
A Model Transformation Approach for Translating

Conceptual Database Schemas into Executable Database

Systems

Ahmad F Subahi and Anthony J H Simons

Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello,

Sheffield S1 4DP, United Kingdom
{A.Subahi, A.Simons}@dcs.shef.ac.uk

Abstract. This paper presents a two-phase model transformation that translates

a conceptual data schema into executable relational database scripts. It

exemplifies a layered approach to model transformation, which applies design

constraints at suitable levels of abstraction, offering routes to implementation in

any DBMS. The model-to-model transformation step converts a rich

conceptual schema containing records, fields, associations, aggregations and

generalisations into a normalised logical schema containing only tables and

keys. Rules split and merge associations, promoting some to tables, and are

sensitive to the semantics of disjoint or overlapping generalisations, and strong

or weak aggregations. The model-to-text transformation step converts tables

into the target Data Definition Language, here MySQL, in which range

constraints are encoded using triggers (c.f. Oracle, in which these are native).

The translation framework adopts the direct manipulation approach,

exemplifying the Visitor and Composite design patterns, and is readily

customised for generating different target DDLs.

Keywords: ReMoDeL, Model-Driven Engineering, Model Transformation,

Domain-Specific Modelling Language, Automatic Code Generation, MySQL.

1 Background

Model-Driven Engineering is a development methodology that concentrates on the

idea of raising the level of abstraction at which software systems are constructed, to

reduce the costs of development and improve programmer productivity. As a result of

the rapid proliferation in general-purpose programming languages and multiplication

of target platforms, the twin problems of accidental implementation complexity and

platform diversity have become critical obstacles. MDE seeks to address this, by

using models as the primary artefacts in the development lifecycle. Developers agree

that this will help to overcome the earlier drawbacks [1] and [2].

Model-Driven Architecture (MDA) is one widely-recognised strategy, proposed by

the Object Management Group (OMG) in 2001, for realising MDE [3]. This is

currently being adopted by software tools that seek to use the model-driven approach.

2 Ahmad F Subahi and Anthony J H Simons

The MDA standard specification explicitly aims to integrate many other OMG

standards, Unified Modelling Language (UML) [4], Object Constraint Language

(OCL) [5], Meta-Object Facility (MOF) [6], and Query/View/Transformation (QVT)

[7] in order to produce a coherent MDE approach that can provide executable systems

that are automatically-generated from specifications [8]. MDA, through its three kinds

of models: Computational-Independent Model (CIM), Platform-Independent Model

(PIM), and Platform-Specific Model (PSM), aims to provide an automatic

transformation from PIM to many PSMs based on a target platform technology, and

then generate executable code from the low-level platform-specific models [1].

2 Model Transformation Approaches

Model transformations are a common task in all MDE approaches and play a key

role in mapping models between different levels of abstraction. The MDA initiative

envisages a specific analysis-to-design transformation step from the source

Computational Independent Model (CIM) to the target Platform-Independent Model

(PIM); and another design-to-implementation transformation step from the source

PIM to the target Platform-Specific Model (PSM) [3], from which final code will be

generated. These are to be performed using the QVT approach, a pattern-driven, rule-

based strategy for performing graph transformations on models [2], [7] and [13].

General issues regarding transformations have been noted, specifically whether

these are complete, and whether they are reversible [9]. Transforming the PIM into

the PSM may require several transformation steps, via intermediate models, and may

require further human input, to add specific detail that cannot be inferred from the

higher-level models or local context. In this case, transformations would only be

partially automated, and systems could not be regenerated, without overwriting the

added details. Eventually, reversible, or bi-directional transformations may be able to

offer a round-trip approach to MDE; although the more abstract models would have to

be treated merely as views of the detailed models, which retained full information.

A number of pattern-driven graph transformation approaches have emerged in the

last few years supporting this approach. Many of them have developed specialised

languages for metamodelling and transformation, which can be viewed as Domain

Specific Languages for performing MDE. These include the Atlas Transformation

Language (ATL) [10], UML-RSDS [11], the Kermeta language [12], and Acceleo for

code generation [14]. All these endeavours position themselves within the MDA

framework, for example by adhering to some of the OMG standards, such as to OCL

for representing constraints, or to the MOF for expressing metamodels. In practice,

they adhere to these standards in different degrees. While both ATL and Kermeta

define metamodels that conform to EMOF, the essential MOF [6], ATL offers a

pattern-driven approach that appears to satisfy the goals of QVT [7], whereas

Kermeta is a uniform, imperative language, capable of arbitrary graph

transformations, and is capable of applying more sophisticated sequential and

transitive operations [12].

A Model Transformation Approach for Translating Conceptual Database Schemas into Executable Database Systems 3

3 Reusable Model Design Languages (ReMoDeL) Approach

ReMoDeL is a research project that seeks to realise MDE using more minimalist

techniques than the existing approaches, such as MDA. In the long term, the project

aims to develop a complete path from business-level systems analysis models to fully

functioning software system implementations, by a series of layered transformations.

The starting point will be high-level models, close to the business domain. The

envisaged processing involves some model-to-model translation steps, mapping a

source model to a different target models; some model-to-self transformation steps,

optimising a model in-place; and some model-to-code generation steps. How the

various high-level models will be combined, possibly "folded" together in the style of

aspect-oriented programming, is currently an open research question [16].

A key research goal is to identify the natural constraints that may be applied to

each level of representation, such that these may be automatically applied in the

transformations to the next lower levels. The lowest-level models created by the

translation steps will contain fully adequate, common and generic implementation

details required for automatic code generation on different platforms [16].

While ReMoDeL is inspired by, and shares some of the goals of, the OMG MDA

initiative, it is not necessarily constrained by any requirement to replicate all the

richness detail of OMG standards (UML [2], OCL [4], MOF [6], QVT [7]). Instead,

the aim of ReMoDeL is to realise a simpler, more minimalist proof-of-concept using

available technologies, Java and XML, and to develop a reference implementation.

Further objectives of the wider project include systems evolution and re-engineering

live systems, which themes are not relevant to the current paper [16].

The system specifications are expressed so far through two types of ReMoDeL

languages, namely, the Object-Oriented Programming (OOP) model as a lowest-level

common programming language with full details for implementation in a variety of

different OOP languages [16], and the Database and Query (DBQ) [19].

The work reported in this paper focuses on the complete generation of executable

database scripts from a high-level conceptual schema in DBQ. The overall

architecture exemplifying the Visitor and Composite design patterns in which it

consists of two separate translation steps (sketched in Fig. 1).

Fig. 1. ReMoDeL Database Generator Framework

4 Ahmad F Subahi and Anthony J H Simons

The first step (the Schema Translator) performs a model-to-model translation from

high-level to low-level DBQ concepts. This step is common to all schema translations

and is independent of the target language. Figure 2 illustrates the Translator

hierarchy. These translators parse a high-level DBQ specification, build an in-

memory model of the conceptual schema, and then construct a second memory model

of the low-level schema and passed to the second step.

The internal architecture of the model-to-model transformation approach is based

upon the concept distribution strategy. This means that each DBQ concept in the

high-level schema is handled separately by a particular sub-translator, represented via

a java class in the framework, which is responsible for applying relevant mapping

rules to construct the corresponding low-level DBQ concepts. For example, the

RecordTranslator class is responsible for translating the high-level DBQ Record

elements into Table representations, including in DBQ Logical Schema.

Fig. 2. The Internal Architecture of DBQ Schema Translator

The fundamental aspect of the design is constructing a DBQ Logical Schema on

the fly that is accessible by all sub-translators. A new instance (a low-level concept) is

built and holds required attributes that specify the internal logical schema. Elements

are attached as children or siblings to form the actual table structure [17].

The second step of transformation (the Schema Generator) performs model-to-code

generation in a particular database engine. The overall structure of the DBQ Schema

Generator is quite similar to the other generators in the ReMoDeL Code Generation

Framework, which is designed to support code generation for different database

engines. Thus, generating databases in MySQL, Oracle, and even more are possible

when a relevant version of Database Generator exists (here, we illustrate with

MySQL). Sub-generators for each database system are implemented separately and

grouped as concrete classes in java [17] (see Fig. 3).

Due to the similarity of the SQL syntax of several database systems, a layer of

abstract classes is constructed on the top of all groups of sub-generators to hold and

share the common behaviours of the widely-known relational database vendors,

which might be duplicated within different kinds of generators (see Fig. 3).

A Model Transformation Approach for Translating Conceptual Database Schemas into Executable Database Systems 5

Consequently, concepts might be generated differently, based on the most accurate

SQL syntax for each database system [17].

These generators require as input the in-memory model of the low-level DBQ

specification and generate, as output, script files in the chosen database input

language. Figure 3 shows the specialisation of the Generator framework for MySQL.

Fig. 3. The Internal Architecture of DBQ Schema Generator

In overall, he translation approach adopted in the current work differs from

approaches taken by others, such as ATL [10], Kermeta, ETL and UML-RSDS [11],

in that all transformation algorithms are encoded as methods of the transformation

framework. The algorithms are imperative, using an ordered set of transformations

on XML trees. The separation of concerns into translation and generation steps is

deliberate, to support generation of optimal code in different target database input

languages. Rather than focus on a pattern-driven, declarative approach, we wanted to

push the limits of what kinds of sophistication could be included in a transformation,

using simple, direct manipulation strategy in Java. All models are expressed in the

DBQ language, an XML dialect that supports data and query design in ReMoDeL.

4 The Database and Query Language (DBQ) Representation

Unlike contrasting approaches [10], [11], and [12], which develop their own novel

languages to encode metamodels and model transformations, in the current work, we

seek to use simple and available technologies, XML and Java. According to this, the

Database and Query model (DBQ) is provided as an XML dialect, similar to other

models used within the ReMoDeL family. Rather than design DBQ as the direct

casting of SQL into XML syntax (similar to the way in which JavaML encodes the

syntax of Java [18]), the concrete form of the language is more like an annotated

parse tree. The focus is on ensuring that DBQ captures all the necessary information

to enable the desired transformations.

6 Ahmad F Subahi and Anthony J H Simons

The DBQ language is one of a family of related XML-based languages used in the

wider ReMoDeL project. It can be considered a kind of Domain Specific Language

for representing the concepts from data schemas and database systems. It is possible

to represent database designs at different levels of abstraction, for example at the

conceptual schema level, or the logical database schema level. A DBQ contains the

structure of a database design for a particular application. A model may include the

high-level data schema definitions, high-level query definitions, normalised data

tables, and low-level expressions representing optimised queries. In the work

reported in this paper, we consider mostly the process of transforming high-level

conceptual schemas into low-level logical data models [17].

Like every other model in the ReMoDeL family, DBQ conforms to a standard

metamodel. DBQ contains expressions that model both conceptual schema and

logical schemas. The metamodel concepts in DBQ are illustrated in Fig. 4. This

shows the main generalisation relationships (only) between the concepts in both high-

level and low-level DBQ and the base metamodel.

Fig. 4. Metamodel for the DBQ language specification

Each terminal node corresponds to a DBQ XML element. Nodes in the metamodel

are grouped by their common features like similar attributes or child elements [19].

Similar to the purpose of database schema is the Relational Database Systems [20],

the DBQ schema concept is regarded as a space that holds a definition of entities,

relationships, and queries for a target group of users. It appears in both conceptual and

logical DBQ schemas. Listing 1 and 2 demonstrate respectively a portion of the

Document Type Definitions (DTD) for the high-level DBQ and the low-level one.

Listing. 1. The fragment of the Document Type Definition of the DBQ Conceptual data model

<!ELEMENT Schema (Record+, Generalisation*, Aggregation*,

Association*)>

<!ELEMENT Record (Field+)>

<!ELEMENT Generalisation (Role, Role+)>

<!ELEMENT Aggregation (Role, Role+)>

<!ELEMENT Association (Role, Role+, Field*)>

A Model Transformation Approach for Translating Conceptual Database Schemas into Executable Database Systems 7

 Listing 2. The fragement of the Document Type Definition of the DBQ Logical Schema

<!ELEMENT Schema (Table+)>

<!ELEMENT Table (Field+)>

<!ATTLIST Table name CDATA #REQUIRED>

4.1 The DBQ Conceptual Schema

This high-level fragment of DBQ is used for modelling various concepts of

conceptual schemas such as Entities, Associations, Attributes, Generalisations and

Aggregations. Here we present the “Online Ordering System”, a fairly complex

conceptual data model, represented as UML Class Diagram (see Fig. 5), to be used

throughout this paper to demonstrate consistently the DBQ representations of the

domain concepts and relationships in conceptual and logical level of schemas, as well

as the transformation process within the ReMoDeL Database Generation Framework

to achieve the final executable MySQL script file of the given system.

Fig. 5. The Online Ordering System Conceptual Data Model

The underlying representation of entities at the conceptual level is expressed as

DBQ Record elements, which are consists of a number of Fields to specify the entity

features and specifications. Record and Field have a crucial attribute called name,

which is must appear with all elements. A number of specification attributes are used

in Fields to specify their types, maximum size, and Range and Set constraints [19].

Primary keys are expressed via an attribute key that appears in DBQ Field element.

There are three kinds of keys can be handled within the language: total for

representing a single field primary key, partial for indicating a composite primary

key, and auto for auto-increment primary key [19]. Listing 3 illustrates the declaration

of the Person entity using the high-level DBQ concrete syntax.

8 Ahmad F Subahi and Anthony J H Simons

Listing 3. The fragment of the high-level DBQ model demonstrating the Person entity.

<Record name="Person">

 <Field name="id" type="Natural" size="7" key="total"/>

<Field name="foreName" type="String" size="10" />

<Field name="surName" type="String" size="10" />

 <Field name="age" type="Natural" range="{1-99}" default="1"/>

</Record>

The DBQ conceptual representations of the relationships between entities of the

Online Ordering System are provided through the concepts: Association,

Generalisation, and Aggregation. Each notion involves at least two DBQ entities,

which represents the actual end-role records connected by a particular relationship.

The direction that is required in special relationships, Generalisation and

Aggregation, can be specified using head attribute to indication that the arrow is

toward the record in the head value (Listing. 3) [19]. The language is able to

distinguish between two generalisation types: disjoint between Person and its

subtypes Customer and Supplier, and overlapping between Item and its subtypes

Product and Service. In addition to this, aggregations and composite aggregations are

also expressed using high-level DBQ language. An Aggregation between

SpecialOffer and its part: Item. A composition between Order and its part: OrderLine.

Listing 4. A part of the high-level DBQ model (overlapping generalisaiton and Aggregation)

<Generalisation head="Item" disjoint="false">

<Role name="item" type="Item" multiple="mandatory" />

<Role name="product" type="Product" multiple="optional" />

<Role name="service" type="Service" multiple="optional" />

</Generalisation>

<Aggregation head="SpecialOffer" composite="false">

<Role name="offer" type="SpecialOffer" multiple="mandatory"/>

<Role name="item" type="Item" multiple="onemany"/>

</Aggregation>

The Association types, such as 1-to-1, M-to-1, M-to-N are realised by recognising

the multiplicity of their end-roles via the value of the attribute multiple, which

indicates the number of occurrence in the association, namely, mandatory, optional,

zeromany, onemany. These values are also used in specifying the number of

occurrence of the subtype records in Generalisation and Aggregation, whereas the

attribute quantity is used to determine the actual number of parts in Composition [19].

In regard to the proposed Online Ordering System Data Model, M-to-1 associations

between Customer-Order, and Item-OrderLine, and M-to-N association between

Supplier and Item and a 1-to-1 association between Person and Address are

distinguished and expressed using high-level DBQ language (Listing. 5).

Listing 5. A part of the high-level DBQ of the 1-to-1 and M-to-1 Associations

<Association name="Lives">

<Role name="person" type="Person" multiple="mandatory" />

<Role name="address" type="Address" multiple="mandatory" />

</Association>

A Model Transformation Approach for Translating Conceptual Database Schemas into Executable Database Systems 9

<Association name="Places">

<Role name="seller" type="Customer" multiple="mandatory"/>

<Role name="order" type="Order" multiple="onemany"/>

</Association>

4.2 The DBQ Logical Schema

The translated DBQ logical schema differs from the conceptual one, in that it

consists only of a common logical representation of Tables and Fields (viz. all

relationships from the conceptual model have been converted into foreign keys). This

fragment is used to describe a platform independent model at the lowest-level of

abstraction that is closest to the physical database representation. The assumption is

that a comprehensive level of abstraction that represents all generic specifications

required for any database generation is achieved and expressed via the DBQ logical

model. This low-level model is used as a source model in the generation approach. A

snapshot of this common representation of this model is illustrated in Listing 6.

 According to the presented Online Ordering System conceptual schema (Fig. 5),

the normalised schema can be demonstrated using the following UML Class Diagram

(Fig. 6) including the actual structure of tables, and their relationships. This low-level

DBQ model is constructed as a result of applying the precise transformation rules by

the framework sub-translators, such as RecordTranslator, and FieldTranslator.

Fig. 6. The Normalised Online Ordering System Logical Data Model

Lisitng 6. A part of the low-level DBQ model that demonstrates the representation of translated

Online Ordering System Logical Schema after applying merging and referencing rules.

<Table name="Customer">

 <Field name="personId" type="Natural" size="7" key="total" />

 <Field name="personForeName" type="String" size="10" />

 <Field name="personSurName" type="String" size="10" />

 <Field name="personAge" type="Natural" range="{1-120}"

default="1" />

 <Field name="personAddressPostCode" type="String" size="7"

 key="partial" unique="true" />

 <Field name="personAddressUnitNo" type="Natural" size="5"

10 Ahmad F Subahi and Anthony J H Simons

 key="partial" unique="true" />

 <Field name="personAddressStreet" type="String" size="30"

 key="partial" unique="true" />

 <Field name="personAddressCity" type="String" size="20" />

 <Field name="id" type="Natural" size="7" key="total"

 unique="true" />

 <Field name="details" type="String" size="250" />

</Table>

<Table name="Order">

 <Field name="id" type="Natural" size="7" key="total" />

 <Field name="date" type="Date" />

 <Field name="details" type="String" size="250" />

 <Field name="cusId" type="Natural" size="7" refer="Customer"/>

 <Field name="lineNo_1" type="Natural" size="10" />

 <Field name="quantity_1" type="Natural" default="1" />

 <Field name="totalPrice_1" type="Decimal" />

 <Field name="itemId_1" type="Natural" size="12" refer="Item"/>

 <Field name="lineNo_2" type="Natural" size="10" />

...

 <Field name="lineNo_5" type="Natural" size="10" />

 <Field name="quantity_5" type="Natural" default="1" />

 <Field name="totalPrice_5" type="Decimal" />

 <Field name="itemId_5" type="Natural" size="12" refer="Item"/>

</Table>

Concepts in the Logical Schema are distributed to be handled by the relevant sub-

generator for a specific database. In our case, the MySQL Database Generator, via its

precise rules of transformations, promises that the generated database systems satisfy

the requirements of the 3NF. It extracts critical information from the model and takes

proper transformation decisions. The mapping technique between the concepts in

DBQ Logical Schema and those in the targeted database is regarded a main process in

order to construct valid SQL syntax for a particular database [17].

5 Model-to-Model Translation

As a general guideline, records in the DBQ conceptual schema are translated into

actual Table elements in the logical schema. In-place model modifications might be

done before the final translation into the target model, for instance, combining

Records before being translated into a single table when applying a proper merging

rule for handling 1-to-1 associations first, and then converting Composition, and

Disjoint Generalisation relationships using a suitable naming convention [19]. This

can be noticed from the combined structure of Customer table in Listing 6 above.

Fields and primary keys at the high-level DBQ model are normally translated into

the actual Filed elements in the low-level model, unless some primary keys are re-

A Model Transformation Approach for Translating Conceptual Database Schemas into Executable Database Systems 11

assigned as UNIQUE in the merged tables to maintain its semantics, as in Person-

Address relationship. Records without an explicit primary key are supplied by an

automatically-generated Auto-increment primary key, as in Order table (Fig. 6).

Furthermore, Roles are translated into foreign keys, which are used to provide a

physical representation of the relationships, such as Overlapping Generalisation,

Aggregation, and M-to-1 Associations, between the actual tables within the generated

logical Schema [17] (see foreign keys added to Order and Item table in Fig 6).

While the ability of recognizing compound primary keys in referenced tables raises

the demand of generating compound foreign keys in the other side of association; the

DBQ Schema Translator performs intelligent splitting rules on Roles to generate a

number of reference fields that reflects a composite primary key. This demonstrated

through the translation of a compound primary key of the Address record in the 1-to-1

Association with Person (see the new DBQ declaration of Customer table Listing 6).

As it seen, in order to generate the most ideal database design that satisfies the

requirements of the 3NF, sensible minimisation techniques of data dependency are

applied by the DBQ Schema Translator in transforming relationships defined between

entities. As the high-level DBQ schema contains adequate specification attributes for

all kinds of associations, it is able to distinct and provides an explicit expression for

both Generalisation types: Disjoint and overlapping, as well as Aggregation and

Composition. This plays a key role in the automated transformation decision to

achieve a reasonable balance between the query complexity, system performance and

disk space [20]. The de-normalisation approach that is used by the DBQ Translators

to flatten the composite aggregations (Order table in Fig. 6) can be regarded as a

remarkable modelling example to illustrate one of the intelligent decision points

within our approach for managing the database performance and disk space [20].

6 Model-to-Code Translation (Code Generation)

In the DBQ logical schema, Table and Field must be converted into equivalent

database tables and fields for a targeted system (MySQL) using the suitable MySQL

sub-generator. There is no demand to take large number of smart actions at this level

as the required designing and normalising processes are accomplished and tables

reconstructed at the model-to-model translation stage. The generators applies a

sequence of element traversing to Table and Fields elements in the low-level DBQ

XML parse tree and streaming the output into a target script file. The following listing

(Listing. 7) illustrates the generated DDL of MySQL Customer and Product tables.

The referential integrity concept is applied to maintain the overall consistency in

which the generator produces an ON DELETE CASCADE statement when required

[17], as in the declaration of the Product table (Listing 7).

Lisitng 7. The fragemnt of the generated MySQL DDL representing two generalisation types

and composite aggregation

CREATE TABLE Customer (

 personId INT(7) NOT NULL, personForeName VARCHAR(10),

 personSurName VARCHAR(10), personAge INT DEFAULT 1,

12 Ahmad F Subahi and Anthony J H Simons

 personAddressPostCode VARCHAR(7) UNIQUE,

 personAddressUnitNo INT(5) UNIQUE, personAddressStreet

 VARCHAR(30) UNIQUE, personAddressCity VARCHAR(20), id

 INT(7) UNIQUE, details VARCHAR(250),

 PRIMARY KEY(personId));

CREATE TABLE Order (

 autoNumber INT NOT NULL AUTO_INCREMENT, date Date, details

 VARCHAR(250), cusId INT(7) NOT NULL, lineNo_1 INT(10),

 quantity_1 INT DEFAULT 1, totalPrice_1 DOUBLE, itemId_1

 INT(12) NOT NULL, ... lineNo_5 INT(10), quantity_5 INT

 DEFAULT 1, totalPrice_5 DOUBLE, itemId_5 INT(12) NOT NULL,

 PRIMARY KEY(autoNumber), FOREIGN KEY(custId) REFERENCES

 Customer(personId) ON DELETE CASCADE, FOREIGN KEY(itemId_1)

 REFERENCES Item(id) ON DELETE CASCADE);

According to MySQL limitation in which it does not support Check Constraints as

Oracle and other database systems do, using the new Stored Procedure feature in

MySQL version 5, as an alternative way to perform data validation, is considered

critical decision [24]. ReMoDeL MySQL Database Generator introduces a rule for

generate Before Insert Triggers for tables that have fields with a specified range

constraint. The value of the DBQ default attribute is used as a save alternative value

of that field in the case of invalid user input [17] (See Listing 8).

Lisitng 8. A part of the generated MySQL DDL representing a trigger for enforcing constraint

CREATE TRIGGER customerCheck BEFORE INSERT ON Customer

FOR EACH ROW IF (NEW.personAge < 1 OR NEW.personAge > 99)

THEN SET NEW.personAge = DEFAULT;

END IF;

7 Comparison with other Approaches and Tools

We contrast the algorithmic approach taken in this paper with the ATL pattern-

driven transformation rules for converting a UML class diagram to a relational data

model in [10]. In the published ATL example, database tables were constructed

primarily from a subset of classes that were marked as persistent (using a UML

stereotype). The attributes of other volatile classes, if related by association, were

aggregated in the persistent classes according to rules that "flattened" the data model.

This included a treatment of generalisation, which created "fat superclass" tables by

transferring the attributes of subclasses up to the root persistent class. This translation

will later reduce the cost of joining database tables, but at the cost of wasting space

(subsets of the fields will be irrelevant for some instances and will take on null

values). Overall, the emphasis above was in describing the "flattening rules".

Therefore, it can be argued that the transformation performed by the DBQ Schema

Translator makes better use of the different kinds of semantic relationships present in

the DBQ conceptual model. In particular, it can distinguish between different kinds

of association (with different kinds of multiplicity), and different kinds of aggregation

(including the stronger composite aggregation).

A Model Transformation Approach for Translating Conceptual Database Schemas into Executable Database Systems 13

In regard to the UML-RSDS approach for translating UML to RDBMS [15], a

clever way of translating OCL-like specifications and constraints into imperative Java

routines is introduced through sequential transformation rules that are converted into

Java methods with pre and post conditions. Unlike the Transformation algorithm of

UML-RSDS tool, the DBQ Schema Translator can treat two kinds of generalisation

(overlapping and disjoint) differently [17]. The transformation implements all the

rules of entity-relationship modelling, such that records with 1-to-1 associations are

merged and linkers are introduced for M-to-N associations [20]. The transformation

is therefore more idiomatic and may claim to be more standard than the special-

purpose transformation described in [10].

The Schema Translator's treatment of generalisation yields two different

translations. Where the generalisation set is marked as disjoint, the translator creates

separate tables for each specific subclass, each incorporating the inherited fields, since

no logical object will ever be an instance of more than one class. This provides a

low-cost access plan for queries, as does the ATL "fat superclass" approach, since

both translations remove the need to join tables to access fragmented objects;

however our translation does not waste any space [21]. Where the generalisation set

is marked as overlapping, all records in the generalisation set must be converted into

tables, since logical objects might be split across all three tables. This has the

disadvantage that more joins would be required to reconstruct logical objects, but the

advantage of a finer granularity for updating tables. The "fat superclass" approach of

ATL would provide a more efficient access plan, but still waste space. Eventually,

the cost depends on the numbers of associated records [21].

The Schema Translator's treatment of aggregation likewise yields two different

translations. Where an aggregation is marked as composite, this is a hint to the

translator that the contents of the associated parts may be incorporated directly inside

the whole (de-normalisation). The result of this is analogous to the result of applying

ATL's "flattening" rules, where the head of the composite aggregation is analogous to

ATL's persistent class, and the incorporated fields are analogous to the attributes of

ATL's associated volatile classes. Where an aggregation is not composite, tables are

created for each record and connected to the whole by foreign key.

Therefore, it can be said that ReMoDeL Database Generation framework, with an

adequate DBQ physical database specifications, offers the most accurate standard

transformation solution for database generation applications. In the two levels of

transformation, the approach is able to generate an executable database schema for a

specific database system. In contrast, constructing a transformation program (model)

with both source and target models and metamodels are essential to perform model-

to-model transformations within ATL approach. The output of ATL approach is not

an executable model or code. Further approach is needed to perform the model-to-

code transformation [10]. Transformation rules, indeed, can be distinct in each ATL

application for the same scope of transformation, which depends on the user

experience in constructing the mapping definition (model).

The code generation approach within ReMoDeL follows an alternative code

generation technique than the commonly-used template-based approach adopted in

Acceleo [14]. Acceleo is regarded as the implementation of the OMG MOF standards,

14 Ahmad F Subahi and Anthony J H Simons

which is known as the prototype-based approach. In that approach, a valid template of

the target code that determines its content must be defined and developed before

establishing the process of code generation [14]. In ReMoDeL, there is no demand to

users to concentrate on building template for various platform technologies.

8 Future Work

The long-term ReMoDeL project eventually aims to integrate a number of different

frameworks that perform various types of model transformations. In parallel with the

current work reporting on the DBQ model, other work has been carried out on

developing a common OOP [16]. Eventually, these two models may be linked, to

provide a more powerful model transformation to generate software systems coupled

in different ways to different back-end databases.

Despite the fact that our proposed Model-to-Model transformation algorithm can

work properly with fairly complex data models and has the ability to distinguish

between the two kinds of generalisation, there is a demand to improve it to adopt

more complicated concepts that might occur in real-world, such as multiple

inheritances, which is considered in the transformation approach of UML-RSDS [11].

9 Conclusion

In this paper, we reported on a simple MDE approach, implemented in a two-stage

model transformation, for generating relational database implementations from high-

level conceptual data schemas. We utilised the ReMoDeL approach and its DBQ

language for specifying database entities and relationships in two levels of

abstractions: conceptual, and logical schema, as well as applying a series of

transformations. The model-to-model transformation step translates DBQ Conceptual

Schemas into normalised Logical one taking into account the semantics of

disjoint/overlapping generalisations, and aggregations/compositions, whereas the

model-to-Code transformation stage generates the MySQL database system from the

low-level DBQ schema. This architecture is formulated to sustain the automatic

generation of code in various target database systems. A set of rules for database

design has been selected to perform a sensible balance between the performance and

required disk space, which is used mainly in model-to-model transformation stage.

10 References

1. Kelly, S., Tavenen, J.: Domain-Specific Modelling: Enable full code generation.

John Wiley & Sons, Inc (2008)

2. Jezequel, J.: Model-Driven Engineering: Basic Principles and Open Problems,

(2003). http://www.irisa.fr/triskell/publis/2003/

3. Object Management Group: MDA Guide, Version 1.0.1, Miller, J., Mukerji, J.

(eds.), 12 June (2003). http://www.omg.org/cgi-bin/doc?omg/03-06-01

http://www.irisa.fr/triskell/publis/2003/
http://www.omg.org/cgi-bin/doc?omg/03-06-01

A Model Transformation Approach for Translating Conceptual Database Schemas into Executable Database Systems 15

4. Object Management Group: Unified Modeling Language (OMG UML)

Superstructure, Version 2.3, 5 May (2010).

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

5. Object Management Group: Object Constraint Language, Version 2.0, 1 May

(2006). http://www.omg.org/spec/OCL/PDF/

6. Object Management Group: Meta Object Facility (MOF) Core Specification,

Version 2.0, 1 January (2001). http://www.omg.org/spec/MOF/2.0/PDF/

7. Object Management Group: Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification, Version 1.0, 3 April (2008).

http://www.omg.org/spec/QVT/1.0/PDF/

8. Poole, J.: Model-Driven Architecture: Vision, Standards & Emerging

Technologies. In: Workshop on Metamodeling and Adaptive Object Models,

ECOOP (2001)

9. Kent, S.: Model Driven Engineering. In: Integrated Formal Methods. LNCS, vol.

2335, pp 286-298. Springer, Heidelberg (2002)

10. Jouault, F., Kurtev I.: Transforming Models with ATL. In: Satellite Events at the

MoDELS 2005. LNCS, vol. 3844, pp 128-138. Springer, Heidelberg (2006)

11. Lano, K: Using B to Verify UML Transformations. In: Proceedings of the 3rd

Workshop on Model design and Validation (MODEVA 2006), B. Baudry, D.

Hearnden, N. Rapin, J. G. Süß (Eds.), pp. 46-61, Genova, Italy, October (2006)

12. Jezequel, J., Barais, O., Fleurey, F.: Model Driven Language Engineering with

Kermeta. In: 3
rd

 Summer School on Generative and Transformational Techniques

in Software Engineering 2010. LNCS 6491, Springer (Ed.) (2010)

13. Gerber, A., Lawley, M., Raymond, K., Steel, j., Wood, a.: Transformation: The

Missing Link of MDA. In: Graph Transformation First International Conference

ICGT 2002. LNCS, vol. 2505, pp 90-105. Springer, Heidelberg (2002)

14. Acceleo, http://www.acceleo.org/pages/home/en

15. Lano, K., Kolahdouz-Rahimi, S.: Specification and Verification of Model

Transformations using UML-RSDS (2010).

16. ReMoDeL: Reusable Model Design Languages, http://www.dcs.shef.ac.uk/~ajh

s/remodel/

17. Subahi, A.F.: ReMoDeL Database Generator. MSc Dissertation, University of

Sheffield (2010)

18. Badros, G.J.: JavaML: a markup language for Java source code, In: Proceedings of

the 9
th

 international World Wide Web conference on computer networks, pp 159-

177. Computer Networks, Amsterdam (2000)

19. Simons, A.J.H., Subahi A.F.: ReMoDeL Database and Query Language Model,

Version 1.0 March 2011. Technical Report, Department of Computer Science,

University of Sheffield (2011). http://www.dcs.shef.ac.uk/~ajhs/remodel/DBQ/

20. Connolly, T., Beggs, C.: Database Systems - A Practical Approach to Design,

Implementation, and Management (4th Edition). Addison-wesely (2005)

21. Eder, J., Kanzian S.: Logical Design of Generalisations in Object-Relational

Database. In: 8th East European Conference – Advance in Databases and

Information Systems (ADBIS 2004), Budapest, Hungary (2004)

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/OCL/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/QVT/1.0/PDF/
http://www.springerlink.com/content/978-3-540-43703-1/
http://www.acceleo.org/pages/home/en
http://www.dcs.shef.ac.uk/~ajh%20s/remodel/
http://www.dcs.shef.ac.uk/~ajh%20s/remodel/
http://www.dcs.shef.ac.uk/~ajhs/remodel/DBQ/

