to verify that the chart
satisfies a set of requirements of the system being modelled is presented in [28]. However, it places
strong restrictions on the Stateflow notation.

Olderog [18] integrates three views of a system (trace specification, process algebra and Petri nets) by
formalising a relation between them. While this approach ends in a graphical notation, namely Petri nets,
we take the opposite direction: from a graphical notation to a program. In [2], the refinement calculus is
adapted to Simulink diagrams, but they do not cover Stateflow charts, and their goal is not the verification
of implementations, but the development of diagrams from contracts. In [20], a semantics for µ-Charts
is constructed in Z, and a notion of refinement of µ-Charts is derived from the existing Z refinement
calculus. This approach is similar to that presented in [16], where we define a semantics of Stateflow
charts in Circus, thus allowing the Circus refinement calculus to be applied, but it differs in the sense that
we focus in a industrial non-formal notation, while the µ-Charts notation is a simplification of Statecharts
mainly used in academia. Moreover, our approach goes beyond the application of the refinement calculus
to Stateflow charts; it addresses the problem of automation of the refinement process.

As far as we know, this is the first work to address the issue of verification of implementations of
Stateflow charts. Moreover, as explained in detail [15], our models of Stateflow charts used as the base
for the verification eliminate many of the restrictions imposed in other formalisations.

Given the generality of our refinement strategy, we believe it scales well to modified implementa-
tions. In particular, an implementation that does not modify the use of the variable AbsoluteValue DWork
should still be amenable to the specialisation of the refinement strategy discussed in Section 4.1. More-
over, our strategy can be used as a preliminary phase in the verification of parallel implementations, as
all the parallelism eliminated by the strategy derives from the structure of the model.

As future work, we will address the issue of verification of parallel implementations of Stateflow
charts. Parallel implementations are not common, and as far as we know there are no code generators
that produce parallel implementations. We will extend the current strategy to allow the verification to be
carried out after the introduction of parallelism in the implementation using fixed design patterns.
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Before we combine actions and probabilities two very obvious questions should be asked. Firstly,
what does “the probability of an action” mean? Secondly, howdoes probability interact with nonde-
terminism? Neither question has a single universally agreed upon answer but by considering these
questions at the outset we build a novel and hopefully intuitive probabilistic event-based formalism.

In previous work we have characterised refinement via the notion of testing. Basically, if one
system passes all the tests that another system passes (and maybe more) we say the first system is a
refinement of the second. This is, in our view, an important way of characterising refinement, via the
question “what sort of refinement should I be using?”

We use testing in this paper as the basis for our refinement. Wedevelop tests for probabilistic
systems by analogy with the tests developed for non-probabilistic systems. We make sure that our
probabilistic tests, when performed on non-probabilisticautomata, give us refinement relations which
agree with for those non-probabilistic automata. We formalise this property as a vertical refinement.

1 Introduction

Event-based models are frequently based on finite automata (FA, also called labelled transition systems)
and probabilistic event-based systems are frequently based on FA where the transitions are also labelled
by a probability as well as by an action. Before we combine events and probabilities two very obvious
questions then arise. Firstly, what does “the probability of an event” mean, or what does it mean for an
event to “behave in a probabilistic fashion”? Secondly, howdoes probability interact with nondetermin-
ism? Neither question has a single universally agreed upon answer but by considering these questions at
the outset we build a novel and hopefully intuitive probabilistic event-based formalism.

Throughout we will be motivated by a wish to, in the end, develop a notion of refinement for proba-
bilistic systems. In fact, refinement will be the starting point of our story here as well as the desired end
point.

In previous work we have characterised refinement via the notion of testing. Basically, if one system
passes all the tests that another system passes (and maybe more) we say the first system is a refinement
of the second. This is, in our view, an important way of characterising refinement since the question
“what sort of refinement should I be using?” can be answered bysaying “you should be using the sort
of refinement that is characterised by the sort of tests whichcharacterise the contexts within which your
system will find itself, i.e. choose your refinement by looking at what contexts your systems will be used
in.”

Because this seems such a natural and useful answer, we use testing again in this paper as the basis
for our refinement. We develop tests for probabilistic systems by analogy with the tests developed for
non-probabilistic systems, all the while hoping to make sure that our probabilistic tests, when performed
on non-probabilistic automata (and just noting whether a probability distribution is empty or not), give
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us refinement relations which agree with for those non-probabilistic automata: this gives us confidence
that our new notions make sense. We formalise this property in Section 7.

The real test (!) in all this comes when we consider probabilistic automata which also contain nonde-
terminism. Again, we are guided by the wish that our probabilistic tests, when used on nondeterministic,
non-probabilistic automata, give us a refinement ordering which agrees with that originally given for
those automata when probability was not considered. We alsofind that the algebraic properties that
characterise the non-probabilistic case carry over into our new domain.

We formalise a notion of refinement based upon probabilistictests and then try to (re-)capture what
nondeterminism means in this probabilistic setting.

We will first introduce transition systems as a semantic foundation for non-probabilistic automata
and recap previous work on using testing to define refinement for such systems.

It will turn out that part of the key to doing this for probabilistic systems is to be clear about two
different philosophical bases for probability, so we next review those. Another part of the key to this
work will be a consideration of how nondeterminism is characterised, so we will go on to discuss that
subsequently. This will finally suggest how we might adapt transition systems to allow consideration of
probability, and we finally show how this adaptation can be used to also allow a treatment of nondeter-
ministic probabilistic systems, all the while retaining our testing-based notion of refinement.

We also show (via a selection) that expected properties holdfor our refinement.

2 Transition systems

Definition 1 Finite Automata (FA). Let Act be a set of actions and let Actτ be the same set along with
the special actionτ , which represents actions interacting to form events. Let NA be a finite set of nodes.

The finite automatonA is given by the triple(NA,SA,TA) where

1. SA ⊆ NA is a set of start nodes

2. TA ⊆ {(n,a,m)|n,m∈ NA∧ a ∈ Actτ} shows the effect of each action.

We write x
a−→Ay for (x,a,y) ∈ TA and x

a−→y whereA is obvious from context. We writen
a−→ for

∃m.(n,a,m) ∈ TA, andm
ρ−→n for

∃m1 . . .mi.m
ρ1−→m1,m1

ρ2−→m2, . . .mi
ρi−→n

andm
ρ−→ for

∃m1 . . .mi,n.m
ρ1−→m1,m1

ρ2−→m2, . . .mi
ρi−→n

whenρ = (ρ1, ...,ρi), a finite sequence of actions.

We writen=⇒m for n
τ∗−→m, n

a
=⇒m for ∃ j,k.n=⇒ j ∧ j

a−→k∧k=⇒mandn
a

=⇒ for ∃ j,k,m.n=⇒ j ∧
j

a−→k∧k=⇒m.

m
ρ

=⇒ andm
ρ

=⇒n are defined similarly to the cases for−→.
Whereρ is a sequence of actions overActτ we writeρ0 for ρ with theτs removed.

The traces areTr(A)
def
= {ρ | s∈ SA∧s

ρ
=⇒}.

The complete traces1 areTrc(A)
def
= {ρ | (s∈ SA∧s

ρ
=⇒n∧π(n) = /0) whereπ(n) def

= {m | n
x−→Am}.

1We deal with only acyclic automata and so we do not need to dealwith infinite traces, though all the work of this paper can
be extended to infinite traces and cyclic automata in the standard way [1].



86 Refinement for Probabilistic Systems with Nondeterminism

We wish to model, using our automata, components that, like CSP processes, can immediately be
nondeterministic. But, unlike CSP, we wish hiding (abstraction) to distribute through choice (soτs are
used only for unobservable actions or for events, and not pressed into service to encode nondeterministic
choice between starting states). There is a subtle difference between how external choice in CSP and
choice in CCS behave with processes containing initialτ actions. This has been explained either by
regarding the choice operators as being different, see [2] “The unique choice operator of CCS, denoted
by +, is a mixture between external and internal choices” or by viewing CSP’s use ofτ actions to model
a nondetermined start state as different to CCS’s use ofτ actions [3]. By allowing automata to have a set
of start states we both avoid having to distinguish externalchoice and CCS choice and allow hiding to
distribute through choice [3].

Also, choice can be defined ([4, 5]) between FAs with one startstate each by gluing the two start
states together to make a new single start state. Here, due toour generalisation, we glue together two sets
of start states.

Let S= {s1,s2, . . . ,sn} andS′ = {s′1,s
′
2, . . . ,s

′
m} be two sets of starting states and then define{S/S×

S′} to be then substitutions{si ∈ S|si/{(si ,s′1), . . . ,(si ,s′m)}} and define{S′/S×S′} to be themsubstitu-
tions{s′j ∈ S′|s′j/{(s1,s′j), . . . ,(sn,s′j)}}.

We define{SS′/S×S′} to be then+msimultaneous substitutions{S/S×S′}∪{S′/S×S′}. The first
n substitutions replace each element of{s1,s2, . . . ,sn} with a set ofm nodes and the lastm substitutions
simultaneously replace each element of{s′1,s

′
2, . . . ,s

′
m} with a set ofn nodes. Consequently{SASB/SA×

SB} will identify the two sets of nodesSA andSB asSA{SASB/SA×SB} andSB{SASB/SA×SB} are both
then×mset of nodesSA×SB.

Since single states may now become sets of states under the substitution, we also have to define what
it means to have sets of nodes in a transition:

T
x−→T ′ def

= {t
x−→t ′|t ∈ T, t ′ ∈ T ′}

Definition 2 Process operators. LetA be(NA,SA,TA) and letB be(NB,SB,TB).

Action Prefixinga.B=
def
= ({s}∪NB,{s},{s

a−→x|x∈ SB}∪TB) where s is a new state.

Internal choiceA⊓B
def
= (NA∪NB,SA∪SB,TA∪TB)

External choice is, informally, internal choice where start states are combined according to the substitu-
tions above. Let SA�B be

⋃
((SA∪SB){SASB/SA×SB}), i.e. we combine start states as above. Then,

External choiceA�B
def
= ((NA∪NB)\ (SA∪SB)∪SA�B,SA�B,(TA∪TB){SASB/SA×SB})

Parallel composition:A ‖P B
def
= (NA‖PB,SA‖PB,TA‖PB) where P⊆NA∩NB, NA‖PB =NA×NB, SA‖PB =

SA×SB and TA‖PB is defined by:

n
x−→Al ,m

x−→Bk, x∈P

(n,m)
τ−→A‖PB(l ,k)

n
x−→Al , (x 6∈P∧m∈NB)

(n,m)
x−→A‖PB(l ,m)

n
x−→Bl , (x 6∈P∧m∈NA)

(m,n)
x−→A‖PB(m, l)

Example 1 LetA be

({s1,s2, t1, t2},{s1,s2},{s1
a−→At1,s2

b−→At2})
and letB be

({s,s2, t},{s},{s
c−→Bt})

or, in diagram form,
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A •s1

◦t1

•s2

◦t2

a b

B •s

◦t

c

ThenA⊓B is

({s1,s2,s, t1, t2, t},{s1,s2,s},{s1
a−→A⊓Bt1,s2

b−→A⊓Bt2,s
c−→A⊓Bt})

or, as a diagram,

A⊓B •s1

◦t1

•s2

◦t2

a b

•s

◦t

c

Given that SA�B is

⋃
{s1,s2,s}{s1/{(s1,s)},s2/{(s2,s)},s/{(s1,s),(s2,s)}} = {(s1,s),(s2,s)}

thenA�B is

({t2, t3,(s1,s),(s2,s)},{(s1,s),(s2,s)},

{(s1,s)
a−→A�Bt1,(s2,s)

b−→A�Bt2,{(s1,s),(s2,s)} c−→A�Bt})

which is

({t2, t,(s1,s),(s2,s)},{(s1,s),(s2,s)},

{(s1,s)
a−→A�Bt1,(s2,s)

b−→A�Bt2,(s1,s)
c−→A�Bt},(s2,s)

c−→A�Bt})

and as a diagram

A�B •(s1,s)

◦t1

•(s2,s)

◦t2

a b

◦t ◦t

c c

Finally, A ‖{a} B with (note thatB’s action is nowa)

A •s1

◦t1

a

•s2

◦t2

b

B •s

◦t

a

is

A ‖{a} B •(s1,s)

◦(t1, t)

τ
•(s2,s)

◦(t2,s)

b

◦(s2, t)

◦(t2, t)

b

�
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3 Testing semantics

The definitions in this section are taken from [6] where they have been applied to both state-based and
event-based models.

One of our tests, of a processE, taken from a set of processesE, consists of placingE in some
contextX taken from a set of possible contextsΞ. E in contextX is written [E]X. We then observe the
resulting system. Each observation made is taken from a set of possible observationsO.

We turn first to our general definition of testing semantics for nondeterministic processes and con-
texts. In this setting a test may return (nondeterministically) one observation from a set of possible
observations.

A specification is interpreted as acontract consisting of theassumptionthat the process will be
placed only in one of the specified contextsΞ and aguaranteethat the observation of its behaviour will
be one of the observations defined by the mappingO : E→ Ξ →℘O. The mappingO defines what can
be observed for all processes in any of the assumed contexts.Hence for any fixedΞ andO we have a
definition of the semantics and the refinement of processes.

Definition 3 LetΞ be a set of contexts each of which the processesA,C ∈ E can communicate privately
with, and let O: E→ Ξ →℘O be a function which returns a set of observations, i.e. a subset ofO. Then,
the relational semantics of a processA is a subset ofΞ×O.

JAKΞ,O
def
= {(x,o)|x∈ Ξ∧o∈ O([A]x)}

and refinement is given by

A⊑Ξ,O C
def
= JCKΞ,O ⊆ JAKΞ,O

and equality is

A=Ξ,O C
def
= JCKΞ,O = JAKΞ,O

2

Given a rich enough class of tests the use of nondeterministic tests is redundant, as what can be ob-
served using a nondeterministic test will be the union of what can be observed using a set of deterministic
tests. Hence nondeterministic tests add no further information and will be ignored.

For all the processes considered in this paper, placing a processA in a contextX, i.e. [A]X, will mean
executing processA in parallel withX, i.e.A ‖N X (whereN is some set of actions over which the context
and process communicate, i.e. synchronize) and the observation functionO is either the trace function
Tr (if only safety properties are of interest) or (if liveness properties are of interest) the complete trace
functionTrc.

Definition 4 Let ΞFA be FA and let⊑FA be⊑ΞFA,Trc. 2

Theorem 1 Refinement distributes through parallel composition: LetX,Y,P,Q ∈ FA

X⊑FA Y,P⊑FA Q

X ‖N P⊑FA Y ‖N Q

2
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4 Probabilities—Two Interpretations

There are two (main) interpretations of probability, thefrequentistand theBayesian.

The frequentists’definition sees probability as the long-run expected frequency of occurrence. The prob-
ability of eventA happening, wheren is the number of times eventA occurs inN opportunities, is
P(A) = n/N.

The Bayesians’view of probability is related to degree of belief or state ofknowledge. It is a measure of
the plausibility of an event given incomplete knowledge. The Bayesian probabilist specifies some
given or assumed prior probabilities, which are then used inthe computation of other probabilities.
That is to say, anything that is nondeterministic or unknownmust either be assigned some proba-
bility or have its probability computed from other, more primitive, known probabilities. Bayesian
statisticians have developed several “objective” methodsfor specifying prior probabilities.

The frequentists’ view is based upon repeatedly performingthe same test many times and, where the
behaviour of the item under test is nondeterministic, aggregating the results of all the tests. Extending
an event-based testing semantics to record not just the set of possible observations but the probability
with which they occur is a simple uniform way to extend event-based testing semantics to event-based
probabilistic testing semantics. This can be further generalised by representing both the process under
test and the test process itself with probabilistic automata.

The Bayesian view fits well with Hoare’s comment on nondeterminism [7, p81]:

“There is nothing mysterious about this kind of nondeterminism: it arises from a deliberate
decision to ignore the factors which influence the selection”

So, nondeterminism in a process is merely a case of not havinganalysed it enough to quantify it, i.e.
attach to it some probabilities. Nondeterministic choice is probabilistic choice with unknown probabili-
ties. Surprisingly, this is not how testing semantics have been defined in the literature.

As probabilities quantify (i.e. attach a number to, or make quantitative) nondeterministic behaviour,
it is clearly crucial when modelling some real process to distinguish between the behaviour of the process
being deterministic and the behaviour being nondeterministic. Similarly when the process is observed
interacting in some context it is crucial to distinguish thenondeterminism of the process from the non-
determinism of the context.

Give a coin to a frequentist statistician and they experiment by flipping the coin a large number of
times noting down the number of times they observe heads being uppermost and the number of times
they observe tails. From this experiment they can compute the probability.

An important point to note is that, to the frequentist, probabilities define how likely it is that an action
is executed, or equivalently how likely it is that the execution ends in a particular state. The probability
of an event occurring when the event cannot be executed must be zero.

The Bayesian statistician, given a coin, knows that the onlyobservations are heads and tails, and
has no further information. The skill of the Bayesian statistician is to assign a prior probability based
on understanding the world that agrees with the frequentist. It becomes very important when we try to
add probabilities to event-based processes that we either follow the frequentist and perform experiments
(tests) or follow the Bayesian statistician and think clearly about the behaviour in the world of what we
are modelling.
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Q1

•s2 1− p
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◦s1
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Q1
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◦s2

t2 1− p

Q2

a

Figure 1: Probabilities on starting states

•s1 p.q

Q1

•s2 (1− p).q

Q2

•t 1−q

P

Figure 2: More general probabilistic combination

5 Probabilistic Finite Automata

5.1 Probability

We introduce probabilities on choice by attaching probabilities to the start states of a process. There are
two things to notice here: as in the non-probabilistic case with FAs, we represent nondeterminism on the
initial state of a process by allowing the process to start inone of asetof states; and we generalise this
idea to represent theprobability of starting in some state of a process by attaching probabilities to each
of its start states so that we can see what the probability of each possible start state being actually chosen
for some particular execution of the process.

The first of these points is inherited from work [8] which seeks to remove the need to use unob-
servable actions to also “encode” or represent nondeterminism in a process by assuming the process
makes an unobserved transition to its “real” starting state(which may be one of many) from some single
“dummy” formal starting state. (And, of course, this is justa case of using the usual “set of states” model
uniformly for start states as well as all other states, whichis something we are all familiar with from the
“classic” algorithm that constructs a deterministic finite-state automaton from a nondeterministic one.)
Such unobserved actions can then be used exclusively to denote (synchronisation between) events. This
idea is, in the second point above, carried over into the probabilistic realm so that initial probabilistic
choice is replaced by a probability distribution over the possible starting states.

So, if P is the process that starts with a choice betweenQ1 and Q2, which have (single, for this
illustration) starting statess1 ands2 respectively, with probabilitiesp of starting in states1 and 1− p of
starting in states2 then we might pictureP as in the left of Figure 1. We might represent the picture by
sayingS(P) = {s1 7→ p,s2 7→ 1− p}, whereS is a probability distribution function over start states ofP.

Further, if we now form the processa.P (i.e. the eventa happens then the processP happens) then
we might picture this as in the middle of Figure 1, and here notice how the probabilities have migrated
to the occurrences of eventa. This picture suggests that transitions now represent the effect of an action
on an initial state moving the system, according to some probability distribution, to the next state, when
it synchronizes with the same action in some other process, i.e. when the two actions combine to form
an event which takes place with the indicated probability.

So in a.P, the actiona has the potential to move us from statet to states1 with probability p
and tos2 with probability 1− p when synchronized to form an event which actually does take place
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with the indicated probabilities. We formalise all this by saying that the transitions ofa.P include
{t

a−→d | d(s1) = p∧ d(s2) = 1− p}. An alternative picture might be as shown in the right of Fig-
ure 1, and here notice how the probabilities on the new start states for the new processa.P have migrated
from the old start states ofP and we haveS(a.P) = {t1 7→ p, t2 7→ 1− p}. This picture might be consid-
ered a useful, though perhaps more unusual, alternative wayof thinking of our system in the previous
picture.

Note that the original form of transitions as in FAs can be recovered by using the domain of the
probability distribution function to tell us what the relevant post-states are.

As processes are combined together, the probabilities for the various component start states are com-
bined to form the probabilities for the start states of the combination. As an example, see Figure 2, which
shows what the resultant start-state probabilities are for(Q1+p Q2)+q P, wheres1,s2 andt are the start
states forQ1,Q2 andP respectively.

5.2 Probability and nondeterminism

From statistics, thelaw of large numberstells us that nondeterministic behaviour is the same as proba-
bilistic behaviour where the probabilistic behaviour is unknown but can be found by repeating the right
experiment a large number of times.

In process algebrasτ actions indicate hidden, unobservable, uncontrollable actions or events (a spe-
cial case being when two processes synchronize on some actions, which we consider to be private and
uncontrollable). Remember Hoare’s comment that we cited inSection 4. We have said above that we
view this as agreeing with the Bayesian idea that probability indicates a lack of information.

As probabilities refer to frequencies of executable behaviour, i.e. the probability of an event occur-
ring, they naturally occur onτ actions. The intuitive relationship between nondeterminism and probabil-
ity is widely held. For example,

”nondeterminism represents possible choices that can be resolved in a wholly unpredictable
way. With probabilistic constructs the resolution becomespredictable up to a point, in that
it is quantified” [9]

We can view this as saying that probabilistic processes contain more information than nondeter-
ministic processes but less than deterministic processes.Consequently what can be observed in any
single observation of a probabilistic process is the same aswhat can be observed of the underlying
non-probabilistic process. But by aggregating the observations of a large number of executions we can
compute a probability distribution or verify a previously computed probability distribution.

As τ events are built by composing two actions that are observable (via parallel composition, i.e.
synchronization) it would be useful to find some way to compute the probability of the executableτ
event from the prior “probabilities” of their observable parts. This we do below in Definition 8.

The addition of probabilities toobservableactions where there isnonondeterminism has proven both
hard to interpret and hard to formalise, especially when we want to ensure that the models have desirable
properties. One reason, in our opinion, that this has turnedout to be so hard to do is that the probabilities
on the observable actions need, obviously, to define the behaviour of the processes not just in one context
but in all contexts.2

2We go no further with this point in this paper, but note that, in the non-probabilistic setting, we have considered this
previously in [10].
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5.3 Nondeterminism

We represent nondeterminism not by a separate set of operators but by allowing probabilities to be de-
noted not just by real numbers in the range 0 to 1 but also by real-valued terms (in that range) that contain
variables or parameters. This introduces the idea of a starting-state distribution which is not completely
determined or which has undetermined aspects, and hence allows us to represent nondeterminism with
the same machinery that we introduce for probabilities.

This idea is motivated by the Bayesian view that the more we know about a mechanism, the more
certain we can be about the probabilities attached to its behaviour: to talk of nondeterministic behaviour
is merely to admit having more or less incomplete information about how something behaves, and this
incomplete information can be represented by having parameters in the terms which denote probabilities.
This also accords with Hoare’s view that nondeterminism arises from ignoring or hiding (or, we would go
further and say, being ignorant of) some aspects of a process. Further analysis of the mechanism would
uncover (“unhide”) more of the mechanism. This view dissolves nondeterminism; there is no such thing
really, since it is just arises from not knowing (for whatever reason) enough about the actual distribution
of probabilities amongst actions that might be taken when a choice is presented or confronted.

5.4 Probabilistic testing semantics

For probabilistic tests all we need change is that the user records not just a set of observations but a

probability distribution over a set of observations, henceO def
= Act∗ → R.

The relational semantics of processA when probability distributions are observed is a subset of
Ξ× (Act∗ → R). If a process is experimented upon (frequentist perspective) and the results noted then
what is observed will be a functionΞ → (Act∗ → R) and hence there is no nondeterminism and no
possibility of refinement.

But approaching automata from the Bayesian perspective, ifwe can define the processes and tests as
prior “probabilistic” automata then we might be able to use probabilistic parallel composition to compute
the probabilistic relational semantics of the processes. From the Bayesian point of view, the probabilities
on actions are prior probabilities that, until the action takes part in an event by being synchronized with
another process along the same action, do not play any role. Obviously the probability of an unexecuted
action is prior to the probability of an execution—in particular, not until we factor in the probability
of the synchronizing action do we know (via their product) what the probability of the executed event
(denoted byτ) will be. So, it is the Bayesian ideas that allow us to make sense of attaching probabilities
to something that has not yet happened, and which will only bea part of what happens.

6 Formalising probabilistic automata

In this section we will formalise the discussion in Section 5.2 and see that automata that contain both
probabilistic and nondeterministic choice are calledpartially probabilistic introduced as parameterised
probabilistic finite automata (PPFA). Here we take what we see as the standard statistical approach and
model nondeterministic choice as probabilistic choice with unknown probability. So our probabilities
are no longer only real numbers but may also be real-valued terms (parameterised terms, hence the
name) that may contain variables, the unknown probabilities. Automata where nondeterminism has been
completely replaced by probabilistic choice aredeterministicprobabilistic finite automata (DPFA).

Definition 5 Parameterised Probabilistic Finite Automata (PPFA ). Let NA be a finite set of nodes. The
parameterised probabilistic finite automatonA is given by the triple(NA,SA,TA) where
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1. SA is a “starting distribution”, i.e. a parameterised probability distribution such that dom(SA)⊆
NA, where dom(SA) are the starting states ofA

2. TA ⊆ {(n,a,d)|n ∈ NA∧ a ∈ Actτ ∧d ∈ DA}, such that for each n∈ NA and a∈ Actτ there exists
no more than one element of TA with first component n and second componenta, and recall that
nondeterminism is modelled by a parameter in the range of theprobability distribution d. Finally,
DA is a set of probability distributions over states.

Deterministic Probabilistic Finite Automata (DPFA) are PPFA with the restrictions that:

1. The ranges of all probability distributions are sets of real values, not sets of possibly parameterised
terms, i.e. the elements of the ranges contain no variables;

2. (n,a,d) ∈ TA impliesa ∈ Act .

2

Let the variablesX,Y be taken from some setVar andX be a list of variables andψX be an instanti-
ation of the variables in the list taken from the set of all such instantiationsΨX. We will write A(X) for a
PPFA containing variablesX, but where not needed the list of variables will be dropped and we will write
A. We interpret the variables inA(X) as beingglobally boundand take the usualα-congruence of terms
and identify PPFA that differ only by the names of variables used. Similarly we assumeα-renaming to
prevent confusion and variable capture when composing PPFAs.

We write x
a−→A,py for (x,a,d) ∈ TA ∧ d(y) = p andx

a−→py whereA is obvious from context. In
addition when we want to talk about a “complete” transition,i.e. one that has its associated final state
distribution, we writex

a−→Ad for (x,a,d) ∈ TA.

Definition 6 The probability of the computation following a path, a sequence of transitions starting from
a start state s, is the product of the probability of its component transitions and the probability of starting

in the start state SA(s). Let p be the path s
ρ1−→p1m1,m1

ρ2−→p2m2, . . .mn−1
ρn−→pnmn. Then the probability

that p is executed is

d(p)
def
= SA(s)× p1× p2× . . . pn

and we say that the path p can be observed as traceρ = ρ1,ρ2, . . . ,ρn.
The probability of observing a traceρ is the sum of the all probabilities of the computation following

any path that can be observed as traceρ :

d(ρ) = ∑
tr(pi)=ρ

d(pi)

where tr(p)
def
= {ρ |p= s

ρ1−→p1m1,m1
ρ2−→p2m2, . . .mn−1

ρn−→pnmn}.

Writing SA
ρ−→p informs us thatp is the probability of seeing the traceρ when starting in any of the

start states indom(SA) and following some appropriate path, i.e.d(ρ) = p. SA
ρ−→pn means thatp is the

probability of seeing the traceρ when starting in any of the start states indom(SA) and ending in staten.

Definition 7 The probability distribution over complete traces is

Dc(A)
def
= {ρ 7→ ∑

q∈P

q | P= {q | n∈ NA∧π(n) = /0∧SA
ρ−→qn}}



94 Refinement for Probabilistic Systems with Nondeterminism

Definition 8 Process operators

Action Prefixinga.B
def
= ({sa}∪NB,{sa 7→ 1},{sa

a−→SB}∪TB) where sa is a new state

Internal choiceA⊓B
def
= (NA∪NB,SA⊓SB,TA∪TB) where

(SA ⊓SB)(n) = X×SA(n) if n ∈ dom(SA) else(1−X)×SB(n) if n ∈ dom(SB), whereX is a fresh
parameter, and note that now dom(SA⊓SB) = dom(SA)∪dom(SB).

Probabilistic choiceA⊕pB
def
= (NA∪NB,SA⊕p SB,TA∪TB) where(SA⊕p SB)(n) = p×SA(n) if n ∈

dom(SA) else(1− p)×SB(n) if n ∈ dom(SB), and note that now dom(SA⊕p SB) = dom(SA)∪dom(SB).
We note immediately from this that internal choice is probabilistic choice with unknown probability
between the two choices.
External choiceA�B

def
= (NA∪NB \ (dom(SA)∪dom(SB))∪dom(SA�B),SA�B,TA∪TB{{SASB/SA×

SB}}) where SA�B(nA,nB) =SA(nA)×SB(nB) and{{SASB/SA×SB}} now, of course, uses thedomains
of the start state distributions in order to build the substitutions over start states.
Parallel composition:

A ‖P B
def
= (NA‖PB,SA‖PB,TA‖PB)

NA‖PB = NA×NB

SA‖PB(nA,nB) = SA(nA)×SB(nB) i f nA ∈ dom(SA)∧nB ∈ dom(SB)

and TA‖PB is defined by:

n
x−→AdA,m

x−→BdB, x∈P

(n,m)
τ−→(A‖PB)dA×dB

n
x−→AdA, (x 6∈P∧m∈NB)

(n,m)
x−→(A‖PB)dA×m

n
x−→BdB, (x 6∈P∧m∈NA)

(m,n)
x−→(A‖PB)m×dB

where
dA×dB

def
= {(x,y) 7→ dA(x).dB(y)|n x−→Ax∧m

x−→By}
and

dA×m
def
= {(x,m) 7→ dA(x)|n x−→Ax}

and
m×dB

def
= {(m,y) 7→ dB(y)|n x−→By}

Example 2 Consider the PPFAs given by the expressions a.(Q1+p Q2) and a.Q1+p a.Q2. Then, assum-
ing the start states, states and transitions of Q1 and Q2 are given by s1, s2, N1, N2, T1 and T2 respectively,
we have

a.Q1+p a.Q2 = ({t1, t2}∪N1∪N2,{t1 7→ p, t2 7→ 1− p},

{t1
a−→d1, t2

a−→d2|d1(s1) = d2(s2) = 1}∪T1∪T2)

a.(Q1+p Q2) = ({t}∪N1∪N2,{t 7→ 1},

{t
a−→d|d(s1) = p,d(s2) = 1− p}∪T1∪T2)

In fact, these PPFAs are indistinguishable by testing, so they are equal (they “refine both ways”) as far as
our testing semantics goes. This result can be generalised so that probability distributions on transitions
can always be “migrated” to the starting state distribution.
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6.1 Testing of probabilistic processes

Recall from Section 3 that we said in the definition of our testing semantics for FA that we will use[A]X =
A ‖N X andOFA = Trc. For probabilistic FAs we need to use parallel composition from Definition 8 (as
defined for DPFA and PPFA). The observation of a single execution of a DPFA is still a trace but what
can be “observed” over many executions is no longer simply a set of traces but, if we also record the
frequency of occurrence of the traces, a probability distribution over the set of traces henceODPFA= Dc.
We treat PPFA similarly and letΞPPFA=PPFAandOPPFA=Dc except that now the observed probability
distributions may be parameterised.

Definition 9 The relational semantics of an entityA(X) is (whereΨX is the set of instantiations for the
parameters inX)

JA(X)KΞPPFA,Dc
def
= {(x,o).x∈ ΞPPFA∧o∈ ψX(D

c(([A(X)]x)))∧ψX ∈ ΨX}

A(X)⊑ΞPPFA,Dc C(Y) def
= JC(Y)KΞPPFA,Dc ⊆ JA(X)KΞPPFA,Dc

A(X) =PPFAC(Y)
def
= JC(Y)KΞPPFA,Dc = JA(X)KΞPPFA,Dc

Note here that we have given the meaning of PPFAs as a relationfrom contexts (PPFAs) to probability
distributions:

JA(X)KΞPPFA,Dc ⊆ ΞPPFA× (Act∗ → Real)

by instantiating all the open distributions that might be observed to get plain probability distributions
“with no unknowns”.

Let ⊑PPFA
def
= ⊑ΞPPFA,Dc. That is, we write⊑PPFA for this general definition of refinement. When

⊑PPFA relates two DPFA processes it is of little interest, i.e. there are no opportunities for refinement as
there is no nondeterminism (though there are, perhaps, probabilities).

In Section 7 we will show refinement of PPFA is strongly related to refinement of an underlying FA.

6.2 Simple results from the definitions

Theorem 2 Refinement distributes through parallel composition. LetX, Y, P andQ be arbitrary PPFAs
and let N⊆ Act. Then

X⊑PPFAY,P⊑PPFAQ

X ‖N P⊑PPFAY ‖N Q

For an arbitrary PPFAP(Y) we have the following theorems.

Theorem 3 ⊓ is idempotent.P(Y) =PPFAP(Y)⊓P(Y)

Proof: From Definition 8 it can be seen that the graph ofP(Y)⊓P(Y) consists of two copies of the graph
of P(Y) which ever copy is selected the behaviour is exactly that ofP(Y). Hence he equality.

Theorem 4 ⊕p is idempotentP(Y) =PPFAP(Y)⊕pP(Y)

Proof: Similar to Theorem 3.
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7 Relating finite automata to parameterised probabilistic finite automata

We constructJ KFA
PPFA, an embedding of FA into PPFA and a forgetful mapping from PPFA to FA, and

then show that these mappings form a Galois connection between the refinement relations⊑PPFA and
⊑FA.

The embeddingJ KFA
PPFA of FA in PPFA will map all nondeterministic choices in FA processes into

probabilistic choice with unknown probabilities in the PPFA processes.

Definition 10 Semantic mappingsJ KFA
PPFA and vAFA

PPFA between finite automataA and parameterised
probabilistic finite automataAp are defined so that:

J(NA,SA,TA)KFA
PPFA

def
= (NAp,SAp,TAp)

where
NAp

def
= NA

and
SAp

def
= {(s,X) | s∈ SA∧X is f resh∧ (Σn∈dom(SAp)SAp(n)) = 1}

TAp = {(n,a,d) | d = {m 7→ v | n
a−→m∧v is f resh}∧ (Σm∈dom(d)d(m)) = 1}

The mapping vAFA
PPFA from PPFA in to FA forgets all probability distributions:

vAFA
PPFA(NAp,sAp,TAp) = (NA,sA,TA)

where
NA

def
= NAp

and
SA

def
= dom(SSp)

and
TA = {(n,a,m)|n a−→Apd∧m∈ dom(d)}

2

The pair of mappings(J KFA
PPFA,vAFA

PPFA) define a vertical refinement⊑FA
PPFA as they are a Galois con-

nection [10]. This is the content of Theorem 7, but first some preliminary results.

Lemma 1 For any FAsX andY
Trc(X)⊆ Trc(Y)⇒ Dc(JXKFA

PPFA)⊆ Dc(JYKFA
PPFA)

Proof (Sketch) The application ofJ KFA
PPFA to a FA simply adds parameterised probabilities spanning

any nondeterministic choice. The set of all possible observation traces isTrc(X). This is also the set of
all possible observation traces ofJXKFA

PPFAbut now what is “observed” is not one trace but any probability
distribution over any subset ofO(X) (we need to use subset as when the probability of observing a trace
is 0 it is no longer in the domain of the distribution).

Henced ∈ Dc(JXKFA
PPFA) ⇔ dom(d) ⊆ Trc(X). Consequently ifd ∈ Dc(JXKFA

PPFA) then dom(d) ⊆
Trc(X) and sinceTrc(X) ⊆ Trc(Y), from the assumption of the lemma, we further havedom(d) ⊆
Trc(Y). Thend ∈ Dc(JYKFA

PPFA) follows from the argument above withY in place ofX. •
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Theorem 5 LetX andY be FAs, and let N⊆ Act. Then,

JX ‖N YKFA
PPFA= JXKFA

PPFA‖N JYKFA
PPFA

Theorem 6 LetX andY be PPFAs, and let N⊆ Act. Then,

vAFA
PPFA(X ‖N Y) = vAFA

PPFA(X) ‖N vAFA
PPFA(Y)

Definition 11 Deterministic automata.
DetFA

def
= {P|(n a−→k∧n

a−→l ⇒ k= l)∧ |SA|= 1}
DetPPFA

def
= {P|(n a−→pk∧n

a−→ql ⇒ k= l ∧ p= q= 1)∧ |SA|= 1}

Lemma 2 Results involving deterministic automata.

1. (a) {X ∈ DetFA | JXKFA
PPFA}= DetPPFA and

(b) {Y ∈ DetPPFA | vAFA
PPFA(Y)}= DetFA

2. LetA andC be FAs. ThenA⊑FA C⇔∀x∈DetFA .Trc([A]x)⊇ Trc([C]x)

3. LetA andC be PPFAs. ThenA⊑PPFAC⇔∀x∈DetPPFA.D
c([A]x)⊇ Dc([C]x)

Proof (Sketch).
1(a) and 1(b) follow from definitions.
Re 2: With non-probabilistic processes and tests, what can be observed when applying a nondeter-

ministic test is the union of what can be observed when applying each element of the set of deterministic
alternatives (where here we picture, as usual, a nondeterministic computation as a set of deterministic
ones which covers all the possible choices) and hence:

A⊑FA C⇔∀x∈DetFA .Trc([A]x)⊇ Trc([C]x)

Re 3: With probabilistic processes and tests, what can be observed when applying a probabilistic
test is the distribution, inferred from the test, of what canbe observed when applying the deterministic
components that the probabilistic choice spans. Hence a setof test processes for PPFA that is sufficient
to establish refinement is the image after applyingJ KFA

PPFA to a sufficient set of FA processes, i.e. since
DetFA is sufficient for FA thenDetPPFA is sufficient for PPFA, hence:

A⊑PPFAC⇔∀x∈DetPPFA.D
c([A]x)⊇ Dc([C]x)

Theorem 7
∀X ∈ FA,Y ∈ PPFA.JXKFA

PPFA⊑PPFAY⇔ X⊑FA vAFA
PPFA(Y)

Proof: (Sketch)
It is a well-known result (e.g. [11]) that to prove a Galois connection it is sufficient to prove for

arbitraryX
vAFA

PPFA(JXKFA
PPFA)⊑FA idFAX

and for arbitraryY
JvAFA

PPFA(Y)KFA
PPFA⊑PPFA idPPFAY

and in addition to prove both relationsJ KFA
PPFA andvAFA

PPFA are monotone.
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We can see directly from the definitions thatJ KFA
PPFA adds parameterised probabilities to any nonde-

terministic choice andvAFA
PPFA forgets this addition hence, for arbitraryX :

vAFA
PPFA(JXKFA

PPFA) =FA idFAX

which gives our first inequality.
The effect ofJvAFA

PPFAYKFA
PPFA is to first replace probabilistic choice with nondeterministic choice (by

ignoring probabilities) and then reintroducing probabilities-with-parameters due to the nondeterminism
and this can be refined, along with other possibilities, backinto its original value, which gives our second
inequality.

Re: showJ KFA
PPFA is monotone:A⊑FA C⇒ JAKFA

PPFA⊑PPFA JCKFA
PPFA

From Definition 3 we haveA ⊑FA C ⇔ ∀x∈ΞFA.Trc([A]x) ⊇ Trc([C]x) and asDetFA ⊆ ΞFA we also
have

A⊑FA C⇔∀x∈DetFA .Trc([A]x)⊇ Trc([C]x) (1)
From Lemma 1 we then have
A⊑FA C⇒∀x∈DetFA .D

c(J[A]xKFA
PPFA)⊇ Dc(J[C]xKFA

PPFA).
Then,
∀x∈DetFA .D

c(J[A]xKFA
PPFA)⊇ Dc(J[C]xKFA

PPFA)

∀x∈DetFA .D
c([JAKFA

PPFA]JxKFA
PPFA

)⊇ Dc([JCKFA
PPFA]JxKFA

PPFA
) from Theorem 5

∀x∈DetPPFA.D
c([JAKFA

PPFA]x)⊇ Dc([JCKFA
PPFA]x) Lemma 2 part 1(a)

JAKFA
PPFA⊑PPFA JCKFA

PPFA from Definition 9
4. Re: showvAFA

PPFA is monotone:A⊑PPFAC⇒ vAFA
PPFAA⊑FA vAFA

PPFAC

FromA⊑PPFAC and definitions we have:∀x∈ΞPPFA.D
c([A]x)⊇ Dc([C]x)

asDetPPFA⊂ ΞPPFA we have
∀x∈DetPPFA.D

c([A]x)⊇ Dc([C]x) (2)
For allo in Trc(vAFA

PPFA([C]x)) there must exist ad in Dc([C]x) such thato∈ dom(d) and from (2) we
know thatd is in Dc([A]x) and witho∈ dom(d) we can conclude thato in Trc(vAFA

PPFA([A]x)) so:
∀x∈DetPPFA.Trc(vAFA

PPFA([A]x))⊇ Trc(vAFA
PPFA([C]x))

∀x∈DetPPFA.Trc([vAFA
PPFAA]vAFA

PPFAx)⊇ Trc([vAFA
PPFAC]vAFA

PPFAx) Theorem 5

∀x∈DetFA .Trc([vAFA
PPFAA]x)⊇ Trc([vAFA

PPFAC]x) from Lemma 2 part 1(b)
∀x∈ΞFA.Trc([vAFA

PPFAA]x)⊇ Trc([vAFA
PPFAC]x) from Lemma 2 part 3

vAFA
PPFAA⊑FA vAFA

PPFAC Definition 3
•

The embeddingJ KFA
PPFA can be used to add probability to a non-probabilistic finite automata during

the stepwise development, i.e. refinement, of a model or specification. This use of Galois connections is
nothing new but to the best of our knowledge it is the first timeit has been used to allow the introduction
of probability part of the way through the development of a process.

8 Conclusions

Others have used the same testing framework to treat probabilistic processes, but in one notable case [9]
it was found that many of the expected algebraic results werefalse according to the testing used. This
meant the abandonment of testing as a basis for refinement anda notion of simulation was introduced.
We believe that the reason that many of the “sanity checks” turned out to be false for the testing-based
refinement in that paper was that the original formalisationof nondeterminism found in non-probabilistic
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systems was kept and that this led to problems when probabilistic tests on nondeterministic probabilistic
systems were considered.

Instead of abandoning refinement based on testing, we handlenondeterminism in a way that is com-
patible with probability, rather than using the original formalisations of testing nondeterminism found in
non-probabilistic systems.

We also note that, having shown we can (as a (vertical) refinement) move from non-probabilistic
models to probabilistic ones (and back again, if we wish), the introduction of probabilities can happen as
a design stepduringdevelopment of a system via refinement steps. So, we are free to take a very general
non-probabilistic specification and, if it turns out to be necessary to do so to deal with some aspects of the
specification, introduce probabilities as we make progresstowards a more concrete form of the system.
We have not yet explored this possibility, but it does introduce another freedom to the developer which
might turn out to be useful.

The framework we have introduced in this paper is really onlya first step towards a sensible language
for specifying systems containing probability. What stillneeds to be done is to recognise that some sorts
of probabilistic choice do not “make sense”, i.e. that thereare right and wrong places to use such choice.
For example, if we have a vending machine with two buttons on,one for tea and one for coffee, it clearly
does not make sense to specify the choice here as a probabilistic one—the vending machine would be a
very odd one if it allowed me to choose tea only 75% of the time!

On the other hand, it does make sense (though perhaps inventing plausible uses for such a thing might
be hard!) to specify a robot which can make choices from a vending machine that offers tea or coffee,
where the robot prefers tea over coffee, so it chooses tea 75%of the time.

The difference between these two cases is one ofcausality. The robot’s actions cause the vending
machine’s, and notvice versa. So, our specification language would need to allow us to makethis
distinction and, most helpfully, only allow probabilisticchoice to be specified in situations where it makes
sense, as in the case of specifying the robot. We have done previous work on adding causality (back) into
process algebras, and the work presented here forms the basis for a probabilistic causal process algebra
(CPA) [12], or for a probabilistic language for interactivebranching processes (IBPs) [10] which we have
also talked about before, which forms the subject of anotherpaper yet to be published.

A final interesting point to note is that, because we can always migrate probabilities on actions right
up the probabilities on start states, we have a normal form for our automata. In this form, the only place
that probabilities appear is on the start states (so the onlynon-trivial probabilistic distribution over states
is the start-state distribution). This makes it very clear that one needs only one roll (of dice with enough
faces) in order to conduct a probabilistic computation.
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The role played by counterexamples in standard system analysis is well known; but less common
is a notion of counterexample in probabilistic systems refinement. In this paper we extend previous
work using counterexamples to inductive invariant properties of probabilistic systems, demonstrating
how they can be used to extend the technique of bounded model checking-style analysis for the re-
finement of quantitative safety specifications in the probabilistic B language. In particular, we show
how the method can be adapted to cope with refinements incorporating probabilistic loops. Finally,
we demonstrate the technique on pB models summarising a one-step refinement of a randomised
algorithm for finding the minimum cut of undirected graphs, and that for the dependability analysis
of a controller design.

Keywords Probabilistic B, quantitative safety specification, refinement, counterexamples.

1 Introduction

The B method [1] and more recently its successor Event-B [2] comprises a method and its automation
for modelling complex software systems. It is based on the top-down refinement where specifications
can be elaborated with detail and additional features, whilst the automated prover checks consistency
between the refinements. Hoang’s probabilistic B or pB [15] extension of standard B gave designers the
ability to refer to probability and access to the specification of quantitative safety properties.

In probabilistic systems, the generalisation of traditional safety properties allows the specification of
random variables whose expected value must always remain above some given threshold. Elsewhere
[23, 25] we have provided automation to check this requirement by analysing pB models using an
automatic translation of their quantitative safety specifications as PRISM reward structures [14]. Our
technique allows pB modellers to explore the quantitative safety properties encoded within their models
to obtain diagnostic feedback in the form of counterexampletraces in the case that their model does
not satisfy the quantitative specification. Counterexamples become sets of execution traces each with
some probability of occurring and jointly implying that thespecified threshold is not maintained. More-
over pB’s consistency checking enforces inductive invariance of the quantitative safety property, thus
the counterexample traces also demonstrate specific pointsin the models execution where the inductive
property fails.

The paradigm of abstraction and refinement supports stepwise development of probabilistic systems
aimed at improving probabilistic results. Unfortunately,for quantitative safety specifications (our focus
here), a human verifier has no way of inspecting that this requirement is met even though the automated

∗This author acknowledges support from the Australian Commonwealth Endeavor International Postgraduate Research
Scholarship (E-IPRS) Fund.

†This author acknowledges support from the Australian Research Council (ARC) Grant Number DP0879529.
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prover readily establishes consistency between the refinements. One way to resolve this uncertainty is
to explore algorithmic approaches similar to probabilistic model checking techniques which can provide
exact diagnostics summarising the failure (if indeed it exists) of the refinement goal.

In this paper we extend some practical uses of counterexamples to probabilistic systems refinement
with respect to quantitative safety specifications particular to the pB language. We show how to use them
to generalise bounded model checking-style analysis for probabilistic programs so that an iteration can
be verified by exhaustive search provided that quantitativeinvariants are inductive for all reachable states.
We also show how the use of probabilistic counterexamples inquantitative dependability analysis can
be used to determine “failure modes” and “critical sets” which thus enables their extension to estimating
components severity.

We illustrate the techniques on two case studies: one based on a probabilistic algorithm [20] to find
the minimum cut set in a graph, and the other a probabilistic design for a controller mechanism [11].

The outline of the paper is as follows. In Sec.2 we summarise the underlying theory of pB; in
Sec.3 we discuss the probabilistic counterexamples we can derive from the models and a bounded model
checking approach to probabilistic iteration. In Sec.5 we illustrate the technique on the specification of
a randomised “min-cut”. We discuss probabilistic diagnostics of dependability in Sec.6 and demonstrate
with a case study in Sec.7. We discuss related work and then conclude.

1.0.1 Notation

Function application is represented by a dot, as inf .x (rather thanf (x)). We use an abstract finite state
spaceS. Given predicatepredwe write liftpred for thecharacteristicfunction mapping states satisfying
pred to 1 and to 0 otherwise, punning 1 and 0 with “True” and “False”respectively. We writeE Sas the
set of real-valued functions fromS, i.e. the set of expectations; and whenevere,e′ ∈ E Swe writee⇛ e′

to mean that(∀s∈ S. e.s≤ e′.s). We letDSbe the set of all discrete probability distributions overS; and
write Exp.δ .e= ∑

s∈S

(δ .s)×e.s for the expected value ofe overSwhereδ ∈ DSande∈ E S. Finally we

write S∗ for the finite sequences of states inS.

2 Probabilistic annotations

When probabilistic programs execute they make random updates; in the semantics that behaviour is
modelled by discrete probability distributions over possible final values of the program variables. Given
a programProg operating overS we write [[Prog]] : S→ (S→ [0,1]) for the semantic function taking
initial states to distributions over final states. For example, the program fragment

pInc , s:=s+1 p⊕ s:=s−1 (1)

increments state variables with probability p, or decrements it with probability 1−p. The semantics
[[pInc]] for each initial states is a probability distribution returningp or (1−p) for (final) statess′ = (s+1)
or s′ = (s−1) respectively. Rather than working with this semantics directly, we shall focus on the dual
logical view generalisation of Hoare logic [16].

Probabilistic Hoare logic [22] takes account of the probabilistic judgements that can be made about
probabilistic programs, in particular it can express when predicates can be established onlywith some
probability. However, as we shall see, it is even more general than that, capable of expressing general
expected properties of random variables over the program state. We useReal-valued annotations of the
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Name Prog Wp.Prog.Expt

identity skip Expt
assignment x := f Expt[x := f ]
composition Prog;Prog′ Wp.Prog.(wp·Prog′ ·Expt)
choice Prog⊳ G⊲ Prog′ Wp.Prog.Expt⊳ G ⊲ Wp.Prog′.Expt
probability Progp⊕ Prog′ Wp.Prog.Expt p⊕ Wp.Prog′.Expt
nondeterminism Prog ⊓ Prog′ Wp.Prog.Exptmin Wp.Prog′.Expt
weak iteration it Prog ti νX • (Wp.Prog.X min Expt)

Given a program commandProg and expectationExptof typeE S, Wp.Prog is of typeE S→ E S. Note also that we write
Exp.([[Prog]].s).Exptto meanWp.Prog.Expt.s.

Figure 1: Structural definition of the expectation transformer-style semantics.

program variables interpreted as expectations; a program annotation is said to be valid exactly when the
expected value over the post-annotation is at least the value given by the pre-annotation. In detail

{pre} Prog {post} , (2)

is valid exactly whenExp.[[Prog]].post.s≥ pre.s for all statess∈ S, wherepostis interpreted as a random
variable over final states andpre as a real-valued function.

With our notational convention, a correct annotation forpInc (at (1)) is given by the triple

{p× lift(s=−1)+ (1−p)× lift(s= 1)} pInc {lift(s= 0)} , (3)

which expresses the probability of establishing the states= 0 finally, depending on the initial state from
which pInc executes. Thus if the initial state iss= −1 then that probability isp, but it is (1−p) if the
initial state iss= 1.

Rather than use the distribution-centered semantics outlined above, we shall use a generalisation
of Dijkstra’s weakest precondition orWpsemantics defined on the program syntax of the probabilistic
Guarded Command Language orpGCL [22]. The semantics of the language is set out in Fig. 1. As for
standardWp this formulation allows annotations to be checked mechanically [15, 17]; moreover we see
that annotation (2) is valid exactly whenpre⇛ Wp.Prog.post.

In this paper we shall concentrate on certifying probabilistic safety expressible using probabilistic
annotations. Informally, a probabilistic safety propertyis a random variable whose expected value cannot
be decreased on execution of the program. (This idea generalises standard safety, where thetruth of a
safety predicate cannot be violated on execution of the program.) Safety properties are characterised by
inductive invariants: for example the valid annotation{Expt×liftpred} Prog{Expt} says thatExpt is an
inductive invariant forProg provided it is executed in an initial state satisfyingpred. To illustrate, the
annotation

{s} pInc {s} , (4)

means that the expected value ofs is never decreased (and it is therefore only valid ifp≥ 1/2).
Inductive invariants will be a significant component of the refinement of quantitative safety specifi-

cations in our pB machines, to which we now turn.
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MACHINE Faulty
SEES Int TYPE, RealTYPE
CONSTANTS p
PROPERTIES p∈ REAL∧ p≥ real(0)∧ p≤ real(1)
VARIABLES cc
INVARIANT cc∈ N
INITIALISATION cc := 0
OPERATIONS

OpX , BEGIN
PCHOICE p OF cc := cc+1
OR cc := cc−1 END;

OpY , cc := 0
EXPECTATIONS real(0) ⇛ cc

END

Bold texts on the left column capture the fields (or clauses) used to describe the machine. ThePCHOICE keyword introduces
a probabilistic binary operator; theEXPECTATIONS clause expresses the notion of probabilistic quantitativesafety.

Figure 2: A simple pB machine.

2.1 Probabilistic safety and refinement in pB

Probabilistic B or pB [15], is an extension of standard B [1] to support the specification and refinement of
probabilistic systems. Systems are specified by a collection of pB machineswhich consist of operations
describing possible program executions, together with variable declarations and invariants prescribing
correct behaviour.

The machine set out in Fig. 2 illustrates some key features ofthe language. There are two operations
–OpXandOpY– which can update a variablecc. OpXcan either incrementccby 1 or decrement it by the
same value with probabilityp or (1− p) respectively, whileOpYjust resets the current value ofcc to 0.
In general, operations can execute only if their preconditions hold. But in the absence of preconditions
as in this case, the choice of which operation to execute is made nondeterministically.

The remaining clauses ascribe more information to the variables, constants and behaviour of the
operations. Declarations are made in the CONSTANTS and VARIABLES clauses; PROPERTIES and
SEES clauses state assumed properties and context of the constants and variables. The INVARIANT
clause sets out invariant properties. The expression in theINITIALISATION clause must establish the
invariant and the operationsOpXandOpYmust maintain it afterwards.

We shall concentrate on the EXPECTATIONS clause1, which was introduced by Hoang [15] to
express quantitative invariant or safety properties. The form of an EXPECTATIONS clause is given by

E ⇛ Expt , (5)

where bothE andExptare expectations. It specifies that the expected value ofExptshould always beat
least E, where the expected value is determined by the distributionover the state space after any valid
execution of the machine’s operations, following its initialisation. Hoang showed that this is guaranteed
by the following valid annotations:

1However, Hoang [15] showed that another way to check that a real-valueΩ is indeed an expectation is to evaluate the
language-specific boolean functionexpectation(Ω). Therefore we shall interchangeably use both forms to denote expectations-
based expressions with no loss of generality.
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{E} init {Expt} and {liftpred×Expt} Op {Expt} , (6)

whereOp is any operation with preconditionpredandinit is the machine’s initialisation. In what follows
we shall refer to (6) as theproof obligationsfor the associated expectations clause (5).

Checking the validity of program annotation, and in particular inductive invariants for loop-free
program fragments can be done mechanically based on the semantics set out in Fig. 1. In some cases the
proof obligation cannot be discharged, and there are two possible reasons for this. The first possibility is
thatExpt is too weak to be an inductive invariant for the machine’s operations, and must be strengthened
by findingExpt′⇛ Exptso that the original safety property can be validated. The second possibility is
that the machine’s operations actually violate the probabilistic safety property.

The same reasoning can be extended to refinement of abstract pB machines. We note that quantitative
safety specifications in pB can also be refined in the usual waywith respect to expectation pairs. Thus
another way of expressing (5) is to say that any program command P satisfies the bounded expectation
pair [E,Expt] if execution from its initial state guarantees that

E ⇛ Wp.P.Expt. (7)

Refinement is then implied by the ordering of program commands so that more refined programs improve
probabilistic results. More specifically, we write

P⊑Q iff (∀E ∈ E S·Wp.P.E ⇛ Wp.Q.E), (8)

to mean that the program commandQ is a refinement of the program commandP. In addition we note
that the preservation of an expression like (5) is implied bythemonotoneproperty ofWp.

The refinement of abstract pB machines embedding quantitative safety statements is dealt with in the
language framework by introducing the IMPLEMENTATION and REFINES clauses. The former clause
specifies the refinement of an abstract machine specified in the latter clause. The refinement process is
then aimed at preserving the bounds of expectations in the original specification statement (the machine
to be refined) so that the validity of an expression like (6) can be checked mechanically.

Our aim in the next section is to use probabilistic counterexamples adopted in model checking tech-
niques to interpret failure of proofs of refinement of probabilistic machines in the pB language. We
will find that a counterexample is a trace (or a set of traces) from the initialisation to a state where the
inductive invariant fails to hold after inspecting the EXPECTATIONS clause over the refinement.

3 Probabilistic safety in Markov Decision Processes

In abstract termspGCL programs and pB machines may be modelled as a Markov DecisionProcess
(MDP). Recall that anMDP combines the notion of probabilistic updates together withsome arbitrary
choice between those updates [27]: that combination of probabilistic choices together with nondetermin-
istic choices is present inpGCL and captures both features.

In this section we summarise pB models2 and their quantitative safety specifications in terms of
MDPs, and show how to apply model checking’s search techniques for counterexamples to prove quanti-
tative safety as a first step towards generalising standard bounded model checking verification. Inductive
invariance is then crucial to the application of exhaustivestate exploration for the intended goal.

2We note that an abstract pB model begins with the MACHINE keyword while a refinement is a pB model that begins with
the IMPLEMENTATION keyword.
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Here we consider anMDP expressed as a nondeterministic selectionP , P0 ⊓ . . . ⊓ Pn of deter-
ministic pGCL programs, where the nondeterminism corresponds to the arbitrary choice, and eachPi

corresponds to the probabilistic update for a choicei. WhenP is iterated for some arbitrarily-many
steps, we identify acomputation pathas a finite sequence of states〈s0,s1,s2, . . . ,sn〉 where each(si ,si+1)
is a probabilistic transition ofP, i.e. si+1 can occur with non-zero probability by executingP from si .
Note that the choice (between 0. . .n) can depend on the previous computation path since for example
guards for the individual operationsPi must hold for their selection to be enabled.

Standard safety properties identify a set of “safe” states —the safety property then holds provided
that all states reachable from the initial state under specified state transitions are amongst the selected
safe states. A generalisation of this for probabilistic systems specifies thresholds on the probability
for which the reachable states are always amongst the safe states. The quantitative safety properties
encapsulated by the EXPECTATIONS clause are even more general than that, allowing the possibility to
specify thresholds on arbitrary expected properties. The next definition sets out the mathematical model
for interpreting general quantitative safety properties.

SinceMDPs contain both nondeterministic and probabilistic choice,taking expected values only
makes sense over well-defined probability distributions — we need to resolve the nondeterministic choice
in all possible ways to yield a set of probability distributions. The next definition sets out a mechanism
for doing just that.

Definition 1 Given a program P, anexecution scheduleis a mapℵ : S∗→DS so thatℵ.α ∈ [[P]].s picks
a particular resolution of the nondeterminism in P to execute after the traceα , where s is the last item
of α . (A more uniform formalisation would give the distributionof initial states asℵ.〈〉; but we prefer
to give initial states explicitly.)

Once a particular schedule has been selected, the resultingbehaviour generates a probability distribution
over computation path. We call such a distribution aprobabilistic computation tree; such distributions
are well-defined with respect to Borel algebras based on the traces.

Definition 2 Given a program P, initial state s0 and execution scheduleℵ, we define the corresponding
trace distribution〈|Pℵ|〉.s0 of type S∗→ [0,1] to be

〈|Pℵ|〉.s0.(s′) , 1 if s′ = s0 else0
and 〈|Pℵ|〉.s0.(αss′) , 〈|Pℵ|〉.s0.(αs)×ℵ.(αs).s′

Computation trees of finite depth generate adistribution over endpointsas follows. If we takeK steps
from some initials0 according to the scheduleℵ, then the probability of ending in states′ is given by

[[PK
ℵ ]].s0.s

′ , ∑
|α |=K

〈|Pℵ|〉.s0.(αs′) .

General quantitative safety properties are intuitively specified via a numeric thresholdeand a random
variableExpt over the state spaceS: the expected value ofExpt with respect to any distribution over
endpoints should never fall below the thresholde.

Definition 3 Given threshold e and an expectation Expt thegeneral quantitative safetyproperty is satis-
fied by the program P if for all schedulesℵ and K≥ 0, we have that Exp.[[PK

ℵ ]].Expt.s0≥ e.

The probabilistic Computation Tree Logic orpCTL [13] safety property, which places a threshold
on the probability that the reachable states always satisfythe identified “safe” states is expressible using
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Def. 3 via characteristic expectationliftsa f e. However many more general properties are also express-
ible, including expected time complexity [14].

We shall be interested in identifying situations where the inequality in Def. 3 does not hold. Evidence
for the failure is a (finite) computation tree whose distribution over endpoints illustrates the failure to
meet the threshold.

Definition 4 Given a probabilistic safety property, a failure tree is defined by a schedulerℵ and an
integer K≥ 0 such that Exp.[[PK

ℵ ]].Expt.s0 < e.

Elsewhere [24] we showed that ifExpt is an inductive invariant, then the safety property based on
Expt is implied, provided thate≤ Expt.s0. In fact, given a failure tree, there must be some finite trace
α such that〈|Pℵ|〉.s0.(αs) > 0 andWp.(P ⊓ skip).Expt.s< Expt.s [24]. Thus, as for standard model
checking, we are able to locate specific traces which lead to the failure of the invariant property. We
define a counterexample toinductive invarianceas follows.

Definition 5 Given a schedulerℵ, an expectation Expt and a program P, a counterexample to inductive
invariance safety property is a trace(αs) which can occur with non-zero probability, and such that
Wp.P.Expt.s< Expt.s. A state such as s is a witness to failure.

But note that in practice there will be a number of counterexamples. Our technique is able to iden-
tify them all given any depthK of computation. Next we discuss how the strategy can be extended to
probabilistic loops reasoning.

3.1 Analysis of loops

We assume a loop of the formloop , while G do bodyod whereG is a predicate over the program
state representing the loop guard;bodyis a probabilistic program consisting of a finite nondeterministic
choice over probabilistic updates. Our aim in this section is to generalise the technique of bounded model
checking to prove the safety assertion of the form

{e} loop {inv} . (9)

In the case that (9) does not hold there must be a failure tree (Def. 4) to witness that fact, together
with a set of failures to inductive invariance ofinv. We shall be interested in the complementary problem,
in the case that the property does hold. For standard programs this can be established by exhaustively
searching the reachable states; any revisiting of a state terminates the search at that point, so that the
method is complete for finite state programs: either a counterexample is discovered or all reachable
states are visited, and each one checked for satisfaction ofthe (qualitative) safety property.

The situation is not quite so straightforward for probabilistic programs, and that is because the tech-
nique of exhaustive search does not generalise immediatelyto quantitative safety properties. However
via inductive invariants it does. Consider the program which repeatedly sets a variablex uniformly in the
set{0,1,2} after the initialisationx := 1, and terminates wheneverx is set to 2. In this case we might
like to verify the safety property thatx∈ {1,2} with probability at least 1/2. Expressed as an assertion,
it becomes

{1/2} x := 1;while (x= 1) do x:=01/3⊕ (x:=11/2⊕x:=2) od {post} , (10)

wherepost , {lift(x∈ {1,2})}. A quantitative inductive invariantestablishing that fact is given by
x/2, expressing the probability that the safety property is always satisfied at that state. (Whenx is 2 that
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probability is 1, whenx is 1, it is 1/2 and whenx is 0 it is 0.) In fact the property (10) is equivalently
formulated by settingpost , x/2, which can be seen as a strengthening of{lift(x∈ {1,2})}.

Since the triple (10) does indeed hold, no failure trees exist; more generally, in standard model check-
ing and for finite state spaces such a failure to establish thepresence of a failure tree can be converted
to a proof that the property holds (provided all reachable states are examined). For probabilistic systems
however, it is not clear when to terminate a state exploration, sinceExp.[[bodyKℵ]].x/2 steadily approaches
1/2 from above (where herebodyis taken to be the guarded loop body of (10)). However we can recover
the termination property even for probabilistic systems bylooking at inductive invariants, as the next
lemma shows.

Lemma 1 Let P be a probabilistic program operating over a finite statespace S; let s0 be the initial
state. If for all states s, reachable from s0 under executions via P, the inductive invariance property
Wp.P.inv.s≥ inv.s holds, then Exp.[[PK

ℵ ]].inv≥ inv.s0 for all K and schedulesℵ.
Proof 1 (Sketch) We use proof by induction on K.

When K= 1we note that Exp.[[P1
ℵ]].inv≥ inv.s0 is a consequence of the assumption since Exp.[[P1

ℵ]].inv≥
Wp.P.inv.s0.

For the general step, we observe similarly that Exp.[[PK+1
ℵ ]].inv≥ Exp.[[PK

ℵ ]].(Wp.P.inv). The result
follows through monotonicity of the expectation operator.

Lem. 1 implies that we can use exhaustive search to verify quantitative safety properties using in-
ductive invariants and exhaustive state exploration. The search terminates once all reachable states have
been verified as satisfying the inductive property. In the case of (10), usingx/2 for the invariant, each
of the three states satisfies the inductive property. Next wesummarise a prototype tool framework for
locating and presenting counterexamples.

4 Automating counterexamples generation

YAGA [25] is a prototype suite of programs for inspecting safety specifications of abstract pB machines
and their refinements. Importantly, it allows a pB machine designer to explore experimentally the details
of system construction in order to ascertain the cause(s) offailure of a pB safety encoding as in (5).

YAGA inputs a pB machine or its refinement violating a specificsafety property expressed in its
EXPECTATIONS clause, and generates its equivalent MDP representation in the PRISM language [14].
PRISM is a probabilistic model checker that permits pB models as MDPs in the tool framework and thus
can investigate critical expected values of random variables as “reward structures” — a part of PRISM’s
specification language. PRISM can then be used to explore thecomputation ofExp.[[PK

ℵ ]].Expt.s0 for
values ofK ≥ 0, and thus (modulo computing resources) can determine values ofK for which the ex-
pectations clause fails. If such aK is discovered, YAGA is able to extract the resultant failuretree as
an “extremal scheduler” that fails the inductivity test. The extremal scheduler is a transition probability
matrix which gives a description of the best (or worst-case)deterministic scheduler of the PRISM repre-
sentation of an abstract ‘faulty’ pB machine —i.e. one whose probability (or reward) of reaching a state
where our intended safety specification is violated is maximal (or minimal).

Finally, YAGA analyses the resultant extremal scheduler using algorithmic techniques set out in [24]
and generates ‘the most useful’ diagnostic information composed of finite execution traces as sequences
of operations and their state valuations leading from the initial state of the pB machine to a state where
the property is violated. Details of the underlying theory of YAGA, its algorithms and implementation
can be found elsewhere [25, 24]. In the next section we discuss practical details on how to use exhaustive
search of pB machines to verify compliance of inductivity for finite probabilistic models.
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IMPLEMENTATION contractionImp
REFINES contraction
SEES Bool Type, Int TYPE, RealTYPE
OPERATIONS

ans←− contraction (NN) , VAR nn IN
nn := NN;ans:= TRUE;

WHILE (nn> 2) DO
ans←−merge(nn,ans);
nn := nn−1
VARIANT nn
INVARIANT nn∈ N∧nn≤ NN∧2≤ nn∧ans∈ BOOL∧
expectation( f rac(2,nn× (nn−1))× liftans)

END;
END

.

Figure 3: A pB refinement of the contraction specification of the Mincut algorithm.

5 Case study one: min-cut

We discuss one of Hoang’s pB models [15]: a randomised solution to finding the “minimum cut” in an
undirected graph. The probabilistic algorithm is originally due to Karger [20]. We also report experi-
mental results after running our diagnostic tool.

Let an undirected graph be given by(N,E) whereN is a set of nodes andE is a set of edges. The
graph is said to bedisconnectedif N is a disjoint union of two nonempty setsN0,N1 such that any edge
in E connects nodes inN0 or N1; a graph isconnectedif it is not disconnected. Acut in a connected
graph is a subsetE′ ⊆ E such that(N,E\E′) is disconnected; a cut is minimal if there is no cut with
strictly smaller size. Cuts are useful in optimisation problems but are difficult to find. Karger’s algorithm
uses a randomisation technique which is not guaranteed to find the minimal cut, but only with some
probability. The idea of the algorithm is to use a “contraction” step, where first an edgeeconnecting two
nodes(n1,n2) is selected at random and then a new graph created from the oldby “merging” n1 andn2

into a single noden12; edges in the merged graph are the same as in the original graph except for edges
that connected eithern1 or n2. In that case if(n1,a), say was an edge in the original graph then(n12,a)
is an edge in the merged graph. We keep merging while the number of nodes is greater than 2. The
specification of the merge function for an initial number of nodesNN is such that

ans←−merge(nn,aa) , nn∈ NN∧aa∈ BOOL| ans:= (false≤2/nn⊕ aa).

It expresses that with a probability of at most 2/nn, the minimum cut will be destroyed by the contrac-
tion step. Otherwise the minimum cut is guaranteed to be found. Contraction satisfies an interesting
combinatorial property which is that if the edge is chosen uniformly at random from the set of edges
then the merged graph has the same minimum cut as does the unmerged graph with probability at least
2/(NN(NN−1)). Although this probability can be small, it can be amplified by repeating the algorithm
to give a probability of assurance to within any specified threshold.

The pB implementation in Fig. 3 sets out part of the refinementstep for the min-cut algorithm. The
refinement describes an iteration where themergefunction is called to perform the contraction described
above. The result of a call to merge is that the number of nodesin the graph (given by the variablenn)
is diminished by 1 and either the original minimum cut is preserved (with probability mentioned above),
or it is not; the Booleanansis used to indicate which of these possibilities has been selected.
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Figure 4: Graph comparing the probabilities to find a min-cutfor the correct and incorrect implementa-
tions of the contraction specification of the mincut algorithm. The incorrect implementation is where we
have introduced a high probability in the left branch of themergeoperation thus forcing the variableans
to becomefalseoften.

******* Starting Error Reporting for Failure Traces located on step 2 *********

Sequence of operations leading to bad state ::>>>

[{INIT} (3,true), {Skip} (3,true)

Probability mass of failure trace is:>>>> 1

************ Finished Error Reporting***************

Figure 5: Diagnostics detailing a failure of the inductive invariance at the implementation step (forNN = 3) involving the
merge operation. Note that this is a counterexample since the execution of the merge operation will result in an endpoint
distribution which yields a decreased expectation (see Def.5). That is, there is a witnesss (nn= 3, ans= true) such that
Wp.merge.2/(nn(nn− 1)).s= 1/12< 2/(nn(nn− 1)).s= 1/3. Note that every trace component of the counterexample is
marked with a pair which denotes the state valuations of the program variables occurring in the EXPECTATIONS clause, in
this case (nn, ans).

Here we use theexpectation(.) function to check that the expressionliftans×2/(nn(nn−1)) simpli-
fies to an inductive property; that is, that the probability of preserving the minimum cut should always be
at least 2/(nn(nn−1)) while ansremainstrue, but is 0 ifansever becomesfalse. Note that if this prop-
erty holds then we are able to deduce exactly that the overallprobability that the original minimum cut
is preserved when the graph is merged to one of 2 nodes is the theoretically predicted 2/(NN(NN−1)).

Next we describe bounded model checking style experiments to analyse the refinement.

5.1 Experiments for min cut

5.1.1 Counterexample diagnostics

In our first experiment we introduce an error3 in the design of themergefunction. The graph depicted in
Fig. 4 shows a failure to preserve the expected probability threshold of the mincut algorithm. Specifically
the graph shows that the probability falls below 2/(NN(NN−1)). An examination of the resultant failure
tree produces the counterexample depicted in Fig. 5. It clearly reveals a problem ultimately leading to a
witness after executing themergeoperation.

3We set the probability of choosing the left branch in the merge specification to be “at most” 3/4 so that the new specification
becomesans:= (false≤3/4⊕ aa)
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PRISM model checking results for mincut algorithm for varying node sizes
NN States, transitions Probability to find a mincut Duration (secs)
10 72517, 128078 2.2222 E-1 18.046
50 412797, 732718 8.1633 E-4 131.363
100 797647, 1416518 2.0202 E-4 277.605

Table 1: Performance result of inductive invariance checking for mincut

5.1.2 Proof of correctness for small models

In the next experiment we fix the error in themerge function and attempt a verification of mincut for
specific (small) model sizes. In particular, we use YAGA to check that the EXPECTATIONS clause
satisfies the inductive property for all reachable states. The result is shown in Table 1. It depicts the
various sizes of the PRISM model relative to the number of nodesNN of interest of the original graph.

6 Probabilistic diagnostics of dependability

In this section we investigate how the use of probabilistic counterexamples can play a role in the analysis
of dependability, especially in compiling quantitative diagnostics related to specific “failure modes”.

We assume a probabilistic model of a critical system, and we shall use the notation and conventions
set up in Sec.3. In addition, we shall reserve the symbolF for a special designated state corresponding
to “complete failure”; in the case that a system completely fails (i.e. enters theF state) we shall posit
that no more actions are possible. In the design of dependable systems, one of the goals is to understand
what behaviours lead to complete failure, and how the designis able to cope overall with the situation
where partial failures occur. For example, the design of thesystem should be able to prevent complete
failure even if one or more components fail. Regrettably, some combinations of component failures will
eventually lead to complete failure — those combinations are usually referred to asfailure modes. In such
cases, dependability analysis would seek to confirm that therelevant failure modes were very unlikely to
occur and also, to produce some estimate of the time to complete failure once the failure mode arose.

We first set out definitions of failure modes and related concepts relative to an MDP model. In the
definitions below we refer toP as an MDP, withF a designated state to indicate “complete failure”, such
that the annotation{F} P {F} holds. Letφ be a predicate over the state space andα a sequence of states
indicating an execution trace ofP. We define the the path formula⋄φ to be(⋄φ).α = true if and only if
there is somen≥ 0 such thatα .n satisfiesφ , corresponding to the usual definition of “eventuality” [13].

Our next definition identifies a failure mode: it is a predicate which, if ever satisfied, leads to failure
with probability 1. We formalise this as theconditional probability i.e. that F occurs given that the
failure mode occurs. We use the standard formulation for conditional probability: if µ is a distribution
over an event space, we writeµ .A for the probability that eventA occurs andµ .(A | B) for the probability
that eventA occurs given that eventB occurs. It is defined by the quotientµ .(A∧B)/µ .B.

Standard approaches for dependability analysis largely rely on the failure mode and effects analysis
or (FMEA) [18] for identifying a “critical set” — the minimalset of components whose simultaneous
failure constitutes a failure mode. Next we shall show how probabilistic model checking can be used to
generalize this procedure.

Definition 6 Let P be an MDP and letℵ be a scheduler; we say that a predicateφ over the state space
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is a failure mode forℵ if the probability that F occurs given thatφ ever holds is1:

[[PK
ℵ ]].s0.(⋄F | ⋄φ) = 1 ,

where we write Exp.[[PK
ℵ ]].s0.(⋄F | ⋄φ) as the conditional probability over traces such that F is reachable

from the initial state s0 given thatφ previously occurred. We say thatφ defines a critical set ifφ is a
weakest predicate which is also a failure mode.

Given the assumption that once the system enters the stateF, it can never leave it, Def. 6 consequently
identify states of the system which certainly lead to failure.

Once a critical set has been identified, we can use probabilistic analysis to give detailed quantitative
profiles, including the probability that it occurs, and estimates of the time to complete failure once it has
been entered. The probability that a critical setφ occurs for a schedulerℵ is given byExp.〈|Pℵ|〉.(⋄φ).
The next definition sets out the basic definition for measuring the time to failure — it is based on the
conditional probability measured at various depths of the execution tree.

Definition 7 Let P be an MDP,ℵ a scheduler and let K refer to the depth of the associated execution
tree. Furthermore letφ be a critical set. The probability that complete failure hasoccurred at depth K
given thatφ has occurred is given by:

[[PK
ℵ ]].s0.(⋄F | ⋄φ) .

Thus even though a failure mode has been entered, the analysis can determine the approximate depth of
computationk≤ K before complete failure occurs.

6.1 Instrumenting model checking with failure mode analysis

In this section we describe how the definitions above can be realised within a probabilistic model check-
ing environment in order to identify and analyse particularcombinations of actions that lead to failure.4

6.1.1 Identification of failure modes

The first task is to interpret Def. 6 as a model checking problem: this relies on the calculation ofcondi-
tional probabilitieswhich is not usually possible using standard techniques. However, adopting the more
general expectations approach — instrumented as reward structures of MDPs — we are able to compute
lower bounds on conditional probabilities after all.

Lemma 2 Let P be a pGCL program andℵ a scheduler, X,C are predicates over S, andλ is a real
value at least0. Starting from an initial state s0, the following relationship holds.5

Exp.[[Pℵ]].s0.(lift(C∧X)−λ×liftC)≥ 0 iff Exp.[[Pℵ]].s0.(X |C)≥ λ .

Proof 2 Follows from linearity of the expectation operator and the definition of conditional probability
as Exp.[[Pℵ]].s0.lift(C∧X)/Exp.[[Pℵ]].s0.liftC provided that C has a non-zero probability of occurring.

4Note that YAGA computes probabilities over endpoints rather than over traces, thus we assume that failure modes can be
identified by entering a state which persists according to Def. 6. These will be deadlock states of the MDP being analysed.

5This expression may be generalised to allow for non-determinism: Exp.[[P]].s0.(lift(C∧X) − λ×liftC) ≥
0 iff [[Pℵ]].s0.(X | C) ≥ λ , for any schedulerℵ. Note also that if C does not hold with a non-zero probabilitythen this
definition assumes that the conditional probability is still defined and is maximal.
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Figure 6: An embedded control system.

From Lem. 2 we can see that (puttingλ = 1) if Exp.[[Pℵ]].s0.(lift(C∧X)− liftC) ≥ 0 then the
conditional probabilityExp.[[Pℵ]].s0.(X | C) = 1. On the other hand, we can verify the expression
Exp.[[Pℵ]].s0.(lift(C∧X)− liftC)≥ 0 directly using YAGA’s output. Thus the following steps summarise
our proposed method for failure mode analysis.

(a) Use YAGA to identify a failure tree consisting of traces which terminate inF.

(b) From the failure tree identify candidate combinations of eventsC which correspond to traces termi-
nating inF.

(c) Using YAGA’s output, verify that the candidate combinationsC are indeed failure modes by evalu-
ating the constraintExp.[[Pℵ]].s0.(lift(C∧X)− liftC)≥ 0 i.e. after settingλ = 1.

(d) Compute expected times to failure for the identified failure modes.

In the next section we shall illustrate this technique on a case study of an embedded controller design.

7 Case study two: controller design

Here we show how YAGA can be used to provide important diagnostics feedback to a pB developer
summarising the failure the EXPECTATIONS clause in a pB machine refinement. We incorporate the
key dimensions of systems dependability —availability — the probability that a system resource(s) can
be assessed;reliability — the probability that a system meets its stated requirement; safety— expresses
that nothing bad happens.

The design in Fig. 6 is originally based on the work by Güdemann and Ortmeier [11]. It consists of
two redundant input sensors (S1 and S2) measuring some inputsignal (I). This signal is then processed
in an arithmetic unit to generate the required output signal(O). Two arithmetic units exist, a primary unit
(A1) and its backup unit (A2). A1 gets an input signal from both S1 and S2, and A2 only from one of
the two sensors. The sensors deliver a signal in finite intervals (but this requirement is not a key design
issue since we assume that signals will always be propagated). If A1 produces no output signal, then
a monitoring unit (M) switches to A2 for the generation of theoutput signal. A2 should only produce
outputs when it has been triggered by M.

An abstract description of the behaviour of the controller is captured in the specification of Fig. 7.
The reliability of the system is given by the real valuerr ; we encode this in the safety specification within
theexpectation(.) function. State labelssg= 2 andsg= 3 denote signal success and failure respectively.
Otherwise state labelssg= 0 andsg= 1 respectively denote idle state and signal in transit.
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MACHINE SignalTracker (maxtime,s1p,s2p,a1p,a2p,mp)
SEES Int TYPE, RealType
CONSTRAINTS maxtime∈ N ∧ s1p,s2p,a1p,a2p,mp∈ REAL∧ s1p,s2p,a1p,a2p,mp :∈ real(0)..real(1)
CONSTANTS rr
PROPERTIES rr ∈ REAL∧ rr ≥ real(0)∧ rr ≤ real(1)
OPERATIONS

sgout←− sendsignal ,
PRE expectation(real(rr )) THEN

ANY sgWHERE
sg≥ 0∧sg≤ 3∧expectation(lift(sg= 0∨sg= 1)× real(rr )+ lift(sg= 2))

THEN
sgout:= sg

END;
END;
END

.

Figure 7:Again we use theexpectation(.) function to specify that states wheresg= 0(or1) are worth the system
reliability rr ; states wheresg= 2 are worth 1 and states wheresg= 3 are worth 0. This encoding is a safety
property for thesendsignaloperation and must be preserved by any refinement of the abstract machine.

7.1 Refining the controller specification

Here we provide an implementation of the controller by refining the abstract specification in Fig. 7. We
also show how to adapt the standardB-style modelling of timing constraints [7, 6] to pB models. We
use the EXPECTATIONS clause of the formq⇛ p× lift(s 6= F) ⊔ liftsuccess, which captures the idea
that the probability of reaching the “success” state shouldexceed the given thresholdq. Here p is a
parameter which could vary over the state, but which should initially be at least the value ofq. Observe
thatF denotes a state where signal is lost.

But before we do this, we assign individual availability to components of the controller and include
the information in the CONSTANTS clause of their abstract machine descriptions. The implementation
of the controller as well as the abstract descriptions of itscomponents are in the Appendix. In the next
section, we show how to perform dependability analysis on the controller after setting all the components
availability to 95%(s1p = s2p = a1p = a2p = mp= 0.95). To do this, we use YAGA to provide an
equivalent MDP interpretation of the refinement in the PRISMlanguage. This then permits experimental
analysis of the refinement and hence generation of system diagnostics to summarise the process.

7.2 Experiment 1: identification of critical sets

Step 1:
We set the parametersq, p := 1 in the expressionq ⇛ p× lift(s 6= F) ⊔ liftsuccessto identify all

failure traces for chosen values of the components availability. Fig. 8 lists three of the failure traces (out
of a total of 5) relevant to our discussion, resulting in a maximum probability of failure of 0.0025 after
the 6th execution time stampi.e. maxtime= 6.
Step 2:From inspection of the above traces we notice that the failure ofA1 andM enables us to identify
them as potential candidates for the construction of our critical set.
Step 3: We verify that their failure will indeed result in overall failure by examining the value of the
expectationlift(F ∧A1∧M)− lift(A1∧M).

For candidates such as A1 and M, we use the diagnostic traces to calculate the conditional probabili-
ties as in Def. 6. To do this we extract all the traces which result in F and then examine the variations of
the component failures in the traces to identify those whichcorresponded to a failure configuration.
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***** Starting Error Reporting for Failure Traces located on step 6 *****

Sequence of operations leading to bad state ::>>>

[{INIT} (1,0,0,0,0,0), {Sensor2Action} (1,0,1,0,0,0),

{PrimaryAction} (1,0,1,2,0,0), {MonitorAction} (1,0,1,2,0,2),

{Skip} (1,0,1,2,0,2), {Sensor1Action} (1,2,1,2,0,2), {SendSignal} (3,2,1,2,0,2)]

Probability mass of failure trace is:>>>> 0.00012

Sequence of operations leading to bad state ::>>>

[{INIT} (1,0,0,0,0,0), {Sensor2Action} (1,0,2,0,0,0),

{Sensor1Action} (1,1,2,0,0,0), {PrimaryAction} (1,1,2,2,0,0),

{MonitorAction} (1,1,2,2,0,2), {Skip} (1,1,2,2,0,2), {SendSignal} (3,1,2,2,0,2)]

Probability mass of failure trace is:>>>> 0.00012

Sequence of operations leading to bad state ::>>>

[{INIT} (1,0,0,0,0,0), {Sensor2Action} (1,0,1,0,0,0),

{PrimaryAction} (1,0,1,2,0,0), {MonitorAction} (1,0,1,2,0,2),

{Skip} (1,0,1,2,0,2), {Sensor1Action} (1,1,1,2,0,2), {SendSignal} (3,1,1,2,0,2)]

Probability mass of failure trace is:>>>> 0.00226

************ Finished Error Reporting ... ***************

Figure 8: Diagnostic feedback revealing single traces at endpoint probability distributions (after setting parameter
maxtime= 6) corresponding to the failure of the controller to deliveran output signal. Note that the state tuple in
this case is given by (sg, s1, s2, a1, a2,m).

The results were unsurprising and included for example, identifying that a simultaneous failure of the
primary unitA1 and the backup monitorM. On the other hand, once thepBmodelling was completed, the
generation of the failure traces was automatic improving the confidence of full coverage. To illustrate this
point, a programming mistake was uncovered using this analysis whereA1 was mistakenly programmed
to extract a correct reading only if it received signals fromboth sensors, rather than from at least 1.

7.3 Experiment 2: investigating time to failure

This experiment investigates the time to first occurrence offailure given a particular critical set. In
fact, the results show that members of the set of interest areindeed critical after verifying their overall
conditional probabilities of failure. In summary, for example, a failure tree corresponding to depthK = 6
yields distributions over endpoints traces whose components time to failure is shown in Table 2.

8 Related work

Traditional approaches for safety analysis via model exploration rely on qualitative assessment — ex-
ploring the causal relationship between system subcomponents to determine if some types of failure or
accident scenarios are feasible. This is the method largelyemployed in techniques like the Deductive
Cause Consequence Analysis (DCCA) [26], which provides a generalisation of the Fault Tree Analysis
(FTA) [19]. Other Industrial methods that support this kindof analysis also include the Failure Modes
and Effects Analysis (FMEA) [18] and the Hazard OperabilityStudies (HAZOP) [8]. But the efficiency
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Identifying critical components time to first failure
Critical Components Time step to first failure Maximum probability of failure

S1, S2 2 steps 2.5000 E-3
A1, M 3 steps 2.4938 E-3
A1, A2 4 steps 2.4938 E-3
A1, S2 3 steps 2.4938 E-3

Table 2: Maximum probabilities of failure are computed with respectto endpoint distributions of failure traces
(Fig. 8) and conditional probabilities are given by Def. 6.

of these techniques is largely dependent on the experience of their practitioners. Moreover, with prob-
abilistic systems, where an interplay of random probabilistic updates and nondeterminism characterise
system behaviours, such methods are not likely to scale especially with the dependability analysis of
industrial sized systems.

The use of probabilistic model-based analysis to explore dependability features in systems construc-
tion has recently become a topical issue [21, 10, 11, 3]. One way to achieve this is to use probabilistic
counterexamples [12, 4, 5] which can guarantee profiles refuting the desired propertyi.e. after visiting
the reachable states of the supposedly ‘finite’ probabilistic model.

What we have done here is to show how a similar investigation can be achieved for the refinement of
proof-based models by taking advantage of the state exploration facility offered by probabilistic model
checking. Our method is very precise since it can guarantee the goal of refinement — improving proba-
bilistic results. However, if this does not hold then we are able to provide exact diagnostics summarising
the failure provided that computation resources are not scarce.

9 Conclusion and future work

This paper has summarised an approach based on model exploration for the refinement of proof-based
probabilistic systems with respect to quantitative safetyspecifications in the pB language. Our method
can provide a pB designer with information necessary to makejudgements relating to dependability
features of distributed probabilistic systems. We have shown how this can be done for probabilistic loops
hence generalising standard models.

Even though most of the failure analysis conjectured hereinhave been based on intuition, it should
be mentioned that a more interesting investigation would beto explore the use of constraint program-
ming techniques to support full coverage of probabilistic system models. This will enable us target larger
refinement frameworks as in [9] where probability is not currently being supported.

Acknowledgement: The authors are grateful to Thai Son Hoang for assistance with the pB models of
the embedded controller. We also appreciate the anonymous reviewers for their very helpful comments.
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Appendix

MACHINE Clock (maxtime)
CONSTRAINTS maxtime∈ N
VARIABLES time,action
INVARIANT time∈ N∧action∈ N∧ time≥ 0∧ time≤maxtime
INITIALISATION time,action := 0,0
OPERATIONS

timeout←− initClock , BEGIN
action:= 0 || timeout:= 0

END;
timeout←− clockAction(label) ,

PRE label∈ N∧ time< maxtimeTHEN
BEGIN

action := label || time:= time+1
END;

END;
timeout:= time;

END

.

Figure 9:The specification of the discrete Clock is such that wheneveran action due to the components or even
a Skip action fires, time is incremented while also marking the specific action. We use the action variable as a
marker to abstract the identification of the operations constituting the the diagnostic traces (See Fig. 8).

MACHINE Cmp (cp)
SEES Real TYPE
CONSTRAINTS cp∈ REAL∧ cp≥ real(0)∧cp≤ real(1)
OPERATIONS

cout←− componentaction, PCHOICE cp OF
cout := 1

OR
cout := 2

END;
END

.

Figure 10:Here we model an abstract stateless machine for components with similar behaviours. Later on, we
shall use pB’s IMPORT clause to clone Sensor1, Sensor2, PrimaryUnit, Monitor and Backup Units via variable
renaming. The specification of the abstract Cmp machine is such that it can probabilistically either respond to a
signal request(cout= 1[active]) or it fails to do so(cout= 2[dead]) . The probabilitycp is a paremeter of the
machine and specifies the availability of the component.
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MACHINE SignalProcess(s1p,s2p,a1p,a2p,mp)
CONSTRAINTS s1p,s2p,a1p,a2p,mp∈ REAL∧ s1p,s2p,a1p,a2p,mp :∈ real(0)..real(1)
INCLUDES Sensor1.Cmp(s1p), Sensor2.Cmp(s2p), PrimaryUnit.Cmp(a1p),

BackupUnit.Cmp(a2p), Monitor.Cmp(mp)
VARIABLES s1,s2,a1,a2,m
INVARIANT s1,s2,a1,a2,m∈ N∧s1,s2,a1,a2,m :: [0,2]
INITIALISATION s1,s2,a1,a2,m := 0
OPERATIONS

label←− action ,
SELECT s1= 0 THEN

s1←− Sensor1.componentaction|| label := 1
WHEN s2= 0 THEN

s2←− Sensor2.componentaction|| label := 2
WHEN a1= 0∧s1= 1 THEN

a1←− PrimaryUnit.componentaction|| label := 3
WHEN a1= 0∧s2= 1 THEN

a1←− PrimaryUnit.componentaction|| label := 3
WHEN a1= 2 THEN

m←−Monitor.componentaction|| label := 4
WHEN m= 1 THEN

a2←− BackupUnit.componentaction|| label := 5
ELSE label := 6

s1out,s2out,a1out,a2out,mout←− getState, BEGIN s1out,s2out,a1out,a2out,mout := s1,s2,a1,a2,mEND;
END

.

Figure 11:The nondeterministic behaviour of the components is specified in this machine. An individual compo-
nent can probabilistically respond to a signal request by setting its state value to 1 or 2 denoting ‘active’ and ‘dead’
respectively, after leaving the initial state with value 0 (’idle’).

IMPLEMENTATION SignalTrackerI(maxtime,s1p,s2p,a1p,a2p,mp)
REFINES SignalTracker
SEES Real TYPE, Int TYPE
IMPORTS SignalProcess(s1p,s2p,a1p,a2p,mp), Clock(maxtime)
OPERATIONS

sgout←− sendsignal , VAR sg, s1, s2, a1, a2, m, tIN
t← initClock;

WHILE (t ≤maxtime) DO
act←− action;t ← clockAction(act);
s1,s2,a1,a2,m←− getState;

IF (a2= 1)∧ (s2= 1) THEN
sg:= 2;

ELSIF (a1= 1)∧ (s1= 1) THEN
sg:= 2;

ELSIF (a1= 1)∧ (s2= 1) THEN
sg:= 2;

ELSE
sg:= 3;

END;
sgout:= sg;

INVARIANT s1,s2,a1,a2,m,t ∈ N ∧s1,s2,a1,a2,m :: [1,2]∧sg :: [0,3] ∧ t ≤maxtime
EXPECTATIONS real(rr )⇛ (lift(sg= 0∨sg= 1) ×real(rr ) + lift(sg= 2)) × lift(t = maxtime)

END;
END

.

Figure 12: SignalTrackerI uses aWHILE-DO loop structure to model the passage of discrete time. The
PCHOICE operation provides implementation constructs of the abstract probabilistic branching statements with
respect to the availability of the controller components.
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Formally capturing the transition from a continuous model to a discrete model is investigated using
model based refinement techniques. A very simple model for stopping (eg. of a train) is developed
in both the continuous and discrete domains. The difference between the two is quantified using
generic results from ODE theory, and these estimates can be compared with the exact solutions.
Such results do not fit well into a conventional model based refinement framework; however they can
be accommodated into a model based retrenchment. The retrenchment is described, and the way it
can interface to refinement development on both the continuous and discrete sides is outlined. The
approach is compared to what can be achieved using hybrid systems techniques.

1 Introduction

Conventional model based formal refinement technologies (see for example [37, 19, 38, 1, 34, 43, 2]) are
based on purely discrete mathematical and logical concepts. These turn out to be ill suited to modeling
and formally developing applications whose usual models are best expressed using continuous mathe-
matics. Nevertheless, many such applications, control systems in particular, are these days implemented
using digital techniques. So there is a mismatch between continuous modeling and discrete development
techniques.

In this paper we tackle this mismatch head on. Although traditional model based refinement is too
exacting to straddle the continuous to discrete demarcation line, a judicious weakening of it, retrench-
ment, proves to be adaptable enough to do the job, which we show. Importantly, retrenchment techniques
interface well with refinement, so that a development starting from continuous and ending at discrete can
be captured in an integrated way.

In this paper we tackle the continuous to discrete issue by taking a simple running example, one
that can be solved fully by analytic means in both the continuous and discrete domains, and tracing
it through the critical formal development step. We start with a continuous control problem: bringing
an object (eg. a train) to a halt. This is formulated as a continuous control problem, and given the
(deliberately chosen) simplicity of the problem, an exact solution is presented. In reality, continuous
control is implemented these days via digital controllers. These periodically read inputs and recompute

∗The majority of the work reported in this paper was done while the first author was a visiting researcher at the Software
Engineering Institute at East China Normal University. The support of ECNU is gratefully acknowledged.

†Huibiao Zhu is supported by the National Basic Research Program of China (No. 2011CB302904), the National Natural
Science Foundation of China (No. 61061130541), China HGJ Significant Project (No. 2009ZX01038-001-07), and Doctoral
Program Foundation of Institutions of Higher Education of China (No. 200802690018).



122 Formalising the Continuous/Discrete Modeling Step

outputs at multiples of a sampling interval during the dynamics. In this sense, the control becomes
discretized, although the discretized control is obviously still played out in the continuous real world.
We thus remodel the continuous problem as a discrete control problem, and derive a formal description
of the discretization step via a suitable retrenchment, drawing on rigorous results from the theory of
ordinary differential equations (ODEs) to supply the justification. Given the limited size of this paper, our
technical focus is on this critical step, and the remainder of the development (comprising the associated
refinements either side of it) is sketched rather than treated in detail. The latter is a task for which a fuller
treatment will be given in the extended version of the paper.

The rest of the paper is as follows. We start in Section 2 by describing relevant existing work in the
hybrid systems domain and how it contrasts with our own approach, after which we get down to details.
Section 3 then formulates our train stopping problem as a conventional open loop continuous control
problem. Section 4 then describes the discretization of the control problem using a simple zero order
hold strategy. In Section 5 we review what we need of ASM refinement and retrenchment in a form
suitable for our problem. Section 6 then shows how our earlier discretization process can be captured
using a suitable retrenchment, citing the needed ODE results. Section 7 sketches how all this can fit into
a wider formal development strategy, in which the greater flexibility of retrenchment can be combined
with the stronger guarantees offered by refinement via the Tower Pattern [8, 28]. Section 8 concludes.

2 Related Work

The relationship between continuous and discrete transition systems has long been a topic for investiga-
tion in the hybrid systems field. Earlier work includes [4, 26, 5, 25]; also, the International Conference
on Hybrid Systems: Computation and Control, has been the venue for a large amount of research in this
area. A more recent reference is [42].

Hybrid systems are dynamical systems that mix smooth, continuous transitions with discrete, dis-
continuous ones. The major focus in this field has been the automatic verification of properties of such
systems. Obviously, such verification demands the representation of the systems in question in discrete
and finite terms, whether by means of an explicitly constructed finite state space (which is manipulated
directly), or a state space whose states arise via the symbolic representation of the less tractable state
space of a previously constructed underlying system (which is manipulated symbolically).

The main tool for bringing an intractable state space within the scope of computable techniques is
the equivalence relation. Regions of the state space are gathered into equivalence classes, and a represen-
tation of these equivalence classes (whether as individual elements in a simple approach, or as symbolic
expressions that denote the equivalence class in question) constitutes the state space of the abstraction.
Transitions between these states are introduced to mirror the behaviour of the underlying system. The
properties of interest can then be checked against the abstract system. For instance, properties that can be
expressed as reachability properties fall within the scope of model checking approaches that are applied
to the abstraction.

Of course what has been constructed thereby is a (bi)simulation, and a major strand of hybrid systems
research is the investigation of such (bi)simulations. The same remarks apply when there is an external
control applied to the systems.

One disadvantage of the above approach is the frequent reliance on brittle properties of the studied
systems. Put most simply, a number of techniques rely on the parameters of the problem falling within
a subset of measure zero of the parameter space. Real systems can never hit such small targets reliably.
Equally, the simulation relations studied can also be just as brittle. To alleviate this, and to address
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other issues of interest, the notion of approximate (bi)simulation has been studied in recent years ([42]
gives a good introduction). Here, instead of defining the simulation relation R(u,v) between an abstract
state u and a concrete state v as a simple predicate on states, it is defined via a distance function d as
Rε(u,v)≡ d( f (u),v)≤ ε , where f is a precise relationship between the two state spaces which is in some
sense “semantically natural” (we don’t have space to elaborate on this aspect here). For bisimulation you
need a symmetrical arrangement of course.

(Bi)simulation depends on assuming the appropriate relation between the two before-states and re-
establishing it in the after-states of suitable pairs of transitions. To preserve a relationship based on
distance, the dynamics needs to be inherently stable. The obvious centre of attention thus becomes
stable control systems, normally linear stable control systems, because of their calculational tractability.
These are discussed in very many places, eg. [32, 20, 22, 18, 3, 40, 11, 6].

In a stable system all trajectories converge to a single point, so the distance between two trajectories
decreases monotonically; hence a simulation relation based on distance between trajectories is main-
tained. But although most systems are designed to be stable in this sense, some are not, and there can
be parts of a system phase space in which trajectories diverge rather than converge, without rendering
the system useless. Below, we treat in detail a very simple example which happens to be unstable in the
sense just discussed. We know it is not stable because we solve it exactly.

Also, in the usual hybrid systems literature, it is normal that the discrete approximation to a given
system is manufatured from it (eg. by constructing equivalence classes, as indicated above). In our ap-
proach, by contrast, we take a more “off the shelf” attitude to discretization, analysing a straightforward
“zero order hold” version of the continuous system (in which the new output values to be sent to the
actuators are recalculated at regular intervals, and the new values are “held” for the duration of the next
inteval1) rather than something extracted from an analysis of the original system. In this sense our ap-
proach is closer to conventional engineering practice, since it is directed at the typical practical approach.
Of course these two ways of doing things are not mutually exclusive: the parameters of the zero order
hold may fall within the parameters of a discrete approximation extracted by analysis of the original
system, and vice versa. Finally, our approach is via retrenchment, one consequence of which is that our
analysis is not confined to the purely stable case. In effect, the greater expressiveness of retrenchment
permits (the analogue of) the simulation relation mentioned above, to increase its permitted margin of
error, as well as to decrease it, although this emerges indirectly.

3 Train Stopping: a Continuous Control System

Our target application domain is control problems in the railway sphere. In this paper we have train
stopping as a specific case study. Of course, in reality, train position control is a complex problem
[41, 27], relying on the co-operation of many mechanisms to achieve a reliable outcome, and we do not
have the space to deal with all these aspects and their subtle interactions. Instead we focus on a single
technical issue —the relationship between a continuous control problem and its discrete counterpart—
in a very simple way, commenting on the extreme simplicity below.

Suppose a train, of mass M, is traveling at its cruise velocity V , when it needs to stop. We assume
that a linearly increasing deceleration rate a is appropriate. (It has to be said here that our notion of ap-
propriateness is not quite the usual one. Rather than usability or any similar consideration governing our
choice, simplicity is the priority. A constant deceleration would have been even simpler — unfortunately

1“Zero order” refers here to “holding” the output value constant throughout the interval, in contrast to a higher order hold
which would use a suitably designed higher order polynomial.
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the zero order hold approximation to constant deceleration is identical to it, trivialising our problem.) To
bring the train to a standstill using linearly increasing deceleration, a force F =−Mat (where t is time)
has to be applied, by Newton’s Law. We will assume that M is known, so that we can focus on just the
kinematic aspects.

A cursory knowledge of kinematics is enough to reveal that under linear deceleration, the decelera-
tion, distance and stopping time are linked. We suppose that there is a single stopping episode, which
starts at time 0 and at x position 0, and which ends at time TStop, with the train having traveled to position
x = D. Representing time derivatives with a dot, if v is the velocity, then we know that

v̇ = −at v(0) = V v(TStop) = 0 (1)

Regarding the distance traveled x, we know that

ẋ = v x(0) = 0 x(TStop) = D (2)

Integrating these, rapidly brings us to

V =
1
2

aT 2
Stop D = V TStop−

1
3!

aT 3
Stop =

2
3

V TStop (3)

We now recast the above as a control theory problem. At the introductory level, control theory
is usually developed in the frequency domain [32, 20, 22, 18], because of the relative simplicity and
perspicuity of the design techniques in that domain. However, for results sufficiently rigorous to interface
to formal techniques, we need to go to the state space formulation favoured by more mathematically
precise treatments [3, 40, 15, 14, 11, 6]. In the state space picture, the system consists of a number
of state variables, and their evolution is governed by a corresponding number of first order differential
equations. State variables and differential equations mirror the states and transition systems of model
based refinement formalisms sufficiently closely that we can hope to make a connection between them.

To use the first order framework in our example, the state has to consist of both the position x(t) and
the velocity v(t). So we get the state vector

xxx(t) =

[
x(t)
v(t)

]
(4)

The dynamics of the system is captured in the equation2

ẋxx(t) =

[
ẋ(t)
v̇(t)

]
= fff (ẋ(t),u(t)) =

[
v(t)
u(t)

]
(5)

where

u(t) = −at (6)

is the external control control signal. We also have the initial condition

xxx(0) =

[
0
V

]
(7)

2It is clear that when (5) is expressed as a linear control law (with external control signal), the linear part has only zero
eigenvalues. Thus it is not stable in the usual (Liapunov) sense.
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4 From Continuous Control to Discrete Control

To truly implement a continuous control model, such as our case study, requires analogue apparatus.
In the highly digitized world of today, hardly any such systems are built. Instead, continuous control
designs are discretized, and it is the corresponding digital control systems that are implemented.

The digital approach to control has many parallels with the continuous case — in the frequency do-
main the main difference is the use of the z-transform rather than the Laplace transform. The state based
picture too boasts many parallels, with first order difference equations replacing first order differential
equations [23, 24, 33, 29].

In this section we examine a discrete counterpart of the previous continuous control problem, in
preparation for a formal reappraisal in the next section. One advantage of the extreme simplicity of
our example, is that it admits an analytic solution in both continuous and discrete domains, enabling an
incisive evaluation to be made later, of the reappraisal in Section 6.3.

The starting point for our problem remains as before: the train, traveling at velocity V , needs to stop
after time TStop, having gone a distance DD.3 Instead of doing so continuously though, it will do it in a
number of discrete episodes. For this purpose, let us assume that TStop is divided into N short periods,
each of length T , so that

TStop = NT (8)

Our discretization scheme will be based on a zero order hold, in which the same control input value is
maintained throughout an individual time period. The counterpart of the linear deceleration rate a of the
continuous treatment, will be a piecewise constant deceleration, with the constant rate decreasing by an
additional multiple of a constant aD after each time interval of length T .

Calling the discretized velocity variable vD, we have for the acceleration

v̇D(t) = − kaDT (9)

where

k =
⌈ t

T

⌉
(10)

and k ranges over the values 1 . . .N. If we set, for a general t,

δ tk = t− (k−1)T = t−
⌊ t

T

⌋
T (11)

then recalling that the initial velocity is V , provided (k−1)T < t < kT , the velocity during the k’th period
is

vD(t) = V −aDT 2−2aDT 2− . . .− (k−1)aDT 2− kaDT δ tk (12)

Since the final velocity is zero, we derive

V = aDT 2 +2aDT 2 + . . .+NaDT 2 =
1
2

aDT 2N(N +1) (13)

3We will use a subscript ‘D’ to indicate quantities in the discretized model that differ from their continuous counterparts.
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Knowing the velocity, we can integrate again, and work out the distance traveled. Calling the displace-
ment in the discretized world xD, the contribution to xD during the period (k−1)T < t < kT comes out
as

(V −aDT 2−2aDT 2− . . .− (k−1)aDT 2)δ tk−
1
2

kaDT δ t2
k (14)

Thus for the total distance we find

DD = NV T −aDT 3
N−1

∑
k=1

(N− k)k− 1
2

aDT 3
N

∑
k=1

k

= V TStop−
1
12

aDT 3(2N3 +3N2 +N) (15)

Both (13) and (15) feature aD. Substituting the aD value from (13) into (15) gives

DD = V TStop

[
1− 2N2 +3N +1

6N2 +6N

]
=

2
3

V TStop

[
1− 1

4N
+O(N−2)

]
(16)

We see that (16) for DD contains an O(1/N) correction compared with (3) for D (assuming we keep V
and TStop the same). This is because we have an extra constraint generated by the requirement that TStop

is an integral multiple of T , making the problem overconstrained if we wished D and DD to be the same.
Recasting the preceding as an initial value first order system along the lines of (4)-(7) is not hard.

The state vector is

xxxD(t) =

[
xD(t)
vD(t)

]
(17)

and the dynamics of the system is captured in the equation

ẋxxD(t) =

[
ẋD(t)
v̇D(t)

]
= fff (ẋD(t),uD(t)) =

[
vD(t)
uD(t)

]
(18)

where

uD(t) = v̇D(t) = − kaDT (19)

as given by (9), is the external control. We also have the initial condition

xxxD(0) =

[
0
V

]
(20)

It is hard not to notice how much more complicated the above is compared with (1)-(7). It is always
so with discrete systems — hence the strong desire to model systems in the continuous domain. The
very rapid ramp-up in complexity when we consider the discrete version of a continuous problem is our
justification for restricting to a particularly simple example. The ability to keep the complexity still low
enough to permit an exact solution, is extremely useful in an investigation such as this one, allowing a
comparison between exact and approximate approaches to be made with confidence.
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RetC,D

RetA,B

RefB,D

Achieve[ComfortableTimelyTrainStopping]

Maintain[LinearDecelerationWhileStopping]

Maintain[StoppingDistanceAppropriate]

Maintain[StoppingTimeAppropriate]

Maintain[LinearAccelerationAppropriate]

Achieve[StopTrainInit]

Achieve[StopTrainFin]

• •

• •

••

• • ••

. . .

. . . . .

m steps

n steps

x x′

y′y

R(x, y) R(x′, y′)

Figure 1: An ASM (m,n) diagram, showing how m abstract steps, going from state x to state x′ simulate
n concrete steps, going from y to y′. The simulation is embodied in the retrieve relation R, which holds
for the before-states of the series of steps R(x,y), and is re-established for the after-states of the series
R(x′,y′).

5 ASM Refinement and Retrenchment

In this section we review what we need of ASM refinement and retrenchment, which will be the vehicles
for formalization in this paper. The standard reference for the ASM method is [13], building on the
earlier [12]. In general, to prove an ASM refinement, one verifies so-called (m,n) diagrams, in which m
abstract steps simulate n concrete ones. The situation is illustrated in Fig. 1, in whch we suppress input
and output for clarity. For this paper, it will be sufficient to focus on the refinement proof obligations
(POs) which are the embodiment of this policy. The first is the initialization PO:

∀y′ •CInit(y′)⇒ (∃x′ •AInit(x′)∧R(x′,y′)) (21)

In (21), it is demanded that for each concrete initial state y′, there is an abstract initial state x′ such that
the retrieve or abstraction relation R(x′,y′) holds.

The second PO is correctness, and is concerned with the verification of the (m,n) diagrams. For
this, we have to have some way of deciding which (m,n) diagrams are sufficient for the application. Let
us assume that we have done this. Let CFrags be the set of fragments of concrete execution sequences
that we have previously determined will permit a covering of all the concrete execution sequences of
interest for the application. We write y :: ys :: y′ ∈CFrags to denote an element of CFrags starting with
concrete state y, ending with concrete state y′, and with intervening concrete state sequence ys. Likewise
x :: xs :: x′ ∈ AFrags for abstract fragments. Also, let is, js,os, ps denote the sequences of abstract inputs,
concrete inputs, abstract outputs, concrete outputs, respectively, belonging to x :: xs :: x′ and y :: ys :: y′,
and let In(is, js) and Out(os, ps) denote suitable input and output relations. Then the correctness PO
reads:

∀x, is,y,ys,y′, js, ps• y :: ys :: y′ ∈CFrags∧R(x,y)∧ InAOps,COps(is, js) ∧
COps(y :: ys :: y′, js, ps)

⇒ (∃xs,x′,os•AOps(x :: xs :: x′, is,os)∧R(x′,y′)∧OutAOps,COps(os, ps)) (22)

In (22), it is demanded that when there is a concrete execution fragment of the form COps(y :: ys ::
y′, js, ps), carried out by a sequence of concrete operations COps, with state sequence y :: ys :: y′, input
sequence js and output sequence ps, such that the retrieve and input relations R(x,y)∧ In(is, js) hold
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Figure 2: The Tower Pattern basic square, with refinements vertical, retrenchments horizontal.

between concrete and abstract before-states and inputs, then an abstract execution fragment AOps(x ::
xs :: x′, is,os) can be found to re-establish the retrieve and output relations R(x′,y′)∧Out(os, ps).

The ASM refinement policy also demands that non-termination be preserved from concrete to ab-
stract, but we will not need that in this paper. We now turn to retrenchment.

For retrenchment, [10, 9] give definitive accounts; latest developments are found in [36]. See also
[7] for formulations of retrenchment adapted to several specific model based refinement formalisms in-
cluding ASM. Like refinement, retrenchment is also characterized by POs: an initialization PO identical
to (21), and a “correctness” PO which weakens (22) by inserting within, output and concedes relations,
WOp,OOp,COp respectively into (22), to give extra flexibility and expressivity. In particular, the conces-
sion COp weakens the conclusions of (22) disjunctively, giving room for many kinds of “exceptional”
behaviour. The result is:

∀x, is,y,ys,y′, js, ps• y :: ys :: y′ ∈CFrags∧R(x,y)∧WAOps,COps(is, js,x,y) ∧
COps(y :: ys :: y′, js, ps)

⇒ (∃xs,x′,os•AOps(x :: xs :: x′, is,os) ∧
((R(x′,y′)∧OAOps,COps(x :: xs :: x′, is,os,y :: ys :: y′, js, ps)) ∨

CAOps,COps(x :: xs :: x′, is,os,y :: ys :: y′, js, ps))) (23)

To ensure that retrenchment only deals with well defined transitions, and to ensure smooth retrench-
ment/refinement interworking, we also insist that R∧WOp always falls in the domain of the requisite
operations, though this is another thing not needed here.

The smooth interworking between refinements and retrenchments is guaranteed by the Tower Pattern.
The basic construction for this is shown in Fig. 2. There, refinements are vertical arrows and retrench-
ments are horizontal, and the two paths round the square from A to D (given by composing Re fA,C with
RetC,D on the one hand, and on the other, by composing RetA,B with Re fB,D) are compatible, in the sense
that they each define a portion of a (potentially larger) retrenchment from A to D.

At this point one might legitimately ask what all the above has to do with our case study, in which
the dynamics that we considered is entirely in the continuous domain (albeit taking into account discon-
tinuous control inputs when necessary). The answer lies in the focus on the use of paths through the
system at both abstract and concrete levels in the POs of ASM. With this focus, it is unproblematic to
reconfigure the (m,n) rules (22) and (23) to deal with continuous paths rather than discrete ones. Thus
CFrags and AFrags can now refer to fragements of continuous system trajectories, rather than sequences
of state-to-state hops. Likewise the is and js in WAOps,COps(is, js,x,y) now refer to the continuous input
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signals along the trajectories, and so on for the other terms in (22) and (23). We see this exemplified in
detail in the retrenchment of Section 6.2.

6 Formalizing the Continuous to Discrete Modeling Change

In the control literature, one finds many ways of discretizing continuous designs (see loc. cit.), and the
evaluation of the relationship between continuous and discrete is often based on ad hoc engineering
rules of thumb. While these typically yield perfectly good results in practice, the criteria used fall far
short of the kind of precision needed for a good fit with model based formal development techniques.
As a consequence, when model based formal development techniques are used to support the digital
implementation of the discrete counterpart of some continuous design, the formal modeling inevitably
starts already in the discrete domain. Obviously this yields a weaker formal support for the process than
if the formal modeling had started earlier, at the continuous design stage, and was integrated into all the
subsequent design steps, including the change from continuous to discrete.

Our objective in this paper is to illustrate how to make a judgement about the discretization of a
control problem, that has enough precision to integrate well with model based formal technologies. To
achieve this we have recourse to the rigorous theory of ODEs. It can be shown4 that two instances of a
control problem which differ solely in the input control satisfy an inequality:

||xxxu−xxxuD
D || ≤ K2||u−uD||2 (24)

In (24), ||xxxu−xxxuD
D || is the L ∞ norm of xxxu−xxxuD

D , or, in plain English, the maximum value over the interval
[0 . . .TStop] attained by the difference between continuous and discrete values of any state component.
Likewise, ||u−uD||2 is the L 2 norm of u−uD, or, in plain English, the root integrated square difference
between u and uD, calculated over the interval [0 . . .TStop]. Finally, K2 is a constant.

We note that the continuous and discrete versions of our case study, with initial states (7) and (20),
over the time interval from 0 to TStop, characterize just such a scenario, since (5) and (7) differ from (18)
and (20) only in the use of uD rather than u among the independent variables.

6.1 Rigorous Bounds on Continuous and Discrete Systems

We now flesh out what (24) means for our little case study. We consider the values of the quantities on
the right hand side of (24) in order to obtain a bound for the value of the left hand side. Referring to (24),
theory furnishes an explicit value for the constant K2, namely

K2 = eKfff ||ku||2 (25)

In (25) K f is k f TStop, where k f is the L ∞ norm of fff xxx, or, the absolute maximum value (over the interval
[0 . . .TStop]) of the Lipschitz constant governing the variation of the control law fff with respect to the
state. In our application, the form of the control law is

fff (v(t),u(t)) =

[
v(t)
u(t)

]
(26)

4In the extended version of this paper it is shown.
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and it is clear that there is only one component of fff with a non-zero partial derivative with respect to
either x or v, namely the first

∂ fff 1

∂v
= 1 (27)

With this, the first factor of (25) is just eTStop .
Regarding the second factor, ||ku||2 is the root integrated square value of the Lipschitz constant

governing the variation of the control law with respect to the input control signal. Again there is only
one component of fff with a non-zero partial derivative with respect to u, namely the second

∂ fff 2

∂u
= 1 (28)

so the root integrated square reduces to
√

TStop. So we get

K2 = eTStop
√

TStop (29)

Turning to the second factor on the right hand side of (24), ||u− uD||2, we recall that we know
explicitly what u and uD are from our earlier calculations. From (6) and (19) we know that

u(t) = −at uD(t) = − kaDT (30)

where, from (3) and (13)

a =
2V

T 2
Stop

aD =
2V

T 2
Stop(1+1/N)

(31)

Now (30) shows that u(t) decreases linearly, and that uD(t) is a staircase function, decreasing in equal
sized steps near u(t). It is clear from (30) that in the limit t → 0+, we have u(0+) = 0 and uD(0+) =
−aDT , so that u(0+)− uD(0+) = aDT . It is also clear from (30) that in the limit t → TStop−, we
have u(TStop−) = −aTStop and uD(TStop−) = −NaDT = −aDTStop, so that u(TStop−)− uD(TStop−) =
(aD− a)TStop = aDTStop[1− (1+ 1/N)] = −aDTStop/N = −aDT . Since the staircase has equal sized
steps, it evidently the case that the staircase uD(t) ranges around u(t) within a bound aDT .

|u(t)−uD(t)| ≤ aDT (32)

This furnishes a suitable overestimate for the root integrated square difference between u(t) and uD(t) as
follows

||u−uD||2 ≤
√∫ TStop

t=0
[aDT ]2dt = aDT

√
TStop (33)

Substituting all the values we have obtained into (24), we get

||xxxu−xxxuD
D || ≤ eTStop

√
TStop×aDT

√
TStop = eTStopaDT TStop (34)

We see that despite the potential for the deviation between u(t) and uD(T ) to grow exponentially with the
size of the time interval, a possibility severely exacerbated by our rather crude bound (33), it is always
possible to reduce it by an arbitrary amount by making the discretization, measured by N, fine enough.



R. Banach, H. Zhu, W. Su, R. Huang 131

6.2 Turning Rigorous Bounds into Retrenchment Data

Now that we have a precise relationship between the continuous and discrete control systems, we can
look to incorporate this into our model based formal description.

In general, the exigencies of model based formal refinement are too exacting to be able to accom-
modate the kind of relationships just derived. Retrenchment though, has been purposely designed to be
more forgiving in this regard, so that is what we will use.

Regardless though, of which model based formal description technique is adopted, is the issue that
all such techniques are designed for discrete state transitions, and presume a well defined notion of “next
state”, to which an equally clear notion of “current state” can be related.

In continuous dynamics there is no sensible notion of next state that we can immediately use. How-
ever, as we noted above, the (m,n) diagram approach of ASM refinement makes clear that it is paths
at abstract and concrete levels that are being related. Thus, although we avoid technical details in this
paper, we extend the ASM approach to incorporate continuous paths as well as discrete ones. The in-
centive to do this was one strong reason for choosing ASMs in this work. (Note that this perspective on
refinememt between paths is equally applicable to both the continuous and discretized versions of our
control problem. In the continuous problem there is a single continuous path. In the discretized problem
there are N consecutive shorter continuous “zero order held” paths, interleaved, at the instants at kT , by
the discrete recalculations of the output signal, thus constituting a path comprising both continuous and
discrete components.)

Since the rigorous results we use concern the same starting state for the two systems, our formal
statement is constrained to be an end-to-end one. It will express an end-to-end relationship between the
smooth dynamics at the continuous level, and the discretized level’s dynamics (which is continuous too,
though punctuated at every multiple of T by a discontinuous change in the acceleration).

As we saw before, a retrenchment between two specific operation sequences consists of four things:
a retrieve relation between the state spaces, a within relation for the before-states and inputs, an output
relation for the after-states and outputs (and before-states and inputs too if necessary), and a concedes
relation for the after-states and outputs (and before-states and inputs too if needed). In the relations
below, we use some ad hoc notations whose meaning should be obvious from the preceding material.

Regarding the retrieve relation R, there is a very natural one that we might expect to use, namely
the identity between state values in the continuous and discretized worlds. However, even though in our
specific case study the two models start out in the same state thus making such a putative R true in the
hypothesis of the PO (23), in most cases, that assumption will not hold, and so we prefer to follow a more
generic approach, which will be applicable in a wider set of scenarios. A second proposal for R would
see it express a margin of tolerance between the state values in the continuous and discretized worlds, as
discussed in Section 2. This proposal would also work after a fashion, but such a proposal works best
when the relationship between the two system states is stable throughout the dynamics — we have then
a kind of refinement. In our case study, this assumption does not hold since the discrepancy between the
two system states grows steadily through the dynamics.

To accomodate inconvenient situations such as these, retrenchment makes provisions for expressing
the relationship (or just aspects of the relationship) between the states at the before- point of the transition
being discussed in the within relation W instead of (or in addition to) in R. Since the facts expressed in
W do not need to be re-established in the conclusion of the PO (23), this provides the most flexible way
of incorporating appropriate facts about the systems’ before-states in the PO. With this strategy, a global
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retrieve relation is not appropriate, and we set R to true

R(〈x(t),v(t)〉,〈xD(t),vD(t)〉) ≡ true (35)

The job of expressing that the before-states are suitably matched in the PO, taking into account the
input control signals throughout the interval of interest, is thus taken on by the within relation W

W (u(t ∈ [0 . . .TStop]),uD([t ∈ 0 . . .TStop]),〈x(0),v(0)〉,〈xD(0),vD(0)〉) ≡
x(0) = xD(0)∧ v(0) = vD(0) ∧ ||u−uD||2 ≤ aDT

√
TStop (36)

Note that while W relates just the continuous and discrete before-states, it also relates the whole of the
continuous and discrete control inputs.

The output relation O says what happens at the end of the period of interest. In our case, on the basis
of the rather heavy calculations that came earlier, we can use O to say that the after-states diverge by no
more than the bound derived in (34)

O(〈x(TStop),v(TStop)〉,〈xD(TStop),vD(TStop)〉) ≡
|x(TStop)− xD(TStop)| ≤ eTStopaDT TStop ∧ |v(TStop)− vD(TStop)| ≤ eTStopaDT TStop (37)

Note that although O itself speaks explicitly only about the after-states that are attained by the two sys-
tems, the fact that we derived the properties of the after-states in question using an L ∞ analysis, means
that the same bound holds throughout the interval of interest. The advantage of this formulation is that
we automatically get a discreteness of the description in terms of before- and after- states, which will in-
tegrate neatly with discrete system reasoners (in the event that such modeling is eventually incorporated
into mechanised tools), while yet providing guarantees that hold throughout the interval of interest.

Since our system is so simple, O already captures all that we need to say, and the kind of exceptional
behaviour that may need to be taken into account in more realistic engineering situations is not present.
This is also connected wsiyth the fact that we have trivialised the retrieve relation. Accordingly we can
set the concedes relation C to false

C(〈x(TStop),v(TStop)〉,〈xD(TStop),vD(TStop)〉) ≡ false (38)

With these data, the proof obligation (23) becomes provable on the basis of the results cited earlier,
which establishes the formal connection between the continuous and discrete domains in a way that can
be integrated with formal refinements on both the continuous and discrete sides.

Particularly noteworthy is the fact that the discrepancy between the states grows linearly with time;
and that this is a property of the exact solutions and not just an artifact of some approximation scheme.
If we tried to handle this in a pure refinement framework, using a retrieve relation R to capture the rela-
tionship between states in the two models (regardless of whether R was an exact, pointwise relationship,
or an approximate one, analogous to the approximate simulation relations discussed in Section 2), then
assuming such an R for the before-states would not enable us to re-establish it for the after-states, and
the correctness PO could not be proved. The greater flexibiity of retrenchment permits us to handle the
before-states in the within relation and the after-states in the output relation, overcoming the problem.

6.3 Corroboration

In our case study, exact solvability of the control models in both continuous and discrete domains gives
us additional and independent confirmation of the approach we are advocating in this paper.
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Both continuous and discrete models “run” for the same amount of time, TStop, and the output relation
(37) gives an estimate for the discrepancy between the continuous and discrete states reached in the two
models after that time. The states themselves consist of two components, the displacements and the
velocities.

Regarding the velocities, both models come to a standstill after exactly TStop. Consequently both
v(TStop) and vD(TStop) are zero, so that |v(TStop)−vD(TStop)|= 0, and any positive upper bound is bound
to be sound. So (37), which gives the overestimate eTStopaDT TStop for |v(TStop)− vD(TStop)| is correct
regarding the velocities, but in an unsurprising way.

Regarding the displacements, the quantization of TStop in the discrete case, leads to the continuous
and discrete dynamics stopping at slightly different places, D and DD respectively, which we calculated
earlier. On that basis, we can calculate the exact difference (disregarding O(N−2) and beyond):

|x(TStop)− xD(TStop)| =
2
3

V TStop

4N
=

1
2

aDT 2
Stop

(
1+

1
N

)
TStop

6N

=
1
12

aDT T 2
Stop

(
1+

1
N

)
(39)

On the other hand, the output relation (37) gives the estimate eTStopaDT TStop for this quantity. Thus
the exact value falls within the bounds of the estimate, as it should, if and only if (after cancelling the
common factor aDT TStop):

TStop

12

(
1+

1
N

)
≤ eTStop (40)

Since a linear function of TStop of slope less than 1 can never catch an exponential function of TStop with
coefficient 1, (40) is obviously true, and we have our corroboration.

7 Continuous to Discrete Modeling in a Wider Design Process

The previous sections focused in detail on how the rigorous theory of ODEs was capable of yielding re-
sults that could be integrated with existing model based refinement centred development methodologies,
all in the context of a very simple example. The essence of the process is to identify useful results from
the mathematical theory, and then to drill down into the details of the proof to identify explicit values for
the constants etc. that figure in them. The latter process is often required, since it is frequently the case
that the goal of a proof of interest is satisfied by merely asserting the existence of the requisite constant,
without a specific value being calculated, since that is usually enough to enable the existence of some
limit to be proved. By contrast, for us, the existence of the limit is insufficient, since no engineering
process can completely traverse the infinite road required to reach it. Rather, we need the explicit value
of everything, so that we can judge how far down the road we have to go before we can be sure that we
have gone “far enough” to achieve the engineering quality we require.

In this section, we outline how a retrenchment obtained in this way could be placed in the context
of a development methodology of wider scope. For lack of space we touch on a number of technical
issues that are only dealt with properly in the extended version of this paper. The key idea for the
integration is the Tower Pattern, mentioned already in Section 5. This allows the extreme flexibility of
retrenchment with its ability to accomodate a very wide variety of system properties, to be shored up
with the much stricter guarantees that model based refinement offers, the latter coming at the price of
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Figure 3: An overview of a complete development, starting with abstract goals, proceeding through ex-
plicit continuous and discrete deceleration models, and continuing with further low level models. Vertical
arrows are (perhaps successive) model based refinements. Horizontal arrows are retrenchments, suited
to relating models too different to be connected by refinement.

much more restricted expressivity as regards system properties. Although we do not have the space to
discuss the point at length, we claim that a judicious combination of the two techniques can give better
coverage of the route from high level domain centred requirements goals to low level implementation,
than either technique alone. Thus on the one hand, use of refinement alone, forces the consideration
of and commitment to, low level restrictions such as finiteness limits on arithmetic, far too early in the
process, in order that all later models can (in effect) be conservative extensions of their predecessors. On
the other hand, use of retrenchment alone makes it much harder to track how system properties evolve
as the development proceeds, since successive models can be connected to their predecessors in a very
loose manner, requiring much tighter focus on post hoc validation.

In our case, it is appropriate to use retrenchment to capture the properties of the discretization step,
since that is something that has eluded model based refinement techniques.5 However, either side of the
discretization step, we are free to use refinement, since on each side individually, the models display
much more consistency regarding the kind of properties that can be handled with sufficient eloquence
using refinement alone.

The complete process that we have in mind may be summarized in Fig. 3. The thick arrows trace a
path through a family of models that a development route could plausibly take. The left hand side of the
diagram concerns continuous models. At the start, we have high level requirements goals, expressed in a
notation with formal underpinnings. We have in mind a formalism like KAOS [30, 31] (or more precisely,
an adaptation of it to deal more honestly with continuous processes). These requirements goals can then
be formally refined till they can be operationalized, i.e. transformed into the operations of a methodology
such as ASM (again, adapted to deal with continuous evolution). Then comes our discretization step,
necessitating the use of retrenchment. Once we have crossed the continuous/discrete boundary, we are
free to revert to traditional model based refinement techniques for discrete state transition systems — no

5It has to be noted that the introduction of approximate simulations has improved the situation recently with regard to stable
systems, but in a more general context the observation remains true.
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worries about continuous phenomena any more. In Fig. 3 we indicate how the discrete kinematics that
we investigated earlier might be refined to a model of train braking, in which concern with the dynamics
is replaced by a focus on the actuators that would implement the deceleration increments in practice.

Fig. 3 also features other models, indicated by asterisks. These are models whose existence is guar-
anteed by the Tower theorems [8, 28], making the squares of Fig. 3 commuting in an appropriate sense.
However, we argue that these models are less useful than the others. Thus the lower left model would
be a continuous version of the braking model, an unrealistic overidealisation so close to implementation.
The upper right model would be a discretized version of the highest level requirements goals for train
stopping. Again this would be inappropriate at such a high level, since it clutters what ought to be the
most perspicuous expression of the system goals with a lot of material concerning low level details of
the discretization scheme. This bears out what we said above about a combination of refinement and
retrenchment techniques providing the best coverage of the route from high level requirements to low
level implementation.

Above, we mentioned adaptations of KAOS and ASM to deal with continuous behaviour. We discuss
these briefly now. Regarding ASM, a major part of what we need is already available in the literature,
eg. [16, 39] which deal with (Real) Timed ASM. The essential observation is that in the context of con-
tinuous time, system states should be modeled as persisting over half-open half-closed time intervals,
eg. (t0, t1]. This allows the typical discontinuous state transition in a typical discrete transition system,
say of a state variable v, to be represented as the move from v(t0) (the value of v at t0, which lies outside
(t0, t1] and is the right hand endpoint of the preceding interval), to limε→0+ v(t0 + ε) (the left hand limit
at t0 from the right, of values of v within the interval (t0, t1]). Likewise, a period of continuous evolution
can be understood as persisting over such a half-closed interval, governed by a suitably well posed ODE
initial value problem, and with the truth of the initial conditions for the initial value problem at the end
of the preceding interval being the trigger for the system’s subsequently following a trajectory specified
by the ODE problem. With these conventions, a version of ASM in which discrete steps alternate with
continuous flows can be developed, reflecting many of the characteristics of hybrid automata.

A similar approach can be adopted for KAOS. Although KAOS depends on a notion of time from
the outset, in the normal KAOS formalism, time is discrete, typically indexed by the integers, with
requirements goals expressed as temporal logic formulae over time. For a version over continuous time,
while some temporal operators, eg. always, until, offer no conceptual difficulties, the next operator needs
to be rethought. Again half-open half-closed intervals, with successor states being defined via the limit
from the right at the left hand end of a half-closed interval, can be used. To avoid problems arising due
to an accumulation of next operators, syntactic restrictions have to be imposed on the permitted temporal
formulae. However, the kinds of restrictions that need to be imposed are satisfied by the patterns that
KAOS requirements are normally built out of.

8 Conclusion

In this paper we introduced a small continuous control problem in state space format, and then treated a
discretized counterpart of it, utilising a zero order hold. Then came the main novel contribution of the
paper, a rigorous treatment of the continuous to discrete modeling transformation, based on cited results
from ODE theory. That done, we were able to integrate the results into a retrenchment which related
from continuous and discrete models. As noted earlier, model based formal development normally starts
already in the discrete domain, so the ability to connect this with the continuous world in a reasoned way,
is a significant extension of the potential of model based formal techniques to underpin developments
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of such systems. Equally importantly, in making essential use of retrenchment to forge the connection
between continuous modeling and discrete modeling, this work gives a fresh confirmation of the utility
of the concept as a worthwhile adjunct to refinement in tackling the wider issues connected with real
world formal developments.

Of course, this paper is by no means the last word in developments of this kind. As well as tackling a
control problem that was almost trivial technically, the rigorous result from mathematical control theory
that we utilized was relatively limited, insisting, as it did, that the two behaviours that were compared,
started from the same state, using a rather crude L 2 estimate of the difference in the control inputs to
derive its conclusion, and being based on rather generic properties of the ODEs that govern the dynamics
of the control problem. (These simple contraints also meant that relatively little of the expressive power
of retrenchment was used in this case study.) In more realistic cases, the problem will be less amenable to
analytic solution, and feedback mechanisms will help alleviate the inherent uncertainty that arises. More-
over, while a crude L 2 estimate of the difference in the control inputs allows the two control inputs to get
as far away from each other as the bounds on the control space allow, in practice, feedback mechanisms
will tend to push them together, and this could be exploited to derive more stringent estimates of the
difference between continuous and discrete control. All of this remains to be discussed in future work,
as does the extension of the KAOS and ASM formalisms (or any alternatives that might be contemplated
to act in their place), that can encompass the continuous behaviours that we have described.

Our work is to be contrasted with the possibilities offerd by the hybrid systems approach [42]. There,
the insistence on (approximate) bisimulation between a continuous system and a discrete counterpart
restricts attention to control systems which are stable in the Liapunov sense. In any event, the intense
focus on considerations of algorithmic decidability in that field, with automata homomorphism as such
a prominent relationship between system models, can inhibit design expressivity for the purposes that
concern us. For instance, techniques that rely on stability, are, strictly speaking, not applicable to our
simple case study.

Once a suitable collection of widely applicable and useful results of the kind discussed here have
been established, the way is open for the incorporation of these into appropriate formal development
tools. These would be of a different flavour to those typically developed for the hybrid systems field,
since they would have more emphasis on interactive proving than is typically the case there. One snag
that would have to be overcome is that most proving based tools cope rather badly with the kind of applied
mathematics and rigorous analysis techniques that are required for this work. A notable exception is the
PVS suite [17, 35], for which substantial library support exists to underpin both applied mathematics and
its more rigorous counterparts, eg. [21]. This would be the obvious jumping off point for the development
of tools that aligned well with our approach.
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Event-B provides a flexible framework for stepwise system development via refinement. The frame-
work supports steps for (a) refining events (one-by-one), (b) splitting events (one-by-many), and (c)
introducing new events. In each of the steps events can moreover possibly be anticipated or conver-
gent. All such steps are accompanied with precise proof obligations. Still, it remains unclear what
the exact relationship - in terms of a behaviour-oriented semantics - between an Event-B machine
and its refinement is. In this paper, we give a CSP account of Event-B refinement, with a treatment
for the first time of splitting events and of anticipated events. To this end, we define a CSP seman-
tics for Event-B and show how the different forms of Event-B refinement can be captured as CSP
refinement.

1 Introduction

Event-B [1] provides a framework for system development through stepwise refinement. Individual
refinement steps are verified with respect to their proof obligations, and the transitivity of refinement
ensures that the final system description is a refinement of the initial one. The refinement process al-
lows new events to be introduced through the refinement process, in order to provide the more concrete
implementation details necessary as refinement proceeds.

The framework allows for a great deal of flexibility as to cover a broad range of system developments.
The recent book [1] comprising case studies from rather diverse areas shows that this goal is actually met.
The flexibility is a result of the different ways of dealing with events during refinement. At each step
existing events of an Event-B machine need to be refined. This can be achieved by (a) simply keeping
the event as is, (b) refining it into another event, possibly because of a change of the state variables, or
(c) splitting it into several events1. Furthermore, every refinement step allows for the introduction of new
events. To help reasoning about divergence, events are in addition classified as ordinary, anticipated or
convergent. Anticipated and convergent events both introduce new details into the machine specification.
Convergent events must not be executed forever, while for anticipated events this condition is deferred
to later refinement steps. All of these steps come with precise proof obligations; appropriate tool support
helps in discharging these [3, 2]. Event-B is essentially a state-based specification technique, and proof
obligations therefore reason about predicates on states.

Like Event-B, CSP comes with a notion of refinement. In order to understand their relationship,
these two refinement concepts need to be set in a single framework. Both formalisms moreover support
a variety of different forms of refinement: Event-B by means of several proof obligations related to
refinement, out of which the system designer chooses an appropriate set; CSP by means of its different

1A fourth option is merging of events which we do not consider here.
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semantic domains of traces, failures and divergences. The aim of this paper is to give a precise account
of Event-B refinement in terms of CSP’s behaviour-oriented process refinement. This will also provide
the underlying results that support refinement in the combined formalism Event-B‖CSP. Our work is
thus in line with previous studies relating state-based with behaviour-oriented refinement (see e.g. [5,
9, 4]). It turns out that CSP supports an approach to refinement consistent with that of Event-B. It
faithfully reflects all of Event-B’s possibilities for refinement, including splitting events and new events.
It moreover also deals with the Event-B approach of anticipated events as a means to defer consideration
of divergence-freedom. Our results involves support for individual refinement steps as well as for the
resulting refinement chain.

The paper is structured as follows. The next section introduces the necessary background on Event-B
and CSP. Section 3 gives the CSP semantics for Event-B based on weakest preconditions. In Section 4
we precisely fix the notion of refinement used in this paper, both for CSP and for Event-B, and Section
5 will then set these definitions in relation. It turns out that the appropriate refinement concept of CSP in
this combination with Event-B is infinite-traces-divergences refinement. The last section concludes.

2 Background

We start with a short introduction to CSP and Event-B. For more detailed information see [17] and [1]
respectively.

2.1 CSP

CSP, Communicating Sequential Processes, introduced by Hoare [11] is a formal specification language
aiming at the description of communicating processes. A process is characterised by the events it can
engage in and their ordering. Events will in the following be denoted by a1,a2, . . . or evt0,evt1, . . ..
Process expressions are built out of events using a number of composition operators. In this paper, we
will make use of just three of them: interleaving (P1 ||| P2), executing two processes in parallel without
any synchronisation; hiding (P \ N), making a set N of events internal; and renaming (f (P) and f−1(P)),
changing the names of events according to a renaming function f . If f is a non-injective function, f−1(P)
will offer a choice of events b such that f (b) = a whenever P offers event a.

Every CSP process P has an alphabet αP. Its semantics is given using the Failures/Divergences/Infinite
Traces semantic model for CSP. This is presented as U in [16] or FDI in [17]. The semantics of a process
can be understood in terms of four sets, T,F,D, I, which are respectively the traces, failures, divergences,
and infinite traces of P. These are understood as observations of possible executions of the process P, in
terms of the events from αP that it can engage in.

Traces are finite sequences of events from P’s alphabet: tr ∈ αP∗. The set traces(P) represents the
possible finite sequences of events that P can perform. Failures will not be considered in this paper and
are therefore not explained here.

Divergences are finite sequences of events on which the process might diverge: perform an infinite
sequence of internal events (such as an infinite loop) at some point during or at the end of the sequence.
The set divergences(P) is the set of all possible divergences for P. Infinite traces u ∈ αPω are infinite
sequences of events. The set infinites(P) is the set of infinite traces that P can exhibit. For technical
reasons it also contains those infinite traces which have some prefix which is a divergence.

Definition 2.1 A process P is divergence-free if divergences(P) = {}.
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machine M0
variables v
invariant I(v)
events init0,evt0, . . .
end

evt0 =̂
when

G(v)
then

v :| BA0(v,v′)
end

Figure 1: Template of an Event-B machine and an event.

We use tr to refer to finite traces. These can also be written explicitly as 〈a1,a2, . . . ,an〉. The empty trace
is 〈〉, concatenation of traces is written as tr1

a tr2. We use u to refer to infinite traces. Given a set of
events A, the projections tr � A and u � A are the traces restricted to only those events in A. Note that u � A
might be finite, if only finitely many A events appear in u. Conversely, tr \ A and u \ A are those traces
with the events in A removed. The length operator #tr and #u gives the length of the trace it is applied
to. As a first observation, we get the following.

Lemma 2.2 If P is divergence-free, and for any infinite trace u of P we have #(u \ A) = ∞, then P \ A is
divergence-free.

Proof 2.3 Follows immediately from the semantics of the hiding operator.

Later, we furthermore use specifications on traces or, more generally, on CSP processes. Specifications
are given in terms of predicates. If S is a predicate on a particular semantic element, then we write P sat S
to denote that all relevant elements in the semantics of P meet the predicate S. For example, if S(u) is a
predicate on infinite traces, then P sat S(u) is equivalent to ∀u ∈ infinites(P) .S(u).

2.2 Event-B

Event-B [1, 13] is a state-based specification formalism based on set theory. Here we describe the basic
parts of an Event-B machine required for this paper; a full description of the formalism can be found in
[1].

A machine specification usually defines a list of variables, given as v. Event-B also in general allows
sets s and constants c. However, for our purposes the treatment of elements such as sets and constants
are independent of the results of this paper, and so we will not include them here. However, they can be
directly incorporated without affecting our results.

There are many clauses that may appear in Event-B machines, and we concentrate on those clauses
concerned with the state. We will therefore describe a machine M0 with a list of state variables v, a state
invariant I(v), and a set of events evt0, . . . to update the state (see left of Fig.1). Initialisation is a special
event init0.

A machine M0 will have various proof obligations on it. These include consistency obligations, that
events preserve the invariant. They can also include (optional) deadlock-freeness obligations: that at
least one event guard is always true.

Central to an Event-B description is the definition of the events, each consisting of a guard G(v)
over the variables, and a body, usually written as an assignment S on the variables. The body defines
a before-after predicate BA(v,v′) describing changes of variables upon event execution, in terms of the
relationship between the variable values before (v) and after (v′). The body can also be written as v :|
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BA(v,v′), whose execution assigns to v any value v′ which makes the predicate BA(v,v′) true (see right
of Fig. 1).

3 CSP semantics for Event-B machine

Event-B machines are particular instances of action systems, so Morgan’s CSP semantics for action sys-
tems [14] allows traces, failures, and divergences to be defined for Event-B machines, in terms of the
sequences of events that they can and cannot engage in. Butler’s extension to handle unbounded non-
determinism [6] defines the infinite traces for action systems. These together give a way of considering
Event-B machines as CSP processes, and treating them within the CSP semantic framework. In this
paper we use the infinite traces model in order to give a proper treatment of divergence under hiding.
This is required to establish our main result concerning divergence-freedom under hiding of new events.
Consideration of finite traces alone is not sufficient for this result.

Note that the notion of traces for machines is different to that presented in [1], where traces are
considered as sequences of states rather than our treatment of traces as sequences of events.

The CSP semantics is based on the weakest precondition semantics of events. Let S be a statement
(of an event). Then [S]R denotes the weakest precondition for statement S to establish postcondition R.
Weakest preconditions for events of the form “ when G(v) then S(v) end” are given by considering
them as guarded commands:

[ when G(v) then S(v) end]P = G(v)⇒ [S(v)]P

Events in the general form “ when G(v) then v :| BA(v,v′) end” have a weakest precondition semantics
as follows:

[ when G(v) then v :| BA(v,v′) end]P = G(v)⇒∀x.(BA(v,x)⇒ P[x/v])

Observe that for the case P = true we have

[ when G(v) then v :| BA(v,v′) end]true = true

Based on the weakest precondition, we can define the traces, divergences and infinite traces of an Event-B
machine2.

Traces The traces of a machine M are those sequences of events tr = 〈a1, . . . ,an〉 which are possible for
M (after initialisation init): those that do not establish false:

traces(M) = {tr | ¬[init;tr]false}
Here, the weakest precondition on a sequence of events is the weakest precondition of the sequen-
tial composition of those events: [〈a1, . . . ,an〉]P is given as [a1; . . . ; an]P = [a1](. . .([an]P) . . .).

Divergences A sequence of events tr is a divergence if the sequence of events is not guaranteed to
terminate, i.e. ¬[init; tr]true. Thus

divergences(M) = {tr | ¬[init;tr]true}
Note that any Event-B machine M with events of the form evt given above is divergence-free.
This is because [evt]true = true for such events (and for init), and so [init; tr]true = true. Thus no
potential divergence tr meets the condition ¬[init; tr]true.

2Failures can be defined as well but are omitted since they are not needed for our approach.
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Infinite Traces The technical definition of infinite traces is given in [6], in terms of least fixed points of
predicate transformers on infinite vectors of predicates. Informally, an infinite sequence of events
u = 〈u0,u1, . . .〉 is an infinite trace of M if there is an infinite sequence of predicates Pi such that
¬[init](¬P0) (i.e. some execution of init reaches a state where P0 holds), and Pi⇒¬[ui](¬Pi+1)
for each i (i.e. if Pi holds then some execution of ui can reach a state where Pi+1 holds).

infinites(M) = {u | there is a sequence〈Pi〉i∈N . ¬[init](¬P0) ∧
for all i . Pi⇒¬[ui](¬Pi+1) }

These definitions give the CSP Traces/Divergences/Infinite Traces semantics of Event-B machines in
terms of the weakest precondition semantics of events.

4 Refinement

In this paper, we intend to give a CSP account of Event-B refinement. The previous section provides us
with a technique for relating Event-B machines to the semantic domain of CSP processes. Next, we will
briefly rephrase the refinement concepts in CSP and Event-B before explaining Event-B refinement in
terms of CSP refinement.

4.1 CSP refinement

Based on the semantic domains of traces, failures, divergences and infinite traces, different forms of
refinement can be given for CSP. The basic idea underlying these concepts is - however - always the
same: the refining process should not exhibit a behaviour which was not possible in the refined process.
The different semantic domains then supply us with different forms of “behaviour”. In this paper we will
use the following refinement relation, based on traces and divergences:

PvTDI Q =̂ traces(Q)⊆ traces(P)
∧ divergences(Q)⊆ divergences(P)
∧ infinites(Q)⊆ infinites(P)

Refinement in Event-B also allows for the possibility of introducing new events. To capture this aspect in
CSP, we need a way of incorporating this into process refinement. As a first idea, we could hide the new
events in the refining process. This potentially introduces divergences, namely, when there is an infinite
sequence of new events in the infinite traces. In order to separate out consideration of divergence from
reasoning about traces, we will use P ||| RUNN as a lazy abstraction operator instead. RUNN defines a
divergence free process capable of executing any order of events from the set N. This will enable us to
characterise Event-B refinement introducing new events in CSP terms. The following lemma gives the
relationship between refinement involving interleaving, and refinement involving hiding.

Lemma 4.1 If P0 ||| RUNN vTDI P1 and N∩αP0 = {} and P1 \ N is divergence-free, then P0 vTDI P1 \
N.

Proof: Assume that (1) P0 ||| RUNN vTDI P1, (2) N ∩αP0 = {} and (3) P1 \ N is divergence-free. We
need to show that the (finite and infinite) traces as well as divergences of P1 \ N are contained in those
of P0.



144 A CSP account of Event-B refinement

evt0 =̂
when

G(v)
then

v :| BA0(v,v′)
end

evt1 =̂
refines evt0
status st
when

H(w)
then

w :| BA1(w,w′)
end

Figure 2: An event and its refinement

Traces Let tr ∈ traces(P1 \ N). By semantics of hiding there is some tr′ ∈ traces(P1) s.t. tr′ \ N = tr.
By (1) tr′ ∈ traces(P0 ||| RUNN). By (2) and the semantics of ||| we get tr′ \ N ∈ traces(P0) and
thus tr ∈ traces(P0).

Divergences By (3) divergences(P1 \ N) = {}, thus nothing to be proven here.

Infinites Let u ∈ infinites(P1 \ N). By the semantics of hiding there is some u′ ∈ infinites(P1) such that
u′ \ N = u and #(u′ \ N) = ∞. By (1) u′ ∈ infinites(P0 ||| RUNN) and by (2) and semantics of
interleave we get u′ \ N = u ∈ infinites(P0).

2

4.2 Event-B refinement

In Event-B, the (intended) refinement relationship between machines is directly written into the machine
definitions. As a consequence of writing a refining machine, a number of proof obligations come up.
Here, we assume a machine and its refinement to take the following form:

machine M0
variables v
invariant I(v)
events init0,evt0, . . .
end

machine M1
refines M0
variables w
invariant J(v,w)
events init1,evt1, . . .
variant V(w)
end

The machine M0 is actually refined by machine M1, written M0 4M1, if the given linking invariant J on
the variables of the two machines is established by their initialisations, and preserved by all events, in
the sense that any event of M1 can be matched by an event of M0 (or skip for newly introduced events)
to maintain J. This is the standard notion of downwards simulation data refinement [8]. We next look at
this in more detail, and in particular give the proof obligations associated to these conditions.

First of all, we need to look at events again. Figure 2 gives the shape of an event and its refinement.
We see that an event in the refinement now also gets a status. The status can be ordinary (also called
remaining), or anticipated or convergent. Convergent events are those which must not be executed
forever, and anticipated events are those that will be made convergent at some later refinement step.
New events must either have status anticipated or convergent. Both of these introduce further proof
obligations: to prevent execution “forever” the refining machine has to give a variant V (see above in



S.Schneider, H. Treharne & H. Wehrheim 145

M1), and V has to be decreased by every convergent event and must not be increased by anticipated
events.

We now describe each of the proof obligations in turn. We have simplified them from their form in
[13] by removing explicit references to sets and constants. Alternative forms of these proof obligations
are given in [1, Section 5.2: Proof Obligation Rules].

FIS REF: Feasibility Feasibility of an event is the property that, if the event is enabled (i.e. the guard
is true), then there is some after-state. In other words, the body of the event will not block when
the event is enabled.
The rule for feasibility of a concrete event is:

I(v) ∧ J(v,w) ∧ H(w)
`
∃w′.BA1(w,w′)

FIS REF

GRD REF: Guard Strengthening This requires that when a concrete event is enabled, then so is the
abstract one. The rule is:

I(v) ∧ J(v,w) ∧ H(w)
`

G(v)
GRD REF

INV REF: Simulation This ensures that the occurrence of events in the concrete machine can be
matched in the abstract one (including the initialization event). New events are treated as re-
finements of skip. The rule is:

I(v) ∧ J(v,w) ∧ H(w) ∧ BA1(w,w′)
`
∃v′.(BA0(v,v′) ∧ J(v′,w′))

INV REF

Event-B also allows a variety of further proof obligations for refinement, depending on what is appropri-
ate for the application. The two parts of the variant rule WFD REF below must hold respectively for all
convergent and anticipated events, including all newly-introduced events.

WFD REF: Variant This rule ensures that the proposed variant V satisfies the appropriate properties:
that it is a natural number, that it decreases on occurrence of any convergent event, and that it does
not increase on occurrence of any anticipated event:

I(v) ∧ J(v,w) ∧ H(w) ∧ BA1(w,w′)
`

V(w) ∈ N ∧ V(w′)< V(w)

WFD REF
(convergent event)

I(v) ∧ J(v,w) ∧ H(w) ∧ BA1(w,w′)
`

V(w) ∈ N ∧ V(w′)6 V(w)

WFD REF
(anticipated event)
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We will use the refinement relation M04M1 to mean that the four proof obligations FIS REF, GRD REF,
INV REF, and WFD REF hold between abstract machine M0 and concrete machine M1.

5 Event-B refinement as CSP refinement

With these definitions in place, we can now look at our main issue, the characterisation of Event-B
refinement via CSP refinement. Here, we in particular need to look at the different forms of events in
Event-B during refinement. Events can have status convergent or anticipated, or might have no status.
This partitions the set of events of M into three sets: anticipated A, convergent C, and remaining events
R (neither anticipated nor convergent). The alphabet of M, the set of all possible events, is thus given by
αM = A∪C∪R. In the CSP refinement, these will take different roles.

Now consider an Event-B Machine M0 and its refinement M1: M0 4 M1. The machine M0 has
anticipated events A0, convergent events C0, and remaining events R0, and M1 similarly has event sets
A1, C1, and R1. Each event ev1 in M1 either refines a single event ev0 in M0 (indicated by the clause
‘refines ev0’ in the description of ev1) or does not refine any event of M0. The set of new events N1 is
those events which are not refinements of events in M0.

M04M1 thus induces a partial surjective function f1 : αM1 7→→αM0 where f1(ev1)= ev0⇔ ev1 refines ev0.
Observe that αM1 is partitioned by f−1

1 (αM0) and N1. The rules for refinement between events in Event-
B impose restrictions on these sets:

1. each event of M0 is refined by at least one event of M1;

2. each new event in M1 is either anticipated or convergent;

3. each event in M1 which refines an anticipated event of M0 is itself either convergent or anticipated;

4. refinements of convergent or remaining events of M0 are remaining in M1, i.e. they are not given a
status.

The conditions imposed by the rules are formalised as follows:
1. ran(f1) = A0∪C0∪R0;

2. N1 ⊆ A1∪C1;

3. f−1
1 (A0)⊆ A1∪C1;

4. f−1
1 (C0∪R0) = f−1

1 (C0)∪ f−1
1 (R0) = R1.

These relationships between the classes of events are illustrated in Figure 3.

5.1 New events

For the new events arising in the refinement, we can use the lazy abstraction operator via the RUN process
to get our desired result, disregarding the issue of divergence for a moment. The following lemma gives
our first result on the relationship between Event-B refinement and CSP refinement.

Lemma 5.1 If M0 4 M1 and the refinement introduces new events N1 and uses the mapping f1, then
f−1
1 (M0) ||| RUNN1 vTDI M1.

Proof: We assume state variables of M0 and M1 named as given above, i.e. state variables of M0 are v and
of M1 are w. Let tr = 〈a1, . . . ,an〉 ∈ traces(M1). We need to show that tr ∈ traces(f−1

1 (M0) ||| RUNN1).
First of all note that the interleaving operator merges the traces of two processes together, i.e., the traces of
f−1
1 (M0) ||| RUNN1 are simply those of f−1

1 (M0) with new events arbitrarily inserted. The proof proceeds
by induction on the length of the trace.



S.Schneider, H. Treharne & H. Wehrheim 147

R1

C1

A1

N1 C1
A1

f1
R0

C0

A0

N0 C0
A0

Figure 3: Relationship between events in a refinement step: f1 maps events in M1 to events in M0 that
they refine.

Induction base Assume n= 0, i.e., tr = 〈〉. By definition this means that the initialisation event init1 has
been executed bringing the machine M1 into a state w1. By INV REF (using init as event), we find
a state v1 such that J(v1,w1) and furthermore 〈〉 ∈ traces(M0) and hence also in traces(f−1

1 (M0) |||
RUNN1).

Induction step Assume that for a trace tr = 〈a1, . . . ,aj−1〉 ∈ traces(M1) we have already shown that tr ∈
traces(f−1

1 (M0) ||| RUNN1) and this has led us to a pair of states vj−1, wj−1 such that J(vj−1,wj−1).
Now two cases need to be considered:

1. aj /∈ N1: Assume aj in M1 to be of the form

when H(w) then w :| BA1(w,w′) end

and f1(aj) in M0 of the form

when G(v) then v :| BA(v,v′) end

Since aj is executed in wj−1 we have H(wj−1). By GRD REF we thus get G(vj−1). Further-
more, for wj with BA1(wj−1,wj) we find – by INV REF – a state vj such that J(vj,wj) and
BA(vj−1,vj). Hence tra 〈aj〉 ∈ traces(f−1

1 (M0) ||| RUNN1).
2. aj ∈ N1: Similar to the previous case. Here, aj refines skip and thus vj = vj−1 and the event aj

is coming from RUNN1 .
In the same way we can carry out a proof for infinite traces. For divergences it is even simpler as
divergences(M1) = {}. 2

This lemma can be generalised to a chain of refinement steps. For this, we assume that we are given a se-
quence of Event-B machines Mi with their associated processes Pi, and every refinement step introduces
some set of new events Ni.
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Theorem 5.2 If a sequence of processes Pi, mappings fi, and sets Ni are such that

f−1
i+1(Pi) ||| RUNNi+1 vTDI Pi+1 (1)

for each i, then

f−1
n (. . .(f−1

1 (P0)) . . .) ||| RUNf−1
n (...f−1

2 (N1)...)∪...∪f−1
n (Nn−1)∪Nn

vTDI Pn

Proof: Two successive refinement steps combine to provide a relationship between P0 and P2 of the
same form as Line 1 above, as follows:

f−1
2 (P1) ||| RUNN2 vTDI P2 (given)

f−1
2 (f−1

1 (P0) ||| RUNN1) ||| RUNN2 vTDI P2 (line (1), transitivity of v)
f−1
2 (f−1

1 (P0)) ||| RUNf−1
2 (N1)

||| RUNN2 vTDI P2 (Law: f−1(P ||| Q) = f−1(P) ||| f−1(Q))

f−1
2 (f−1

1 (P0)) ||| RUNf−1
2 (N1)∪N2

vTDI P2 (Law: RUNA ||| RUNB = RUNA∪B)

Hence the whole chain of refinement steps can be collected together, yielding the result. 2

5.2 Convergent and anticipated events

The previous result lets us relate the first and last Event-B machine in a chain of refinements. Due to
the lazy abstraction operator (and the resulting possibility of defining refinement without hiding new
events), we considered divergence free processes there: all processes Pi representing Event-B machines,
are divergence free by definition. However, Event-B refinement is concerned with a particular form of
divergence and its avoidance. A sort of divergence would arise when new events (or more specifically,
convergent events) could be executed forever, and this is what the proof rules for variants rule out.

We would like to capture the impact of convergence and anticipated sets of events in the CSP seman-
tics as well. To do so, we first of all define the specification predicate

CA(C,R)(u) =̂ (#(u � C) = ∞⇒ #(u � R) = ∞)

Intuitively, this states that all infinite traces having infinitely many convergent (C) events also have in-
finitely many (R) remaining events (and thus cannot execute convergent events alone forever). In this
case we say that the Event-B machine does not diverge on C events.

Definition 5.3 Let M be an Event-B machine with its alphabet αM containing event sets C and R with
C∩R = {}. M does not diverge on C events if M sat CA(C,R).

Convergent events in Event-B machines only come into play during refinement. Thus a plain, single
Event-B machine has no convergent events (C = {}) and thus trivially satisfies the specification predicate.

Lemma 5.4 If M0 4 M1, and M1 has convergent, anticipated, and remaining events C1, A1, and R1
respectively, then M1 sat CA(C1,R1)

Proof: We prove this by contradiction. Assume¬M1 sat CA(C1,R1). Then there is some u∈ infinites(M1)

such that #(u � C1) = ∞ and #(u � R1) < ∞. Then there must be some tr0, u′ such that u = tr0
au′ with

u′ ∈ (C1∪A1)
ω (i.e. tr0 is a prefix of u containing all the R1 events). Moreover, #u′ � C1 = ∞.

Now since M0 4 M1 we have by GRD REF and INV REF that there is some pair of states (v,w)
(abstract and concrete state) reached after executing tr0 for which J(v,w) and I(v) is true. Furthermore,
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V(w) is a natural number. Also by M0 4M1 we have an infinite sequence of pairs of states (vi,wi) (for
the remaining infinite trace u′) such that J(vi,wi). Since each event in u′ is in A1 or C1 we have from
WFD REF that V(wi+1) 6 V(wi) for each i. Further, for infinitely many i’s (i.e. those events in C1)
we have V(wi+1)< V(wi). Thus we have a sequence of values V(wi) decreasing infinitely often without
ever increasing. This contradicts the fact that the V(wi) ∈ N. 2

A number of further interesting properties can be deduced for the specification predicate CA.
Lemma 5.5 Let P be a CSP process and C,C′,R⊆ αP nonempty finite sets of events.

1. If P sat CA(C,R) then f−1(P) sat CA(f−1(C), f−1(R)).

2. If P sat CA(C,R) and N∩C = {} then P ||| RUNN sat CA(C,R).

3. If P sat CA(C,R) and P sat CA(C′,C∪R) then P sat CA(C∪C′,R).

4. If P sat CA(C,R) and C∩R = {} then P \ C is divergence-free.

Proof:
1. Assume that u∈ infinites(f−1(P)) and #(u � f−1(C)) =∞. From the first we get f (u)∈ infinites(P).

From the latter it follows that #(f (u) � C) = ∞. With P sat CA(C,R) we have #(f (u) � R) = ∞ and
hence #(u � f−1(R)) = ∞.

2. Let u ∈ infinites(P ||| RUNN) and #(u � C) = ∞. With N ∩C = {} we get #((u \ N) � C) = ∞.
By definition of ||| we have u \ N ∈ infinites(P) (u \ N is infinite since #((u \ N) � C) = ∞). By
P sat CA(C,R) we get #((u \ N) � R) = ∞, hence #(u � R) = ∞.

3. Let u ∈ infinites(P) such that #(u � (C ∪C′)) = ∞. Both C and C′ are finite sets hence either
#(u � C) = infty or #(u � C′) = ∞ (or both). In the first case we get #(u � R) = ∞ by P sat CA(C,R).
In the second case it follows that #(u � (C∪R)) = ∞ and hence again #(u � C) = ∞ or directly
#(u � R) = ∞.

4. First of all note that if P sat CA(C,R) then P is divergence free. Now assume that there is a trace
tr ∈ divergences(P \ C). Then there exists a trace u ∈ infinites(P) such that tr = u \ C, and so
#(u \ C)< ∞. Hence #(u � C) = ∞. However, — as C∩R = {}— #(u � R) 6= ∞ which contradicts
P sat CA(C,R).

2

The most interesting of these properties is probably the last one: it relates the specification predicate to
the definition of divergence freedom in CSP. In CSP, a process does not diverge on a set of events C if
P \ C is divergence-free.

This gives us some results about the specification predicate for single Event-B machines and CSP
processes. Next, we would like to apply this to refinements. First, we again consider just two machines.
Lemma 5.6 Let M0 4 M1 with an associated refinement function f1 and let M0 sat CA(C0,R0). Then
M1 sat CA(f−1

1 (C0)∪C1 , f−1
1 (R0)).

Proof: Assume u∈ infinites(M1) and #(u � (f−1
1 (C0)∪C1)=∞. We aim to establish that #(u � f−1

1 (R0))=
∞. We have #(u � f−1

1 (C0)) = ∞ or #(u � C1) = ∞.
In the former case, Lemma 5.1 yields that f1(u � f−1(αM0)) ∈ infinites(M0). Then

#(u � f−1
1 (C0)) = ∞ (given)

#(f1(u � f−1(C0)) � C0) = ∞ (since renaming preserves length)
#(f1(u � f−1(αM0)) � C0) = ∞ (since C0 ⊆ αM0)
#(f1(u � f−1(αM0)) � R0) = ∞ (by M0 sat CA(C0,R0))

#(u � f−1(αM0)) � f−1(R0) = ∞ (since renaming preserves length)
#(u � f−1

1 (R0)) = ∞ (since R0 ⊆ αM0)
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In the latter case Lemma 5.4 yields that #(u � R1) = ∞. Then

#(u � R1) = ∞
#(u � f−1

1 (R0∪C0)) = ∞ (since R1 = f−1
1 (C0∪R0))

#(u � f−1
1 (R0)) = ∞∨#(u � f−1

1 (C0)) = ∞

The first disjunct is the desired result, the second is the one already treated above.
2

Note that by Lemma 5.5 (4) the above result implies that the machine M1 does not diverge on f−1
1 (C0)∪

C1, in particular M0 \ (f−1
1 (C0)∪C1) is divergence-free.

Similar to the previous case, we can lift this to chains of refinement steps. Consider the last result
with respect to two refinement steps M0 4M1 4M2:

M0 sat CA(C0,R0) (given)
f−1(M0) sat CA(f−1(C0), f−1(R0)) (lemma 5.5 (1))

f−1(M0) ||| RUNN1 sat CA(f−1(C0), f−1(R0)) (lemma 5.5 (2),
since f−1

1 (C0)∩N1 = {})
M1 sat CA(f−1(C0), f−1(R0)) (lemma 5.1)

f−1
2 (M1) sat CA(f−1

2 (f−1(C0)), f−1
2 (f−1(R0))) (lemma 5.5 (1))

f−1
2 (M1) ||| RUNN2 sat CA(f−1

2 (f−1(C0)), f−1
2 (f−1(R0))) (lemma 5.5 (2))

M2 sat CA(f−1
2 (f−1(C0)), f−1

2 (f−1(R0))) (lemma 5.1)
M2 sat CA(C2∪ f−1

2 (C1) , f−1
2 (R1)) (lemma 5.6)

Then by applying Lemma 5.5(3) to the final two lines, with R = f−1
2 (f−1

1 (R0)), C = f−1
2 (f−1

1 (C0)), and
C′ = C2∪ f−1

2 (C1), we obtain

M2 sat CA(C2∪ f−1
2 (C1)∪ f−1

2 (f−1
1 (C0)) , f−1

2 (f−1
1 (R0))

Thus if

M0 4M1 4 . . .4Mn

then collecting together all the steps yields that

Mn sat CA((f−1
n (. . . f−1

1 (C0) . . .)∪ . . . f−1
n (Cn−1)∪Cn) , f−1

n (. . . f−1
1 (R0) . . .)) (2)

Finally, we would like to put together these results into one result relating the initial machine M0 to the
final machine Mn in the refinement chain. This result should use hiding for the treatment of new events,
and – by stating the relationship between M0 and Mn \ {new events} via infinite-traces-divergences
refinement – show that Event-B refinement actually does not introduce divergences on new events. For
such chains of refinement steps we always assume that A0 =C0 = {} (initially we have neither anticipated
nor convergent events), and An = {} (at the end all anticipated events have become convergent).

For this, we first of all need to find out what the “new events” are in the final machine. Define gi,j as
the functional composition of the event mappings from fj to fi:

gi,j = fi; fi+1; . . . ; fj

Then noting the disjointness of the union, by repeated application of

Cj]Aj]Rj = f−1
j (Cj−1]Aj−1]Rj−1)]Nj
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Figure 4: Constructing NEW
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Figure 5: Constructing CON

we obtain

Cj]Aj]Rj = g−1
1,j (C0]A0]R0)]g−1

2,j (N1)] . . .]g−1
j,j (Nj−1)]Nj (3)

Observe that this is a partition of Cj]Aj]Rj. Also, by repeated application of

Rj = f−1
j (Rj−1)] f−1

j (Cj−1)

we obtain

Rj]Cj = g−1
1,j (R0)]g−1

1,j (C0)]g−1
2,j (C1)] . . .]g−1

j,j (Cj−1)]Cj (4)

Observe that this is a partition of Cj]Rj.
In a full refinement chain M0 4 . . .4Mn we have that A0 = {},C0 = {}, and An = {}. Define:

NEW = g−1
2,n(N1)] . . .]g−1

n,n(Nj−1)]Nn

CON = g−1
1,n(C0)] . . .]g−1

n,n(Cj−1)]Cn

These constructions are illustrated in Figures 4 and 5.
Then from Equation 3 above with j = n, and using A0 = C0 = An = {} we obtain

Cn]Rn = g−1
1,n(R0)]NEW
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From Equation 4 above with j = n we obtain

Cn]Rn = g−1
1,n(R0)]CON

Hence NEW = CON. From Theorem 5.2 and Line (2) above respectively we obtain that

f−1
n (. . .(f−1

1 (M0)) . . .) ||| RUNNEW vTDI Mn

and Mn sat CA(CON , f−1
n (. . . f−1

1 (R0) . . .) )

Lemma 5.5(4) yields that Mn \ CON is divergence-free, i.e., Mn \ NEW is divergence-free. Hence by
Lemma 4.1 we obtain that

f−1
n (. . .(f−1

1 (M0)) . . .) vTDI Mn \ NEW (5)

or, equivalently, that the following theorem holds true.

Theorem 5.7 Let M0 4 M1 4 . . . 4 Mn be a chain of refinement steps such that A0 = C0 = {} and
An = {}, refining events according to functions fi, and let NEW be the set of events as calculated above.
Then

M0 vTDI f1(f2(. . . fn(Mn \ NEW) . . .))

Proof: This follows from the result in Line 5 above, using the CSP law f (f−1(P)) = P. 2

This result guarantees that Event-B refinement (a) does neither introduce “new traces on old events” nor
(b) does it introduce divergences on new events. This gives us the precise account of Event-B refinement
in terms of CSP which we were aiming at.

6 Conclusion

In this paper, we have given a CSP account of Event-B refinement. The approach builds on Butler’s
semantics for action systems [6]. Butler’s refinement rules allow new convergent events to be introduced
into action systems, so that refinement steps satisfy Mi vTDI (Mi+1 \ Ni+1), and hiding new events does
not introduce divergence. Abrial’s approach to Event-B refinement generalises this approach, allowing
new events to be anticipated as well as convergent, and also allowing splitting of events. Our approach
to refinement using CSP semantics reflects this generalisation and thus extends Butler’s, in order to
encompass these different forms of event treatment in Event-B refinement. We do not yet handle merging
events, and this is the subject of current research.

Recently, an Event-B‖CSP approach has been introduced [19]. It aims to combine Event-B ma-
chine descriptions with CSP [17] control processes, in order to support a more explicit view of control.
In this, it follows previous works on integration of formal methods [7, 22, 15, 18, 12], which aim at
complementing a state-based specification formalism with a process algebra.

The account of refinement presented here provides the basis for a flexible refinement framework in
Event-B‖CSP, and this is presented in [21]. The semantics justifies the introduction of a new status
of devolved, for refinement events which are anticipated in the Event-B machine but convergent in the
CSP controller. This approach has been applied to an initial Event-B‖CSP case study of a Bounded
Retransmission Protocol [20]. We aim to develop investigate further case studies. We are in particular
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interested in finding out whether the work of showing divergence-freedom (and also deadlock-freedom)
can be divided onto the Event-B and CSP part such that for some events convergence is guaranteed by
showing the corresponding proof obligations in Event-B while for others we just look at divergence-
freedom of the CSP process. The latter part could then be supported by model checking tools for CSP,
like FDR [10].
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This paper reconsiders refinements which introduce actionson the concrete level which were not
present at the abstract level. It draws a distinction between concrete actions which are “perspicuous”
at the abstract level, and changes of granularity of actionsbetween different levels of abstraction.

The main contribution of this paper is in exploring the relation between these different methods
of “action refinement”, and the basic refinement relation that is used. In particular, it shows how the
“refining skip” method is incompatible with failures-basedrefinement relations, and consequently
some decisions in designing Event-B refinement are entangled.

Keywords: Refinement, action refinement, stuttering steps, ASM, Event-B, Z, internal operations, weak
refinement, granularity, perspicuity, divergence.

1 Introduction

This paper discusses how different ways of introducing “extra” actions in refinement (such as weak re-
finement, action refinement, stuttering steps) relate to theunderlying refinement relations used (e.g. trace
refinement, failures refinement). In particular, we aim to show how the choices in those two dimensions
are interdependent. The paper is not intended to be polemic (“my formalism/refinement relation is better
than yours”) nor is it really meant to be a first introduction to the topic. Where it appears to state the ob-
vious, this is in an attempt to ensure that commonalities, differences, and design decisions in refinement
relations are exhibited in an unambiguous and uncontroversial way.

Before describing the issues in detail, we consider an example. The example is presented in Z, but
the notation used is not essential to what follows in this paper. In general, most of what is described
in this paper could be expressed in ASM [18], (Event-)B [1], Z[19], binary relations [11], UTP [15]
or many other state-based formalisms; for the moment we makeno assumptions about what refinement
relation is “in force”.

This example is due to Carroll Morgan, who presented it during an enlightening conversation at the
2009 Dagstuhl seminar “Refinement Based Methods for the Construction of Dependable Systems”. The
abstract specification is essentially a priority queue, stored as a bag, so taking out an element involves
selecting the minimum of the bag. Obvious specifications of functionsmin on bags and (later)sorted
on sequences are omitted. The schemaASdescribes system states,AInit initial states, and the schemas
Ain andAout the operations of adding and removing an element. The precondition b 6= [[ ]] is included
explicitly in Aout, in recognition of it having to be an explicit guard in alternative notations such as
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Event-B.

AS
b : bagN

Ain
∆AS
x? :N

b′ = b⊎ [[x?]]

AInit
AS′

b′ = [[ ]]

Aout
∆AS
x! : N

b 6= [[ ]]
b= b′⊎ [[x!]]
x! = min(b)

The concrete specification uses a sequence to represent the queue. Removing an element is only possible
when the sequence is non-empty and sorted, in which case the element to be removed is at the head of
the sequence. The schemaSortdescribes the sorting of the sequence. The schemaCycleis mostly a red
herring1 and not part of Morgan’s original example.

CS
s : seqN

Cin
∆CS
x? :N

s′ = sa 〈x?〉

Sort
∆CS

itemss= itemss′

sorted(s′)

CInit
CS′

s′ = 〈〉
Cout
∆CS
x! : N

s 6= 〈〉
sorted(s)

s= 〈x!〉as′

Cycle
∆CS

s= 〈〉∧s′ = 〈〉 ∨
s′ = (tail s)a 〈head s〉

This paper discusses the many ways in which one may consider the concrete specification to refine
the abstract one, possibly after a slight modification, or possibly not at all, depending on the notions of
refinement and action refinement employed. Before we move on to that level of complication, consider
the composed schemaSortOut== Sorto

9Cout, whose meaning is given by

SortOut
∆CS
x! : N

s 6= 〈〉
∃s′′ : seqN • itemss= itemss′′∧sorted(s′′)∧s′′ = 〈x!〉a s′

1One might use it to represent the non-determinism in a distributed implementation where individual clients have no control
over the access pointer in a cyclical list, . . . maybe.
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Then, uncontroversially, in most sensible refinement relations, the operationAout is refined by
SortOut(or more precisely: the data type(AS,AInit,Ain,Aout) is refined by(CS,CInit,Cin,SortOut))
under the retrieve relationb= itemss. In fact, this is normally an equivalence: refinement also holds in
the reverse direction2.

The rest of this paper is structured as follows. In Section 2 we describe different basic refinement
notions. Then in Section 3 we discuss the various methods in which “extra” operations may appear in
refinement steps. In Section 4 we compare how these methods can be used to model the decomposition of
actions into smaller grained ones, and how this impacts on the various basic refinement notions. Finally,
Section 5 presents some conclusions.

2 Basic Notions of Refinement

We have given detailed fully formal descriptions and comparisons of the different basic notions of re-
finement for state-based and concurrent systems in many previous papers, e.g. [6, 11, 5]. Rather than
repeating this and thereby fixing a formalism or even introducing a new one, we remain informal here,
using various formalisms and their refinement notions as illustrations.

In basic data refinement, systems (or machines or abstract data types) are compared which have
identical alphabets (or sets of labels of operations (or actions or events)). Apart from conditions on
initial and possibly final states, and other details which depend on what observations can be made of
these systems, operations are compared in pairs of an abstract and a concrete operation, with refinement
conditions being some subset of the following properties:

(1) ConsistencyThe effect of the concrete operation is one that is allowed bythe abstract operation.

(2) EnablednessWhen operations can be invoked in the abstract state, they can be invoked in the con-
crete state as well.

(3) Restricted consistencyIn states where the abstract operation is enabled, the effect of the concrete
operation is one that is allowed by the abstract operation.

Property (1) or its weaker variant (3) represents the essence of refinement: that a client would be unable
to observe conclusively that they are using the concrete rather than the abstract system. Property (2)
ensures that the client is indeed able to perform the same “experiments” on both systems. Property (1)
obviously implies (3), and also a converse of (2): where concrete operations are enabled (leading to an
“effect”), their abstract counterparts should be enabled,too (in order to allow comparison of effects).
The properties leave out detail about what an effect is, are purposefully vague on “can be invoked” in (2)
to allow a variety of interpretations, and leave any linkingbetween abstract and concrete states implicit.
They are also somewhat biased towards downward simulation.A few examples should make all this
clearer. The refinement relations described below will be refered to in later sections.

Traditional (downward simulation)Z refinement[19, 11] is characterised by properties (2) and (3),
with “can be invoked” in a state computed as individual operations’ preconditions, i.e. whether their
defining predicates can be satisfied for some after-state. Condition (2) is called “applicability” and typi-
cally formulated as

preAOp∧R⇒ preCOp

2A refinement linkingAin to Cino
9Sort instead is equally possible but would require strengthening the concrete state invariant

to sorted sequences;Cino
9Sort then simplifies to the insert operation of insertion sort.
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where preAOp== ∃AS′ •AOpdenotes the computed precondition. Condition (3) is called“correctness”,
and typically formulated as

preAOp∧R∧COp⇒∃AS′ • R′∧AOp

We have sometimes called this refinement relation the “contract” model of refinement as it constrains the
implementation only within the original precondition.

Trace refinementis characterised by (1) only, only requiring that anything that doeshappen in the
concrete specification is consistent with the abstract one.As such, it represents preservation of safety
properties only, “nothing bad happens”. No concrete operations being enabled at all, for example, is an
acceptable trace refinement.

BasicEvent-B refinement(called simple refinement in [1, Ch. 14]) is characterised by(1), with (op-
tionally) a weak alternative to (2): if the concrete state deadlocks (i.e. no events are enabled), then so
should the abstract state. Enabledness of events is given byexplicitly specified guards, with a “feasibil-
ity” proof obligation ensuring that they are at least as strong as any computed precondition. Abrial [1, p.
429] states that condition (2) could be imposed, but “this happens to be sometimes too strong”. (We will
return to this.)

Failures-based variantsof refinement are characterised by (1) and (2), where (2) considers indi-
vidual operations for “blocking Z refinement” and singletonfailures refinement, or sets of concurrently
enabled operations for failures refinement as in CSP. We refer to [6, 17, 5] for detailed discussion of these
refinement relations and the finer distinctions between them, which are not relevant in the current paper.

Note that a refinement relation characterised by property (3) without property (2) is nonsensical as it
is not transitive: preconditions or guards can be strengthened (lack of (2)) and then weakened (by (3)),
but the composition of such steps does not respect (3).

3 Adding Operations in Refinement

The basic refinement rules described above deal only with thesituation where the abstract and concrete
specifications have the same alphabet of operations. There are many ways in which one could allow
a refined specification to have “extra” operations – we discuss a number of them. First, we mention
alphabet extension and alphabet translation [11, Ch. 14] for completeness. Then, we get to the core of
this paper: stuttering steps, the introduction of internaloperations, and action refinement, and how these
sometimes get conflated.

3.1 Alphabet Extension and Translation

The simplest way of allowing new operations in refinement isalphabet extension: to just accept them
without any further constraints. If we make the intuitive step of identifying a non-existent operation with
one that is never enabled, alphabet extension should be perfectly acceptable in traditional Z refinement:
it means we allow implementors to provide functionality that we had not asked for. In a process algebra
context alphabet extension is typically not allowed, and indeed that would make sense in our intuitive
view: it would go against refinement property (1), by having no matching abstract behaviour for some
concrete behaviour.

In alphabet translation, a single abstract operation is implemented by multiple concrete ones, which
requires an explicit mapping, recording for every concreteoperation which abstract operation it repre-
sents, and thus which operation’s behaviour it needs to correspond with. (If this mapping is not required
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to be total, alphabet extension is subsumed.) A typical example for this would be an abstract two-
dimensional grid specification with a “move” operation, which is refined into “moveNorth”, “moveEast”,
etc. Alphabet translation is allowed in Event-B, where it iscalled “splitting” an abstract event.

The semantic property established in alphabet translationis: every concrete trace (with its corre-
sponding observations) is consistent with an abstract trace that relates to it by the given mapping (applied
elementwise) with its corresponding observations.

3.2 Perspicuous Operations

State-based systems potentially change state when operations are executed. When no operation is in-
voked, the state does not normally change. Some formalisms take this into account by including ex-
plicitly so-called stuttering steps in their semantics: steps where the state does not change between two
observations, due to no event having taken place. In the light of that, it is intuitively obvious to accept
the introduction of additional concrete events as refinements of the identity operation (a.k.a.skip) on
the abstract state. We will call theseperspicuousconcrete events, to be distinguished from “internal
events” (see below) which incur additional assumptions andrequirements. In particular, in subsequent
refinement steps, perspicuous operations donothave a different status from operations that were present
earlier.

Abrial [1] presents a similar motivation for the introducion of new events in Event-B, analogous to
how this is done in action systems [3], and refers to it as “observing our discrete system in the refinement
with a finer grain than in the abstraction”. Event-B is explicit about the introduction of such events as
being refinements ofmodelling: introducing not just aspects of a solution, but more detailof the model.
Indeed, where refinement is viewed as only moving from a complete description of a problem to its so-
lution, the introduction of perspicuous operations which achieve nothing in the abstract world can hardly
be useful by itself3. Both action systems and Event-B include a relative deadlock freedom condition with
this kind of refinement: the new system should deadlock (i.e., terminate, in the action systems view) no
more often than the old one. The semantic relation established by this kind of generalised refinement is:
for every concrete trace with its corresponding observations, an abstract trace constructed by crossing
out all perspicuous actions is consistent with it.

In the running example, under most refinement relations and with the obvious retrieve relation
itemss= b both concrete operationsSortandCycleare candidate perspicuous operations, as they satisfy
itemss= itemss′ and thus relate identical abstract states. They are both applicable in every concrete state
and thus are refinements of an abstractskipeven when property (2) is imposed.

For perspicuous operations, the notion ofdivergencecomes into the picture. A collection of perspic-
uous operations is divergent if infinitely often in succession, from some state, one of its members can be
invoked. In a trace-based view, where perspicuous operations could be inserted at arbitrary points be-
tween “normal” operations, non-divergence is necessary toensure that a finite trace cannot get extended
into an infinite one by that process. This is how Abrial [1] explains it4. With additional assumptions,
such as that a system might perform perspicuous operations independently, divergence becomes a prac-
tical as well as a theoretical problem. Butler [9] explains the non-divergence requirement in Event-B by
saying “The new events introduced in a refinement step can be viewed as hidden events not visible to
the environment of a system and are thus outside the control of the environment” which would suggest

3This isnot intended to be a controversial statement or implicit criticism on Event-B: the crux is in the phraseby itself, and
this should become clearer later when we compare the different ways of encoding action refinement.

4His use of the term “reachable” is a bit unfortunate, though –this tends to be an existential property (some path is finite)
rather than the required universal (all paths are finite) property required.
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these are not just perspicuous events, but eveninternal events as we will discuss next. In action systems
[3], which are viewed as a main inspiration for Event-B, all actions could be considered to be internal
(even if the variables they modify are not), which conforms more with Abrial’s explanation than with
Butler’s5. A typical method of proving non-divergence is by establishing a variant (well-founded, strictly
decreasing function) on newly introduced (collections of)perspicuous operations [8, 12, 1]. If refinement
is based on property (1) rather than property (3), i.e., an action cannot gain behaviour in refinement, then
non-divergence is preserved by subsequent refinement steps.

In the example, both perspicuous operations are divergent.This is obvious from the fact that they
are enabled ineveryconcrete state.Sort allows an infinite sequence of invocations of which only the
first does not necessarily correspond to a concreteskip. For formalisms that use infinite traces and allow
stuttering steps, such as TLA, this may not be a problem. Removing divergence on each of the operations
can be done using several possible small modifications. The divergence problem forSortcould be fixed
by including a guard¬sorted(s), but this makes it a refinement ofskiponly if property (2) is not imposed
and guards can be strengthened. Another way would be to add a flag that ensuresSort is invoked exactly
once after every occurrence ofCin or Cycle (possibly also preventing the nextCin until after sorting).
A counter could be used to remove divergence inCycle, with each of the other operations (excluding
Sort) setting the counter to fix the maximal number of occurrencesof Cycle to follow it, and Cycle
decrementing it at every step until it is 0. None of those modifications would retain the property thatSort
or Cyclerefinesskip if the prevalent refinement relation respects (2).

3.3 Internal Operations

An internal operation is a perspicuous operation with a special status: it is assumed to be invisible to
the environment, and under internal control of the system only. In process algebras, internal operations
naturally occur in a number of ways. In CSP [14] they arise from channels being hidden, for example
encapsulating an internal communication channel when considering a system of communicating subsys-
tems. They may also be used, for example in LOTOS [7], to encode internal choice when only external
choice is available as a basic operator. Butler first considered the introduction of internal events in B
refinement [8], and based on this approach we introduced “weak refinement” for Z [12, 10], which was
analysed and compared to ASM refinement in detail by Schellhorn [18].

The requirements imposed in this context are inspired by howprocess algebras deal with internal
actions, for example in defining “weak” bisimulation: wherestandard refinement conditions refer to
a single action, their “weak” equivalents consider the sameaction possibly prefixed and postfixed by
occurrences of internal actions. Thus, the refinement consistency property, e.g., will state that for every
concrete action, with internal concrete behaviour before and after, its effect is consistent with the abstract
action, possibly also pre- and postfixed with (abstract) internal behaviour. E.g. in [12] the restricted
consistency (correctness) condition for weak refinement inZ (downward simulation) is phrased as

pre(IntA o
9 AOp)∧R∧ (IntC o

9 COpo
9 IntC)⇒∃AS′ • R′∧ (IntA o

9AOpo
9 IntA)

whereIntC is arbitrary internal behaviour in the concrete state, i.e.the transitive reflexive closure of the
union of internal operations, and similar forIntA. Taking this process algebra inspired approach has a
few consequences:

5Note however that Abrial [1] does recognise (on page 414) a different class of operation that “is not part of the protocol: it
corresponds to a “daemon” acting . . .”.
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• internal actions have a special status which goes beyond therefinement step where they are intro-
duced. They can not only be introduced this way, but must alsobe taken into consideration or can
even be removed in subsequent refinement steps.

• there is an assumption that if internal actions are necessary for progress, they will “eventually”
happen, so external operations are viewed as “enabled” if their before-state is reachable through
internal behaviour; in timed process algebras in particular, internal actions are often taken as “ur-
gent” meaning they happen as soon as they are enabled.

• there need not be independent refinement conditions for internal operations: all internal behaviour
is viewed in the context of its composition with external behaviour. Thus, internal operations need
not be refinements ofskip. Of course, all internal operations being perspicuous, with external
operations corresponding as normal, isoneway of satisfying the refinement conditions like the
one above, but it is not the only way. In fact, in some refinement relations, it may not be a viable
way, see below.

The approaches for B and Z mentioned above only includedpreventionof divergence in weak refinement
steps. A more general approach, also consistent with the process algebraic view, is topreserveor reduce
any divergence that was already present in the abstract specification. This is worked out in detail in [6],
and the impact of differing notions of “livelock” or divergence is discussed in [4]. The semantic relation
established in this case is roughly that for every concrete trace, an abstract trace exists that is consistent
with it, with both traces’ subsequences ofexternalactions being identical6.

3.4 Action Refinement

Alphabet translation described above allows for arbitrarymatchings of an occurence of an abstract action
with the occurrence of a single concrete action. The most explicit way of changing the granularity of ac-
tions is to allow for matchings betweensequencesof abstract and concrete actions. This has been called
“action refinement” [2] or “non-atomic refinement” [10]. In its most7 general form, action refinement
corresponds to ASM 1-to-n diagrams withn possibly greater than 1 [18], generalising the normal com-
muting simulation diagram to one where the concrete effect is achieved inn steps, without requiring a
relation between abstract andintermediateconcrete states. In this view, all concrete operations resulting
from the decomposition are of the same status, with only their order having an impact on refinement
conditions. This is also the view we took in definining non-atomic refinement for Z [10], work which
was continued by Derrick and Wehrheim [13]. This kind of action refinement is even possible without
changing the state space involved. It requires an explicit matching between abstract actions and con-
crete action sequences, which also extends to traces. The semantic relation aimed for is that concrete
traces are consistent with abstract traces under this extended matching relation. The concrete and the
abstract models end up having different interfaces with this approach – this may be exactly what is re-
quired, though. For example, [11, Ch. 13] has an example of a watch which in the abstract model has
a ResetTimeoperation, which in the concrete model is represented by a series of executions ofButtonA
andButtonBoperations.

Considering for simplicity now only the case thatn = 2, the refinement requirements are like the
introduction of sequential composition in refinement calculus [16]. Splitting an operation in two means

6In fact it is a somewhat more subtle matching: non-determinism included in a single operation on one abstraction level may
be represented through a different choice of sequence of internal actions on the other level, so it is really a relation between sets
of abstract vs. concrete traces with the same external subsequence.

7Avoiding for now the generalisation tom-to-n diagrams withm 6= 1.
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finding an intermediate state (predicate) such that the first“half” lands in the intermediate state, and the
second “half” moves from the intermediate to the original after-state. The problematic issue is what is or
is not allowed to happen in the intermediate state. In a concurrent context, this comes under the heading
of “interference” – when the first “half” of an operation has been executed, should other operations be
disabled (non-interference, as e.g. discussed for action systems in [3]), or should their execution cancel
out the effect of this one? This is a well-known problematic area, discussed also in [10], which we
will not focus on here, as it is orthogonal to the issues discussed: when an action is split with part of it
being perspicuous or internal, that also creates an intermediate state with the same potential interference
problems.

4 How to Reduce Granularity in Refinement

From the discussion above, it should be clear that there are at least three semantic models for reducing
the granularity of actions in refinement:

• by introducing perspicuous actions that take on some of the “work” – possibly requiring non-
divergence;

• by introducing internal actions to the same effect – either using the limited refinement rules for
perspicuous actions, or by using the more general “weak refinement” rules;

• by giving explicit decompositions of actions in which all parts have the same status.

We limit ourselves for now to the case where we are decomposing an action into two actions, where the
first part could be viewed as “prepatory work”, and the secondpart as the “real work” – in other words,
the situation in our example of refiningAout into Sort andCout, where we expectSort to be executed
beforeAout. However, in order to concentrate on the general situation,let us consider refiningAWork
into PrepareandCWork.

For the methods of reducing granularity by refiningskip, we aim forPrepareto be perspicuous, and
for CWork to be a refinement ofAWork. Now consider an abstract state in which the operationAWork
was applicable. If in every corresponding concrete state itwould be possible to applyCWork, then we
have a degenerate situation: we are introducing a new actionPreparewhose contribution is unnecessary
in all situations (i.e., it might as well be aconcrete skip, too). Thus, in any relevant case of reducing
granularity,CWork can be applicable in only a subset of the corresponding concrete states – namely
those wherePreparehas nothing (left) to do. Indeed, becausePrepareis a refinement of an abstractskip,
if its before-state is linked to a particular abstract state, then so should its after-state. Again in order to
ensure thatPreparedoes something useful in some circumstances, there should be some abstract states
linked to the before-states ofPrepare.

This is where the prevalent notion of refinement makes a difference. If condition (2) (“enabledness”)
is in force, we have made it impossible forCWork to be a refinement ofAWork, becauseCWork is
only applicable in a strict subset of the corresponding concrete states. This holds a fortiori for stronger
versions of condition (2) such as failures refinement.

Thus, condition (2) excludes reduction of granularity by introducing perspicuous actions. It also
excludes reduction of granularity by introducing internalactions using the “perspicuous actions” condi-
tions. However, the more general “weak refinement” rules canbe used in combination with condition
(2), as we have shown in [6] in a context with condition (1) in force, and in [10] with condition (3) in
force. This is explained by not being constrained to considering the concrete operation in isolation, but
rather only considering it in the context of possible internal concrete behaviour.
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The other way in which condition (2) is problematic for the refinements ofskip is any requirements
for perspicuous actions to be non-divergent. If they are refinements ofskip respecting condition (2),
then they are by definition applicable in all states and thus always applicable “again” and by definition
divergent.

Returning to the example, ignoringCycle for now, refinement reducing granularity is possible in
several ways:

• by havingSort perspicuous, and guarded by¬sorted(s) if it is also required to be non-divergent.
This works for trace refinement (just (1)), Event-B refinement, but not the other forms.

• by havingSort internal, provided it is guarded by¬sorted(s). This works according to the rules
for Event-B, establishing normal Event-B refinement. However, it can also work for stronger
refinement relations respecting condition (2), but then themore general weak refinement rules
need to be used to establish it. In particular, it would mean thatAout is compared for refinement
with Sort∗ o

9 Cout.

• for explicit action refinement ofAout by Sort followed byCout, there is no requirement forSort
to be guarded (compare the watch example referred to above: as conceptionally the user presses
ButtonB, there is no guard preventing the user from doing that infinitely often), and refinement can
be any kind, including relations respecting property (2) oreven (3). In fact, including a guard on
Sort would disallow the combined concrete output operation on states which are already sorted,
and thus be unacceptable if the refinement relation obeys property (2).

5 Conclusion

The paradox that led to the discussion with Carroll Morgan referred to earlier was the following. If the
work of one abstract operation is split between two concreteones, and one of the concrete operations
makes no progress that can be detected abstractly8, why do we need this action at all? And if we do
need it, how can the other concrete operation, achieving some but not all of the work of its abstract
counterpart, be a refinement of the abstract one? The answer is hopefully somewhat clarified above. It
requires a notion of refinement that allows for guards to be strengthened. The underlying issue may well
have been known in “folklore” but it is not presented in any published papers we are aware of.

Coming back to Event-B specifically, two of its design decisions are thus closely entangled:

• to have essentially a trace semantics with only global deadlock prevention;

• to use stuttering step refinements for reducing granularity.

Both lead to relatively simple refinement obligations, which is attractive. In order for Event-B to
strengthen refinement to preserve stronger properties suchas encoded in various refusal-based semantics,
it would also have to give up its simple notion of reduction ofgranularity. It could do this in at least two
ways: either by going the way of ASM and having explicit recipes for decomposing operations with their
corresponding conditions, or by going the way of process algebra, and giving certain operations explicit
“internal” status which they then would need to retain subsequently. In either case, the price of gaining
semantic strength is a considerable amount of complicationof refinement conditions, which may be too
big a price to pay, particularly for a formalism which now hasso much (automated) proof tool support
available. Would that be what Abrial had in mind when he wrotethat (condition (2)) “happens to be
sometimes too strong”?

8Thus, some degree of data refinement is implied: a refinement of skipon thesamestate really cannot make any progress.
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Postscript

Finally, returning to the running example once more, a last word on theCycleoperation. It makes no
useful progress whatsoever, but the constraints put upon this completely irrelevant operation in refine-
ment in any “stuttering steps” approach (namely: taming itsdivergence), have been no more and no less
than on the supposedly enormously usefulSortoperation. Surely that is somewhat disappointing.
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Event-B is a refinement-based formal method that has been shown to be useful in developing concur-
rent and distributed programs. Large models can be decomposed into sub-models that can be refined
semi-independently and executed in parallel. In this paper, we show how to introduce explicit control
flow for the concurrent sub-models in the form of event schedules. We explore how schedules can
be designed so that their application results in a correctness-preserving refinement step. For practical
application, two patterns for schedule introduction are provided, together with their associated proof
obligations. We demonstrate our method by applying it on thedining philosophers problem.

1 Introduction

Event-B [1, 18] is a state-based modelling framework with its roots in the guarded command language
and the Action Systems formalism [3, 4]. It advocates proof-based correct-by-construction design, ab-
straction, stepwise refinement and model decomposition as its main development strategies.

In an Event-B model, events are chosen non-deterministically for execution following the interleav-
ing principle and assuming atomicity of events. Much of the effort in the refinement approach, especially
down in the refinement chain, is about the modeller aiming at diminishing the non-determinism in the
model and introducing more deterministic ways of choosing events for execution. In an extreme case
we can think of the modeller encoding this by using explicit program counters in the events. Work
on introducing more deterministicschedulesof events to Event-B has been studied extensively recently
[8, 11, 14, 20]. The goal has been to avoid explicitly coding this scheduling information into the events.
We base our approach on [8], which concerns sequential systems, and extend it to concurrent programs.

When models become large, decomposition strategies are used to focus on specific parts of the model.
To be practical, such strategies need to support compositional verification in the sense that the modeller
can locally reason about properties of a decomposed part of the model even though the underlying Event-
B assumption is that events are chosen for execution from theentire set of events in the model. Relying on
the atomicity requirement for events and the interleaving semantics for Event-B models the distinct parts
can be interpreted as concurrently executing models [12]. We show here how the scheduling approach of
Boström [8] can be extended so that we can apply it in a compositional manner focusing only on part(s),
or sub-model(s), of the model. We turn these sub-models intotasks, giving each of them a schedule of
its own. The main addition to the original approach for sequential programs is to handle the possible
interferences the concurrently executing tasks might exhibit. This can also be seen as an extension, with
explicit schedules, of the Hoang-Abrial approach [12] to development of concurrent programs.

To facilitate practical use of our method, the schedules areintroduced stepwise into a model via pat-
terns. The patterns have associated proof obligations needed for ensuring the correctness of the refine-

∗This research was supported by the EU funded FP7 project DEPLOY (214158). http://www.deploy-project.eu
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ment step. As a result of the schedules, the scheduling information contained in events can be expressed
explicitly in the schedules.

In this paper, we focus on developing concurrent programs following the stepwise refinement ap-
proach. Apart from the introduction of explicit schedules,concurrent programs are modelled within
Event-B in a normal manner [1, 12]. While Event-B models can be executed as such using a non-
deterministic scheduler (“animation”), our approach is designed to be close to traditional programming
languages and results in models that are more efficient to execute on a computer, since more control flow
information is explicitly stated in the schedule than usingonly Event-B [8]. The approach can also be
used to replace parts of event behaviour with scheduling information as the scheduling concept as such
is more general than what the focus is here. The schedules actually give a process-oriented specification
style for Event-B modeller complementing its state-based style [9, 17].

The rest of this paper is structured as follows. In section 2,we present the foundations needed to
understand our approach. We discuss set transformers (predicate transformers), the Event-B formalism
and model decomposition. In section 3, we introduce a diningphilosophers [13] Event-B model, which
serves as a running example. Section 4 presents our main contributions. We introduce a scheduling
language, show how schedules and tasks can be introduced, and demonstrate how it is possible to tackle
the problem of interference from interleaving tasks. In section 5, we show how our framework can be
applied on the dining philosophers example model. Finally,we sum the paper up in section 6, where we
also discuss related work and future perspectives.

2 Foundations

2.1 Event-B

Event-B [1, 10] is a state-based modelling language. Modelsin Event-B consist of a dynamic and a
static part, referred to asmachinesandcontexts, respectively. The most important parts of a machine
arevariables, an invariant andevents. Contexts contain parts such asconstants, which can be referred
to from machines. The state space is made up of the variablesv1, ..., vn of typesΣ1, ..., Σn, and can be
modelled as the cartesian productΣ = Σ1× ...×Σn. The eventsE1, ..., Em modify the state space, and
can be written in the following general form [10], wherek∈ 1..m:

Ek =̂ whenGk(v,c) then v : |Ak(v,v
′,c) end. (1)

Here,v represents the variables,c the constants seen by the machine, and theaction v: |Ak(v,v′,c) is
the nondeterministic assignment assigningv any such valuesv′ for which Ak(v,v′,c) holds. Gk(v,c)
represents theguard, which is a condition that must hold in order for the action totake place. An event
is said to beenabledwhen its guard holds. Each machine also contains a special event Initialisation
=̂ v : |A0(v′,c) that initialises the state space. Unlike other events, it isunguarded and does not depend
on a previous state. Events can be classified asordinary, convergentor anticipated. This will be further
explained in section 2.4. The invariantI(v,c) is a predicate constraining the values of the variables.

2.2 Set transformers

The events in Event-B can be viewed as set transformers [10].Our presentation of events as set trans-
formers is similar to the presentation in [10].
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Consider a state spaceΣ. A set transformer is a functionP(Σ)→P(Σ) that tranforms a set of states
into another set of states. A weakest precondition set transformerSapplied to a setq returns the largest
setp from whichS is guaranteed to reach a state inq.

We have the following definitions to give a set transformer semantics to Event-B models:

Σ = {v|⊤}
i = {v|I(v,c)}
gk = {v|Gk(v,c)}
ak = {v 7→ v′|Ak(v,v′,c)}
a0 = {v′|A0(v′,c)}

(2)

The seti describes the subset of the state space where the invariantI holds. Similarly, the setsgk (k ∈
1..m) represent the state space subsets where guardGk of the respective eventEk is true. The relationak

describes the possible before-after states that can be achieved by the assignment of the respective event.
Note that the initialisation results in a seta0 instead of a relation, since it does not depend on the previous
values of the variables. In this paper, we do not consider properties of constantsc separately, as it is not
important at this level of reasoning. The axioms that describe the properties of the constants are here
considered to be part of the invariant.

Let g andq be subsets ofΣ, anda be a relation. Furthermore,S, S1 andS2 are arbitrary set transform-
ers. The variables ofΣ are denotedv. We have the following set transformers:

[a](q) =̂ {v|a[{v}] ⊆ q} (Nondeterministic update) (3)

[g] (q) =̂ ¬g∪q (Assumption) (4)

{g}(q) =̂ g∩q (Assertion) (5)

(S1⊓S2)(q) =̂ S1(q)∩S2(q) (Nondeterministic choice) (6)

S1; S2(q) =̂ S1(S2(q)) (Sequential composition) (7)

Sω(q) =̂ µX.(S; X⊓ skip)(q) (Strong iteration) (8)

S∗(q) =̂ νX.(S; X⊓ skip)(q) (Weak iteration) (9)

skip(q) =̂ q (Stuttering) (10)

magic(q) =̂ true (Miracle) (11)

abort(q) =̂ false (Aborting) (12)

Here,true andfalse are notations representing the setsΣ and /0, respectively. This is because of conve-
nience as well as the fact that the same notation is used in weakest precondition predicate transformers.
We will also in general use predicate notation for describing subsets of the state space. (Nondeterminis-
tic) update is used to assign values to variables in the statespace, of which the stuttering set transformer
skip is a special case, which leaves the state unmodified. The set transformermagic achieves the desired
postcondition (evenfalse) from any state, whereasabort does not guarantee to achieve any postcondi-
tion q from any state. Not even termination is guaranteed. Assumption and assertion both behave as
skip wheng is true, but when false, assumption behaves asmagic, whereas assertion behaves asabort.
Nondeterministic choice represents demonic choice between set transformers, and sequential composi-
tion combines set transformers in a sequential manner. An important property of demonic choice is that
miraculous behaviour is avoided whenever possible, whereas aborting behaviour is always preferred.
This is demonstrated by the following theorems, which follow directly from the definitions:

magic⊓S= S
abort⊓S= abort

(13)
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The following properties can easily be derived, and the proofs can also be found in [5]:

magic; S=magic abort; S= abort
{g}; [h] = {g} [g]; {h} = [g]
{g∩h}= {g}; {h} [g∩h] = [g]; [h]

(14)

The iteration set transformers are used to achieve repeatedexecution. Iteration has been thoroughly
discussed by Back and von Wright [5, 6], and is only shortly summarised here. In both strong and weak
iteration (Sω andS∗, respectively), the set transformerS is repeatedly executed a demonically chosen
number of times. In strong iteration, the number of executions may be infinite, whereas for weak iteration
it is guaranteed to be finite. Important theorems regarding iteration include the followingunfoldingrules:

Sω = S; Sω ⊓ skip
S∗ = S; S∗⊓ skip

(15)

The set of states in which a set transformerSdoes not behave miraculously is called the guard ofS.
The guardg(S) is given as:

g(S) =̂ ¬S(false) (16)

We can now interpret an eventEk from (1) as a set transformer. Using the definitions from (2),we
can now give the set transformer[Ek] for Ek as [10]:

[Ek] =̂ [gk]; [ak] (17)

For a set of events,{E1, . . . ,Em}, we will use the denotion[E] for the expression[E1]⊓ . . .⊓ [Em].

2.3 Refinement

Refinement is an important concept in Event-B. In this paper,we are mainly interested in refinement on
the set transformer level, where it can be defined as [5]:

S1 ⊑ S2 =̂ ∀s.S1(s) ⊆ S2(s) (18)

Here,S1 andS2 are set transformers. The intuitive interpretation ofS1 ⊑ S2 is that ifS1 will reach a state
in a sets, then so willS2. We say thatS1 andS2 are (refinement) equivalent if and only ifS1 ⊑ S2 and
S2 ⊑ S1. The relation between the set transformer view of refinementand a proof obligations approach
has been studied in [10].

A set transformedS is said to behave miraculously when executed in a state in theset S(false),
i.e. when the execution ofS results in a post-state belonging to the empty set. We typically want to
avoid introduction of more miraculous behaviour during refinement. Given a set transformerS1 and a
refinementS2, S2 does not exhibit more miraculous behaviour thanS1 if S1(false) = S2(false).

2.4 Behavioural semantics

We aim at using Event-B for construction of concurrent programs. Ultimately we like to show that
a (concurrent) programS is correct given a preconditionP and a postconditionQ. This correctness
requirement is expressed in the Hoare triple:

{P} S{Q} (19)
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As the basis for our method, we use the development method forconcurrent programs in [12]. In this
approach, the concurrent programs are built from atomic events in the same way as sequential programs
are constructed [1]. The programSis considered to consist of a collection of events. Note thatthere is no
control flow other than non-deterministic choice of enabledevents. Using the refinement based approach
of Event-B, the programS that satisfies the pre/post-specification is derived stepwise. In order to use
the refinement process to develop programs, the pre-/post-specification first has to be encoded into an
initial Event-B model. This model has a specific structure [1]: it has an initialisation eventinit , progress
eventsprog and a finalisation eventfin. The eventsprog model (non-deterministically) the computation
of the program, whilefin models the post-conditionQ as a guard. The precondition is encoded in an
external context machine. The semantics of an Event-B modelM specifying a sequential program is in
this setting:

M =̂ [init ] ; [prog]∗; [fin] (20)

The system is first initialised, thenprog is executed until the postcondition given byfin becomes true.
The program can then terminate. The progress eventsprog are later refined to create a deterministic
algorithm to reach the postcondition. We will also later need to show that the refinementsE of prog
terminate [1], i.e. [E]ω = [E]∗, as we are interested in total correctness. We assume that all Event-B
models in the rest of the paper have this structure. Each event should maintain the invariant and therefore
we assume that there is an invariant assertion{i} implicitly given before and after each event.

We previously mentioned that events can be classified asordinary, convergentor anticipated. This is
relevant from a behavioural semantics point of view. Eventsare normally classified as ordinary, but it is
sometimes necessary to prove that execution of events from agroup will eventually terminate. All events
belonging to this group should then be labelled as convergent. In practice, the termination property is
proven by introducing a variant, and by showing that it is decreased by all convergent events. There
is also the possibility of classifying events as anticipated. Labelling an event as anticipated indicates
that it will be classified as convergent in a later refinement step, whereby the proof is postponed until
further down the refinement chain. The notions anticipated or convergent should be for the eventsprog
to guarantee that the model eventually terminates.

2.5 Decomposition

In order for a refinement based development method to be scalable there should be a way to decompose
specifications into smaller parts that can be independentlydeveloped. The verification of refinement
should thus be compositional, i.e., refinement of the individual parts should yield a refinement of the
whole system.

Here we will use a decomposition approach based on shared variables [1, 2]. Following this approach,
a model can be decomposed into sub-models that can themselves be further decomposed. The set of sub-
models forms the complete system model.

Definition 1. Sub-model. A sub-model is given as a 7-tuple(v,x,E,X, I , init ,fin), where v and x are sets
of variables, E and X are sets of events, I the invariant, initthe initialisation and fin the finalisation.

The variablesv are only visible inside the sub-model, and will be referred to as internal variables. Vari-
ablesx are shared with other components and will be called externalvariables. The eventsE can refer
to bothv andx. Since they (also) manipulate the internal variables of thesub-model, they are denoted
the internal events. The external events,X, are abstractions that only refer to the external variablesx
modelling the effects of events of other components. Hence,each event inX has a corresponding in-
ternal event in another component. The initialisation of a sub-model is given by eventinit and the loop
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termination guard is given by eventfin. Note that a traditional Event-B model can be seen as a sub-model
where the sets of external events and external variables areempty. A sub-model(v,x,E,X, I , init , f in)
can be (further) decomposed into sub-models:

(v,x,E,X, I , init , f in) = (v1,x1,E1,X1, I1, init1, f in1) ‖ (v2,x2,E2,X2, I2, init2, f in2)

The parallel composition of the sub-models is defined as:

(v1,x1,E1,X1, I1, init1, f in1) ‖ (v2,x2,E2,X2, I2, init2, f in2)
=̂ (v1∪v2,(x1∪x2)\(v1∪v2),E1∪E2,(X1∪X2)\(E1∪E2), I1∧ I2, init1 ‖ init2, f in1 ‖ f in2)

(21)

The parallel composition of two events is given as:

whenG then v : |Send‖ whenH then w : |R end
=̂ whenG∧H then v,w : |S∧Rend

(22)

The semantics[M1 ‖ M2] of a the parallel compositionM1 ‖ M2 is given as:

[M1 ‖ M2] =̂ init1 ‖ init2;([E1∪E2∪ ((X1∪X2)\(E1∪E2))])
∗; [¬g( f in1 ‖ f in2)] (23)

The composition can be extended to arbitrary many components by recursively merging components
pairwise. Since we want to do compositional proofs of refinement, we need to show that refinement of
the individual sub-models lead to refinement of the entire system. First we need to prove that the external
events provide abstractions of their internal counterparts {i1∩ i2}; [X1]⊑ [E2]⊓ [X2] and{i1∩ i2}; [X2]⊑
[E1]⊓ [X1]. To compositionally prove the refinement[M1 ‖ M2]⊑ [M′

1 ‖ M2], we then only need to prove
the refinement[M1]⊑ [M′

1], see [7].
We need to model that external events are executed a finite number of times, as they model the

finite execution of their internal counterparts in other sub-models. Since these external events are not
necessarily terminating by themselves, strong iteration cannot be used for describing behaviour of sub-
models. The use of weak iteration can be seen as compositionally verifying partial correctness of a
program, since termination is not ensured by set transformer refinement. However, we want to prove total
correctness of the complete system. Since we in this approach [1, 12] label the eventsE as anticipated
or convergent, we show that the model will eventually terminate. Hence, total correctness follows from
partial correctness in combination with the Event-B proof obligations that ensure termination [5, 6].

3 Dining philosophers case study

3.1 Problem description

We are now ready to introduce a model of the dining philosophers [13], which will serve as a running
example. In this section, we show the initial model, we refineit, as well as decompose it into sub-models.
The dining philosophers scenario can be described as follows. There are four philosophers sitting around
a round table. Each philosopher has a plate in front of him, and there is a fork placed between each pair
of adjacent plates. Each philosopher always does one of two things: think and eat, but not both at the
same time. Furthermore, in order to eat, a philosopher must pick up both of the two forks located next to
his plate. A philosopher can also drop a fork back into its original position, but only after he has eaten.

The basic problem is that if the philosophers pick up the forks arbitrarily, there may be deadlocks.
For example, if each philosopher picks up his right fork, there will not be any forks available anymore,
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and no philosopher will have enough forks to eat. Since a philosopher will not drop a fork until he has
eaten, there will be a deadlock. One well-known solution to this problem is to assign a number to each
fork, and enforce that each philosopher picks up the adjacent fork with the lowest number first. In our
case study we assume that we have four philosophers and number the forks as follows: Philosopher 1
can access forks 1 and 2, philosopher 2 accesses forks 2 and 3,philosopher 3 uses forks 3 and 4, while
philosopher 4 has access to forks 1 and 4.

3.2 Modelling and refinement

Initially we model the scenario as an abstract Event-B machine, where the four philosophers eat in a non-
deterministic order. We only model one round, so each philosopher will only eat once. We introduce the
variablesph1eatenthru ph4eaten, to model whether each philosopher has eaten. The eventIntialisation
sets these variables to FALSE. The eventsPh1Eatthru Ph4Eatfor the four philosophers then represent
the progress of the model. They model that a philosopher eatswhich has not yet eaten by setting the cor-
responding variable to TRUE. Finally, eventFinalisation checks that all four philosophers have eaten.
The Initialisation andFinalisationevents are classified as ordinary events, whereasPh1Eat, ...,Ph4Eat
are convergent, since they correspond to theprog variables in (20). We now have:

variables
ph1eaten
ph2eaten
ph3eaten
ph4eaten

invariant
ph1eaten∈ BOOL
ph2eaten∈ BOOL
ph3eaten∈ BOOL
ph4eaten∈ BOOL

Initialisation (ordinary) =̂
begin

ph1eaten:= FALSE
ph2eaten:= FALSE
ph3eaten:= FALSE
ph4eaten:= FALSE

end

Ph1Eat (convergent) =̂
when

ph1eaten= FALSE
then

ph1eaten:= TRUE
end

Finalisation (ordinary) =̂
when

ph1eaten= TRUE
ph2eaten= TRUE
ph3eaten= TRUE
ph4eaten= TRUE

then
skip

end

In the first refinement step we introduce the forks, which are modelled as variablesfork1 thru fork4.
They are of type 0..4 to represent which philosopher that currently holds the fork. Value 0 represents
the fork lying on the table. All forks are initialised to thisvalue. There are 16 new events in this
refinement step: two for each of the four philosophers getting their adjacent forks (e.g.Ph3GetFork3and
Ph3GetFork4), and two events for each philosopher releasing the corresponding forks (e.g.Ph3RelFork4
andPh3RelFork3). Note that philosopher 4 uses forks 1 and 4.

In order to be able to prove that the new events will not take over the execution, we classify them as
convergent and give a variant that they decrease. There is novariable that can be used as a variant, but
when each new event is executed it will disable itself and it will not be enabled again. Hence, we define
a functionv as follows:
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v= { (FALSE,FALSE,FALSE) 7→ 5,
(TRUE,FALSE,FALSE) 7→ 4,
(TRUE,TRUE,FALSE) 7→ 3,
(TRUE,TRUE,TRUE) 7→ 2,
(TRUE,FALSE,TRUE) 7→ 1,
(FALSE,FALSE,TRUE) 7→ 0}

The first and second dimension of the triple correspond to whether a philosopher is holding his left or
right fork, respectively. The third one indicates whether he has already eaten or not. The variant is then
formed as a sum of the values of functionv applied on the variables of each philosopher. The refined
model is now as follows:

variables
fork1
fork2
fork3
fork4
ph1eaten
ph2eaten
ph3eaten
ph4eaten

invariant
fork1∈ 0..4
fork2∈ 0..4
fork3∈ 0..4
fork4∈ 0..4
. . .

variant
v(bool( f ork1= 1),bool( f ork2= 1), ph1eaten)

+v(bool( f ork2= 2),bool( f ork3= 2), ph2eaten)
+v(bool( f ork3= 3),bool( f ork4= 3), ph3eaten)
+v(bool( f ork1= 4),bool( f ork4= 4), ph4eaten)

Initialisation (ordinary) =̂
begin

fork1 := 0
fork2 := 0
fork3 := 0
fork4 := 0
ph1eaten:= FALSE
ph2eaten:= FALSE
ph3eaten:= FALSE
ph4eaten:= FALSE

end

Ph1GetFork1 (convergent) =̂
when

fork1= 0
ph1eaten= FALSE

then
fork1 := 1

end

Ph1GetFork2 (convergent) =̂
when

fork1= 1
fork2= 0
ph1eaten= FALSE

then
fork2 := 1

end

Ph1Eat (convergent) =̂
when

fork1= 1
fork2= 1
ph1eaten= FALSE

then
ph1eaten:= TRUE

end

Ph1RelFork2 (convergent) =̂
when

fork2= 1
ph1eaten= TRUE

then
fork2 := 0

end

Ph1RelFork1 (convergent) =̂
when

fork2= 0
fork1= 1
ph1eaten= TRUE

then
fork1 := 0

end

Finalisation (ordinary) =̂
when

fork1= 0
fork2= 0
fork3= 0
fork4= 0
ph1eaten= TRUE
ph2eaten= TRUE
ph3eaten= TRUE
ph4eaten= TRUE

then
skip

end

Note that when thev function is called, the fork variables are not directly passed as parameters. Instead,
we check whether the currently evaluated philosopher holdsthe fork or not. Thebool function is a
technicality of Event-B that is needed to convert the resultof the comparison into a value of BOOL.
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The events corresponding to philosophers 2, 3 and 4 eating, as well as picking up and releasing their
respective forks are analogous to the events of philosopher1, and are thus not shown here. We now
have a refined model for the four philosophers eating, and in the next subsection we will decompose this
model.

3.3 Decomposition

In the decomposition step we separate the functionality of the four philosophers in such a way that each
philosopher constitutes a sub-model of its own. The partitioning we achieve is shown in the table below.
Since philosophers 2 and 4 share fork 2 and fork 1, respectively, with philosopher 1, the external events
of sub-model 1 are Ph2GetFork2, Ph2RelFork2, Ph4GetFork1 and Ph4RelFork1. Analogous reasoning
is used to find the external events of the other sub-models.

Sub-model 1 Sub-model 2 Sub-model 3 Sub-model 4

Internal Ph1Eat Ph2Eat Ph3Eat Ph4Eat
events Ph1GetFork1 Ph2GetFork2 Ph3GetFork3 Ph4GetFork1

Ph1RelFork1 Ph2RelFork2 Ph3RelFork3 Ph4RelFork1
Ph1GetFork2 Ph2GetFork3 Ph3GetFork4 Ph4GetFork4
Ph1RelFork2 Ph2RelFork3 Ph3RelFork4 Ph4RelFork4

External Ph2GetFork2 Ph1GetFork2 Ph2GetFork3 Ph1GetFork1
events Ph2RelFork2 Ph1RelFork2 Ph2RelFork3 Ph1RelFork1

Ph4GetFork1 Ph3GetFork3 Ph4GetFork4 Ph3GetFork4
Ph4RelFork1 Ph3RelFork3 Ph4RelFork4 Ph3RelFork4

4 Concurrent programs

This far, we have considered model decomposition, resulting in sub-models that can be refined semi-
independently. We are now ready to examine how these sub-models can be executed in a concurrent or
parallel setting. This problem has been studied in [12], which is a case study showing how to decompose
Event-B models into concurrently executing sub-models. Here we extend this approach by giving sub-
models explicit flow control in the form of event schedules, instead of the traditional nondeterministic
choice. An important concept in our approach is the concept of tasks, which we define as follows:

Definition 2. Task. A task is an 8-tuple(v,x,E,X, I , init , f in,S) where v are the internal variables, x the
external variables, E the internal events, X the external events, I the invariant, init the initialisation,
f in the loop termination condition, and S is a schedule conforming to the syntax in (24) concerning the
internal events E.

Since all coordinates, except forS, are the same as in a sub-model, a task can be seen as an extension
of the sub-model concept. Whereas the events of traditionaldecomposed sub-models are executed non-
deterministically, the internal events of a task are scheduled according toS. The scheduleS may only
consist of internal events, and the set of events in the schedule is denotede(S). We assume thatE = e(S),
since if an internal event was not included in the schedule, it would never be executed.
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4.1 Scheduling language

In order to describe schedules of events we give a small scheduling language [8], which adheres to the
following syntax:

S ::= PS→ S | PS
PS ::= do Sod | S1 8 . . . 8Sn | E | {g} (24)

Here→ represents sequential composition,8 non-deterministic choice,do od is a loop,E an event and
{g} is an assertion.

4.2 Semantics of tasks

The semantics of schedules is given using a functionsched that maps each schedule to the corresponding
set transformer as in [8]. However, when scheduling the events in a task we need to consider interference
from other tasks. A goal of the scheduling language is to be able to express schedules of internal events in
such a way that interference from external events does not have to be explicitly taken into account. Such
interference freedom is instead proven separately. We now recursively define a functionsched(S,X)
whereS is a schedule,X is the set of external events.

sched(PS→ S,X) = sched(PS,X);sched(S,X)
sched(do Sod ,X) = ([g([e(S)∪X])];sched(S,X))∗; [¬g([e(S)∪X])]
sched(S1 8 . . . 8Sn,X) = sched(S1,X)⊓ . . .⊓ sched(Sn,X)
sched(E,X) = [X]∗; [E]; [X]∗

sched({g},X) = {g}

(25)

The scheduling function takes the scheduleS, as well as the set of external eventsX as input and outputs a
set transformer containing both internal and external events. An arbitrary (but finite) number of external
eventsX can occur before and after an internal eventE in a schedule. This is modelled by the set
transformer[X]∗ on both sides of the event.

Consider a system consisting of two tasksT1 = (v1,x1,E1,X1, init1, f in1,S1) andT2 = (v2,x2,E2,X2,
init2, f in2,S2). To find the complete system behaviour, we need to compose thetasks, i.e. obtainT1 ‖ T2.
However, the number of interleavings of atomic set transformers grows exponentially with the length of
the schedule [19]. Hence, we need an appropriate approach toreason about the interleavings in order to
make refinement proofs manageable. Here we make the restriction that we only consider tasks where the
set transformers obtained after scheduling can be decomposed into a loop containing the demonic choice
of atomic set transformers. This is an extension of the approach used in [12], where the programs are
built from atomiceventsthat are chosen non-deterministically for execution. Composition of such tasks
can be easily handled [7]. We have the following requirementfor schedulability in our approach:

∃S11, . . . ,S1n · sched(S1,X1) = (S11⊓ . . .⊓S1n⊓ [X1])
∗; [ f in1] (26)

where allS1i are atomic compositions of internal events. Using these atomic set transformers we can
now use the traditional parallel composition [7]. The semantics of the composition of the whole system
T1 ‖ T2 is now given as:

[T1 ‖ T2] =̂ [init1 ‖ init2];((⊓iS1i)⊓ (⊓ jS2 j))
∗; [ f in1 ‖ f in2] (27)

This approach thus extends the decomposition method in [2, 12] with the possibility to reason about
groups of sequentially scheduled events, instead of only individual ones. However, to find the groups
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S11, . . . ,S1n is in general non-trivial. Here we will give special cases encoded aspatternsto make the
verification of schedules manageable in practise.

4.3 Introduction of schedules

Schedules are introduced for the sub-models as a refinement step, in which we convert sub-models into
tasks. The introduction of schedules has to constitute a refinement step in order to ensure that the prop-
erties we have already proved for the models before introduction of schedules are preserved. Note that
we do not support scheduling of anticipated events, so they have to be turned into convergent ones before
the introduction of schedules.

We now need to show for the two tasksT1 =(v1,x1,E1,X1, init1, f in1,S1) andT2=(v2,x2,E2,X2, init1,
f in1,S2):

[M1 ‖ M2]⊑ [T1 ‖ T2] (28)

where sub-modelMi corresponds to taskTi as Mi = (vi ,xi ,Ei,Xi, init i , f ini). As in the traditional de-
composition method, we can use external events to perform compositional proofs of refinement. Here
we rely on the property (26) to decompose schedulesched(Si ,Xi) into a loop consisting of atomic set
transformers. We need to show that for all tasksTi [7]:

{i1∩ i2}; [Xi j ]⊑ Sk j (29)

([e(Si)]⊓ [Xi])
∗; [ f ini ]⊑ sched(Si ,Xi) (30)

In (29) we assume that for any external eventXi j ∈ Xi, there is one corresponding atomic set transformer
Sk j in another taskTk. To give a practical approach to the decomposition of schedules required by (26),
we give patterns that give generic instantiations of the quantified variables. In the patterns we rely on
special cases of scheduling constructs where we know we can prove (29) and (30). Patterns thus encode
reusable schedule structures. One such case is when the introduction of sequential behaviour does not
alter the behaviour of the sub-model. Another useful special case is when the introduction of sequential
behaviour does not modify the externally visible behaviourof a sub-model. We use the same scheduling
approach as in [8], where patterns are applied on schedules stepwise and we prove that each pattern
application leads to a refinement of the previous application.

A pattern consists of aprecondition, a schedule, a result and a number ofassumption. The precon-
dition predicate describes under which conditions the pattern is applicable. The schedule part describes
what schedule the pattern is intended for, and the result part gives the set transformer that is produced
when the pattern is applied. The assumptions are extra conditions that have be fulfilled in order to use
the pattern.

Pattern 1 The first pattern,P1, introduces sequential behaviour into a sub-model.

P1(E1,h,g,S,X) =̂
Precondition : h
Schedule : E1 →{g} → S
Result : {h};X∗;E1;X∗;{g};sched(S,X)
Assumption 1 : h⊆ ¬g(e(S))
Assumption 2 : g⊆ ¬g(E1)
Assumption 3 : {g};(X⊓ e(S))⊑ (X⊓ e(S));{g}
Assumption 4 : {h};X ⊑ X;{h}
Assumption 5 : E1 = E1;{g}

(31)
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The first assumption states that the preconditionh implies that the events followingE1 are disabled. The
second assumption states thatg ensures thatE1 is disabled. Context information cannot be propagated in
schedules without taking interference into account. Hencewe need assumptions 3 and 4 to state thatg
andh are invariant with respect to the environment. Furthermore, g should also be invariant for all events
in the scheduleS. The last assumption states thatE1 will establishg. We also directly use the event name
E1 instead of the set transformer[E1], as well asE instead of[E].

In order to stepwise use patterns we need to show that each application of a pattern is correct, i.e. that
(30) holds. In order to do that, we assume thatsched(S,X) represents a yet unscheduled loop of events
sched(S,X) = (e(S)⊓X)∗; [g(e(S)⊓X)]. We instantiate the existential quantifier in (26) withSi asEi.
Hence, we then need to show that{h};sched(E1 →{g}→ S) = {h};X∗;E1;X∗;{g};sched(S). Note that
we also rely here on the properties (32)-(34) in Lemma 1. Notealso that to ensure (30) we here assume
i ∩¬g(E⊓X)⊆ g( f in). The reason for formulating the pattern in this way is to be able to use the same
verification approach also to nested loops.

Lemma 1. Context preservation. If{g};S⊑ S;{g} then:

{g};S= {g};S;{g} (32)

{g};S∗ = {g};S∗;{g} (33)

{g};S∗ = ({g};S)∗ (34)

The proofs of the properties in the lemma are straightforward and they are omitted for brevity. We can
now prove the correctness of patternP1.

Proof.

{h};sched(E1 →{g}→ S,X); [¬g(E1⊓E⊓X)]
= {Representation ofsched(E1 → {g}→ S)}

{h};(E1⊓E⊓X)∗; [¬g(E1⊓E⊓X)]
= {Decomposition[6] : (S⊓T)∗ = (S;T∗)∗;T∗}

{h};X∗;(E1⊓E;X∗)∗; [¬g(E1⊓E⊓X)]
= {Distributivity}

{h};X∗;((E1; X∗)⊓ (E; X∗))∗; [¬g(E1⊓E⊓X)]
= {Decomposition}

{h};X∗;((E1; X∗)∗;((E; X∗); (E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
= {Unfolding(15)}

{h};X∗;((E1; X∗);(E1; X∗)∗)⊓ skip;((E; X∗); (E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
= {Assumption 3 and Property(33)}}

{h};X∗;{h};(E1; X∗);(E1; X∗)∗)⊓{h};((E; X∗); (E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
= {Distributivity, assumptionh⊆¬g(E) and disabledness of guard}

{h};X∗;{h};(E1; X∗);(E1; X∗)∗;((E; X∗); (E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
= {AssumptionE1 = E1;{g}}

{h};X∗;{h};E1; X∗;{g};(E1; X∗)∗;((E; X∗); (E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
= {Assumptiong⊆ ¬g(E1)}

{h};X∗;{h};E1; X∗;{g};(E; X∗;(E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
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= {Property(34) and ∗ below}
{h};X∗;{h};E1; {g};X∗;{g};({g};E; X∗;{g})∗; [¬g(E1⊓E⊓X)]

= {Leapfrog[6] : S;(T;S)∗ = (S;T)∗;S}
{h};X∗;{h};E1; {g};X∗;({g};E; X∗)∗;{g}; [¬g(E1⊓E⊓X)]

= {Assumptiong⊆ ¬g(E1) and{g}; [g] = {g}}
{h};X∗;{h};E1; {g};X∗;({g};(E; X∗))∗;{g}; [¬g(E⊓X)]

= {Lemma 9(c) in [6] : S∗ = S∗;S∗ and decomposition}
{h};X∗;{h};E1;{g};X∗;({g};E⊓{g};X)∗; [¬g(E⊓X)]

= {Property(33) and assumption 5}
{h};X∗;E1;X∗;{g};({g};E⊓{g};X)∗; [¬g(E⊓X)]

= {Representation ofsched(S,X)}
{h};X∗;E1;X∗;{g};sched(S,X)

The proof of step∗ is:
({g};E; X∗;(E1; X∗)∗)∗

= {Assumption 3 and Properties(32) and(33)}
({g};E; X∗;{g};(E1; X∗)∗)∗

= {Assumption 2}
({g};E; X∗;{g})∗

Pattern 2 The second pattern,P2, also introduces sequential behaviour. However, this timewe show
that we can group local behaviourE2 to an arbitrary event.

P2(E1,E2,h,g,S1,X) =̂
Precondition : h
Schedule : E1 → E2 →{g} → S
Result : {h};X∗;E1;X∗;E2;X∗;{g};sched(S,X)
Assumption 1 : h⊆ ¬g(e(S))
Assumption 2 : g⊆ ¬g(E1⊓E2)
Assumption 3 : E2;X = X;E2

Assumption 4 : {g(E2)};X = X;{g(E2)}
Assumption 5 : {g};(X ⊓ e(S))⊑ (X⊓ e(S));{g}
Assumption 6 : {h};X ⊑ X;{h}
Assumption 7 : E2 = E2;{g}

(35)

The assumptions in patternP2 are similar to the ones inP1. However, we additionally need assumptions
that states thatE2 andX do not interfere with each other (assumptions 3 and 4). To prove the correctness
of the pattern we need to show that

• By instantiation of (26) we get:{h};X∗;E1;X∗;E2;X∗;{g};sched(S,X) = {h};(E1;E2 ⊓ e(S)⊓
X)∗; [¬g(E1⊓E2⊓ e(S)⊓X)]

• Refinement (30):{h};sched(E1 → E2 → {g} → S,X) ⊑ {h};(E1;E2⊓ e(S)⊓X)∗; [¬g(E1⊓E2⊓
e(S)⊓X)]

• Deadlock freedom:{h};(E1;E2⊓ e(S)⊓X)∗; [¬g(E1⊓E2⊓ e(S)⊓X)](false) = {h};sched(E1 →
E2 →{g} → S,X)(false)
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The deadlock freedom proof obligation ensures that the scheduling does not introduce new deadlocks.
This was not needed in patternP1, as that pattern does not alter the behaviour of models. The proofs are
straightforward using the assumptions in the pattern. Thisensures that the scheduling does not introduce
more deadlocks than in the original system.

5 Scheduling of dining philosophers

We now return to the running example introduced in section 3.Up till now, the dining philosophers
model has been refined and split into sub-models. Now, we showhow the sub-models can be turned
into tasks by introducing schedules. In the scheduling process we use the patterns given in section 4.3.
Correctness will be proven by checking the assumptions of the patterns. We will concentrate on how to
derive a schedule for task 1. The schedules for task 2, 3 and 4 can be derived analogously.

Our approach is that the schedule should be formulated such that it fulfills the previously mentioned
solution to the dining philosophers problem, i.e., that each philosopher should pick up the lower num-
bered fork first. Since we first want to pick up fork number 1, wewish to schedulePh1GetFork1as
the first event. The correct order of events will bePh1GetFork1, Ph1GetFork2, Ph1Eat, Ph1RelFork2,
Ph1RelFork1. This is captured by the following schedule:

Ph1GetFork1→{g1} → Ph1GetFork2→ Ph1Eat→{g2}
→ Ph1RelFork2→{g3} → Ph1RelFork1→{g4}

The assertions in the schedule are needed to capture intermediate results and thereby enable verification
of the schedule in smaller parts.

We now want to prove that it is correct to schedulePh1GetFork1as the first event. To show this,
we will follow patternP1 introduced in Section 4.3 and show that the assumptions 1 - 5 for the pattern
are fulfilled. We instantiate patternP1 as P1(Ph1GetFork1,h1,g1,Sr ,Xt1), whereh1 = ( f ork1 6= 1∧
ph1eaten= FALSE), g1 = ( f ork1= 1∨ ph1eaten= TRUE), Sr = Ph1GetFork2→ Ph1Eat→ {g2} →
Ph1RelFork2→ {g3} → Ph1RelFork1→ {g4} andXt1 = {Ph2GetFork2, Ph4GetFork1, Ph2RelFork2,
Ph4RelFork1}.

We chose preconditionh1 so that it also is an invariant for the external eventsXt1. Here,h1 states
that philosopher 1 does not hold his forks nor has he eaten. Moreover, we chose assertiong1 to state that
philosopher 1 has picked up fork 1 or eaten. This condition isan invariant for the eventse(Sr)∪Xt1 and
established byPh1GetFork1. We now confirm that the assumptions for the pattern hold:

• h1 = ( f ork1 6= 1∧ ph1eaten= FALSE) implies that events ine(Sr ) are disabled. This holds, since
they are only enabled when philosopher 1 holds fork 1 or has eaten.

• The assertiong1 = ( f ork1 = 1∨ ph1eaten= TRUE) following eventPh1GetFork1ensures that
Ph1GetFork1is disabled. Sinceg1 is a negation of the guard ofPh1GetFork1the second assump-
tion is fulfilled.

• g1 is an invariant of the environmente(Sr)∪Xt1. This is fulfilled, since in the events ofe(Sr)
philosopher 1 holds fork 1 or has eaten. Moreover, the eventsin Xt1 that share fork 1 are not
enabled when philosopher 1 holds fork 1, and none of these events modify variableph1eaten.

• h1 is an invariant of the external eventsXt1. Since none of the external events model that philoso-
pher 1 picks up fork 1 or modify variableph1eaten, this assumption holds.

• EventPh1GetFork1establishesg1. This holds trivially sincePh1GetFork1models that philosopher
1 picks up fork 1 (f ork1 := 1).
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To verify the complete schedule, we then apply patternP2 once, followed by three applications ofP1.
In the last application ofP1, the schedule following the assertion is empty. This can be interpreted as a
schedule with an event that is always disabled. When task 1 has been fully proven, the whole procedure
is repeated to schedule tasks 2, 3 and 4 in the order shown in the table below (for simplicity, the assertions
are not shown).

Task 1 Task 2 Task 3 Task 4
Ph1GetFork1 Ph2GetFork2 Ph3GetFork3 Ph4GetFork1

→ Ph1GetFork2 → Ph2GetFork3 → Ph3GetFork4 → Ph4GetFork4
→ Ph1Eat → Ph2Eat → Ph3Eat → Ph4Eat
→ Ph1RelFork2 → Ph2RelFork3 → Ph3RelFork4 → Ph4RelFork4
→ Ph1RelFork1 → Ph2RelFork2 → Ph3RelFork3 → Ph4RelFork1

6 Conclusions and related work

In this paper, we have proposed a method of correct-by construction development of concurrent pro-
grams using Event-B. The programs are first developed as proposed by Hoang and Abrial [12]. From
this development process we obtain a number of sub-models that communicate via shared variables,
which represent the program. We then introduce explicit control flow in the form of schedules for each
sub-model, so that each sub-model/schedule corresponds toexactly one task. The schedules are intro-
duced as correctness preserving refinements. We use a set-transformer semantics for Event-B, as well
as well known algebraic rules [6] for the analysis of correctness. The schedules are verified in a step-
wise manner, and each step carries some related proof obligations. The schedules enable more efficient
implementation of the Event-B models as more explicit control flow information is available than for
pure event-B models. We can, e.g., use the transformations in [8] to introduce traditional control flow
constructs, such as while loops and if-statements, as well as remove unnecessary guards. Furthermore,
the schedules give a process-oriented specification of the behaviour of the models.

Our goal is to compositionally reason about concurrent programs. This has been a very active field
of research [19]. Our approach directly extends the approach in [12] for development of concurrent
programs with explicit schedules of events. Compositionalreasoning in this setting goes back to the
work of Owicki and Gries [16] and Jones’ Rely-Guarantee reasoning [15]. The decomposition method
based on shared variables in Event-B [2, 12] is based on theseideas. Essentially the same approach is
also available for action systems using the refinement calculus [7]. The theory for decomposition in the
set-transformer setting is largely based on that paper. Several approaches to introducing control flow
into Event-B models have been developed. Hallerstede’s approach in [11] to adding control flow only
deals with sequential programs and it is thus more related toBoström’s earlier work [8]. The scheduling
approaches in [14, 20] can also handle concurrent schedules. In [14] the scheduling (referred to asflows)
is expressed using a special purpose language, while in the approach [20] the scheduling is expressed
in CSP. The latter approach can be seen as an extension of the former. Processes or flows are both
considered to communicate via shared events. Our focus is oncompositional verification and scheduling
of concurrent programs that use shared variables for communication. However, in both approaches not
all events need to be scheduled, but non-scheduled events are considered interleaved in the scheduled.
This could be used to take into account external events, and thus be used for compositional verification
of shared variable programs also. Our contribution is threefold: 1) Compared to purely event-based
modelling, we consider explicit schedules of events that can be interleaved 2) We do all analysis on the
level of set transformers, which gives convenient formalism to algebraically perform the needed analysis
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of Event-B models 3) We provide patterns and a method to develop patterns for introducing control flow
in a stepwise manner. This is important, since verifying that a certain event schedule is correct can be
very challenging and reusable scheduling structures can significantly aid in this task.

Set-transformers give a powerful framework to reason aboutEvent-B models on a high level of
abstraction. They give a good basis for creating reusable patterns for scheduling, which are essential
for practical applications. If schedules are introduced asa last refinement step, as in the example of
this paper, existing tool support can be used for development up till, but not including, the scheduling
step. Future work involves investigating tool support for schedule application. Generation of refinement
proof obligations for scheduled models is also of interest,since that would allow for schedule intoduction
earlier in the refinement chain.
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