
Mixins: Typing the Superclass Interface

A J H Simons, Department of Computer Science, University of Sheffield,

Regent Court, 211 Portobello Street, Sheffield S1 4DP, United Kingdom.

Email: A.Simons@dcs.shef.ac.uk

Abstract

A mixin is a free-standing class extension function, describing a set of behaviours that may be

combined with potentially many other classes. Although informal, operational descriptions of

mixins are given in languages like Flavors and CLOS, a truly satisfying formal description of

mixins has so far eluded researchers in the field. Previous attempts have either restricted the

interpretation of classes to simple types, or required a complex form of higher-order

quantification. We describe a new typing for mixins, based on Cook's F-bounded model of

inheritance, that uses dependent second-order types. In particular, we are able to type the

superclass interface, expressing how a mixin expects in general to be combined with some class

possessing at least a particular set of methods.

1. Introduction

Mixins are of interest in object-oriented programming because they describe the notion of a

component extension, in much the same way that languages with encapsulation support the

notion of component sub-parts. The difference is that mixins are combined using the

inheritance rules of the language, rather than using ordinary composition. Whereas

composition respects the client interface of the component, preserving the abstraction barrier

between the part and the whole, mixin combination involves a subtle linking of inherited

methods and mixin methods. Figure 1 illustrates a mixin class designed to add a two-

Mixins: Typing the Superclass Interface, page 2

dimensional co-ordinate system onto any class with which it is combined. In any resulting

combination, the methods x, y and move do not interact with inherited methods, since they

provide orthogonal functionality. However, the method equal extends the functionality of

some basic equal method in order to compare object co-ordinates as part of the equality-test.

The basic method, which is assumed to compare the states of two objects, is accessed through

super.equal(...), where super is a self-referential variable denoting the inherited part of the

combination. At the time the mixin is defined, the exact binding of super and its type are not

known. However, super must eventually refer to some object possessing at least an equal

method for the combination to be well-defined.

mixin class XYCOORD
private attributes

xcoord, ycoord : INTEGER;
public methods

x : INTEGER
{ return xcoord }

y : INTEGER
{ return ycoord }

equal (other : SELF) : BOOLEAN
{ return (super.equal (other) and xcoord = other.x

and ycoord = other.y) }
move (newx, newy : INTEGER) : SELF

{ xcoord := newx; ycoord := newy; return self }
end

Figure 1: Mixin Supplying a 2D Co-ordinate System

A mixin therefore has a client interface, describing the methods that it exports, and a

superclass interface, expressing a minimum requirement on the methods owned by any class

with which it is to be combined. This is because the services offered by a mixin depend in

general on services inherited from the class with which it is eventually combined. The

superclass interface is analogous to a socket, expecting to receive a plug-in parent class

possessing at least a certain set of methods. By this, we do not necessarily mean exporting,

since languages with both public and protected modes of inheritance allow classes to bequeath

methods to their descendants which are not in their client interface.

Mixins: Typing the Superclass Interface, page 3

This notion of the superclass interface has proven extremely difficult to capture, both

practically in languages like Flavors and CLOS [Moon86, Keen89], which cannot express it,

and in theoretical treatments which either over-simplify the typing issues [BC90, Hauc93] or

have problems typing mixin inheritance in more complex type models [CHC90, Harr91]. We

describe some of these difficulties in sections 2, 3 and 4 respectively.

The fact that a mixin extends a class, yielding a modified class leads naturally to the idea of a

class extension function, having the form: ∆ : CLASS → CLASS, where the domain and

codomain range over classes. This notion has only been captured imperfectly in earlier

treatments of mixins [BC90], which implicitly assume extension functions having the less

satisfying form: ∆ : TYPE → TYPE, ranging over simple types in the place of classes. Cook et

al. [Cook89, CCHO89a, CCHO89b, CHC90] have elsewhere promoted the view that a class is

not really a type τ, but a family of related types constrained by an F-bound: ∀(τ ⊆ F[τ]).

However, in [CHC90], mixins could not be typed in the F-bounded model, because the

combination operator would only work for simply-typed records. In section 5, we develop a

dependent second-order typing for Cook's combination operator, which allows us to combine

polymorphic typed records, in the manner of multiple class inheritance with linearisation.

Finally, by appealing to the close relationship between the type of self and the type of super,

we construct in section 6 a dependent second-order typing for mixins having the desired form:

∆ : CLASS → CLASS, which captures exactly the required constraint on the superclass interface.

2. Untyped Treatments of Mixins

The widespread use of the term mixin to describe a component extension to a class dates from

its appearance in Flavors [Moon86], the earliest object-oriented language with such a concept.

Following the ice-cream metaphors used in the language, a mixin represented a particular set

of behaviours that could be added to a basic, or vanilla flavoured class.

In practice, a mixin looked like any other class, with the distinction that it was "not intended to

be instantiated independently". This operational criterion was also adopted by the Common

Mixins: Typing the Superclass Interface, page 4

Lisp Object System [Keen89]. The "no separate instantiation" requirement is mostly one of

semantic intention, since there are otherwise no major formal differences between mixins and

classes in these languages. For example, the multiple inheritance rules of Flavors and CLOS,

though they linearise the class hierarchy in different ways1, bind occurrences of super (Flavors)

and call-next-method (CLOS) for mixins and classes in much the same way.

Neither language supports the notion of a superclass interface for mixins (nor for ordinary

classes). No attempt is made to check that calls to inherited methods accessed through super

(Flavors) or call-next-method (CLOS) are well-typed. It is perfectly possible to combine a

mixin with a class which does not provide a required basic method. Super-method calls are

resolved at run-time, leading to not-found errors for undefined super-methods.

3. Naïve Treatments of Mixins

Bracha and Cook [BC90] revived interest in mixins when it became clear that models of

inheritance for languages as diverse as Smalltalk [GR83], Beta [Mads93] and CLOS [Keen89]

could all be mapped onto a simpler model based on the combination of mixins. This work

revealed important symmetries across these languages: a Beta prefix pattern binds the

keyword inner to an extensional subpattern, while a Smalltalk subclass is defined as an

extension binding the keyword super to a parent class and likewise a CLOS subclass method

binds call-next-method to a parent method. Inheritance in these languages can be

decomposed into the combination of an extension record of supplementary methods with a

base record denoting the prefix pattern (Beta) or parent class (Smalltalk, CLOS). A mixin is

initially described as an "abstract2 subclass", or:

1 Flavors uses a left-to-right, depth-first combination, whereas CLOS uses a more complex topological sorting

algorithm based on ordered pairs.

2 An unfortunate term, since a mixin is not abstract in the normal sense: it provides a concrete set of services.

Mixins: Typing the Superclass Interface, page 5

"a subclass definition that may be applied to different superclasses to create a related

family of modified classes" [BC90, p303].

Stated more correctly, a mixin is a free-standing class extension function that abstracts over its

own superclass, having the form: ∆ : CLASS → CLASS. Bracha and Cook were clearly

reaching for such a definition, but the examples of mixins presented in [BC90, p304] fall short

of this, since they are neither extension functions (they are simply free-standing extensions),

nor do they abstract over classes (they abstract over types, a subtle but important distinction).

Initially, Bracha and Cook develop an untyped model of mixin combination. Their idea of a

mixin is a parameterised free-standing extension record of methods, having the form:

∆ = λsuper.{a1
� e1, ... an

� en}

where the ai are labels and the ei are method expressions which may contain further

occurrences of super, through which other methods may be invoked. During mixin

combination, super is bound to the parent object with which the mixin is combined. Ordinary

objects are modelled as records of methods:

P = {b1
� e1, ... bn

� en}

A combined object C is derived from a parent object P using:

C = ∆ (P) ⊕ P

where ⊕ is an asymmetric record combination operator preferring the fields from its left-hand

argument. ∆ (P) applies the extension to the parent P, such that super-reference in the

extension is redirected onto the parent. Messages sent to super in the extension will invoke

the parent's methods. It is clear from this definition that ∆ is not a class extension function,

since the extension of the parent class is achieved using ⊕, after the application of the mixin.

Bracha and Cook's mixins are perhaps better described as adaptable extensions. More

seriously, problems arise when we start to add types to this model.

Mixins: Typing the Superclass Interface, page 6

The later development [BC90, p308-9] reveals that classes are given simple types. This

interpretation is only adequate for languages such as Modula-3, in which subclassing is

subtyping and methods are external to recursive objects [CDJG89]. Generally, this is not

consistent with other work by Cook et al. [Cook89, CCHO89a, CCHO89b, CHC90] which

has found that in practice most object-oriented languages assume a different type model. The

weakness of the simply-typed model is revealed when P, ∆ and C have recursive types. This is

a common occurrence, for example when methods of the parent P make calls through self to

other parent methods, or when the extension ∆ provides a coherent set of methods which call

each other. In this case, the mixin and the parent have the form:

∆ = λsuper.µself.{a1
� e1, ... an

� en}

P = µself.{b1
� e1, ... bn

� en}

in which the method expressions ei contain further references to self, through which other

methods are invoked, recursively. The notation: µself.φ(self) represents the recursive object

which is the fixed point of a generator: λself.φ(self). In the generator, self is a parameter, but

in the fixed point it is bound to the structure of the recursive object, self = φ(self). When we

add types to this model, we discover that the type of self is different in the parent object and in

the mixin. Let us give the parent the recursive type: P : σ. Assuming that super does not

appear in the client interface of the mixin, we may give the adapted mixin a different recursive

type: ∆ (P) : τ, to indicate the fact that self is bound over a different recursive record of

methods. The mixin itself is a function having the type: ∆ : ∀(t ⊆ Θ).t → τ, where

t ⊆ Θ is a type constraint on the super argument, expressing the fact that it must provide at

least a particular set of methods (those methods which are invoked through super in the

mixin). Provided that P ⊆ Θ, then the application ∆ (P) is type correct, and has the result type

τ. However, the combination C = ∆ (P) ⊕ P does not yield an object with a useful recursive

type, since self-reference is non-uniform in the result. In methods ai occurrences of self have

the type τ, whereas in methods bi occurrences of self have the type σ. Nowhere in the

combined object C does self refer to C, but rather to disjoint sub-parts of C. This leads to

Mixins: Typing the Superclass Interface, page 7

type-unsafe method overriding, for example, where mixin methods ai are wrappers which

adapt inherited methods bi, and both return self. Then, bi : σ is replaced by ai : τ in a context

where σ and τ have unrelated, disjoint types. We shall call this approach the naïve typing of

mixins. This naïveté is present to a certain degree in other recent efforts to type the superclass

[Hauc93] and subclass [Lamp93] interfaces.

Lamping concentrates on distinguishing the client interface from the specialisation interface

(i.e. subclass interface), the Beta-style dual of our superclass interface [Lamp93]. The focus

of Lamping's work is on identifying what (hidden) protocols of a parent class are relied on by

its descendants and therefore which methods must be protected from change. Unfortunately,

no treatment of recursion is given, so the primary requirement that self-reference should be

kept consistent under inheritance is not addressed. Without such a guarantee, it is impossible

to determine whether protected methods are available to descendants or not.

Hauck recommends that inheritance should be understood as a kind of composition [Hauc93],

in which subclass objects contain an object of the superclass type, but repeat their interface,

delegating repeated methods to the attribute super. Recognising the binding problem

associated with recursion, Hauck uses Cook's technique [Cook89, CP89] to redirect the self of

the parent object P onto the child C. Cook and Hauck give an object definition the form of a

generator φP parameterised over self:

φP = λself.{b1
� e1, ... bn

� en}

The recursive object P is implicitly constructed as the fixed point of the generator φP (in

[Hauc93], the fixed form of self is referred to as here):

P = (ΥΥ φP) ⇔ P = φP(P)

in which self is bound recursively to P. However, the component attribute super in any child

C is constructed as: super = φP(C). This insight is important, since it ensures that self-

reference in P's methods is redirected onto the child C, such that self-reference in all methods

(whether new in C, or delegated to P) consistently refers to the child C.

Mixins: Typing the Superclass Interface, page 8

Unfortunately, Hauck's extension to mixin-based composition [Hauc93, p238] is faulty, since it

does not deal properly with the binding of self. A mixin definition has the form of an

extension generator parameterised over self and super:

φ∆ = λself.λsuper.{a1
� e1, ... an

� en}

From the diagram in [Hauc93, p238] the adapted mixin object is expected to have the form:

µself.φ∆ (self, φP(self))

in which the mixin's super is bound to some adapted form of the parent P and self-reference in

the parent's methods is redirected onto the mixin. This means that self-reference in both the

mixin and the parent refer to the extension record alone. Unlike Hauck's other derived child

classes, a mixin cannot repeat the full interface of the parent. Mutually recursive calls among

P's methods will now no longer work, since they access a self which only knows about the

additional methods provided by the mixin.

4. Incomplete Treatments of Mixins

Cook's F-bounded model of inheritance [Cook89, CP89, CCHO89b, CHC90] deals properly

with recursion, but stops short of handling mixins. In Cook's approach, free-standing

extension records are not allowed, because of the complications this raises in the typing of the

record combination operator ⊕. For comparison, we first describe Cook's untyped model.

A child object C is defined by first modifying a parent generator φP to a child generator φC:

φC = λself.(φP (self) ⊕ {a1
� e1, ... an

� en})

and then taking the fixed point: C = (ΥΥ φC). Here, ⊕ is an asymmetric record combination

operator that prefers fields from its right-hand argument. Note especially how self is only

bound in the result of record combination. Free occurrences of self in the extension record's

method expressions ei refer to the self of the child generator φC, rather than to the extension

record itself. For this reason, the extension record cannot exist outside the scope of the child

Mixins: Typing the Superclass Interface, page 9

object definition. Within these constraints, it is possible to model single inheritance with

method combination, replacing an inherited method bi with a new version ai which invokes the

original through a call to super. So long as the extension record is defined within the scope of

self and super in φC, it is possible to parameterise inheritance internally over super:

φC = λself.(λsuper.(super ⊕ {a1
� e1, ... an

� en}) (φP (self)))

and bind super to a value representing the adapted parent object φP (self), in which self has

been redirected to refer to the child. Now, method expressions ei in the extension record may

contain free occurrences of super and self. Methods ai in the extension record may override

or wrap methods bi in the parent class, but in contrast with [BC90], self-reference in the parent

and the extension both refer consistently to the child.

Intuitively, to develop the notion of a mixin which deals properly with the binding of self, we

want a free-standing extension record to have the form of a generator:

φ∆ = λself.λsuper.{a1
� e1, ... an

� en}

which abstracts over both self and super. We intend to develop a mixin-style of inheritance

having the form:

φC = λself.(φP (self) ⊕ (φ∆ (self, φP (self))))

in which the self of the mixin is adapted to the child and the super is adapted to a modified

form of the parent in which self-reference denotes the child. Unfortunately, it is not possible

to type this in Cook's model without first redefining his record combination operator.

To see why this is necessary, we shall add types to the model and introduce some more

concrete examples, in preparation for a formal treatment of the mixin from section 1. Figure 2

illustrates a basic typed square class. ΦSQUARE is a type generator, describing the recursive

type of a simple geometric square shape, having the methods side, area and equal. It is

parameterised in σ, the self-type of squares. In generator-form, it can be adapted by

application to new types: ΦSQUARE [t], which distributes t to σ.

Mixins: Typing the Superclass Interface, page 10
ΦSQUARE = Λσ.{side: INTEGER, area: INTEGER, equal: σ → BOOLEAN}

Φsquare : ∀(t ⊆ ΦSQUARE [t]).t → ΦSQUARE [t]

Φsquare = Λ(t ⊆ ΦSQUARE [t]).λ(self: t).
{side � 10, area � (self.side * self.side),

equal � λ(other: t).(self.side = other.side)}

Figure 2: Basic Square Class

The fixed point of the generator: SQUARE = (ΥΥ ΦSQUARE) yields the exact recursive type

of instances of the basic square class. Unrolling the recursion, the type SQUARE is equal to:

{side: INTEGER, area: INTEGER, equal: SQUARE → BOOLEAN}. The associated

function Φsquare is a typed object generator, describing the recursive form of such instances,

parameterised in self and the self-type. To create an object sqr, a type must be supplied for

self, then the fixed point taken: sqr = (ΥΥ (Φsquare [SQUARE])), in order to bind self

recursively to sqr. The type of self is expressed as an F-bound: ∀(t ⊆ ΦSQUARE [t]).t,

indicating that self may be safely redirected onto other recursive structures so long as their

type satisfies t ⊆ ΦSQUARE [t]. This expresses the constraint that any self : t must have at

least the interface of the adapted type ΦSQUARE [t], where ⊆ means "is a subtype of" and

here can be interpreted as "has more methods than", since apart from distributing types to the

parameter t, we never change the types of existing methods.

Figure 3 illustrates a more elaborate typed xy-square class, the class of all squares with a two-

dimensional co-ordinate system, which is derived from the square class using inheritance with

method combination. Note how the inherited super object is a form of the parent generator

adapted to the self-type and self of the child using: Φsquare [t] (self). This super, which has

the adapted type: ΦSQUARE [t], is then combined using ⊕ with an extension record that adds

the methods x, y and move and redefines equal to compare the co-ordinate positions as well as

the sides of xy-squares. The redefined equal wraps the inherited method, by calling

super.equal(...) in its body. In the inheritance expression, super.equal(other) is a reducible

expression, which selects the body of the equal method from the typed super object. The

Mixins: Typing the Superclass Interface, page 11

body: (self.side = other.side) is substituted inline in place of the super-method invocation in

the wrapper, which then overrides the inherited method.

ΦXY-SQUARE = Λσ.{x: INTEGER, y: INTEGER, equal: σ → BOOLEAN,
move : INTEGER × INTEGER → σ,
side: INTEGER, area: INTEGER}

Φxy-square : ∀(t ⊆ ΦXY-SQUARE [t]).t → ΦXY-SQUARE [t]

Φxy-square = Λ(t ⊆ ΦXY-SQUARE [t]).λ(self: t).
(λ(super: ΦSQUARE [t]).

(super ⊕ {x � 0, y � 0, equal � λ(other: t).
(super.equal(other) ∧ self.x = other.x ∧ self.y = other.y),

move � λ(a: INTEGER).λ(b: INTEGER).(x := a; y := b; self)})
(Φsquare [t] (self)))

= Λ(t ⊆ ΦXY-SQUARE [t]).λ(self: t).{x � 0, y � 0, equal � λ(other: t).
(self.side = other.side ∧ self.x = other.x ∧ self.y = other.y),

move � λ(a: INTEGER).λ(b: INTEGER).(x := a; y := b; self),
side � 10, area � (self.side * self.side) }

Figure 3: Derived XY-Square Class

Since we are now dealing with a typed system, it is important to ensure that this style of

derivation is type correct. The internal type application Φsquare [t] is correct provided that

any t ⊆ ΦSQUARE [t]. Given the new F-bound: ∀(t ⊆ ΦXY-SQUARE [t]) and the

observation: ∀t.ΦXY-SQUARE [t] ⊆ ΦSQUARE [t], a pointwise subtyping relationship

between the interface generators [AC95], any type satisfying xy-square's type generator will

also satisfy the bound on square's type generator, because it can be shown [Bruc94, p158] that

the following transitivity rule holds:

 Γ t ⊆ ΦF[t], Γ ∀s.ΦF[s] ⊆ ΦG[s]


Γ t ⊆ ΦG[t]

The internal self-application Φsquare [t] (self) is now correct since square's generator has been

specialised to xy-square's self-type and will accept a new self-argument in this type.

Mixins: Typing the Superclass Interface, page 12

The record combination operator ⊕ must also be demonstrably type correct. Cook et al.

considered that ⊕ joins "values whose types are constant" [CHC90, p128]. To achieve this

interpretation, we must consider that, during object-creation, inheritance expressions are β-

reduced in normal order and record combination is performed last, after the recursive type of

the new object has been fixed using ΥΥ. In this case, each occurrence of ⊕ has a particular

simply-typed form:

⊕ : β → ε → σ

for each eventual record type σ, in which the types of the base record β and extra extension

record ε are related to the type σ of the result, due to the presence of the self-type σ in the

fields of β and ε. In our model, both extra and base are truncated versions of the resulting

record (we do not allow, nor need, subsumption in the types of individual fields, as do other

record subtyping models [CW85]). Accordingly, we may qualify this relationship as:

σ = β ∩ ε ⇒ (σ ⊆ β) ∧ (σ ⊆ ε)

making σ the greatest lower bound on the types β and ε. This suggests the notion of an

intersection type [Pier92, CP93, Comp94] derived from the usual notion of subtyping. To

have a Cook-style simply-typed record combination operator, we must assume that there are

many different versions of ⊕, each typed over a different σ and then over different supertypes

β and ε of σ, such that σ = β ∩ ε. This is not especially satisfying, since it fails to generalise

the notion of record combination for typed records. More seriously, it means that we cannot

type mixin-based inheritance.

In particular, we cannot use a simply-typed ⊕ to combine an extension with a parameterised

base class whose self-type is unfixed. In contrast to the bound extension records used in

ordinary inheritance, we need free-standing extension records for mixin-based inheritance,

which abstract over the types of self and super. Because of this, Cook et al. were unable to

provide useful types for "abstract subclasses", or free-standing extensions, in [CHC90, p129].

Mixins: Typing the Superclass Interface, page 13

5. Second-Order Typed Record Combination

To overcome this problem, we wish to generalise ⊕ to a second-order typed operator,

combine. However, this requires resolving the mutual type dependency between β, ε and σ:

letrec σ = β ∩ ε in

combine : ∀(β ⊇ σ).∀(ε ⊇ σ).β → ε → σ

Our aim is to prohibit the combination of two types β and ε which cannot be related to a

common subtype σ. Unfortunately, we may not specify a type derivation in this way. It is

not clear that we could make the initial type assumption about the result, since we would have

to invoke the rule we are defining to discharge the assumption on which it depends. The

mutually recursive type dependency is curious but necessary. Without the type constraints on

its arguments, the result of combine is not guaranteed to have an intersection type. To see

this, consider overriding a base record with an extra record having incomparable types in some

common fields. The result is not a subtype of base. Critically, we want to preserve the

pointwise subtyping relationship between child and parent classes and in particular the result of

combine must be a subtype of the base argument for any pair of record types.

To avoid the mutually recursive type dependency, we can re-express this condition as a more

complex type constraint linking the types β and ε. Since ⊕ is not commutative, every field of

extra is always present in base ⊕ extra. Therefore, the result is always a subtype of extra. To

ensure that the result is also always a subtype of base, we require that base fields can only be

replaced by fields taken from extra if the replacement fields have the same types. We express

this as a type introduction rule for ⊕:

Γ base: {a1: s1, ... aj: sj, ... ak: sk},
Γ extra: {aj: tj, ... ak: tk, ... an: tn}, provided that self is uniform

Γ tj = sj, ... tk = sk in base, extra and base ⊕ extra

Γ base ⊕ extra: {a1: s1, ... aj: tj, ... ak: tk, ... an: tn}

Mixins: Typing the Superclass Interface, page 14

Since we shall always use ⊕ in a context where occurrences of self are co-referential, we avoid

type complications due to non-uniform self-types σ. Fortunately, an F-bounded type system

promotes uniform self-types through the application of generators.

We can now define a type override constraint Ω linking the record types β and ε and then

provide a regular typing for second-order record combination:

ε Ω β ≡ ∀(a ∈ dom(ε) ∩ dom(β)). ε.a = β.a

combine : ∀β.∀(ε | ε Ω β).β → ε → β∩ε

combine = Λβ.Λ(ε | ε Ω β).λ(base: β).λ(extra: ε).
{ label � value | (label ∈ dom(base) ∪ dom(extra))

∧ (if label ∈ dom(extra)
then value = extra.label
else value = base.label) }

This condition is sufficient to type record combination. Where common fields exist, the

equality constraint enforces uniform instantiation of the self-type. We shall continue to use ⊕

below as an abbreviation, with the expanded meaning:

⊕ = ∀β.∀(ε | ε Ω β).combine [β ε]

We note that this form of typing has avoided explicit higher-order quantification because it

exploits a dependency between two type arguments. We call this style dependent second-

order quantification.

Now, we aim to give recursive extension records a certain limited independent existence. By

abstracting over the self and self-type of extension records, we obtain a free-standing

generator, to which we may give a polymorphic type. Such a generator looks much like a

class, except that its methods are intended to supplement the methods of other classes. Figure

4 illustrates a simple typed extension generator destined to provide a two dimensional co-

ordinate system for any class without an equal method. By convention, we adopt ∆-prefixes

for typed extension record generators, to distinguish them from the Φ-prefixes of class

Mixins: Typing the Superclass Interface, page 15

generators. The constraint on the type of self arises from the fact that any class with which

∆xycoord is combined will have at least the methods x, y, equal and move. So far, this class is

not a true mixin because it does not also abstract over super.

∆XYCOORD = Λσ.{x: INTEGER, y: INTEGER, equal: σ → BOOLEAN,
move : INTEGER × INTEGER → σ}

∆xycoord : ∀(ε ⊆ ∆XYCOORD [ε]).ε → ∆XYCOORD [ε]

∆xycoord = Λ(ε ⊆ ∆XYCOORD [ε]).λ(self: ε).{x � 0, y � 0,
equal � λ(other: ε).(self.x = other.x ∧ self.y = other.y),
move � λ(a: INTEGER).λ(b: INTEGER).(x := a; y := b; self)}

Figure 4: Extension Class for a 2D Co-ordinate System

We could imagine combining this extension class with a basic object class (not illustrated here)

to derive a point class, using the style:

Φpoint : ∀(t ⊆ ΦPOINT [t]).t → ΦPOINT [t]

Φpoint = Λ(t ⊆ ΦPOINT [t]).λ(self: t).
Φobject [t] (self) ⊕ (∆xycoord [t] (self))

Since Φobject and ∆xycoord are both generators, it is necessary to apply them to uniform

arguments standing for the self-type and self before combining the resulting records. The

above construction is very similar to the idea of multiple inheritance with linearisation, since

repeated combination with ⊕ prefers fields from the right-most argument; however it is still

not mixin inheritance, since it anticipates the type of the result, ∀(t ⊆ ΦPOINT [t]).

6. Typing the Superclass Interface

A genuine mixin should derive the result type from its own type and the type of the class it is

mixed with. Earlier, we defined a mixin as a class extension function which abstracts over its

own superclass. Since classes are in general recursive, a mixin is a function of both self and

super, which constructs a new class by internal application of the record combination operator.

Mixins: Typing the Superclass Interface, page 16

Figure 5 illustrates the mixin corresponding to the extension class in Figure 4:

Σxycoord : ∀(ε ⊆ ∆XYCOORD [ε]).∀(β ⊃ ε).ε → β → β∩ε

Σxycoord = Λ(ε ⊆ ∆XYCOORD [ε]).Λ(β ⊃ ε).λ(self: ε).λ(super: β).
super ⊕ {x � 0, y � 0,

equal � λ(other: ε).(self.x = other.x ∧ self.y = other.y),
move � λ(a: INTEGER).λ(b: INTEGER).(x := a; y := b; self)}

Figure 5: Open Mixin for a 2D Co-ordinate System

We adopt Σ-prefixes to distinguish mixins from extension classes, which have ∆-prefixes. In

the type signatures for mixins, we deliberately order the quantification to force the type of

super to depend directly on the type of self, reflecting our earlier strategy for typing the

inherited super object. Recall that in Figure 3, super had the type ΦSQUARE [t], where t is

the new self-type. It is always the case that super's type is a proper supertype of self's type;

consider that, for the application ΦSQUARE [t] to be correct, t ⊆ ΦSQUARE [t] must hold.

Accordingly, we insist on a type relationship β ⊃ ε between the types of super and self in a

mixin. We do not allow subsumption in the values supplied for super and self: once the types

β and ε are given, super and self must have exactly these types. The result of ⊕ is an

intersection type respecting the interfaces of both the base class and the extension class.

We call the mixin shown in Figure 5 an open mixin, since it makes few assumptions about the

class with which it is to be combined. None of the methods in the extension record are

assumed to interact with any base class methods. It is also possible to provide bounded

mixins, which depend on their base class having certain methods, often because they wish to

specialise these methods. The type of super then must express a minimum requirement on the

interface of the base generator, such that method combination yields meaningful methods. We

now seek to type such a bounded mixin, corresponding to the concrete example given in

Figure 1, by further constraining the type of super in Figure 5.

Bounded mixins apparently introduce a mutual dependency: methods of self may now depend

on methods of super, since one of self's method results may be passed back directly from the

Mixins: Typing the Superclass Interface, page 17

super-method invocation. It is usual to quantify in order of dependency, leading not

unnaturally to the assumption that super should be bound before self. However, even though

self's method equal depends on super's inherited method, the super type β is unusual in that it

never appears in self's interface (references to self appearing in the interface of inherited super

methods will have the rebound type ε rather than β). This suggests that we can bind ε

independently of β. Furthermore, from the previous discussion it is clear that β depends

directly on ε, since the super record is always constructed by applying a parent generator to

self. Based on these insights, we bind ε before β.

In order to constrain the type ε of self independently, we appeal to the existence of the type

generator ∆XYCOORD for an extension class, given in Figure 4. We may always suppose

that such a generator exists independently, since its type signature does not depend on the type

of super. Accordingly, we may legitimately still give self the polymorphic type:

self : ε ⊆ ∆XYCOORD [ε]

We have established that the type β of super is a supertype of ε. It is also clear that β must

possess a minimum interface containing those super methods that are invoked within the

extension class. Since super.equal(...) is the only super method we wish to invoke, any valid

parent class must have some type t ⊆ ΦEQUAL [t], where:

ΦEQUAL = Λτ.{equal: τ → BOOLEAN}

If ε is the type of self, then super must have at least the type ΦEQUAL [ε], since it must

specialise the inherited self-type to ε; ΦEQUAL [ε] is the upper bound on the type of super.

As we have already determined that ε is the lower bound, super may take any dependent type β

in the range:

super : (β | ε ⊂ β ⊆ ΦEQUAL [ε])

This allows us to type the bounded version of the mixin Σxycoord, illustrated in Figure 6. The

β ⊆ ΦEQUAL [ε] constraint ensures that super has at least an equal method retyped in the

Mixins: Typing the Superclass Interface, page 18

self-type ε. The ε ⊂ β constraint ensures that super still has a more general type than self.

This is often overlooked - if ε = β, we do not obtain sensible method combination, but wrap

methods which have already been wrapped once. If ε ⊃ β were allowed, the mixin might be

combined incorrectly with a proper subclass.

Σxycoord : ∀(ε ⊆ ∆XYCOORD [ε]).∀(β | ε ⊂ β ⊆ ΦEQUAL [ε]).
ε → β → β∩ε

Σxycoord = Λ(ε ⊆ ∆XYCOORD [ε]).Λ(β | ε ⊂ β ⊆ ΦEQUAL [ε]).
λ(self: ε).λ(super: β).
super ⊕ {x � 0, y � 0, equal � λ(other: ε).

(super.equal(other) ∧ self.x = other.x ∧ self.y = other.y),
move � λ(a: INTEGER).λ(b: INTEGER).(x := a; y := b; self)}

Figure 6: Bounded Mixin for a 2D Co-ordinate System

We may apply the Σxycoord mixin directly to any suitable parent class owning an equal

method. Figure 7 illustrates an example of mixin inheritance in which the mixin Σxycoord is

combined with the φsquare generator shown in Figure 2, in order to derive an extended xy-

square class with a 2D co-ordinate system. Looking at the type constraints in Σxycoord, we

know that for any particular self-type σ ⊆ ∆XYCOORD [σ], any super-type τ must be a

proper supertype satisfying σ ⊂ τ ⊆ ΦEQUAL [σ]. We know from Figure 5 that a proper

supertype may be created by application of some superclass generator, here ΦSQUARE, such

that τ = ΦSQUARE [σ]. In order to verify that ΦSQUARE is indeed the generator for a

legitimate superclass, we must be able to show that σ ⊂ ΦSQUARE [σ], for some σ. In

order to verify that ΦSQUARE generates an interface with at least the methods expected by

the mixin, we must be able to show that ΦSQUARE [σ] ⊆ ΦEQUAL [σ], for some σ. The

latter immediately follows from the observation: ∀t.ΦSQUARE [t] ⊆ ΦEQUAL [t], the

pointwise subtyping relationship that obtains between the two generators. We now have two

constraints on the type of self: σ ⊆ ∆XYCOORD [σ] and σ ⊂ ΦSQUARE [σ]. The

minimum type satisfying this is the intersection ΦSQUARE [σ] ∩ ∆XYCOORD [σ]; let us

give this type the name: ΦXY-SQUARE [σ]. The result is therefore only well-typed for

Mixins: Typing the Superclass Interface, page 19

∀(σ ⊆ ΦXY-SQUARE [σ]). Note that we have constructed this constraint from the

argument types of the mixin and the chosen superclass, without requiring foreknowledge of the

result type. In a type-checking algorithm, the form of the generator ΦXY-SQUARE can be

constructed mechanically from the fields of the generators ∆XYCOORD and ΦSQUARE.

Φxy-square = Λ(σ ⊆ (∆XYCOORD [σ] ∩ ΦSQUARE [σ])).λ(self: σ).
Σxycoord [σ, ΦSQUARE [σ]] (self, Φsquare [σ] (self))

= Λ(σ ⊆ (∆XYCOORD [σ] ∩ ΦSQUARE [σ])).λ(self: σ).
{side � 10, area � (self.side * self.side),
 equal � λ(other: t).(self.side = other.side)}
⊕ {x � 0, y � 0, equal � λ(other: σ).

(self.side = other.side ∧ self.x = other.x ∧ self.y = other.y),
move � λ(a: INTEGER).λ(b: INTEGER).(x := a; y := b; self)}

= Λ(σ ⊆ (∆XYCOORD [σ] ∩ ΦSQUARE [σ])).λ(self: σ).
{x � 0, y � 0, equal � λ(other: σ).

(self.side = other.side ∧ self.x = other.x ∧ self.y = other.y),
move � λ(a: INTEGER).λ(b: INTEGER).(x := a; y := b; self),
side � 10, area � (self.side * self.side) }

Figure 7: XY-Square Class Derived by Mixin Inheritance

In the construction of the mixed class, which we shall call Φxy-square, both self and σ are

parameterised. We distribute to Σxycoord two types, standing for the types of self and super,

followed by two values in these types. If σ is the type of self, then ΦSQUARE [σ] is the

appropriate super type and Φsquare [σ] (self) is the super record. Internally, the mixin

function combines two records: (Φsquare [σ] (self)) ⊕ (∆xycoord [σ] (self)). According to

the polymorphic definition of ⊕, ∆XYCOORD [σ] Ω ΦSQUARE [σ] must hold in order for

the result to have a well-defined type. Since Φsquare and ∆xycoord have an equal field in

common, Ω requires these fields to have the same type; in particular, instantiations of the self-

type must be identical. This is observed by distributing σ to both generators.

Mixins: Typing the Superclass Interface, page 20

7. Evaluating Dependent Second-Order Types

Our approach to typing mixins is essentially a trick that exploits second-order type dependency

to avoid having to go to explicit higher-order quantification. The usual expectation is for a

mixin to depend on a range of superclasses; intuitively, this leads one to give super the type of

a type function, quantifying over generators:

∀(β :: TYPE → TYPE).∀(ε ⊆ Φ[ε]).β → ε → β[ε]∩ε

The Abel group's final report provided a higher-order typing for mixins [Harr91a], in which

self- and super-type variables ranged over type functions, rather than bounded types. We

avoid higher-order complications by reversing the order of quantification for super- and self-

types. Firstly, we are able to provide a second-order typing for the free-standing self of the

extension record, irrespective of whatever type we eventually give to super. Secondly, we are

able to construct a second-order type expression for super that depends directly on the self-

type; we are therefore not forced to quantify over generators.

Our typing is technically more accurate than a proposed typing of the super-interface for

mixins in [Hauc93], and more generally useful than the restricted scheme proposed in [BC90],

which really only covers non-recursive simple types; the scheme presented here covers

recursive polymorphic classes. Treatments of mixins which do not establish the pattern of

mutual recursion [CP89] between self and super lose call-backs from super-methods to self.

This can produce unwanted retrograde behaviour where a base class also provides versions of

methods added by the mixin. Mitchell [Mitc90, CM92] has developed a type scheme which

reasons negatively about methods which a record must not possess, to cover this contingency

(and also because his type rules allow subsumption in the number of fields matched to a rule).

Our scheme does not require this added safeguard, since we bind recursion variables

consistently to the extended object's structure after mixin combination has taken place.

Mixins: Typing the Superclass Interface, page 21

For simple theories of classification, in which the type of self is polymorphic but other types

are monomorphic, dependent second order types provide a useful mechanism for typing

programs. Dependent types are of the form:

∀σ.∀(τ | τ ρ σ) where "ρ" denotes a relational constraint.

We think that this kind of constraint is a simple extension of the idea of functional bounds; and

it is no more difficult to implement. Both F-bounds and the kinds of dependent second-order

types shown here require a typechecking algorithm that compares interfaces for structural

subsumption. It is relatively easy to type-check expressions with dependent type. In the

scheme for polymorphic record-combination, the base type is made available before the

dependent type has to be checked. In the scheme for mixins, parameterised bounds for the

super-type may be precalculated. In both schemes, assumptions about the result-type may be

discharged by mechanically constructing new generators with intersection types, using the

record combination algorithm.

The author would like to thank William Cook for inspiration and Kim Bruce for corrections

and useful discussions which influenced the development of these ideas.

References

[AC95] M Abadi and L Cardelli (1995), 'On subtyping and matching', Proc. 9th

European Conf. Object-Oriented Prog., Aarhus, Denmark.

[Bruc94] K Bruce (1994), 'A paradigmatic object-oriented programming language:

design, static typing and semantics', J. of Func. Prog., 4(2), 127-206.

[BC90] G Bracha and W Cook (1990), 'Mixin-based inheritance', Proc. 5th ACM Conf.

Object-Oriented Prog. Sys., Lang. and Appl. and Proc. 9th European Conf. Object-Oriented

Prog., 303-311.

Mixins: Typing the Superclass Interface, page 22

[CCHO89a] P Canning, W Cook, W Hill, W Olthoff and J Mitchell (1989), 'F-bounded

polymorphism for object-oriented programming', Proc. 4th Int. Conf. Func. Prog. Lang. and

Arch., Imperial College London, September, 273-280.

[CCHO89b] P Canning, W Cook, W Hill and W Olthoff (1989), 'Interfaces for strongly-

typed object-oriented programming', Proc. 4th ACM Conf. Object-Oriented Prog. Sys., Lang

and Appl., 457-467.

[CDJG89] L Cardelli, J Donahue, L Glassman, M Jordan, B Kalsow and G Nelson (1989),

'Modula-3 report (revised)', Tech. Rep. 52, Digital Equipment Corporation Systems Research

Centre.

[CHC90] W Cook, W Hill and P Canning (1990), 'Inheritance is not subtyping', Proc.

17th ACM Symp. Principles of Prog. Lang., 125-135.

[CM92] L Cardelli and J Mitchell (1992), 'Operations on records (summary)', Proc. 5th

Int. Conf. Math. Found. Prog. Lang. Semantics, pub. LNCS, 442, Springer Verlag, 22-52.

[Comp94] A Compagnoni (1994), 'Subtyping in Fω∧ is decidable', Technical Report ECS-

LFCS-94-281, University of Edinburgh, LFCS.

[Cook89] W Cook (1989), A denotational semantics of inheritance, PhD Thesis, Brown

University.

[CP89] W Cook and J Palsberg (1989), 'A denotational semantics of inheritance and its

correctness', Proc. 4th ACM Conf. Object-Oriented Prog. Sys., Lang. and Appl., 433-443.

[CP93] A Compagnoni and B Pierce (1993), 'Multiple inheritance via intersection

types', Technical Report ECS-LFCS-93-275, University of Edinburgh, LFCS.

[CW85] L Cardelli and P Wegner (1985), 'On understanding types, data abstraction and

polymorphism', ACM Computing Surveys, 17(4), 471-521.

Mixins: Typing the Superclass Interface, page 23

[Harr91] W Harris (1991), Typed Object-Oriented Programming: ABEL Project

Posthumous Report, Hewlett-Packard Laboratories.

[Hauc93] F J Hauck (1993), 'Inheritance modelled with explicit bindings: an approach to

typed inheritance', Proc. 8th ACM Conf. Object-Oriented Prog. Sys., Lang. and Appl., pub.

Sigplan Notices, 28(10), 231-239.

[Keen89] S E Keene (1989), Object-Oriented Programming in Common Lisp: a

Programmer's Guide to CLOS, Addison-Wesley and Symbolics Press, Reading MA.

[Lamp93] J Lamping (1993), 'Typing the specialisation interface', Proc. 8th ACM Conf.

Object-Oriented Prog. Sys., Lang. and Appl., pub. Sigplan Notices, 28(10), 201-214.

[Mads93] O L Madsen (1993), Object-Oriented Programming in the Beta Programming

Language, Addison-Wesley.

[Mitc90] J C Mitchell (1990), 'Towards a typed foundation for method specialisation and

inheritance', Proc. 17th ACM Symp. on Principles of Prog. Langs., 109-124.

[Moon86] D A Moon (1986), 'Object-oriented programming with Flavors', Proc. 1st ACM

Conf. Object-Oriented Prog. Sys., Lang. and Appl., pub ACM Sigplan Notices, 21(11), 1-6.

[Pier92] B Pierce (1992), 'Intersection types and bounded polymorphism', Technical

Report ECS-LFCS-92-200, University of Edinburgh, LFCS.

