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Abstract 

Most software testing methods, even though they may detect some faults, can never finally 
assert whether the tested system is correct.  This is due partly to the incompleteness of 
methods that merely aim to "exercise" the code;  partly to the lack of a formal relationship 
between testing and a functional specification;  and partly to the difficulty, especially in object-
oriented systems, of testing systems built from many components that may together have 
millions of states.  In this paper, we propose the Object Machine as a formal model of an 
object, which captures both the protocol of an object and the semantics of its methods in a way 
that bridges the gap between abstract mathematical specifications and the provision of 
tractable, concrete testing criteria.  The Object Machine is an adaptation of earlier successful 
work on Stream X-Machines, that has been specifically developed to address formal issues 
unique to object-oriented systems, in particular the way in which one object depends partly 
upon others for its own behavioural properties, and the resulting indeterminacy of the next 
state decision function.  Software systems conforming to Object Machine specifications may 
be fully functionally tested, using a hierarchical approach that guarantees the integration at 
each level, subject to a number of relatively non-restrictive requirements. 

1. Introduction 

Verification and testing are the two conventional means whereby the correctness of a software 
system is judged, up to its specification.  Verification involves reasoning about the properties 
of a system, often using formal description languages, such as Z, VDM, OBJ or other models, 
such as X-Machines or Petri nets.  Verification is performed upon an abstract model of a 
system, prior to its implementation;  and can be accomplished through theorem proving or 
model checking.  A verified system is typically consistent and complete, up to the assumptions 
made by the model abstractions.  Testing involves subjecting the implemented system to 
sample sets of inputs in order to detect faults with respect to its specification.  In practice, 
much industrial testing only exercises as much of the software as is economically feasible;  for 
this reason, testing is incomplete and, where no clear testing strategy exists, haphazard - 
amounting to no more than "poking around" [1]. 
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1.1 Different Testing Methods 

A definition of different testing methods is given in [2].  Relatively informal kinds of testing 
include inspections, based on a peer review of code, and random and statistical testing (or 
operational profile testing), in which a random selection of inputs is weighted according to the 
expected pattern of system usage.  There are two main kinds of testing that can claim to be 
more strongly motivated by an understanding of the system under test.  Functional (or black-
box) testing builds a test-set from the system's specification and attempts to prove that the 
abstract behaviour of the implementation is identical to the specification.  Structural (or white-
box, clear-box) testing bases its strategy directly on the implementation code and attempts to 
show that all parts of the software have been exercised without failure. 

Structural testing is seldom exhaustive, due to the size of the systems under test and the 
millions of combinations of input values and decision paths.  For even moderately large 
systems, full branch and statement coverage (full path exploration) is often abandoned in 
favour of the strictly weaker decision coverage (exercising every decision), or branch 
condition coverage (exercising every boolean combination in decisions).  Functional testing 
may be accomplished by the category partition method, which identifies equivalence classes of 
inputs (and boundary values within these categories) and selects representative values from 
each category, to determine whether the corresponding output matches that expected in the 
specification.  Testing is most effective in revealing defects where partitions are narrowly based 
on expected failures [3].  Alternatively, automaton-based testing may accomplish a similar aim 
by comparing an implementation with a finite state machine specification. 

To summarise, the best current testing practices execute an incomplete, statistically weighted 
selection of test cases based on relatively unsophisticated input and path coverage strategies.  
Testing can only reveal defects;  the absence of detected defects typically cannot guarantee 
correctness. 

1.2 Combining Verification and Testing 

Testing considered alone is therefore too weak a quality assurance mechanism.  By contrast, 
verification is a much stronger mechanism - equivalent to exhaustive testing - up to the 
assumptions made by the formal models;  this puts the burden of proof on the refinement 
strategy, which must correctly translate the model into the implementation [4].  It is clear that 
verification and testing represent different activities on a continuum of techniques aimed at 
exercising the system either symbolically or dynamically to establish its compliance with a 
specification. 
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The previous work of Holcombe concerns the little-exploited relationship between verification 
and testing and has led to an important proof of model refinement [5].  From this, Holcombe 
and Ipate developed a complete functional testing method [5, 6].  Based on the theory of 
Stream X-Machines [7, 8] (see section 2 below), this method allows definite statements to be 
made about the correctness of combinations of tested components in integrated systems.  The 
success of this approach relies on the ability to deal with systems at different levels of 
abstraction and the notion of model refinement, the fact that specifications at different levels of 
detail are provably equivalent.   Two further results have emerged from this work.  The first is 
the identification of practical design-for-test conditions that allow systems to be specified such 
that they may be tested effectively.  The second is the identification of a point at which it is 
safe to stop testing. 

This contrasts with current approaches in which, once testing is finished, it is impossible to 
estimate the likely number, location or importance of the faults that may remain in the code.  
The complete functional testing method allows you to state categorically that an integrated 
system is correct, provided that:  (i) all the tests have been passed;  (ii) the components are 
individually correct;  and (iii) the design-for-test conditions have been satisfied.  This result is 
significant in integration testing, which serendipitously has important implications for object-
oriented systems, which are entirely based on the integration of components. 

1.3 A Complete Functional Testing Method 

In section 2 of this paper, Chow's complete functional testing method for systems based on 
finite state automata is reviewed [9].  While this method is provably complete, it is clear that 
the majority of realistic software systems exhibit greater formal complexity than the restricted 
class of problems computable with a simple automaton.  This was the motivation behind 
Holcombe's adoption of the Stream X-Machine [7, 8], a class of machine with memory, inputs 
and outputs, which exhibits Turing computability.  The useful properties of the Stream X-
Machine are explained in overview, in particular how it admits realistic computations, which 
can be abstracted at one level of refinement and later exposed as the operation of nested, 
independent machines at a finer grained level. 

This compositional property allows systems developed from Stream X-Machine specifications 
to be tested hierarchically, in a divide-and-conquer fashion [5, 6], avoiding the intractable state 
explosion common in object-oriented testing approaches [10, 11, 12, 13].  For example, 
Binder's FREE (Flattened REgular Expressions) method synthesizes subsystem state machines 
(called mode machines) from component object state machines and computes the transition 
cover for the integrated subsystem [12];  likewise Kim et al.'s approach calculates state 
products from UML statecharts, testing the flattened system [13].  In contrast, Holcombe and 
Ipate's hierarchical approach starts with a formally verified abstract architecture which is then 
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progressively refined.  Systems are tested bottom-up, computing a test set based on the 
transition cover only for the state machine of the integration, at each step.  This reduced 
testing obligation is possible because of the formal proof of model refinement [5];  it depends 
only on the assmption that the components being integrated are correct.  This can be assured 
by testing down to the lowest level component that one is prepared to trust, such as a primitive 
assignment instruction. 

The testing method is functional, in that it is based on specifications alone and does not require 
an analysis of code.  It is complete, in that it guarantees, for all system states, that all of the 
required behaviours are present and no undesired behaviour is exhibited.  It is tractable, in that 
it greatly reduces the explosion in test set sizes with respect to flattening approaches. 

1.4 Meeting Design-for-Test Criteria 

The new work reported here concerns the adaptation of the Stream X-Machine (SXM) model 
to suit specific characteristics of object-oriented systems.  Section 3 builds an example SXM 
specification for a bounded Stack object; and goes on to discuss reservations about the 
conventions of the SXM model, showing how they do not apply in general to objects. 

The properties of systems designed to meet the SXM's design-for-test criteria include that:  
they complete single-step transitions, which are immediately observable;  every transition is 
distinguishable by a unique output;  the next state is computable from the current state, input 
and global memory;  all states are reachable and then every transition may at least be 
attempted;  and transition functions may be tested independently as separate components. 

There are a number of differences between monolithic input-driven software systems and 
systems conceived as a society of communicating objects that impact on these design-for-test 
criteria.  Specific relevant behaviours of object-oriented systems include that:  they complete 
multi-step transitions, with unobserved run-to-completion;  computation is driven by messages 
and responses, not inputs and outputs;  memory is distributed and may only be observed 
through communication;  and so the next state depends on remote communication. 

An alternative specification model, known as an Object Machine, was devised to behave in a 
manner that is better aligned with object-oriented implementations.  Section 4 describes the 
architecture of the Object Machine (OM) and explains how it can be used with the adapted 
design-for-test criteria and an associated testing method to satisfy the same guarantee of 
correct integration. 
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2. Automaton-Based Specification and Testing 

The background to complete functional testing using generalisations of finite state automata is 
reviewed here.  It is important to understand why the approach is complete, that is, it provides 
guarantees of system correctness once testing is complete.  Then, it is important to see how the 
approach is compositional, affording a reductionist approach to testing.  Finally, it is worth 
noting that the approach sets a finite limit on the amount of testing which is strictly needed to 
show that a system is in fact correct. 

2.1 Chow's Testing Method 

Many automaton-based testing methods [12, 14, 15], especially Schumann and Pitt's object-
oriented subsystem testing [11] and Holcombe and Ipate's Stream X-Machine method [5, 6], 
are based on Chow's method for completely testing systems that conform to finite state 
machine specifications [9].  The approach puts relatively few constraints on the specification 
and system under test.  The specification must be a minimal state machine, that is, there should 
be no redundancy.  While Chow described a transducer with inputs and outputs, Ipate showed 
that even an accepter could be tested [16];  the system need only accept inputs taken from a 
closed alphabet, other than that, it must be determinable whether a transition succeeds or fails 
in response to an input.  This is indicated here using one token from {ok, fail};  failure may be 
inferred from the system crashing or hanging.  The states of the system are not directly 
observable, but may be deduced from the further reactive behaviour of the machine. 

a
s1

a

s2

s3

s0
cb

b c

 

S = {s0, s1, s2, s3}  Φ = {a, b, c} 
W = {<aa>, <bb>, <cc>}  C = {<>, <a>, <ab>, <aa>} 
K = {<>, <a>, <b>, <c>, <aa>, <ab>, <ac>, <aba>, <abb>, <abc>, <aaa>, <aab>, <aac>} 

Figure 1:  Simple finite state accepter 

The specification is a state machine, like that shown in figure 1, having a finite number of states 
s ∈ S and a closed input alphabet φ ∈ Φ, corresponding to all the (expected and unexpected) 
events that may possibly be handled in any state.  For each state si ∈ S, a subset of inputs Φiok 
⊆ Φ labels transitions which exit to states s ∈ S (including si itself);  and the set complement Φ
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ifail = (Φ − Φiok) are inputs which are illegal in that state.  The system under test is supposed to 
conform exactly to this specification, which is to be proven by complete functional testing. 

First, it must be possible to determine when the system is in any particular state.  A sequence 
of events <φ1, φ2, φ3> is considered to be taken from the product set Φ×Φ×Φ, hereafter styled 
Φ3, the set of all length-3 sequences.  If Φ* = Φ0 ∪ Φ1 ∪ Φ2 ∪ ...  is the set of all possible 
arbitrary-length sequences of events chosen from Φ, a characterisation set W ⊂ Φ* can be 
chosen from the specification to identify each state uniquely, based on the reactive behaviour 
of the system starting in that state.  Applying a single sequence w ∈ W to the system in a state 
si ∈ S produces an observable result from {ok, fail} after p ≤ len(w) transitions are attempted.  
W is the smallest set of shortest sequences, such that applying every w ∈ W to si produces a 
unique k-tuple of results {ok, ok, fail, ...}, where k = card(W), that is distinct from any other 
tuple obtained by applying W to every other state in the system.  In this way, the system's 
states can be uniquely identified with states in the specification, by observing the subsequent 
reactive behaviour of the system.  Every time the system fails for some test sequence wi ∈ W, 
it must be reinitialised for the next sequence wi+1 ∈ W. 

Next, it must be possible to show that the system can reach all of its operating states.  A state 
cover C ⊂ Φ* is chosen from the specification, being the set of shortest input sequences that 
will cause the machine to reach all of its states from its initial state s0 ∈ S.   The concatenative 
product C*W is computed and the system is tested with this set to ensure that all of its states 
are reachable and are the expected states.  The product C*W concatenates every sequence in C 
with every sequence in W, resulting in a larger set of test sequences whose size is given by:  
card(C*W) = card(C) × card(W).  Testing with this set ensures that the system has at least as 
many states as the specification;  the possibility of extra system states is handled below. 

Finally, it must be possible to show that, in every state si ∈ S, the system responds correctly to 
all the legal inputs φ ∈ Φiok, and fails for every illegal input φ ∈ Φifail.  Both positive and 
negative aspects are required to prove the correct operation of the system.  A correct response 
includes both accepting a legal input and completing the associated transition to the next 
specified state.  Intuitively, every input φ ∈ Φ is applied to the state si ∈ S, and for each legal 
input φ ∈ Φiok the characterisation set W is then applied, to determine if the next state reached 
is the expected one.  Ultimately, this is treated as applying Φ1*W to every state s ∈ S, that is, 
every singleton sequence <φ> ∈ Φ1 concatenated with W.  Transition failures, unexpected 
extra transitions from Φifail and incorrect reached states are therefore all detected. 

In practice, these test sets contain prefix sequences which can be merged before testing.  The 
testing regime need only generate one large test set T and specify, for each sequence t ∈ T, 
whether it should succeed or fail.  To test all of the above, it is sufficient to generate the 
transition cover K = C ∪ C*Φ1, which includes the state cover  (see also figure 1) and 
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calculate its product with W to verify the reached states.  The merged test set is therefore T = 
K*W, which simplifies to T = C*W ∪ C*Φ1*W.  A system that passes this test series has at 
least as many states as the specification and behaves correctly in all these states. 

It is sometimes necessary to assume that the system might contain extra, redundant states.  
These can be detected by applying pairs, triples, ... n-tuples of inputs from Φ2, Φ3,...Φn in 
every state s ∈ S and verifying the reached states with W.  Eventually, a duplicate state will 
reveal itself by leading either to an unrecognised state, or to one with faulty behaviour.  The 
necessary amount of extra testing is finite and computable from assumptions made about the 
number of redundant states expected in the system.  The complete test set for a system with n 
redundant states per desired state is given by:  Tn = C*(Φ0 ∪ Φ1 ∪... ∪ Φn+1)*W.  Low values 
of n are usually sufficient, especially if the coding of the system is generated explicitly from the 
state specification.  For n=2 (expecting two redundant states per desired state), the test set is:   
T2 = C*W ∪ C*Φ1*W ∪ C*Φ2*W ∪ C*Φ3*W.  This set is of a tractable size, and can be 
generated automatically from specifications [17]. 

2.2 Holcombe and Ipate's Stream X-Machines 

Realistic software systems exhibit more complex behaviour than finite state automata, which 
can only process regular languages.  Full Turing computability is afforded by augmented 
transition networks with memory; and Eilenberg's X-Machine [18] is one such model, an 
automaton whose transitions are functions that process an arbitrary data type X.  Holcombe 
first realised that an X-Machine could be used as the formal basis for specifying realistic 
systems [7], which could then be tested [6] using Chow's method.  Specifications are built by 
identifying the abstract control states of a system, constructing an automaton for this, and 
including all the remaining detail in the functions acting upon the memory [19, 20].  These 
arbitrarily complex functions, treated as atomic in the abstract machine, are later decomposed 
into further X-Machines, corresponding to a one-step refinement of the original specification.  
The refined machine can be proven behaviourally equivalent to the more abstract machine [5, 
16] using Ipate's proof of model refinement. 

Of particular interest is the class of Stream X-Machines [8], that are driven by inputs and 
produce outputs, because these permit Chow's method to be applied directly, driving a system 
through its single-step transitions, and compositionally, using a hierarchical divide-and-conquer 
strategy.  A Stream X-Machine (SXM) is a generalised finite state machine which isolates 
control flow from data processing.  It consists of a set of control states s ∈ S and a set of 
transition functions φ ∈ Φ, which process the data type X = (I* × M × O*).   I* is an input 
stream of elements i ∈ I, O* is an output stream of elements o ∈ O, and m : M is a global 
memory.  There exists a distinguished initial state s0 ∈ S and an initial memory value m0 : M.  
The transition functions φ ∈ Φ are the labels on the arcs connecting the states s ∈ S.  These 
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functions are triggered by, and read inputs ik ∈ I arriving on the input stream, and, when fired, 
generate corresponding outputs ok ∈ O on the output stream.  Each function may inspect the 
current memory value mk : M and, when fired, may modify memory, giving mk+1 : M.  The 
functions φ ∈ Φ are therefore considered to have the type  φ : (I × M) → (M × O).  A SXM is 
similar to a Mealy-style transducer, with inputs and outputs, except that the labels on the arcs 
are functions which inspect and modify memory (see also figure 2 below). 

A SXM is deterministic if, for each state s ∈ S, there exists a unique transition function φ ∈ Φ 
which can fire in response to any input i ∈ I.  Occasions may arise when the abstraction over a 
system's control states is so coarse-grained that multiple φ ∈ Φ are enabled by a given input, 
resulting in a non-deterministic machine.  To enforce determinism, the selection of any φ can be 
made contingent on both a particular input value and a guard on the current state of memory.  
This predicates some of the behaviour of the model on the contents of memory and allows 
realistic systems, such as VCR equipment, to be modelled convincingly [20].  The guards must 
be mutually exclusive, to ensure deterministic, and therefore testable, behaviour.  Simons has 
observed [21] how expressing control logic either as guards or states is essentially arbitrary 
and one is convertible into the other.  Transition functions φ ∈ Φ are later modelled as 
individual Stream X-Machines in which the memory-dependent guard behaviour is properly 
exposed as a state machine. 

A SXM is output distinguishable if the firing of each distinct transition function φ ∈ Φ 
generates a unique output o ∈ O.  Outputs are significant in the testing of systems based on 
SXM specifications.  Firstly, there is only an indirect association between an input value and 
firing a transition (firing may also be contingent upon memory guards).  Secondly, it is 
necessary to determine which transition function φ fired for a given input i ∈ I.  This is so that 
each function φ ∈ Φ may be decoupled from the state machine at the current level of 
abstraction and tested separately.  Assuming that the component functions are correct, the test 
of the integration must prove that the correct components were selected for each transition 
firing.  This is achieved by associating a unique output o ∈ O with each function φ ∈ Φ, to 
identify both correct and incorrect transition firing.  The unique association of outputs to 
functions is assured in turn through component function testing. 

A Stream X-Machine is test-complete if, no matter what its current memory values, it can be 
driven through all its states and transitions when under test.  Real systems have rarely-entered 
and sometimes unreachable states.  In a Stream X-Machine specification, this may be reflected 
by a set of guards that do not exhaustively cover the memory value-space.   If Φs ⊆ Φ is the 
subset of transitions that may legally fire for a given state s ∈ S, then normal completeness is 
the no-hang property which ensures, for each state s ∈ S, that the function set Φs has guards 
which exhaustively cover all possible memory conditions, even unexpected combinations.  This 
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can be achieved artificially by extending the set Φs with a default function φsd, whose guard is 
the memory-complement of the guards of the remaining functions in Φs − {φsd}.  An easier 
design-for-test criterion to obtain is test completeness under Φ, which is achieved by extending 
the input domain I with special test values which will drive the machine through all its 
transitions whatever the current state of memory [5, 6]. 

Another important property of SXMs is their compositionality, assured through the 
independence of each memory-processing function φ ∈ Φ from the current state s ∈ S in which 
the machine finds itself.  Recall that φ : (I × M) → (M × O) implies no dependence on S.  Each 
φ may therefore be taken out of context and tested independently.  Compositionality is 
achieved at the cost of a more complex next-state function F, which must be capable of 
selecting the appropriate φ to fire, based on s ∈ S, i ∈ I and m : M. 

3. Mapping Objects onto Stream X-Machines 

Stream X-Machine specifications are typically developed for a system's abstract architecture, 
and are refined by top-down decomposition of the functions φ ∈ Φ [5, 6, 7].  The top-level 
state machine is derived by modelling the modes of the user interface, in which user 
interactions are readily mapped onto inputs and outputs in the model.  Here, we seek to apply 
the technique differently to specify the behaviour of object-oriented components, with a view 
to exploiting the proof of correct integration. 

3.1 The Bounded Stack Stream X-Machine 

An example SXM specification for a simple bounded Stack object is given in figure 2 below, 
both as a means of illustrating the elements of a SXM using a familiar data type and also as a 
starting point for discussing why object-oriented software generally has difficulty in satisfying 
the model's conventions.  The bounded Stack is implemented using a counter and an array.  
The Stack's bounded size is assumed to be some n > 1, to prevent the coalescing of interesting 
states.  The Stack offers the methods push and pop, and is subject both to overflow and 
underflow failures. 

The Stack machine has four states in the set S = {Empty, Loaded, Full, Error} and the initial 
state is Empty.  The choice of states is motivated by considering modes in which some of 
Stack's methods are illegal.  Partial functions always provide a good prima face case for the 
selection of control states; each state above corresponds to a mode in which a distinct subset 
of Stack's methods is illegal.  Both the legal and illegal transitions from all these states are 
modelled in the state machine.  For an object with k methods, there are no more than 2k states. 
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The set of transition functions Φ = {push1, push2, push3, pop1, pop2, pop3} contains multiple 
transitions for each method, each triggered by a different guard.  The splitting of a single 
function into multiple transitions in the specification is characteristic of this approach;  it allows 
state-dependent algorithms to be factored into different contextual fragments.  There must be 
at least as many fragments φi as there are distinct, mutually exclusive guards on the concrete 
functions φ to avoid nondeterminism;  but the same φi may label more than one transition, 
provided that the required guard (and intended algorithm) is identical.  Here, pop transitions 
have three guarded variants, with [i > 1], [i = 1] and implicitly [i < 1]. 

Empty

push1

s0
Full

s2

Error
s3

Loaded
s1

push1

pop2 push2

pop1

pop1

push3pop3

 

push1(push, e, i, a) [i < n-1] == (i+1, a⊕{i→e}, ⊥, pushed) 
push2(push, e, i, a) [i = n-1] == (i+1, a⊕{i→e}, ⊥, filled) 
push3(push, e, i, a) == (i+1, a, ⊥, overflow) 
pop1(pop, ⊥, i, a) [i > 1] == (i-1, a, a(i-1), popped) 
pop2(pop, ⊥, i, a) [i = 1] == (i-1, a, a(i-1), emptied) 
pop3(pop, ⊥, i, a) == (i-1, a, ⊥, underflow) 

Figure 2:  Stream X-Machine specification for a bounded stack 

Since a SXM is driven by inputs and must produce distinguishable outputs, these are supplied 
as tuples I = (C × E) and O = (E × T), where C = {push, pop} is the set of Stack commands, E 
is the Stack's element type and T = {pushed, filled, overflow, popped, emptied, underflow} is 
the set of status indicators revealing which φ ∈ Φ was fired.  Not every operation requires or 
produces a valid element e ∈ E, so ⊥ denotes the undefined element.  An invocation of the 
push method is modelled as supplying the input pair:  (push, e) and, if push1 is triggered, will 
yield the output pair:  (⊥,  pushed). 

The memory type:  M = (N × E[n]) is a product type, chosen to meet the specific data storage 
needs of a Stack.  In this, N is the set of natural numbers and E[n] is the array type of length n 
of the element type E.  Memory values are therefore pairs:  (i, a) whose first projection i : N is 
a counter and whose second projection a : E[n] is an array, indexed from 0 to n-1.  The initial 
memory value is (0, {j → 0}) for j = 0..n-1.  Executing a transition φ ∈ Φ reads and modifies 
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the memory;  and the specification models this in a functional style, according to the signature 
φ : (I × M) → (M × O), treating the array as a map from indices to values.  Expanding out the 
tuple types for I, O and M gives the full definition of push1 as: 

push1 : (C × E × N × E[n]) → (N × E[n] × E × T) 
push1 (push, e, i, a) [i < n−1] == (i+1, a⊕{i → e}, ⊥, pushed) 

where the memory guard [i < n−1] is used to discriminate between the firing of push1 and 
push2 when the machine is in the Loaded state.  Further definitions of transition functions are 
given in figure 2. 

There is a certain freedom in the choice of functions when specifying this machine.  It can be 
advantageous, especially for testing purposes, to have fewer functions φ ∈ Φ at this level of 
abstraction, since a smaller Φ reduces the size of the test set.  Accordingly, some of the 
complexity may be pushed down to a lower level of abstraction.  Here, we could merge push3 
with push2, since their guards may be combined as [i ≥ n-1].  A definition of the merged 
push2-3 is given as: 

push2-3 : (C × E × N × E[n]) → (N × E[n] × E × T) 
push2-3 (push, e, i, a) [i ≥ n−1] ==  
  if (i = n−1) then (i+1, a⊕{i → e}, ⊥, filled) else (i, a, ⊥, overflow) 

This is a more complex function, branching internally on the state of memory before returning 
one of two possible outputs.  It may be exposed in turn at a finer level of granularity as a 
SXM.  Similarly, we could merge pop3 with pop2 by combining their guards as [i ≤ 1].  Even 
finer grained machines may be constructed for array update and counter arithmetic, down to 
the lowest level of component that can be trusted. 

The Stack machine is deterministic.  Note that we could not merge the guards of  push1 and 
push2 without losing the determinism.  The Loaded state requires distinct transition functions 
for the re-entrant and exiting cases, otherwise the behaviour of the machine in response to a 
push command in this state cannot be determined.  The same is true for pop1 and pop2. 

This machine is output distinguishable, since every φ ∈ Φ is associated with a unique status 
indicator t ∈ T.  Although in the specification, the current state s ∈ S may highly constrain 
those functions Φs ⊆ Φ which should legally fire, when driving the corresponding system 
through its test sequences, it is necessary to expect that any φ may fire erroneously and this 
must be detectable.  Sometimes output distinguishability can be assured without recourse to an 
artificial status indicator set.  Naturally, if there are fewer merged functions, fewer status 
indicators are required:  push2-3 could simply return filled for both branches. 
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To make this machine test complete, it must be possible to drive the Stack through all its 
transitions, starting from the initial Empty state.  This means that every transition must at least 
be attempted in every state.  Objects immediately satisfy the latter requirement, since any of 
their methods may be attempted at any time.  In practice, we also need to reach the Stack's 
Loaded state within a tractable time interval. 

3.2 On the Validity of the Stream X-Machine Model 

It is clear that the above Stack specification satisfies the design-for-test requirements of the 
SXM model, and it is immediately testable using Chow's method.  However, there are a 
number of important mismatches between the modelling conventions of SXMs and the 
conventions of object-oriented systems. 

The first issue is the supposition of the global memory tuple m : M.  In theory, any part of m 
may be accessed by any function φ ∈ Φ.  In practice, different parts of m are sometimes 
accessed by different φs and it is then possible to partition m into encapsulated chunks that are 
handled by distinct subsystems [19, 20].  Memory in object-oriented systems is distributed over 
collections of objects and is encapsulated inside these, as attributes.  It is not possible to access 
arbitrary pieces of memory directly, but only the local attributes of an object.  This becomes 
an issue later, especially in the testing of guards.  In the revised model, we consider that 
memory is distributed and also encapsulated, such that parts of memory are not immediately 
available to the object under test. 

The second issue is the way that Stream X-Machines are driven in single steps by inputs that 
are matched with corresponding outputs.  It is an important tenet of the testing philosophy that 
every step of the computation must be observable.  Against this, object-oriented systems 
generally exhibit multi-step behaviour, in which one message invokes a chain of methods that 
run to completion before execution halts.  Multi-step transition firing means that observed 
outputs can no longer be associated uniquely with transitions:  an output sequence <a, b> 
observed for a transition sequence <φa, φb> can be associated three ways with the transitions:  
wholly with the first, or the second transition, or element-wise with each, the latter being the 
intended correct association.  This means that observing the expected sequence of outputs only 
has a 1/3 chance of guaranteeing the correct behaviour of the transitions.  This scales up badly 
for longer observation sequences:  a length 3 observation sequence may be associated in ten 
ways with a length 3 transition sequence, for example.  In the revised model, we must find a 
way of assuring single-step progression and a means of observing this. 

The issue of observations is also tricky in the object-oriented model, which is not so much 
driven by data as by functional requests and responses.  We do not especially favour the 
practice of instrumenting code with additional input and output statements that are 
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conditionally compiled, since the delivered system is then a different artefact from the tested 
system [22].  Other testing approaches use oracle objects that have privileged access to the 
object under test (eg using the friend mechanism in C++, which adds no overhead to the object 
under test) [12, 14, 15, 22].  Below, we address the same issue differently using the notion of 
stub objects under the control of the tester. 

The most difficult problem in applying the described testing method relates to computing the 
next-state function.  In Chow's testing method, the next state must be deterministically 
decidable from the next input, so that reached states may be verified with respect to expected 
states.  In the SXM model, certain control states, such as Loaded, exhibit non-determinism 
under inputs alone, which can only be resolved by the checking of guards.  The first difficulty 
here is that the required memory values are not always locally available.  They may have to be 
requested from a collaborator object, such as the Stack requesting the value of n from an 
underlying Array object, in order to evaluate the guard [i < n−1].  Such a communication 
constitutes a separate step in the machine.  Inter-object communications occur during the firing 
of transitions.  This means that transitions are commenced before the eventual result of the 
communication is known.  In general, the behaviour of an object's method may depend in an 
arbitrary way on messages sent to other objects, such that the destination of the transition may 
not be known in advance. 

A second difficulty, related to this one, concerns the functional nature of tests.  In the Loaded 
state, the guards chosen to disambiguate the destination states for push and pop commands 
require information related to boundary pre-conditions, or the value of the Stack counter i just 
prior to crossing a category boundary (ie from Loaded to Full; or from Loaded to Empty, 
respectively).  This kind of information is usually related to structural knowledge about 
implementations, rather than functional specifications.  A functional specification for a Stack 
should be expressed in terms of its own category partitions, which are refined in terms of 
functional specifications of its component objects, the Integer counter and the Array: 

empty() ⇔ i == 0;  loaded() ⇔ 0 < i < a.size(); 
full() ⇔ i == a.size();  error() ⇔ i < 0 ∨ i > a.size(); 

These are boundary post-conditions, expressed in terms of values of the Stack counter i just 
after crossing a category boundary.  Without privileged access to a Stack's implementation, we 
may only reason backwards to the boundary pre-conditions in this example, because the 
increment operation on the counter happens to have an inverse, decrement operation.  In 
general, there are kinds of operation for which we cannot expect to be able to compute the 
inverse, either because the unique inverse does not exist, or because it is computationally 
intensive to derive - an example is the SHA-1 cryptographic signature algorithm [23].  As a 
result, we cannot always know the values to be checked in guards, until after the transition has 
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been completed (or at least the communication part).  For this reason also, the destination of a 
transition may not be known in advance. 

4. The Object Machine Model and Testing Method 

To handle these concerns, an alternative specification model, known as an Object Machine, has 
been developed, which behaves in a manner that is better aligned with object-oriented 
implementations.  An Object Machine (OM) describes the state changes and responses of an 
object triggered by the reception of message requests.  An Object Machine is a concrete, 
testable specification, derived by transforming a more abstract model of the specification.  The 
initial abstract specification, known as a Protocol Machine, describes the object's protocol 
states, and integrates many Method Machines, describing the operations of its methods.  The 
OM testing method is an adaptation of the SXM approach, using stub client- and server-
objects under the control of the tester to drive the object under test through single-step 
computations. 

4.1 Protocol and Method Machines 

The underlying semantics assumes a universe of primitive values and object references, from 
which an object's local memory is constituted.  Simple values are immediately available, in the 
manner of the SXM's global memory.  Any computation involving references requires 
communication via message passing with the object concerned.  In the example developed 
below, it is assumed that a bounded Stack encapsulates a simple-valued counter i, and a 
reference to a fixed-size Array having n > 1 elements of the type E.  Whereas the counter is 
immediately accessible to Stack methods, the Array size can only be discovered by sending a 
message to the Array, which is a communication. 

A Protocol Machine is a kind of transducer whose inputs are message requests and whose 
outputs are the invoked methods.  The Protocol Machine for the bounded Stack is shown in 
figure 3.  In addition to the familiar protocol states SP = {Empty, Loaded, Full, Error}, there 
are two diamond-states representing decision points after the main firing of the transition but 
before the following protocol state has been determined.  For convenience, we label these 
decision points Sd = {Pushed, Popped}.  The total set of states S = SP ∪ Sd.  Guards placed 
after the diamonds indicate postconditions to be evaluated after the main transition has 
completed (a departure from the preconditions of SXMs).  In general, guards may require 
further inter-object communication;  in figure 3, the guard condition  i == a.size() is checked, 
which requires a message interaction with the collaborating Array.  Guards may therefore be 
considered bona fide transitions in their own right. 
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Figure 3:  Protocol machine and class diagram for a bounded Stack 

One of the motivations behind the Protocol Machine is that it decouples the additional effort 
required to determine the next protocol state from the fundamental operation of the object's 
methods.  Three insights led to this conceptual view.  The first relates to the indeterminacy of 
the destination state prior to commencing a transition.  The issue was forced by engineering a 
deterministic transition to some state (a diamond-state).  Methods now always reach a known 
state, but this is not always a protocol state.  It is possible to test this design using Chow's 
method, by executing guard transitions in the same manner as normal transitions.  

The second insight is that the description of the object's Method Machines is greatly simplified 
if guards are abstracted and elevated to the Protocol Machine.  There are only two 
fundamental versions of each method:  Φm = {push, pushErr, pop, popErr}, to which we may 
add the guards:  Φg = {gFull, gEmpty}.  The full set of transitions is Φ = Φm ∪ Φg.   
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Figure 4:  Method machines for a bounded Stack 

The Method Machines for the bounded Stack are shown in figure 4.  A Method Machine is a 
kind of transducer, whose inputs are values and whose outputs are communications (shown 
highlighted) or primitive computations (increments, comparisons, return expressions).  The 
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states of a method machine are the points in between the execution of single instructions.  
Every transition is triggered by a value or reference returned by the previous computational 
step, including the initial transition which is triggered by supplying method arguments or ε, the 
trivial value.  Error-reporting is handled by extending every type with the error value, which 
signals an exception.  The abstracted guards may themselves be described in exactly the same 
way as methods in a method machine, since they are bona fide transitions.  The important 
boundary postcondition guards for a bounded Stack are shown in figure 5. 

AgFull
/ a.size()

ε /
B

n /

/ i == n

AgEmpty
/ i == 0

ε /
B

b /

/ -> b
C

b /

/ -> b
C D

 

Figure 5:  Boundary postcondition guards for a bounded Stack 

Each Method Machine is simple, requiring no knowledge of the protocol context in which it is 
invoked.  Method machines may be tested independently of their protocol context, since they 
only require access to the underlying concrete memory.  Naturally, any communication must 
assume that the collaborator object functions correctly (see section 4.4 below). 

4.2 Transformation of the Protocol Machine 

The third insight relates to a fundamental mismatch between object-oriented coding styles and 
automaton-based protocol specification styles.  Informally, a method doesn't care which 
protocol state an object enters when the method terminates.  This insight follows from 
observing the unnaturalness of contrived implementations for push that try to compute whether 
the Stack should enter the Full or Loaded state after the main operation of the method.  On the 
other hand, an object does need to know which state it is in, before it starts executing its next 
method, since partial functions become a salient concern.  For instance, push should not be 
legally executable from the Full state. 

So, whereas a specification will tend to express guards as postconditions on the previous 
transition, implementations tend to delay checking guards until the beginning of the next 
transition, a phenomenon that we refer to as lazy protocol checking.  This suggests that a 
decoupling of guard-related computations may be useful, since they are most naturally 
specified in one way, but checked in another.  It should also be possible to transform the 
Protocol Machine into something closer to the state machine of the implementation, by 
delaying guard checks until the next transition.  This reduces the representational gap between 
specifications and implementations;  and if the rules governing the transformation can be 
properly codified, the transformation may be performed as part of a model refinement stage.   
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Figure 6:  Object machine and class diagram for a bounded Stack 

The transformed Object Machine corresponding to the Protocol Machine from figure 3 is 
shown in figure 6.  An Object Machine is a state machine whose states correspond exactly to 
the wait-states of an object prior to receiving a message request.  The states are not necessarily 
protocol states;  some are derived by delaying decisions about the next protocol state, such 
that state-related postconditions on a transition φi become preconditions on φi+1 in transition 
sequences from Φ*.  The rules for constructing this machine are outlined below. 

The reactive behaviour of the Object Machine in figure 6 is interesting.  From the initial state, 
two applications of push are possible before a guard must be tested.  The third push requires a 
delayed guard check on the counter to determine whether the current Pushed state was 
equivalent to Full, and so ensure that the next state is the Error state.  However, it is possible 
to apply pop in the Pushed state without a guard check (cf figure 3).  From the Pushed state, 
two applications of pop are possible before a guard must be tested.  Interleaved applications of 
push and pop from the Loaded state flip between that state and some s ∈ {Pushed, Popped}.  
The state space is also interesting.  Compared with the Protocol Machine, the Pushed state 
subsumes Full and some of Loaded;  likewise, the Popped state subsumes Empty and some of 
Loaded.  Whereas the control states of a Protocol Machine were determined uniquely by the 
content of memory, the control states of an Object Machine are not unique with resepect to 
memory, but are determined only by the history of method invocations.  For example, i == 2 
always corresponds to Loaded in a n > 2 Protocol Machine, but may correspond to any s ∈ 
{Popped, Loaded, Pushed} in the equivalent Object Machine;  however two applications of 
push from Popped always lead to the Pushed state, for i = 0, 1, ... n−2. 

The rules for constructing the Object Machine from a Protocol Machine specification are based 
on turning diamond states (decision points) in the Protocol Machine into first-class states in the 
Object Machine and then delaying postcondition guards by moving them one transition ahead 
in the graph.  For example, the diamond state Pushed in figure 3 exits to one of the Loaded or 
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Full protocol states on a postcondition check.  In figure 6, Pushed becomes a first-class state, 
subsuming Full and some of the old Loaded state.  The rule for moving guards is based on 
determining which methods are partial functions in the following protocol states.  Recall that 
protocol states map onto unique sets of partial functions: 

{Empty → {pop}, Loaded → {}, Full → {push}, Error → {push, pop}} 

from which we determine that only push is disallowed in Full and no method is disallowed in 
Loaded.  The old postcondition [i == a.size()] related directly to entering the Full state, in 
which the push method was illegal.  This guard becomes a precondition on the pushErr 
transition exiting the new Pushed state.  The complementary postcondition [i < a.size()] 
controlled re-entry to the Loaded state, in which all methods were legal.  In the transformation, 
this becomes the complementary precondition on a push self-transition to the Pushed state, in 
which the same methods are legal.  The pop method is unaffected by this particular 
transformation, because it is not in the set of partial functions under consideration.  However, 
pop is affected in the symmetrical consideration of the Popped state. 

4.3 Transformation of the Method Machines 

Similar transformations may be performed upon the methods and guards, whose machines are 
transferred over from the Protocol Machine and plugged directly into the appropriate place in 
the Object Machine.  Recall that there are two versions of each method:  Φm = {push, pushErr, 
pop, popErr}, corresponding to pairs of normal and error cases.  From most states, the 
methods may execute unguarded.  There is one state, for each pair, in which preconditions 
must be checked.  This can be handled by prepending the guards to the methods, constructed 
formally by joining the guard and method machines, which can be rendered directly into 
pseudocode as: 

if [i == a.size()] then pushErr(e) elseif [i < a.size()] then push(e) else end 
if [i == 0] then popErr() elseif [i > 0] then pop() else end 

However, if the guards can be assumed to cover the entire space of memory values (note that 
the remaining i > a.size() and i < 0 imply that the Stack is already in the Error state) , then we 
may simplify the above, only checking for the disallowed error cases.  This is like saying that 
methods know themselves when to enter the error state;  and looks close to the form of code 
that programmers typically write for a bounded Stack: 

if [i == a.size()] then pushErr(e) else push(e) end 
if [i == 0] then popErr() else pop() end 
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Recall that these specifications relate only to the guarded versions of push and pop;  other 
occurrences of push and pop are not guarded, according to the specification.  However, 
programmers normally provide only one implemented version of push and pop.  The 
specification for these single implemented methods is derived by merging the specifications for 
all the method variants.  The rule for merging unguarded and guarded variants works on the 
principle that the guards are significant in some cases and redundant in others.  The result of a 
merge will keep the guards, which are redundantly executed in some cases. 

A further transformation is possible, based on the idea that error conditions may be detected as 
late as possible.  Assuming that the Array supporting the Stack is bounds-checked, the job of 
detecting out-of-range insertions and extractions may be delegated to the collaborator.  This 
has the merit that the method machines for push and pushErr can be constructed to share 
transition paths;  this is even more the case with pop and popErr.  The advantage of merging 
specifications in this way is that it makes testing simpler:  the implemented code will, after all, 
not contain multiple versions of push and pop. 
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Figure 7:  Merged method machines 

Figure 7 shows the merged method machines combining the paired correct and error versions 
of push and pop.  In this, use is made of the returned error value to signal the fact that 
exceptions were raised by the Array collaborator, which are handled by the Stack.  The rules 
for merging transition paths are simple:  the nodes and transitions for all variants of a given 
method are merged for as long as the transitions exhibit the same input/output pairs; but where 
these diverge, variant transitions lead to distinct states.  As a general principle, we find that 
delaying the reporting of errors results in machines which are more easily merged.  The most 
common case is chosen as the base machine and variant machines are spliced into this. 

4.4 Adaptation of the Testing Method 

The testing method used is based on the same principles as Chow's method, described in 
section 2.1.  To test a bounded Stack implementation with respect to an Object Machine 
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specification, it is necessary to show that the states and transitions of both are equivalent.  In 
order to drive the Stack through the test set, a test harness object, StackTester, is used to 
invoke Stack methods in sequences generated according to the minimal test set algorithm (see 
section 2.1 and [16, 17]).  In order to observe the results of firing single-step transitions, a 
double policy is adopted in which stub objects are used in place of the Stack's usual 
collaborators, to observe the effects of communications, whereas the StackTester object is 
used as a privileged oracle (see section 3.2) to observe the results of primitive computations.  
The aim here is to enforce single-step computations, and also provide the equivalent of 
distinguishable outputs (see section 2.2), without interfering directly with the Stack's methods 
in any way.  The stub objects, described below, may also be used to generate parts of the 
expected test sequence. 

Intercepting the Stack's communication with Array using a substituted ArrayStub has many 
benefits.  The ArrayStub object is designed trivially to satisfy the subset of the Array's interface 
on which the Stack depends, without necessarily having to perform all the associated 
operations.  Instead, the methods of the ArrayStub print simple outputs and supply return 
values as the tester desires, to drive the Stack through its states.  Any Stack method which 
calls an Array method may be observed and identified by the printed output.  Also, since the 
ArrayStub is under the control of the tester, its methods may wait for control signals from the 
driving StackTester harness before continuing, so interrupting the normal run-to-completion 
behaviour of the Stack.  The ArrayStub may be designed to ensure that all of the Stack's states 
are reached in a tractable time interval (see section 3.1), for example, an ArrayStub simulating 
an Array with n=3 would allow all of the states and transitions in figure 6 to be tested in the 
shortest time.  Finally, the reporting behaviour of the ArrayStub also serves to show that the 
Stack is communicating correctly with the intended collaborator.   

In general, this technique may also be used to handle self-directed messages (a stub substitute 
for the current object may be used to intercept nested calls), so preventing multi-step run to 
completion.  The substitution of stubs is a simple and minimally-invasive technique that is 
always available where objects have reference semantics.  It requires a design-for-test coding 
style in which object constructors take arguments which are the intended collaborators.  
Transitions which perform primitive computations on local memory cannot be observed by 
intercepting communication.  In this case, a different technique is used in which the test 
harness is granted privileged read-only access to the object's memory state.  Privileged access 
may be granted through friend declarations in C++, or using the basicAt: instance variable 
access method in Smalltalk, for example.  The equivalent of obtaining a distinguishable output 
is an observation by the test harness, after firing the transition, that the memory of the object 
has changed in a suitable, unique way. 
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Following this approach, the Object Machine for the Stack may be completely exercised and 
the behaviour of the implementation observed.  The successful completion of the 
automatically-generated test series as outlined in section 2.1 guarantees that the integration of 
methods is correct with respect to the Object Machine specification, on the assumption that the 
methods are individually correct.  A different strategy is required to observe the correct 
functioning of each method with respect to its Method Machine.  Different policies are 
possible, depending on the tester's confidence that the methods have been correctly 
implemented [16, 17].  In the examples presented here, the methods are sufficiently simple for 
category partition testing to be effective [2].  Where methods exhibit sufficiently complex 
state-dependent behaviour, they may be tested by a further application of Chow's approach.  
The policy that most directly mimics this is to execute each method with breakpoints for 
observation after each instruction;  in general, this is considered too invasive and too costly, 
equivalent to observing every instruction in a stepping debugger.  However, automated 
verification of stack-frame values is possible in a language like Java, in which single 
instructions may be intercepted on the stack of the Java Virtual Machine.  A compromise 
solution is to rely on the communication-steps in methods to provide the breakpoints at which 
observations are made of the cumulative effects of local memory modifications.  Since the stub 
collaborator objects are under the control of the tester, they may be constructed to refer back 
to the driving test harness, through which privileged observations of local memory are made.  
This is an approach that we are currently exploring. 

5. Conclusions 

A complete functional testing method for object-oriented components has been presented, in 
which minimal test sequences are generated from Object Machine specifications and applied 
using Chow's testing approach.  The outcome of a successful test is a proof of correct 
integration of the object's methods.  The methods may be unit-tested independently before their 
integration, using a variety of approaches.  The outcome of a successful test is a proof that the 
method communicates with the intended collaborator objects, whose correct behaviour is 
assumed, and leaves the current object in the expected local memory state.  The approach is 
applied recursively to collaborating objects, in a divide-and-conquer fashion, down to the 
smallest trusted component.  The integration guarantee provides a true measure of test 
effectiveness, rather than coverage metrics which merely measure test effort:  it supports a 
truly modular testing strategy in which systems may incorporate trusted components, in which 
all remaining possible faults are necessarily to be found.  This testing method therefore makes 
definite statements about the quality of tested code. 

A novel aspect of this work is the derivation of an Object Machine, a concrete specification 
that closely mimics the coding styles used by programmers, by automatic transformation from 
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a more abstract Protocol Machine, the natural specification style used by designers.  This 
transformation was intended to help in satisfying the design-for-test conditions discovered for 
the earlier Stream X-Machine testing approach, but serendipitously has great potential for 
future automatic code generation approaches based on model refinement.  The prospect of 
generating code directly from checked specifications, using formally-verified transformation 
rules, may in future provide another route to completely trustworthy code. 

Another novel theoretical finding is how the notion of object state can be defined in up to three 
different ways:  protocol states are motivated from the modes in which distinct subsets of an 
object’s methods are partial functions,  memory states are abstractions over the object's 
concrete data attributes and wait states are the reactive states in which an object expects an 
external stimulus.  It is a plausible conjecture that protocol states may always be determined 
from memory states;  but an object's wait states are provably different (section 4.2).  We are 
currently investigating the idea that "external stimuli" may include both message requests and 
also method responses.  A wait state is then one in which an object expects a new request, or a 
response from a collaborator.  A communicating state machine designed around such wait 
states would subsume an Object Machine and the communication steps of its associated 
Method Machines, but hide internal primitive computations.  Call-back invocation and other 
forms of mutually-recursive invocation could be handled transparently in such a machine;  this 
is the subject of future work. 
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