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Abstract 

Developing software is a complex activity supported by software engineering, a 
discipline that is still immature in some respects.  While the complexity of software 
has been increasing over the years, the art of modelling software is still at an early 
stage.  Software is designed and developed without any guarantees about whether it is 
going to work as desired.  Design is based almost entirely on the experience of experts 
and, for most production software, formally verifying the design is not a possibility 
due to commercial pressure to finish the project.  

One option for verifying software is to use formal methods to specify the software and 
use the specification to detect design errors at an early stage.  The problem here is 
that, in many cases, developers are too busy producing and modifying software to 
create additional artefacts that describe the software formally; or they may have no 
experience in writing specifications using traditional formal methods.  Instead, 
developers may only be familiar with graphical design notations, such as UML, which 
are used intuitively to capture aspects of the design, irrespective of whether these 
models are consistent, complete, or have an unambiguous semantics. 

It is our firm belief that the gap between semi-formal visual modelling notations and 
precise formal specifications must be bridged.  What is needed is a smaller and 
simpler object-oriented notation than UML, that could be easier to learn and use in an 
exact and repeatable way, to act as the basis for a completely formal treatment.  This 
thesis proposes an abstract syntax and denotational semantics for the hierarchical 
decomposition of tasks and workflows, specifically in the Task Model of the 
Discovery Method.  The Discovery Method is an approach to systems analysis and 
design, which adopts a restricted UML profile, focusing on minimalism and 
consistency. 

Task Flow and Task Structure diagrams are mapped onto the terms of an abstract task 
algebra, a quotient algebra defined using an abstract syntax and axioms.  The task 
algebra is then mapped onto a denotational semantics, consisting of sets of traces of 
events representing atomic tasks.  The axioms of the task algebra support reasoning 
about the equivalence of Task Structures and Task Flows.  This is proven in the 
denotational semantics, which maps everything onto sets of traces.  In particular, the 
behaviour of empty, abort and return events is modelled correctly, in the presence of 
iteration and concurrency.  A proof of concept is developed for model checking, 
implemented in the Haskell programming language, within which equivalence and 
temporal logic properties (in LTL and CTL) are checked. 

As a result, any Task Model developed in the Discovery Method may be converted to 
equivalent expressions in the task algebra, with a corresponding unambiguous 
denotational semantics.  Software developers need only use the precise, minimal Task 
Structure and Task Flow diagram notations to develop a hierarchical Task Model with 
a completely formal interpretation.  After conversion to algebraic form, the designs 
are amenable to automatic model checking of equivalence and temporal logic 
properties.  Such a facility supports the early validation of a design, establishing 
whether it is consistent and complete. 
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Chapter 1:  
Introduction  
 

 

This chapter introduces the motivation behind the thesis, which is that software 
engineering notations need formal semantics.  Section 1.1 mentions some relevant 
work related to the goal of formalising parts of the UML notations.  Section 1.2 
describes the overall goal of this research, which is to provide a complete formal 
basis for a small task-based notation.  Subsequently, the individual objectives of the 
research, which include developing a formal semantics and model-checking tools, are 
explained in section 1.3.  Finally, an explanation of the structure of the thesis is 
provided in section 1.4.  

 

 

1.1 Background and motivation 

Software Engineering is still a young discipline and, for some people, cannot yet be 
considered a proper engineering discipline, because of the toleration of informal and 
unregulated software development practices.  This situation is probably also true in 
other professional areas that have to deal with people.  After all, people bring 
uncertainty.  Nevertheless, the problem is that this uncertainty is also brought to areas 
that should be more formal and precise.  As one would expect in any new discipline, 
the processes, methods and tools for software development have been slowly but 
incrementally improving since the late 1970s.  Unfortunately, much of what has been 
presented by way of “software design methods” has been anecdotal, based on the 
intuitions of what practitioners hoped might work at the time; and only recently has 
the field of empirical software engineering started to establish a proper evidential 
basis for comparing different approaches.  While this is normal for an area evolving 
together with the techniques and technology, it should be expected that the more 
established parts of the discipline should develop a more formal justification.  

One area to which this most clearly applies is the area of software engineering tools, 
which are used to create software designs and from which skeleton code may 
sometimes be generated.  These tools should ideally be based on a formal model, 
which can guarantee mathematically that the tools can be trusted.  Among the tool-
supported techniques used by software engineers, visual modelling has become more 
important for medium and large software projects.  

Visual modelling is the modelling of a computer program or larger software system 
using graphical notations to develop a model, expressed as one or more diagrams.  

1 



Chapter 1: Introduction 

The model is intended to capture the essentials parts of a system [1] and is used to 
represent the business processes from a user-centred, or stakeholder’s perspective. It 
contributes to the understanding of the business domain and helps later in the design 
of the information system.  

The Unified Modeling Language (UML) is at present the standard visual modelling 
notation.  At the time of writing, it provides thirteen different diagrams that can be 
used to represent a software system from different aspects and perspectives [2, 3]. The 
Unified Modeling Language (UML) [2] is an eclectic set of notations for modelling 
object-oriented designs. Under the supervision of the Object Management Group 
(OMG) since 1997, the notation set has grown larger and complex [3], to 
accommodate the concerns of different stakeholders in business and industry.  This 
has led to some criticisms regarding the open-ended semantics and the lack of 
direction given in modelling [6-8].   

Problems with UML diagrams creating ambiguous representations are mentioned in 
Chapter 3, although these can be summarized as legal UML diagrams having an 
unclear meaning, even if they are considered valid according to [4]. Various attempts 
to formalise parts of UML include the work of the Precise UML group (pUML) [5], 
which aims to clarify the semantics of UML and create tools to support the rigorous 
analysis of UML models.  Jointly with IBM, pUML submitted a Meta-Modelling 
Framework (MMF) [6] to the OMG as an alternative to the original UML metamodel.  
Out of this work came the desire to create an Unambiguous UML, an idea partly 
inspired by the Catalysis method [7]. The Unambiguous UML (2U) Consortium [8], 
which grew out of pUML, submitted a full proposal for UML2.0 based on a set of 
architectural principles. 

Some of the work on formalising UML has proposed the use of formal languages such 
as Z, which was used by Bruel and France [5] when they presented a transformation 
from UML class diagrams to a Z specification. Kim and Carrington [9] presented a 
formal mapping transforming UML class diagrams to a specification in Object-Z.  

There are also different proposals to formalise UML using the Alloy formal language 
[10, 11].  Naumenko proposes in [12] an alternative metamodel for UML inspired by 
RM-ODP [13].  Bordbar and Anastasakis [14] propose a tool called UML2Alloy, 
where a model is transformed from the UML metamodel to the Alloy metamodel.  In 
[15] Zito and Dingel model the UML 2 package merge operation with Alloy.  Also, 
there is a language called Aaree [16] that supports some object oriented and 
imperative constructs and has a textual representation that can be translated into Alloy 
to be analysed. 

There is also related work on the development of model checkers and tools for UML.  
However, the use of model checking to verify object-oriented models is still immature 
and the integration with UML tools has until now been slow [17]. 

Some examples include the Hugo tool, which compiles UML state machines into a 
format processed by the PROMELA model checker [17]. The USE tool (UML-based 
Specification Environment) [18] allows UML diagrams to be annotated with 
constraints written in OCL (the Object Constraint Language [19, 20]), after which the 
validity of models may be checked, using predicates also written in OCL.  The tool 
verifies model instances against explicit predicates and implicitly against the 
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invariants defined in the model.  Shen et al. [21] have proposed a toolset for static and 
dynamic model checking of UML that, using Abstract State Machines, validates the 
model with respect to the semantics of UML.  ASM specifications of class diagrams 
and object diagrams are checked.  UMC (UML on the fly Model Checker) is a tool 
designed by Gnesi et al. [22] that applies model checking to UML state machines.  
Störrle [23] describes a denotational semantics for the Activity Diagrams of UML 2, 
covering basic control flow and data flow using colored Petri-nets.  XMF Mosaic is a 
tool developed by Xactium [24], which supplies the full capabilities of executable 
metamodelling for constructing and executing new language definitions.  In addition, 
the tool has a collection of plugins to support the construction of UML-like class 
models, creating instances of these models and checking them against constraints.  
Other plugins support the description of mappings between models, and an execution 
environment for the operation of user-defined languages and tools as stand alone 
images. 

In any case, and in spite of the contributions made by the research mentioned above, it 
is likely that UML will continue having many of the original problems that we 
describe later in more detail, due in part because it needs to provide backward-
compatibility with its older characteristics, and due to the problem of its size.  The 
position defended here is that what is needed is a smaller and simpler object-oriented 
notation, than can be easier to learn and use in an exact and repeatable way.  This 
notation should be supported by a formal language in order to represent its semantics 
in a precise way, such that models could be verified against each other and the 
specification of a system could be demonstrably consistent and complete.  One 
possible candidate for such a notation is the restricted UML profile adopted by the 
“Discovery Method” [25, 26], which strives for minimalism and consistency. 

1.2 Goal of this research 

A requisite for developing model checkers is the ability to encode model diagrams in 
a suitable abstract syntax, and from this to develop an abstract semantics [27].  
Initially, after analysing the graphical notation deployed in the Discovery Method [25, 
26] an approach to representing formally the whole notation was tried using the Alloy 
language [15, 16], but already at the level of the abstract syntax this proved to be 
difficult to model, even when the abstract syntax of the diagrams could be verified 
(see Chapter 4).  Later, a different approach was defined limiting the scope of the 
formalisation to the Task Model1, and the goal was established as follows: 

To provide an abstract syntax and denotational semantics for tasks and activities in 
the Task Model of the Discovery Method. 

Limiting the scope to the definition of tasks and activities has some advantages, such 
as of having a simple representation of the Task Flow Diagram.  In addition, because 
Simons [28] defined “Task flow inversion”, a direct transformation between the Task 
Flow Diagram and the State Diagram in the Discovery Method, it should be possible 
to represent State Diagrams from the Discovery Method using the same semantics as 

                                                 
1 For this thesis, the term Task Model is used to include Task Structure and Task Flow models. The 
Discovery Method also includes Narratives as part of the Task Model, but this was not considered in 
this work so far, even when there is a correspondence between Narratives and these other diagrams.  

3 
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that defined for the Task Flow Diagram.  Finally, the Task Flow Diagram is closely 
related to the Task Structure Diagram, imposing already within this more limited 
project some useful restrictions on the correct construction of related diagrams, which 
could be tested by the formalisations proposed in the rest of this work. 

1.3 Objectives 

For the accomplishment of the objective of the project, four objectives were defined 
to specify the scope of the research.  The objectives of this research were as follows: 

• The definition of the abstract syntax should depict accurately the notion of 
tasks and activities in the various task-modelling diagrams. 

• The denotational semantics for the abstract syntax and its associated task 
algebra should be defined in term of traces. 

• Soundness and congruence of the proposed abstract syntax and the semantics 
should be proved. 

• In order to test the feasibility of the formal representation, an implementation 
of the algebra should be built. 

So far, the syntax of Task Flow diagrams has not been presented formally.  Having an 
abstract syntax is desirable, both because it offers a succinct textual representation of 
the diagrams, and also because it serves as the basis for a formal definition of diagram 
well-formedness.  A task algebra will be constructed from the abstract syntax, by 
introducing axioms over syntactic expressions that fall into the same equivalence 
class (a quotient algebra).  After this, a denotational semantics will be presented, in 
which the meaning of all possible sequential and concurrent execution paths will be 
given as sets of traces.  The semantics will be formalised by a proof of soundness and 
congruence.  Soundness is a property which holds, when syntactic expressions that are 
judged equivalent by the axioms are also trace-equivalent in the semantics.  Finally, 
an executable model of the task algebra is developed in the functional programming 
language Haskell, in order to test the feasibility of the proposal. 

Additionally an implementation of model-checking using LTL and CTL expressions 
was also developed in order to take advantage of the task algebra implementation and 
to show possible practical uses of the tools.  A case study is presented in Chapter 8 
depicting the use of the task algebra, and checking for LTL and CTL properties using 
software written for this purpose. 

1.4 Hypothesis 

This research was originally motivated by the fact that software engineering notations 
are often vague, in the sense that they are incomplete, or ambiguous and so are open 
to different interpretations by software engineers.  The hypothesis that is being 
investigated by the programme of research described above is the following: 
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It is possible to give an unambiguous, formal interpretation to the diagrammatic 
representation of tasks and activities in the Task Model of the Discovery Method, such 
that: 

• individual diagrams have a single, unambiguous procedural meaning and so 
may be translated into workflow-based procedural programs; 

• a design may be broken down according to different high-level design choices, 
yet yield systems of diagrams that have equivalent meaning; 

• questions may be formulated and tested about the validity of logical properties 
within a system of diagrams, using temporal logic. 

The benefit of providing software engineering notations with a fully formal abstract 
syntax and semantics, whose properties are known and provable, is that software 
engineers may then rely on the notations directly, with full confidence, without having 
to understand the underlying formal semantics.  While the scope of this research only 
covers the Task Model in the Discovery Method, this notation is used in the early 
analysis phase to capture and represent the customer’s requirements formally, which 
is the necessary foundation for developing a sound software system.  We therefore 
anticipate that the work undertaken here will be of practical use for software 
engineers using the Discovery Method to develop software systems. 

1.5 Thesis structure  

This thesis consists of nine chapters, beginning with the present chapter 1, which 
introduces the background and presents the main objective and goals of the research.  
Chapter 2 will give an overview of formal methods and will include some small 
examples, particularly in Z, OCL and Alloy, using these notations for formal software 
modelling.  This chapter will also provide an overview of process algebra.  
Subsequently, chapter 3 will offer an overview of object-oriented methodologies and 
UML, including a brief history of the object-oriented paradigm.  Additionally, It 
presents an introduction to the Discovery Method, explaining every phase of the 
method generally.  Afterwards, chapter 4 explains in detail the Task Model in the 
Discovery Method, explaining the Task Structure and the Task Flow Diagram.  In 
addition, an experiment is conducted to check a large fragment of the Discovery 
metamodel in Alloy.  Finally, this chapter introduces the task algebra and the 
relationship between the algebra and the Task Model.  Chapter 5 depicts formally the 
abstract syntax representation for the Task Flow Model.  It defines the syntax and a set 
of axioms constraining the definition.  Subsequently, chapter 6 describes the 
semantics for the abstract syntax as a set of traces.  Chapter 7 proves the soundness of 
the axioms for the abstract syntax presented in chapter 4.  Some congruence 
properties are demonstrated also in this chapter.  Chapter 8 shows an implementation 
of the proposed algebra in the Haskell language.  This chapter also includes a case of 
study where the task algebra is used and an example implementation of operations 
applied over the trace semantics using set operations and temporal logic operations 
such as LTL and CTL expressions.  Chapter 9 presents the conclusions of this work. 

Moreover, three appendices are included in this work.  Appendix A shows the proof 
of basic properties used to specify the semantics.  Appendix B provides 
demonstrations of all the required congruence properties.  Finally, Appendix C 
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includes the Haskell source code for the tool implementations, which include:  the 
task algebra simulation, LTL model checking and CTL model checking tools. 

1.6 Summary  

Among current trends in software engineering, there are many attemps to formalise 
parts of the UML notations.  This research found that practicality was lacking as an 
important aim in most of the proposals.  This situation makes it difficult for the 
modeller to learn how to understand the formal representations behind the models, in 
order to gain any practical benefit from it.  While a complete understanding of the 
formal semantics behind software models is desirable, here we believe the formal 
semantics should be relegated to the background;  and visual modelling tools, being 
based on the formal semantics, should be used to create precise models of software.  

This chapter introduced the thesis, describing the background and motivation for this 
project.  Subsequently, the objective and goals of the research were explained.  
Finally, an explanation of the structure of the thesis was provided.  The next chapter 
offers an overview of formal methods that were considered relevant to this research.  
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Chapter 2:   
Formal Methods and Modelling 
Tools 
 

 

The previous chapter presented an introduction to this thesis.  In this chapter, an 
overview of formal methods is described with an emphasis on model based languages 
(such as Z, OCL and Alloy), and process algebra languages. The next chapter will 
discuss object-oriented methods and, in particular, the Discovery Method. 

 

2.1 Introduction 

Formal calculi for software construction have seen an increase in use over the last 25 
years [29], but this form of representation has been used mainly in academia. 
Although there are some accounts of their use in the industry (basically in critical 
systems), the majority of the “real world” has for years been using visual modelling as 
a kind of “semi-formal” representation of software.  

A method is considered formal if it has well-defined mathematical basis. Formal 
methods provide a syntactic domain (i.e., the notation or set of symbols of the 
method), a semantic domain (like its universe of objects), and a set of precise rules 
defining how an object can satisfy a specification [30]. In addition, a specification is a 
set of sentences built using the notation of the syntactic domain and it represents a 
subset of the semantic domain.  

Spivey says that formal methods are based on mathematical notations and that “they 
describe what the system must do without saying how it is to be done” [31], which 
applies to the non-constructive approach only. Mathematical notations commonly 
have three characteristics:  

• Conciseness. They represent complex facts of a system in a brief space. 

• Precision. The model can specify exactly everything that is intended. 

• Unambiguity. The interpretation of the specification has to be the same if a 
standard and well-understood language is used. 

Essentially, a formal method can be applied to support the development of software 
and hardware. Bogdanov et al. [29] make a classification of these, summarized in 
Table 2.1. 
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Table 2.1 Classification of formal methods 

Category Description Examples 

Model-based 
languages 

Set theory and function spaces are used to 
build models of system operations and of 
the system data that is modified by the 
operations.  Constraints are expressed in 
first-order logic. 

Z, VDM, B, 
Alloy, JML[32], 
lambda calculus 

 

Finite state-based 
languages 

Systems are modelled as finite state 
automata, with the operations styled as 
transitions from one state to the next.  The 
states are either high-level abstractions 
over data, or control states. 

Z, FSMs, SDL, 
Statecharts, X-
machines 

Process algebra 
languages 

Systems are modelled as collections of 
independently-executing processes, which 
synchronise to exchange data.  Each 
process is individually modelled as a 
finite state automaton. 

CSP, CCS, ACP, 
LOTOS  

Algebraic languages Systems are modelled as collections of 
algebras, where an algebra consists of 
sorts (sets), operation signatures and 
axioms, describing the behaviour of an 
abstract data type. 

OBJ, Larch[10] 

Although there are many formal methods, Z, Alloy and OCL have recently received 
quite a lot of attention [5-10] and are most relevant to the work reported in this thesis, 
so these will be the focus later in this chapter. Many of these have a long and 
distinguished pedigree.  The Z language has been in use for a long time in support of a 
formal method for software specification.  It has been defined in an ISO standard 
since 2002 [33].  Alloy was a language emerging at the time of  writing, which 
claimed to be based originally on Z, but which was easier to use.  Alloy is also 
claimed to be syntactically closer to OCL than to Z [34].  Finally, OCL was chose 
because of its relationship with the UML, where the attempt was to provide UML 
diagrams with complementary text definitions to make precise UML models.  These 
three languages seemed initially to be a good choice to represent the abstract syntax 
and semantics established in the objectives of this research. Alloy was investigated 
first, because offered a simple language with a better tool support than Z and OCL. 

The next section presents an overview of the kind of tool support available for some 
of the formal methods introduced above. 

2.2 Tool Support for Z, Alloy and OCL  

Many formal methods have been supported with one or more tools. These, based on 
the characteristics of each formal method, can be broadly categorized either as 
theorem provers, or model checkers.  
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A theorem prover is a tool which takes a set of axioms and it tries to prove if the 
whole set (extended with some theorem) is valid. Some known theorem provers are 
HOL, Isabelle, and PVS. A problem mentioned by Simons in [35] is that if there are 
too many axioms in a theory, the theorem prover will try to explore redundant 
solutions, leading to an explosion in the search-space.  Theorem provers must 
frequently be guided towards solutions, through interaction with the user, who 
identifies the most appropriate intermediate lemmas, or selects the appropriate proof 
tactics. 

On the other hand, a model checker simulates a model of the system by exploration, 
analysing several state machines and these are compared automatically [36]. In this 
area can be seen SMV, SPIN, and FDR among others.  Temporal logic has been 
applied to model checking from the early 1980s by Clarke and Emerson [37]. Model 
checking has advantages over theorem provers, the most important being that the 
procedure is completely automatic [38, 39], although it has the problem of state 
explosion too. A model checker uses a model described by the user to discover 
whether hypotheses are valid in the model. If the hypotheses are invalid, the model 
checker can build counterexamples and display the execution traces that lead to these.  

There is a slightly different, but related, category of tools such as the Alloy analyser 
which is described as a “model finder”. Alloy works by finding models that form 
counterexamples to assertions made by the user: “Its engine takes a formula and 
attempts to find a model of it” [36].  Paradox by Claessen et al. [40] is another 
program that implements techniques for finding finite models based on first order 
logic, whilst model checking is commonly based on temporal logic. 

2.3 Z 

Z is a formal language based on set theory, function spaces and first order predicate 
logic [41]. Two aspects of Z are different from classical set theory [42]: first, the sets 
defined in Z are partitioned into different categories, i.e., they are disjoint (“the set 
theory is a typed set theory”); the second aspect is the concept of the schema, where 
we may define descriptions of objects that can be referenced in the whole model.  The 
schema representation can be used to describe the state of a system [43]. 

The Z language helps to describe a system in both its static and dynamic aspects [31]; 
in the first case Z can represent the states and the invariant relationships that are fixed 
for all the states of the system; in the dynamic aspect, it can depict the operations, the 
relationship between inputs and outputs, and the consequential changes of state. 

Z has been one of the most popular formal languages to model systems, and for this 
reason we can find several tools that use it in different levels [44, 45], although most 
Z tools have historically only been able to check the syntax. There is an international 
project “Community Z Tools” (CZT) proposed by Andre Martin in 2001 [46] that 
aims to build “a set of tools for editing, typechecking and animating formal 
specifications written in the Z specification language” [47]. Other languages like 
OCL or Alloy are inspired by the Z language [7, 10]. 
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2.3.1 An example: the birthday book 

It is not the intention to give a complete treatment of Z, but just to include part of the 
classical example by Spivey [31, 41] in order to identify some of the characteristics of 
Z and other formal languages. 

The BirthdayBook is a simple system that records birthdays of people and notifies 
when some birthday comes about.  For this example, two basic sets are needed: 

[NAME, DATE]   

The above introduces two sets, which are uninterpreted, in the sense that nothing else 
is known about their elements.  The sets are therefore completely abstract.  Now, it is 
possible to define the state schema of BirthdayBook as follows: 

»_BirthdayBook ________________________________ 
Æknown: P NAME 
Æbirthday: NAME ß DATE 
«_______________ 
Æknown = dom birthday 
–_______________________________________ 

A schema in the Z language consists of two parts, the first area is for declaration of 
variables and the second is for predicates. In the BirthdayBook schema, there are two 
variables (a set known and a function birthday) and one predicate.  Variables of set-
types are used to represent collections, and variables of function-types are used to 
represent maps, relationships between elements of different sets.  The predicate 
constrains known to be the domain of the function birthday. This is a state schema, 
representing the data manipulated by the system. 

The same schema style is used to represent both static aspects (data declarations) and 
dynamic aspects (operation specifications).  The operation to add a birthday to the 
BirthdayBook is specified in the following schema: 

»_AddBirthday________________________________
Æ∆BirthdayBook 
Æname?: NAME 
Ædate?: DATE 
«_______________ 
Æname? ‰ known 
Æbirthday' = birthday U {(name? å date?)}  
–_______________________________________ 

The first line (∆BirthdayBook) is a Z short-hand for importing all the declarations of 
the BirthdayBook schema into the AddBirthday schema.  The delta-convention means 
that two copies of all variables are imported, and by convention the unadorned 
variables (known, birthday) denote prior states and the primed variables (known’, 
birthday’) denote posterior states.  The operation schema therefore makes a change to 
the state of the BirthdayBook. 
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The second and third declarations define name and date as inputs to the operation.  
Inputs are syntactically identified with a question mark at the end of their names.  

In the predicate area, AddBirthday defines a precondition that we cannot add a name 
previously registered in the BirthdayBook. The precondition must be satisfied for the 
success of the operation.  After that, as a postcondition, the next line declares what 
happens if the precondition is satisfied: the birthday function now includes the new 
maplet between name? and date?. 

Although logically consistent, it is strictly unnecessary to add the following line to the 
predicate area of the AddBirthday schema, to express that a new name is known: 

known'  = known  ∪ name? 

because this can be derived from the invariant defined in the BirthdayBook schema: 

known = dom birthday 

Consequently, it can be derived [31, 41],  that after executing AddBirthday: 

known’ = dom birthday’ 

In a similar fashion, the FindBirthday schema defines an operation to look up the date 
of a person’s birthday in the BirthdayBook.  The first line (Ξ BirthdayBook) is a Z 
short-hand for importing declarations from BirthdayBook, similar to the delta-
convention, but with the additional constraint that primed and unprimed variables are 
pairwise equivalent (an implicit predicate).  So, the FindBirthday operation schema 
makes no change to the state variables. 

»_FindBirthday ________________________________ 
ÆΞBirthdayBook 
Æname?: NAME 
Ædate!: DATE 
«_______________ 
Æname? e known 
Ædate! = birthday (name?) 
–_______________________________________ 

The second and third lines define an input name? and an output date!, where outputs 
are identified syntactically by the exclamation mark at the end of their name.  The 
predicate area has two declarations.  The first is a precondition that the sought name 
must be in the known set.  The second is a postcondition asserting that the output 
date! corresponds to the result of the function  birthday with the argument name?.  
While pre- and postcondition predicates are not explicitly distinguished, it is clear that 
postconditions are those predicates that refer to output variables, while preconditions 
refer only to input variables. 

Z has a particular semantic interpretation.  In classical Z, operations are only well-
defined if the preconditions are satisfied; otherwise they are undefined, in the sense 
that they could yield any arbitrary values.  In some variants of Z, such as Object-Z, a 
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different blocking semantics is adopted, whereby operations are assumed to be 
blocked, if their preconditions are not satisfied. 

2.3.2  Schema calculus 

The use of schemas helps us to build more complex specifications using modular 
construction. For instance, Z supports schema inclusion, where a name of a schema 
can be used in the declarations of another schema.  There is also a set of operators for 
combining different schemas logically, supporting the modular construction of system 
specifications [42]: 

Disjunction:  The schema operator ∨ declares two schemas as alternatives. For 
example:  

A Í B ∨ C 

where A stands for the declarations of B and C joined and their predicates disjoined.  

Conjunction: We can combine two schemas with the schema operator ∧.  For 
example:  

A Í B ∧ C   

where A stands for the declarations of B and C joined and their predicates conjoined. 

Negation: ¬ applied to a schema keeps the declaration and negates the predicate of 
the schema.  For example: 

  ¬A    

where the negation of the schema A implies negation its predicate.  

Composition: ; specifies an operation as a composition of schemas. For example:  

A ; B   

depicts that  A occurs, then B. 

Quantification:   Used for schemas when we need to quantify over the elements of a 
schema. For example: 

 Q d  S 

where if Q is a quantifier, d a declaration, and S a schema, then the quantified schema 
is obtained from taking the components that are part of d and of S, and quantifying 
with Q in the predicate part. 

Decoration: ’ is used to describe the effect of an operation. For example:  

A, A’  
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where A represents the schema before the operation and A’ the state of the A schema 
afterwards (whose variables are also considered primed).  

The schema calculus is used to construct robust schemas, each being the disjunction 
of a regular schema and a complementary error schema, whose preconditions are the 
negation of the regular schema’s preconditions.  This ensures that system behaviour is 
totally defined over all inputs and states; and takes error recovery into account.  It is 
also possible to check that the requirements are consistent, which is normally 
achieved by showing that the constraints of the schema are satisfiable showing at least 
an initial state; this is called an initialisation theorem.  In addition, preconditions can 
be used when there is interest in showing that the operations are never applied out of 
their domain [43]. 

Preconditions can be used to describe a set of states that can be reached if the 
operation schemas are properly defined.  The preconditions can be simplified using 
equivalences.  Some of this work can be carried out with the support of theorem 
prover tools. 

2.3.3 Z tools 

As shown in Table 2.2, it is possible to find Z tools that help in aspects such as 
writing Z specifications (e.g., FuZZ that supports basically printing and type-checking 
for Z specifications based on LaTex). Additionally, there exist tools such as CADiZ 
and Z/EVES which provide visual editing of Z specifications and different levels of 
analysis. Another kind of tools tries to represent the links between Z and object-
oriented notation [45]. This third category is more attractive and is relevant to the 
research. It can be seen tools like RoZ [48], although RoZ only generates Z 
specifications and uses Z/EVES in order to realize the consistency checks. 
Additionally, Sun et al. [44] are working in techniques for XML representation of Z 
and Object-Z on the web, and its transformations into UML diagrams. They 
developed XML browsing facilities for Z and Object-Z and proposed some techniques 
to project object-oriented Z models onto UML diagrams. Finally, Zeta is a tool partly 
completed which uses Isabelle to perform theorem proving, but the project was 
abandoned some years ago. CZT proposed by Andre Martin  [46, 47]mentioned in 
section 2.3. The software includes, for example, a Z markup language defined in 
XML, a library in Java for Z annotated syntax trees, graphical Z editors and a Z 
animation tool (ZLive) for evaluating expressions, predicates and schemas [47]. 

Table 2.2 Comparison of Z tools 

 GUI Type-checking Theorem proving Integration with UML 
or other OO notation 

FuZZ  X   

CADiZ X X X  

Z/EVES X X X  

RoZ   Using Z/Eves Using Rose 

Zeta X X Using HOL-Z/Isabelle  

CZT X X   
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2.4 Alloy  

Alloy was developed by Daniel Jackson and the Software Design Group at the MIT 
and a first version of the tool was released in 1997.  Alloy is a language inspired 
initially by Z [49, 50], although it has been changing from the original prototype. In 
May of 2004 the version 3 of Alloy was released in beta phase, improving some 
characteristics of the language and the analyser [51, 52]. At the end of 2006, Alloy 
Analyser 4 was released with a small number of syntactic improvements and using the 
new SAT-based model finder Kodkod [53]. 

In Jackson’s words [10] “Alloy is an attempt to combine the best features of Z and the 
Object Constraint Language of UML in a lightweight notation. It takes UML's 
emphasis on binary relations, and the expression of constraints with sets of objects 
formed by 'navigations', but with Z's much simpler semantics.”  

The essential idea about Alloy can be summarized as follows: a micro-model with 
Alloy is built using signatures (i.e., a set of atoms) and formula paragraphs (i.e., 
predicates, functions, or assertions). Once the model has been compiled, every 
assertion can be checked with the expectation of finding a counterexample. In other 
words, the Alloy analyser looks for some instance of the micro-model that could be 
generated in violation of the assertions. It is for this reason that Jackson says in [10] 
that it is a refutation approach. If a counterexample is found, this means that the 
model was not created properly (the model is invalid). If a counterexample is not 
found, that does not mean that the model is necessarily correct. Alloy cannot prove 
that a model is correct, since although it performs exhaustive searching, creating the 
complete state-space of scenarios, it is limited by the number of exemplar instances in 
the checked system [54]. One model without a counterexample means that Alloy 
cannot find a counterexample in the scope specified, but there may still exist a 
counterexample in a larger scope [10]. The effectiveness of this method is based on 
the small scope hypothesis [55] that states that a high proportion of bugs tend to be 
found in a small scope. 

Another analysis option that Alloy can do is checking the consistency of a formula 
[10]. Using a function or predicate, the Alloy analyser can try to generate an instance 
of the model in conformity with the constraints [56]. Obviously, this only proves that 
the model can generate valid instances, but nothing more can be affirmed from this.   

Jackson [57] says that – in order to have simple semantics and a concise syntax -  
Alloy does not distinguish between an atom a, a tuple (a), a set b that contains only 
the atom, or a set b containing the tuple. Alloy deals entirely with relations; although 
it consists additionally of atoms, which cannot be directly manipulated by the user. 

Alloy is based on first-order logic and it can deal with quantifiers, polymorphism, 
signatures, and subtyping. The main characteristics of Alloy are as follows [58]: 

• Infinite model: A model described in Alloy is considered infinite because, in 
contrast with traditional model checking, we do not specify the number of 
components that this model can have. 
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• Finite scope check: Although the model is infinite, the analysis has to be 
finite. We have to specify the scope of the model that we want to analyse. The 
analysis is incomplete for the whole model, but complete for the scope: the 
analyser always can find (if it exists) a counterexample for the specified scope. 

• Automatic analysis: The Alloy analyser can generate examples and 
counterexamples of our model automatically.  

In the next sections, a general overview of the language is offered.   

2.4.1 Signatures 

Sets, called signatures, can be declared in way similar to how a program is written in 
an object-oriented language. In Alloy, a set represents a unary relation.  The simplest 
declaration of a signature can be for example:  

sig MySig {} 

sig Name {} 

sig Date {} 

This defines basic sets named MySig, Name, and Date. Inside the curly braces 
relations can be defined having the signature MySig as their domain: 

sig MySig { 

 fieldName1: fieldType1, 

 fieldName2: fieldType2 

} 

where a field type can be another signature or a more complex expression and we can 
refer to signatures still not defined. In this case, we are declaring two binary relations 
called fieldName1 and fieldName2; where, for example, fieldName1 is a relation that 
maps each MySig to some fieldType1. 

Alloy supports two slightly different kinds of signature specialisation: 

• A subtype signature; 

• A subset signature. 

Subtypes in Alloy are basically disjoint subsets of a given type, however two types 
can still overlap if one is a subtype of the other (directly or indirectly). In contrast, 
subsets in Alloy are overlapping subsets of a given type.  Whereas a subtype may only 
be created by disjointly specialising a given type or subtype, a subset may be declared 
of any type, subtype or subset.  Both subtypes and subsets may declare additional 
fields (typically, relations) and transitively inherit all the fields of their parent types.  
It is not possible to disjointly partition a subset signature.  
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2.4.1.1 Subtype signatures 

A subtype signature can be extended using the keyword extends. This instruction 
creates a subtype of the type of the signature extended, for example: 

sig Y extends X { } 

Y is considered a subtype of X and a type hierarchy can be created. If the signature X 
is not extending another signature, X is a top-type signature, and its type is a top-level 
type. The top-level types are the roots of the type hierarchy and these are mutually 
disjoint sets. In the same way, two or more subtype signatures are disjoint unless one 
extends the other.  The main purpose of distinguishing disjoint subtypes from general 
subsets is in order to increase the efficiency of the model finder. 

2.4.1.2 Subset signatures 

A subset signature is declared using the keyword in, and it is a subset of the signature 
of its parent or parents. Actually, although in [52] Jackson mentions that a subset  is 
“a subset of the union of its parents”, in practice the syntax definition only permits 
one parent signature. 

Subset signatures can be declared as follows: 

sig X, Y in Z { } 

This means that both, X and Y are subsets of Z with the following constraints: Z may 
be a subset or a subtype signature, X and Y are not necessarily disjoint, and the union 
of X and Y are not necessarily equal to Z.  Finally, it is important to say that subset 
signatures (e.g., X or Y in this case) cannot be disjointly partitioned using the 
“extends” keyword. 

2.4.2 Declaration area  

As mentioned briefly above, inside the curly braces of a signature we can declare 
fields. A field can denote: 

• A unary relation or set: It can be fixed with a multiplicity keyword: lone, one, 
some, or set.  If one is used, it is equivalent to omit the keyword and this 
means that the variable will be a scalar or singleton set; lone means either a 
singleton set or the empty set; the some keyword denotes a non empty set; and 
set keyword represents zero or more elements in the set. Subsequently, for 
example: 

sig BirthdayBook { 

 known: set Name 

} 

Here known is a field representing a set of the signature Name. For the 
BirthdayBook signature, this means that known is a relation with zero or more 
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range elements from the Name type.  Other multiplicity keywords lone, one or 
some may be used in similar contexts, where desired. 

• A binary relation: In this case the expression is formed by the arrow operator 
->, and the multiplicity can be constrained in each side of the relation. Table 
2.3 presents examples of binary relations. 

 

Table 2.3. Some binary relations expressed in Alloy 

Declaration Semantics 

R: S -> T  Relation (transition relation) 

R: S -> one T  total function from S to T 

R: S one -> one T  Bijection 

R: S -> lone T Partial function  

Continuing with the example, a field relation named date can be added to represent 
the relation (a partial function) between the names of the BirthdayBook and their date 
of birthday: 

sig BirthdayBook { 

known: set Name, 

date: known -> lone Date } 

2.4.3 Formulas  

Formulas are specially constructed expressions to be checked in the model. They are 
built with relational or logical expressions. The essential formulas that can be used in 
Alloy are: 

• Quantified expression: The meaning of this expression is obtained from the 
use of a quantifier operator. 

• Comparison formula: This is an expression constructed using comparison or 
negation operators. 

• Compound formula: It is formed by the combination of smaller formulas using 
logical operators. 

• Declaration formula: This kind of formula is used to put a multiplicity 
constraint on an expression. 

There are more types of formulas that can be used in Alloy such as: negated formula, 
let formula, and sequence formula. 
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2.4.3.1 Formula paragraphs 

By using formulas, constraints can be added to the model, organised around formula 
paragraphs. There are four types of formula paragraphs. 

• fact: To indicate that a property is maintained, the formula is declared as a fact 
[32]. In other words, a fact must be true for any instance in the model. It 
consists of an optional name and a set of formulas forming a constraint. 

 Example:  

fact OptionalName { 

       all a: A | a in (B+C)  

} 

• pred: A predicate (pred) defines a property without imposing it as a permanent 
constraint. This predicate can be applied where it is needed.  

 Example: 

pred AddBirthday( bb, bb’: BirthdayBook, n: Name,  

d: Date) { 

      bb’.date = bb.date ++ (n->d) 

    // where ++ is the override operator. 

} 

This predicate adds a relation between a name and a date. 

• assert: An assertion is a theorem about a specification or property that is 
expected to hold in the model. The Alloy analyser can check the assertion 
looking for a counterexample. For instance, if the predicate DelBirthday is 
declared that specifies how is deleted a relation for a given name, the next 
assertion could be done: 

assert DelIsUndo{ 

     all bb1, bb2, bb3: BirthdayBook,  

   n: Name,d: Date | 

       AddBirthday(bb1, bb2, n, d) &&  

  DelBirthday(bb2, bb3, n) =>  

bb1.date = bb3.date 

} 
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Where it is basically claiming that adding and deleting one record of the 
birthday book is equivalent to a  null operation. The idea is to be able to verify 
that deleting a previously added birthday from the BirthdayBook leaves the 
model in the original state, before the birthday was added.   To do this, 
declaring 3 instances of BirthdayBook: bb1 represents the initial state, bb2 
represents an intermediate state, and bb3 represents the final state. To check 
the assertion it is necessary to use the check command, which is shown in the 
next section. An assertion is only checked in response to check-requests, while 
a fact is always considered true. 

• fun: A function fun is similar to a predicate, but a function is like a template 
for an expression. A function returns a value as an expression while a 
predicate only can return true or false. 

Another important aspect to remember is that assertions can be checked, while 
predicates and functions can be instantiated or simulated. 

2.4.4 Executing an analysis 

Alloy has two commands to execute an analysis that implies constraint resolution: 

• run. The run command specifies to the Alloy analyser that it should find an 
instance in accord with a predicate or a function. The shortest form of the run 
command only requires the name of the predicate or function, for example: 

run BusyDay 

BusyDay will be analysed in a default scope of three, bounding the size of the sets.   
Furthermore, the bounds of the sets can be specified by specifying the numbers of 
each type explicitly, in the command, for instance:  

run BusyDay for 4 but 1 BirthdayBook  

This indicates an analysis with a scope of 4 for each top-level signature, but at most 
one for BirthdayBook.  

In this case, BusyDay is a predicate that shows a situation when the birthday book has 
more than one birthday on a particular day.  BusyDay has been declared as follows: 

pred BusyDay (bb: BirthdayBook, d: Date){ 

some cards: set Name | cards=(bb.date).d  

  && !lone   cards 

} 

As a result of executing run BusyDay, the Alloy tool generates a valid instance, 
shown in Figure 2.1, where the case in which an instance of BirthdayBook has two 
relations date which link to the same occurrence of day (Date0) through the instances 
of name (Name0 and Name1) can be seen.  
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Figure 2.1 Instance generated by the execution of the BusyDay predicate 

• check.  This command is used to indicate that an assertion should be checked 
by the Alloy analyser. Syntactically, the check command has the same options 
as run. 

check DelIsUndo for 3 but 2 BirthdayBook 

DelIsUndo is an assertion that verifies whether adding one birthday and then deleting 
it leaves the date relation in its original state. In this case, the assertion is not valid and 
generates the counterexample shown in Figure 2.2. The counterexample shows the 
case where, after adding one birthday, the BirthdayBook finish in the same state (bb1 
= bb2) due to adding an existing date; thus deleting a record after adding it does not 
guarantee that the BirthdayBook returns to its former state. Figure 2.2 shows this, 
where the bb3.date is not the same as the bb1.date. Here, remembering the expression 
of the assertion, bb1 represents the initial state of BirthdayBook, bb2 is the 
intermediate state (after the birthday was added), and bb3 represents the final state of 
BirthdayBook (when the birthday has been deleted). Therefore the counterexample is 
saying that there is at least one case where adding and deleting a birthday does not 
leave the model in the original state: if the name added existed previously in the 
BirthdayBook, this and its date is overwritten, so deleting it makes the BirthdayBook 
enter a different state from the initial one. 

 

Figure 2.2. Counterexample generated by the execution of the DelIsUndo assertion. 

In fact, the addBirthday predicate in Alloy differs from its equivalent Z schema 
because the addBirthday schema rules out the possibility of adding the same name 
twice. If it is desired to prevent the addition of the same name, it is necessary to 
include the next constraint in the addBirthday predicate: 

n !in bb'.known 
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Subsequently, the execution of the DelIsUndo assertion will not generate a 
counterexample. 

 easier than the previous implementation. The visualisation of the 
graphs is quicker and it has a better presentation. Furthermore, it now includes a new 
feature to present a metamodel based on the source code. The Figure 2.3 shows the 
metamodel for the BirthdayBook; there, the relation known can be seen, from 
BirthdayBook to Name, and the relation between the sets Name and Date 
(BirthdayBook.date). It is relevant to note that every signature descends directly or 
indirectly from univ, which represents the predefined universal type, as is shown in 
Figure 2.3. 

To conclude this section, it is important to say that neither the run nor check 
commands directly execute an action, in the sense of executing a program. They only 
act as an instruction to the compiler to identify what formula paragraphs should be 
checked, within a particular scope.  

2.4.5 Metamodel 

The software that implements the Alloy analyser has been improved. The design of 
the user interface is

 

Figure 2.3. Metamodel for BirthdayBook 

Although Alloy was based originally on Z, it now contains features that distinguish it 
er languages.  While Z is defined in a classical set-based type system, 

. An introduction to the Alloy analyser 

2.4.6 Summary 

from Z and oth
Alloy supports subtyping and overloading [59]
showing a little model was presented, based on the classic Z example of Spivey [41].  

There are more characteristics of Alloy. A complete description can be seen in [36, 
49] for the version 2, and in [52] and [58], which are the reference manual and tutorial 
for the version 3, respectively. 
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2.5 OCL 

The Object Constraint Language (OCL) is a formal language created with the 
intention to support UML, giving the possibility to create constraints on a UML 

is language is part of UML since version 1.1.  OCL is 
used in conjunction with UML and, like Alloy, avoids using mathematical symbols 

ts, preconditions and postconditions on operations or as a query language 
 a particular context and 

<<precondition>>, and 

ll the instances of this type. The keyword inv defines the OCL expression 

sion> 

Where p classifier, [name] indicates an 
optiona on> represents the constraint 
definiti

one of these) with an optional name.  An optional keyword result 
can be used to denote the result of the operation. 

Additionally, OCL has primitive types, collection operations and predefined OCL 

used in OCL to define how the value of a derived attribute or association is obtained. 
The second one is used to define initial values for attributes and associations. The 

model in a formal way [60]; th

[7], using a syntax similar to object-oriented languages.  

OCL can be used essentially to specify invariants on UML classes, to describe 
constrain
[19]. It is for this reason that OCL expressions are written in
for a UML stereotype such as <<invariant>>, 
<<postcondition>>. 

2.5.1 Syntax overview 

If an OCL expression is specified as an invariant of a type, the OCL expression must 
be true for a
to be an invariant constraint. The general syntax of the invariants can be seen as 
follows: 

context classifierContext inv [name]: 

 <oclExpres

classifierContext re resents the name of a 
l name for the invariant, and <oclExpressi
on.  

On the other hand, precondition and postcondition expressions are attached to 
operations that can be defined both in the same context: 

context typename::operationName(param1 : Type1, …)  

 : ReturnType 

pre  [name]: <oclExpression> 

post [name]: <oclExpression> 

Where the declaration of the context for the operation is similar to the declaration of 
an operation for programming languages and preconditions and postconditions can be 
declared (both or 

types that can be used to constrain the UML models.  On the other hand, OCL offers 
the possibility of declaring a constraint as derivation rule, initial value, and body of 
query operation, using the keyword derive, init, and body respectively. The former is 
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latter permits an expression (called the body expression) to specify the result of a 
query operation2. 

2.5.2 BirthdayBook example  

Below, the same Birthdaybook example based on the original by Spivey[31, 41]  
ed with the aim to formalise UML, showed before is presented. As OCL was creat

OCL expressions should be used in conjunction with UML diagrams. For the 
example, a possible representation could be the showed in Figure 2.4, defining a 
Birthdaybook class containing a map between the names and dates for the birthdays. 
Clearly, assuming a declaration of the types NAME, and DATE.  

 

k: NAME,  v: DATE

Figure 2.4. A possible representation of BirthdayBook  

To represent this in OCL, an OCL tool was used to check the constraints and their 
correspondence with the UML diagram.  A deeper analysis of OCL tools can be seen 
in [61], where the authors present a brief description of the most important categories 
of tools supporting OCL: syntactical analysis, type checking, logical consistency 
checking, dynamic invariant validation, dynamic pre/postcondition validation, test 

analysis and type checking), facilities of the tool, 
capacity for dynamic validation, and OCL version supported.     

USE3  and ArgoUML were chosen because of their support for OCL in connection 
with the UML class diagram. USE was developed by Mark Richters [18, 63] at the 
University of Bremen, and ArgoUML [64] is an open source project available from 
1998. Neither USE nor ArgoUML support class templates, so the original design for 
BirthdayBook could not be represented. Instead the function NAME ß DATE was 
depicted as an association between NAME and DATE. 

t varies and it was not possible to have 
cts the model using 

                                                

automation, and code verification and synthesis. In addition, Richters and Gogolla 
[60] present a comparison between OCL tools based on the above categorisation.  In 
[62] a set of OCL tools are compared taking as criteria: degree of analysis capabilities 
of each application (syntactic 

Additionally, from tool to tool, the OCL suppor
exactly the same code for this little example. Figure 2.5 depi
ArgoUML, showing the relationships and the two operations addBirthday and 
findBirthday from the example. 

 
2 A query operation is an operation that does not change the state of the system. 
3 Acronym of UML-based Specification Environment 
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Figure 2

The O
birthda

 date: DATE) 

ludes(name) 

E  

B : self. known -> includes (name)  

result->includes(self.known.birthday) 

fore, the same example is represented in the USE tool. With USE,  
ployed, declaring both as side 
mentation for USE, in a similar 

.5. BirthdayBook modelled in ArgoUML  

CL constraints using ArgoUML are shown below. The roles known and 
y are used directly since it was not possible to use the operations known() and 

birthday() to represent the corresponding elements for the Z example. The OCL 
constraints checked in ArgoUML are shown as follows: 

context BirthdayBook::addBirthday (name: NAME;  

pre : self. known->exc

post : self. known->includes(name) 

 

context BirthdayBook::findBirthday (name: NAME): DAT

pre find

post findB_1 : 

As it was said be
the operations known() and birthday() could be em
effect-free operations. The Figure 2.6 shows the imple
solution as was presented for ArgoUML. 

 

Figure 2.6. BirthdayBook modelled  in USE 
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Becau
model is represented in a textual way. Th

se USE has no GUI to allow the user to design the UML class diagram, the 
e classes contain information about the 

 but not about the associations, which must be specified 
for the USE tool is shown as follows: 

attributes and operations,
separately. The definition of the model 

model BBook 

class BirthdayBook 

operations 

 known(): Set(NAME)= self.known 

 birthday(name: NAME): DATE =  

   self.known -> collect(name).birthday ->  

  any(self.known -> collect(name).birthday->size=1) 

 addBirthday (name: NAME, date: DATE) 

 findBirthday ( name : NAME ) : DATE  

end 

class NAME 

end 

class DATE 

end 

-- Relationships 

association aDate between 

 NAME [*] 

 DATE [1] role birthday 

end 

composition names between 

 BirthdayBook [1] 

 NAME [*] role known 

end 

Lastly, the constraints used for the model are shown below. It can be seen that 
known() and birthday() are used because both operations were declared as side effect-
free, adding an OCL expression to the declaration of the operations.  
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-- Constraints 

constraints 

context BirthdayBook  

 inv: self.known->includesAll( self.known() ) 

context BirthdayBook::addBirthday (name: NAME, date: 
DATE) 

 pre : self. known()->excludes(name) 

 post : self. known()->includes(name) 

 

context BirthdayBook::findBirthday (name:NAME) : DATE 

 pre : self.known()->includes(name)  

 post : result = self.birthday(name) 

2.5.3 Summary  

Since the creation of OCL a number of problems have been identified.  In [65, 66] 
there have been mentioned for example problems with the definition of types, meta 
types, and expression types. Additionally, the author mentioned some restrictions to 
combine types for the creation of complex types, problems with the undefined value 
that, in opinion of Gogolla and Richters, are too strong for some cases and unclear for 

 treated as false or true for a Boolean value?).  Additional 
eported in [67] such as incompleteness of concepts (there is not full 

2.6 P

The term process algebra or process calculus is used to define an axiomatic approach 
for o
says a p
model mmon concepts in the different process algebras 
are process (sometimes called agent) and action [71]. A process can be seen as any 
con rr
someth
conjunction with other actions, using particular operations defined by the algebras.  

others (e.g. is undefined
troubles were r
support for all the UML diagrams) and the possibility of creating ambiguous 
expressions. Finally, problems of representation can be appreciated even in this little 
example.  The majority of the tools only support a subset of the UML diagrams, and 
additionally the support for OCL can be different from one tool to the next.  Another 
problem is the poor semantic definition of OCL [68], which makes it difficult to 
interpret in an equivalent way for the different tools. 

rocess Algebra  

pr cesses.  There is not a unique definition for processes although Baeten [69] 
rocess refers to the behaviour of a system. Process Algebras have been used to 

concurrent systems [70]. Co

cu ent system with behaviour based in discrete actions.  An action is considered 
ing that happens instantaneously and it is atomic. An action is expressed in 
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Some o
Pi-Calc as coined by Bergstra and Klop in the paper 
[72] where the Algebra of Communicating Processes (ACP) was presented. The 

contrasting calculus of Communicating Sequential Processes (CSP) was proposed by 
CCS, the Pi-calculus was later proposed by 

esses is an algebra proposed in 1982 when 
Bergstra and Klop wanted to research a question about unguarded recursive equations 

 combination of instantaneous atomic actions and 
rocesses.  These operators are 

n or sequencing, uses the symbol ⋅ 
ple, a⋅b⋅c indicates that 

fore action b and action b happens before action c. 

ccur but not both of them. 

ency is represented with the interleaving || and left-merge operator || 

f the principal process algebras comprise ACP, CCS, CSP, and more recently 
ulus. The term process algebra w

Calculus of Communicating Systems (CCS) was proposed by Milner [73]. The 

Hoare [74]. An extension and revision to 
Milner [75].  

2.6.1 ACP 

The Algebra of Communicating Proc

[69]. The algebra is defined using a
algebraic operators, in order to generate a variety of p
used to represent union, concatenation and concurrency: 

• Concatenation, also known as compositio
and represents the order of the actions.  For exam
action a happens be

• Union is used to specify a choice between actions, using the symbol + to 
represent the union.  For example, a+b represents that action a or action b can 
o

• Concurr , 
 || q allows all possible interleavings of actions in the processes p and where p

q,  whereas p ||  q always prefers the first action of p before the first action of 
q and otherwise behaves like ||. 

These operators satisfy the following axioms (for all a ∈ Action, and x,y,z 
∈ Process): 
  x+y=y+x 

  x+(y+z)=(x+y)+z 

  x+x = x 

  (x⋅y)⋅z = x⋅(y⋅z) 

  (x+y)⋅z=x⋅z+y⋅z 

  x || y = (x ||  y) + (y ||  x) 

  (a.x) ||  y = a.(x || y) 

  (x+y) || z =(x || z)+(y || z) 

  a||  y=a⋅y 

As was mentioned, these axioms just expressed the concatenation, union and 
concurrency (via the left-merge operator).  These axioms represent the Basic Process 
Algebra, which was later extended to include communication as presented by Bergstra 
in [76]. 
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2.6.2 CCS 

Even though the Calculus of Communicating Systems was presented by Milner in 

 actions represent the transitions 
from a state to other [71]. The rules and axioms in CCS are provided as laws.  

1973, it was not until 1980 that he published the book [73] that is now considered the 
definitive reference on CCS. In CCS a process is represented by a number of states 
representing the possible lines of action that can be realised.  The states of the process 
are presented as dots (usually open dots), while the

In CCS, 0 (nil) represents the most basic process, representing halting, or deadlock. 
CCS also provides an action prefixing operator, where a.P denotes that an action a can 
be prefixed to a process P to denote sequential composition of a and P. An action can 
be interpreted as an input or output communication on a port.  By convention, a 
denotes input and a  denotes output. 

The choice operator proposed by Milner in CCS is +.  It is commutative, associative 
and idempotent.  Additionally, the CCS operator | represents parallel composition, 
where, for instance, the expression P|Q depicts two processes running in parallel.  
Communication between two processes happens when there is an action a in one 
process and a complementary action a  in the other one. 

 actions using a prefix operator , such that x  P denotes 

2.6.3 CSP 

CSP was proposed by Hoare in [77], initially without a formally defined semantics. 
Later a semantic model was proposed based on trace theory [78]. A new model was 
proposed and CSP changed its name to Theoretical CSP (TCSP) [79], which later was 
called again CSP. 

The trivial element in CSP is the event, which is defined as instantaneous and 
indivisible.  Events are notated in lowercase, for instance x, y, z. are events in CSP. 
Processes are notated in uppercase.  There are also primitive processes such as STOP 
and SKIP to represent basic predefined behaviours.  

CSP builds processes from
a process formed by prefixing the process P with the event x.  CSP has two choice 
operators, for external and internal choice.  The external choice operator , is defined, 
such that (x  P) , (y  Q) denotes a choice between two processes, according to 
whether the environment supplies the event x or y, after which one of P or Q executes, 
respectively.  The internal choice operator È makes a nondeterministic choice and 
may refuse events from the environment.  A response is only mandatory if all prefixes 
are available.  Concurrency is represented by the interleaving operator |||, such that P 
||| Q denotes a nondeterministic choice between all possible interleavings of the 
actions of P and Q.  The synchronising operator  ||A forces its operands to synchronise, 
such that P ||A Q forces synchronised communication between P and Q on all the 
events in A. 

2.7 Summary 

Formal methods have been adopted widely and probably this tendency will continue 
in the future.  But, this adoption has been slow and essentially only in critical systems. 
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A number of problems are commonly mentioned when people talk about formal 
methods, for example:  difficulty of use, the lack of tools to help the developers to 
build software, and that use of formal methods implies much additional work.  In fact, 

preconceived ideas that people have about formal 

a more complicated language [83]. Whilst OCL tools can evaluate 
lloy can search instances and counterexamples in 

rges spaces.  This is because the analysis made by OCL tools and Alloy is different.  
or OCL tools, users give an instance and the OCL tool checks if it satisfies the 
onstraints, evaluating each subexpression to know if the constraint is valid [54]. So 
hile Alloy performs a bounded exhaustive analysis of models, OCL tools have only 
een featured for parsing and simulation of their OCL models [84].  In addition, Alloy 
ems to be easier to use for developing declarative models.  

On the other hand, OCL depends on UML notations for part of its representation and 
Alloy is independent and it is based completely on textual keywords.  Wallace [84] 
predicted a visual layer representation for Alloy in order to facilitate the generation of 
models. Until now, the Alloy analyser tool can create a visual metamodel similar to 
the typical class diagram, but this is created from the Alloy code and the opposite 
process is not possible.  

Process Algebras are used to model concurrent systems.  Common concepts in the 
different process algebras such as process and action could be used to represent 
similar concepts in software modelling.  This is the approach this project uses and is 
initially presented in Chapter 4. 

In this chapter, an overview of formal methods was described with an emphasis on 
model based languages and process algebra languages. Examples of Z, Alloy and 
OCL were presented in order to identify the basic capabilities of the languages.  The 
next chapter will discuss object-oriented methods and, in particular, the Discovery 
Method. 

 

 

 

 

it is possible that some of these opinions are subjective, sometimes overestimating the 
difficulty and in other occasions underestimating the utility of formal methods. These 
problems, which had been mentioned initially by Hall [80] and later by Bowen [81, 
82], are essentially caused by 
methods.   

Additionally, certain formal methods that are in common use have been presented.  
Originally the idea about OCL was to create a less intimidating formal language for 
users than other formal languages such as Z, but conceptually it results almost 
certainly 
constraints for given instances, A
la
F
c
w
b
se
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Chapter 3:  
Object Oriented Methodologies and 
the Discovery Method 
 

 

This chapter is presents a brief history of object-oriented methods and some problems 
that UML has had. An introduction to the Discovery Method is presented in its four 
phases: Business Modelling, Object Modelling, System Modelling, and Software 
Modelling. Chapter 4 will focus in the task models used in the Business Modelling 
phase. 

 

3.1 Introduction 

Object–oriented notations are commonly used in software design.  So far the most 
used notation is UML.  The acceptance of UML has been a success in the sense of 
merging the principal competing of object-oriented notations, but the problem of 
expensive mistakes in software is still there.  This is in part because UML does not 
resolve any of the essential problems in software development.  There still exists a big 
difference between the model, the code, and the real users’ specifications. On many 
occasions, a model in UML is understood in different ways by different people in the 
development team.  

UML is not the only object-oriented notation with these kinds of problems, but it is 
for now the most popular.  Nonetheless, it is believed that it should be a more precise 
language. In addition, UML does not have good semantic representation. In fact, the 
semantics in UML are not really formal semantics; they are more like a meta-model 
that describes how a UML model should be constructed to be well-formed 
syntactically, and does not give the meaning of the UML notation [1-3].  

There exist other less general notations, oriented to particular types of systems and 
having fewer ambiguity problems.  The Discovery method [25, 26] is an object-
oriented method mainly used for business modelling. It uses simple notations, some of 
them similar to UML notations, observing the original purpose for which the 
notations were conceived. 

This chapter mentions the common problems found in UML and gives a description 
of the Discovery Method and its concern to offer a more concise working notation.  In 
the next section, this chapter mentions briefly the history of object-oriented methods; 
section 3.3 mentions some of the problems identified when working with UML; the 
last section (3.4) explains the Discovery method.  
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3.2 A brief object-oriented history 

In the 1980’s, object-oriented programming (OOP) began to be used by software 
companies, but it was not until the end of this decade that several methodologies for 
object-oriented analysis and design emerged as a consequence of the old structured 
methodologies not integrating properly with the OOP style. In fact, in the history of 
object-oriented methodologies  (OOM), three generations can be identified [85, 86]. 

The first generation originated in the late 1980s. In this generation, generally 
individuals or small groups devised the methods. In 1988, Sally Shlaer and Steve 
Mellor published their methodology with the name of Object-oriented Systems 
Analysis [87].  The Smalltalk community at Portland, Oregon contributed with the 
Class-Responsibility-Collaboration (CRC) technique in 1989 [88], and 
Responsibility-Driven Design in the same year [89, 90], based both on the behaviour 
of the objects. 1991 was a prolific year for OOM: Peter Coad and Ed Yourdon [91, 
92] presented their own approach.  In the same year, working in the research 
laboratories of General Electric, Jim Rumbaugh et al. [93] published the Object 
Modeling Technique (OMT). Additionally, the first version of Booch’s methodology 
was published [94]. 

The second generation is identified from the early 1990s. These methods were still 
authored by small groups but ideas from other methods were taken. Ivar Jacobson, 
working for Ericsson, introduced the concept of Use Cases (1992) and his method was 
known as Objectory [95], which afterwards became the basis for the Rational Unified 
Process. The second versions of the methodologies of Booch and Rumbaugh (Booch 
94, OMT-2) are more similar; for instance, Booch 94 [96] adds the concept of 
relationships and state graphs and OMT-2 [97] eliminates the data flow diagram from 
the functional model. Other important methods from this generation are Fusion [98, 
99], MOSES [100], and BON [101]. 

The third generation of methodologies was generated in the mid-1990s from larger 
collaborative groups. In 1994, Rumbaugh left General Electric and he joined Booch in 
Rational Software in order to work initially on an “unified method”. The next year, 
Rational Software bought Objectory SA and Jacobson came to work with them. In 
1996 they proposed the Unified Modeling Language (UML) [1]. The final document 
of UML was submitted to the Object Management Group (OMG) in September of 
1997 and in November of the same year was accepted as standard. However, UML 
was only a set of notations without an associated process.  

Another approach that was submitted to the OMG in the same period was OPEN [86, 
102] (Object-oriented Process, Environment and Notation).  OPEN laid emphasis on 
the whole development process, rather than just the notation, but the OMG did not 
accept this proposal. OPEN provides flexibility: derived from the OPEN metamodel-
based framework, an OPEN process can be tailored to suit individual domains or 
projects taking into account personal skills, organizational culture and requirements 
peculiar to each industry domain. OPEN [103] was initially created by the fusion of 
methods as MOSES [100], SOMA [104], Firesmith [105], and Synthesis [106], and 
more recently with ideas from BON [101], Ooram [107], and UML.  

One problem with OPEN or other eclectic development methods (such as RUP [1]), 
which offer general guidance and a plan of possible activities to be carried out at 
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various points in the software lifecycle, is the necessity to be skilled in using the 
method with the intention of identifying the better techniques that can be used for a 
specific project. In reality, these methods focus more on the over-arching 
management process [85] than on the detailed technical process, which means that the 
business management aspects of building a system tend to dominate other concerns 
[108]. On the other hand, we should not ignore the technical process [86]; this 
includes all the classic design techniques from conventional Software Engineering, 
from requirements to implementation, using techniques and notations to develop 
object-oriented systems. 

3.3 UML problems 

The UML can be seen as an eclectic collection of diagrams representing different 
points of view of a model. Supporters of UML say that the benefit for the designer is 
that he can choose the diagram he needs for his design, having some degree of liberty 
to interpret these diagrams. But this freedom might be considered as a lack of 
direction, and could be the result of the lack of unified semantics in UML [109]. In 
fact, Booch [110] said the current UML specification does not restrict graphical 
formats and “there really is no ‘illegal’ UML graphical syntax”.  In UML 2.0, it is 
possible to define “UML profiles”, which may specify both extensions to the syntax, 
or restrictions on the possible uses of diagrams in particular models [111].  In 
particular, it is possible to define custom syntax, provided that this can be explained 
as stereotypes of basic elements within the UML metamodel. 

Simons and Graham highlight how UML’s two strengths are also its greatest 
weaknesses [112].  On the one hand, UML is eclectic, adopting model notations from 
many other approaches, without considering fully how these models fit together, nor 
what kinds of development process they should support.  To this extent, UML is a 
political, rather than technical, compromise.  On the other hand, UML is universal, in 
the sense that the same diagrams are used in every stage of the software lifecycle, 
with the consequence that the level of detail in each diagram can vary widely; and 
different developers may interpret the same diagrams differently.   

In [1, 34, 35] the authors present a collection of problems detected in the use and 
misuse of UML 1.3 by developers, classified in terms of consistency, ambiguity, 
adequacy, and cognitive recognition problems. In the articles [112, 113], the authors 
report problems with the <<include>> and <<extend>> relationships; where, for 
instance, developers use <<extend>> to represent exceptions and alternatives, but the 
semantics of <<extend>> does not handle these cases, since the <<extend>> 
relationship is considered only an insertion and the flow of control returns to the point 
after the call. Both these authors [113] and Lano et al. [114] observe that the logical 
dependencies  implicit in these use case relationships can result in complex control 
flow. Even the original authors and leading exponents of UML seem to disagree in 
some fundamental details about use case relationships, as was apparent at the 
OOPSLA panel session on use cases [115] when Jacobson said that the old <<use>> 
was a kind of generalisation, and Cockburn said  it represented functional 
composition (see also [113]). It is clear that <<include>> is meant to be composition 
in UML 2.0.  However, composing use cases eventually breaks the desired granularity 
of a use case as “a single complete interaction of the user with a system that delivers a 
result of observable value” [95].  It is also clear that <<extend>> is meant to be an 

32 



Chapter 3: Object Oriented Methodologies and the Discovery Method  

insertion of optional behaviour in UML 2.0.  However, the direction of dependency, 
from the inserted case to the case that is being extended, runs counter to logical 
dependency, in which the behaviour of the whole depends on the behaviour of its 
parts [113, 114].  Perhaps in recognition of these problems, the original UML authors 
admitted that it was not considered possible to forward-engineer the control structure 
of systems from use cases [2].  Use cases may describe behaviour but not how this 
behaviour is implemented. 

Elsewhere in UML, diagrams do not support the development of logically sound 
control structures as much as might be expected.  In sequence diagrams, Simons and 
Graham mention some problems with the use of focus bar [112]. They indicate, to 
begin with, that the consistent use of the focus bar obviates the need for return arrows. 
Figure 3.1c shows the proper use of the focus bars with stack-frame semantics, in 
which it is clear that control returns to the calling block upon termination, whilst 
Figure 3.1a shows a second process thread semantics as was allowed in UML 1.1, in 
which each object encompasses its own thread of control and can only communicate 
through synchronisation (the message arrows therefore have a different meaning from 
invocation).  However, Figure 3.1b depicts the misuse of the focus bar since it does 
not represent any sensible invocation semantics; unfortunately, it is a common 
mistake made by developers.  The option to omit focus bars altogether means that 
sequence diagrams are little more than timing diagrams and have no procedural 
interpretation.  An additional problem in sequence diagrams, mentioned by the 
authors, is that the idea of a normal course with its extensions only works for simple 
examples and multi-branching control logic is difficult to visualise.  UML 2.0 has 
addressed this by introducing better control structures, which encapsulate logical 
fragments of a diagram corresponding to alternatives, loops, and even external 
diagrams [111]. 

 

Figure 3.1 Thread, activation and stack-frame semantics focus bar [112] 

The UML interaction diagrams (sequence and communication4) use two types of 
messages, procedural and non-procedural (They are also called nested flow control 
and flat flow control, respectively).The notation is shown in the Figure 3.2.  While the 
procedural arrow has the semantics of method invocation, the non-procedural arrow is 
used as a kind of workflow in a flowchart because it represents the linear progression 
from step to step, without consideration for calls, returns and nested flows of control 
[2]. 

                                                 
4 Called collaboration diagram in UML 1.x 
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Figure 3.2  Procedural and non-procedural message flow 

There are also inconsistencies with state and activity diagrams [112]. For instance, in 
practice, developers do not know if the initial pseudostate is really a true state, or 
simply a label identifying the intial transition to the first “real” state. Similarly, it is 
not clear whether the final pseudostate represents an accept state, in the sense of a 
Mealy machine, or a halt state after the last “real” state, in which the object is 
destroyed, or unreachable.  Furth

a) procedural b) non-procedural 

ermore, both the initial and final pseudostates 
function as connectors for joining state machines to substate machines.  In this case, 

xity of the UML statechart arises because it is based on the Harel 

the pseudsostates are not really states, but points midway along the initial, and final 
transitions to the substate machine. 

Some of the comple
statechart [116], which is a combination of Mealy and Moore state machines. Figure 
3.3 depicts the difference between these different approaches, contrasted with 
statechart notation. 

evA/actA 

evB/actB 
a) Mealy state machine 

evA 

evB 
b) Moore state machine 

act 

S1 S2 S1 S2 

evA/actA

evB/actB
c) UML state machine 

S1 
entry / action 
do/activity 
exit/action 

S2 
entry / action 
do/activity 
exit/action 

 

Figure 3.3 Mealy, Moore and UML state machines 

In their original formulation, Mealy and Moore machines are apparently similar, in 
that states are quiescent and actions take place on the transitions, but whilst in the 
Mealy approach (Figure 3.3a) the  triggered action depends on the transition taken, in 
the Moore state machine the triggered action depends on the reached state (Figure 
3.3b).  This makes it possible to adopt a different view, in which the action appears to 
take place in the state instead of on the transition.  Once states are no longer 
quiescent, they become procedural, having a different kind of semantics, with the 
need for initialisation and self-termination.  Since the standard states in UML 
statecharts are now potentially quite complex procedures, the UML statechart 
identifies as independent elements the initial and the final pseudostate. Actions may 
be triggered on the transitions, as in a Mealy machine.  But it is also possible to have 
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internal operations in the states, only distantly inspired by the Moore machine, 
considering entry and exit events (and their activities), and internal transitions (such 
as the do/activity, which is commenced upon entry to the state, but which can be pre-
empted by any exit transition) which represent transitions that do not change the state 

of quiescent states and active procedures.  These could be 
shown as substate machines without this extra notation. Also, the UML statechart 

ased on Petri 
nets, as well as a representation for concurrent composite states. Both of these 
notations denote the same concurrent semantics, so only one is strictly necessary.  

of the state machine. The final result is that, at this level, UML statecharts are more 
similar to the flowchart than to the original concept of state machine. 

Some redundant constructions, such as state entry and exit actions, are notionally 
admitted to support the Moore machine viewpoint, but could be replaced by ordinary 
actions on transitions.  This would obviate the need for special “internal transitions”, 
which replicate standard re-entrant self-transitions, but which do not trigger the state 
entry and exit actions.  The pre-emptable do activity that is carried out within a state 
tends to blur the notions 

allows the violation of state-encapsulation by crossing the boundary of a superstate 
with entry and exit arcs.  

Simons [117] comments on a redundancy issue with statechart diagram notation, 
namely that statecharts allow concurrent transitions (i.e., fork and join) b

These cases are respectively exemplified in Figure 3.4a and Figure 3.4b. 

 

Figure 3.4 Equivalent UML models for concurrent substate machines [117] 

In the use of class diagrams, Simons and Graham identify certain problems with 
decisions made during early stages [112]. For example, almost all the class diagrams 
created in the analysis phase have an excessive influence on the design. Something 
similar happens with the associations, which commonly are transferred from analysis 
to design producing poorly-coupled models. In addition, another interesting problem 
they identify is that the class diagram mixes up the notion of associations (Figure 3.5 
(a)), that strictly describe data dependency, with functional dependencies, drawn as 
navigations (Figure 3.5 (b)) that strictly describe modular coupling.  The class 
diagram may therefore confuse data dependency and functional dependency in the 
same model, preventing the developer from seeing how to transform a model into a 
more optimised design. 
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Figure 3.5 Association and navigation in UML class diagram 
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Whilst the notion of an association is inherited from the Entity-Relationship 
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the relationship expressed in Responsibility-Driven Design [119]. An Entity-
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all bidirectional many-to-many associations into simple many-to-one associations. A 
collaboration graph (in Responsibility-Driven Design [90]) is used to optimise 
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appropriate option to work with.  
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have an intellectually linked sequence of design activities and products;  selectivity, 
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5 These phases were called Task Modelling, Object Modelling, System Modelling, and Language 
Modelling in [25, 26] 

36 



Chapter 3: Object Oriented Methodologies and the Discovery Method  

aim is to identify objects and modular units of design.  For the third phase, System 
Modelling, it is needed to analyse the cross boundary and internal dependency 
(coupling and cohesion, respectively) and identify the natural subsystems. The last 
phase is Software Modelling, where work in the translation of designs into code in 
some specific programming language has to be done. 

Contrary to UML, the Discovery Method tries to delay the creation of objects in the 
early stages, due to the fact that initial objects tend to persist throughout the rest of the 
design, introducing an early bias in the perception of the system and affecting the 
evolution of the project. The Discovery Method is based on techniques and notations 
mostly taken from existing methods, however it selects and evaluates each chosen 

 an

mbols consistently among different models will 
make it easier to comprehend the diagrams and eliminates confusing and complicated 
notations. 

UML and Harel statecharts where, as it was mentioned before, entry and exit actions 

technique and notation carefully, in order to use it for its single and original purpose.  
In this way, each successive analysis or design model is formed gradually from 
previous models. 

Additionally, the Discovery Method uses the elements of its simplified notation in a 
consistent way, throughout the method, for example, if a symbol has a particular 
meaning in one kind of diagram, this symbol will have the same meaning in other 
diagrams, and wherever this symbol is used in other parts of the method. A clear 
example can be seen in the symbols for aggregation and generalisation, where these 
concepts have the same semantics in the Data Model and in the Task Structure Model, 
as shown in Figure 3.6.  It eliminates the confusing <<include>> d <<extend>> 
used by UML in the Use Case diagram, showing a consistent behaviour for these 
structural relationships.  Using the sy

 

Figure 3.6 Aggregation and generalisation for Data and Task Structure Diagrams 

The Discovery Method only has quiescent states in its State Model.  The method does 
not consider it suitable to treat the states as active processing stages; in opposition to 

Major task 

Subtask 1 Subtask 2 

Generic 
task

Variant 1 Variant 2 

Generic 
object 

Variant 2 Variant 1 Subobject 2 Subobject 1 

Major object 
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are executed in the states, generating a kind of flowchart and not a statechart. The 
UML notation is slightly altered so that initial and final states are seen to be first-class 
states, rather than pseudostates.  It is also more sensitive in distinguishing between 
fina c
appreci

l a cept- and reject-states, using an independent symbol for each option.  We can 
ate the notation in Figure 3.7. 

Initial State Accept State Reject State

 

.7 Initial and final states are real states Figure 3

The i
origina
notatio
models
each m chniques out of 

 contract and a plan for incremental delivery of the system.  

 fixed choices, but allows him or her to express the 

 D scovery Method deploys various design techniques, which are used in their 
l intended context, which results in adopting subsets of simplified UML 
ns for different model specifications, but providing a greater linkage between 
 and adding clear semantics.  Each technique is used for a single purpose and 
odel is built systematically, avoiding misapplication of the te

their proper context as is frequent in other methodologies. 

3.4.1 Business Modelling 

The Business Modelling is the initial phase of the Discovery Method. In this phase, 
the goal is to explore and represent the requirements of the customer in a structured 
model of the business context where the system will work.  The main activity is to 
identify the tasks that are part of the model, proposing an improved system in terms of 
business tasks and supporting the objectives of the client.  It is also important in this 
phase to draw up a

This phase consists of interviews, domain analysis, task analysis, and contract 
planning.  Interviews are conducted by the “developer”, a term denoting a person or a 
group of people from the software house, with the “customer”, a term denoting the 
commissioning manager and potential users of the system. Interviews should use a 
non-directive technique.  Discovery suggests three procedures for this objective: 

• Free Exploration is the least directive technique and here the developer does 
not lead the customer to
most pressing business needs.  

• In a second technique, called Bluesky Wishlists [121], the customer identifies 
the major stakeholders and their extreme preferences for the system. This 
technique should help to identify competing forces and, consequently, to 
recognise the possible constraints. 

• The third technique is Iterative Prompting. It is a task-centred exploration 
trying to find the decomposition of tasks and their dependency. The customer 
should lead the discussion while the developer helps him using simple “wh-” 
questions (i.e., what?, who?, how?, why?, when?, where?).  This technique 
was first used by Ian Graham [104] for task-centred analysis. 

Task analysis, as a part of Business Modelling, consists of the three techniques Task 
Sketching, Narrative Modelling, and Task Modelling. 
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Task sketching may be done by using Task Structure Sketching or Task Flow 
Sketching.  Task Structure Sketching is recommended to identify business tasks at a 
coarse scale.  A task should capture an obvious business task rather than detailed 

tructure Diagram is useful for representing tasks and 
their structural relationships such as aggregation and generalisation, which are 

ructure Diagram and Task Flow Diagram are 
explained in detail in chapter 4. 

ons and 
postconditions affecting the task are included.  

g is the Discovery procedure 
for grouping tasks into more abstract tasks (or supertasks).  There are two basic 

Business Modelling 
phase are used to identify candidate objects in the business domain.  In this stage, the 

system processes.  The Task S

explained later.   

Additionally, Task Flow Sketching is a technique recommended to capture 
information about the order of execution of the tasks.  Two sequential tasks are shown 
to be in a relationship by using a transition arrow that describes the control flow.  
Choice between tasks can be represented by diamonds splitting the flows, while an 
exception may be represented by a half-diamond splitting the normal flow from the 
exceptional flow.  Identification of actors and their relationship with the tasks may 
also be done here.  The Task St

Narratives are used to describe the task of a business model. They are described by 
the customer but recorded by the developer. A narrative has to identify its purpose 
and the elements (actors and objects) that are part of the task. The description of the 
flow may include alternatives and exceptions. In addition, the preconditi

Engaging in more detailed Task Modelling is the last part of the Business Modelling 
phase. Basically this consists of Thematic Clustering, Logical Task Restructuring, and 
establishing Alternative Task Flows.  Thematic Clusterin

criteria for clustering: either by identifying tasks with a common goal, or identifying 
task with common actors and objects participating in a task.  Task Restructuring is 
applied to improve the task structure design, mainly looking to reduce task 
dependency and isolate actors with many task participations.  Finally, Alternative 
Task Flows is a procedure where the developer describes flows from the viewpoint of 
a particular object or actor. 

3.4.2 Object Modelling 

In the Object Modelling phase, the task descriptions from the 

analysis model, created in the Business Modelling phase and expressed as tasks, is 
transformed into a design model, expressed as collaborating objects. Object modelling 
is only partly an analysis activity where the object concepts are discovered in the 
business domain. Most of the activity in this phase is considered a design activity, 
with the invention of metaphors to denote units of software [122]. It is also in this 
phase that the developer creates decentralised component-based architectures and 
identifies patterns of collaboration. 

The input for this phase is the business model, i.e., a set of task specifications. Object 
modelling uses Responsibility-Driven-Design (RDD) [89, 123] in a bottom-up 
approach for identifying object concepts and their responsibilities. The input for the 
Object Modelling phase is the specification of the main business tasks.  This phase 
produces a set of candidate objects, their collaborations and responsibilities.  
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The architecture of business systems is modelled commonly as a three-layer structure, 
although this is not mandatory in the Discovery Method. The first layer, devoted to 
user interface modelling, is guided by the roles identified for the business 

akeholders and the business tasks that they carry out.  

siness logic 
Gatekeeper 

t business processes and can be translated into software.  

if this is defined.  Where the event is not sufficient to select a 

used only when the next state cannot be determined from the event and 

 

Figure 3.8 Notation for the State Diagram in the Discovery Method 

st

The middle layer is used to represent the logic of the business.  Bu
concepts are identified because they are mentioned in the narratives.  
objects (another term used in the Discovery Method) are those objects with state that 
capture the business logic and are used to allow or prevent the execution of a task.  
Gatekeeper objects are often found as concepts named in the preconditions of the 
narratives.  Task flow diagrams are drawn for each gatekeeper object, which helps the 
developer to describe how the object participates in the tasks.  State Diagrams for the 
gatekeeper objects can be made by inverting the nodes and transitions of the Task 
Flow Diagrams.  Gatekeeper state diagrams are important because they help to 
represen

State Diagrams in the Discovery Method are traditional Mealy-style finite state 
machines formed by states and transitions, where initial and final states are real “first 
class” states. States are connected by transitions. A transition denotes the change from 
one state to another when a particular event takes place.  The event could trigger an 
associated activity 
unique transition in a state, transitions may also be guarded.  A guard is a Boolean 
condition, which must be true for the transition to fire.  The guards on events are 
preconditions.  All guards in a set of preconditions must be mutually exclusive and 
exhaustive.  There are two kinds of final states: reject- and accept states.  An accept 
state represents the normal termination of the state diagram’s execution.  On the other 
hand, a reject state means a failure in the execution, specified by events and 
conditions defined in it. A diamond is used to denote a conditional branch in a 
transition, 
preconditions before the transition is fired.  Each branch is guarded by a 
postcondition. Such guards are also mutually exclusive and exhaustive Boolean 
conditions; they are always depicted between square brackets. See Figure 3.8. 
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The last layer is where the data model is represented.  Data storage concepts are 
determined according to the needs of the business system.  Typically, these consist of 
information concepts but gatekeeper objects are also major candidates, since they 
record the state of a business process.  The data model can be constructed by using 
either Object-Association Modelling (OAM) or Event-Driven Design (EDD) [124, 
125].  The aim of both approaches is transforming the data to a normalised set of 
tables.  

As mentioned before, the output of this phase is a set of candidate objects. Each 
object should have a limited function and depend on other collaborator objects to 
achieve its responsibilities. The developer should write Object Role Cards, similar to 
CRC cards [123], to record the responsibilities, collaborators and attributes of the 
candidate objects. 

The Discovery Method does not use a single class diagram to model relationships 
between the types of candidate object concepts.  Instead, there are two separate 
models, the Data Model, which consists of record types related by associations, and 
the Collaboration Diagram, which consists of functional classes linked by 
collaborations, drawn as navigable associations.  The notation is based on UML’s 
class diagram notation but attempts to keep things simple using a reduced number of 
elements.  

Figure 3.9 and Figure 3.10 show the most common elements used in both the Data 
Model and the Collaboration Diagram respectively.  

 
Figure 3.9 Notation for Data Diagram in the Discovery Method 
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Most elements are familiar from UML notation.  The symbol for an interface type is 

difference 
between abstract Goals (which have dashed ellipsoid outlines) from concrete Tasks 

drawn differently, as a dashed box, like the dashed shaft of the realisation arrow, 
instead of the normal box with the <<interface>> stereotype.  This is part of the 
Discovery Method’s UML profile, which extends the allowed notation in certain 
ways.  The reason for this change is to notate the difference between abstract and 
concrete concepts uniformly.  Dashed outlines are also used to notate the 

(which have solid outlines). 

As can be seen in Figure 3.10, the Collaboration Diagram is very similar to the Data 
Diagram, but it shows not vague associations.  This diagram represents only 
unidirectional connections remarking how messages are sent from class to class.  

 
Figure 3.10 Notation for Collaboration Diagram in the Discovery Method 

3.4.3 System Modelling 

The System Modelling phase has the aim of identifying the optimal system 
architecture, discovering natural layers and subsystems, helping to modularise the 
design of the system, consequently facilitating the reduction of the strongly coupled

ntributes to the 
 

graph of object roles.  Additionally, the System Modelling phase co
construction or maintaining of a framework. If a previous framework exists, the recent 
design of the system has to be merged with this framework.  

For this phase the input is a set of object roles.  Object roles are highly coupled by 
collaboration with other roles.  Object roles that are densely coupled should be 
decoupled as part of the activities for this phase.  Each object role can be potentially a 
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class or an interface and their responsibilities have to be balanced. The output for the 
system modelling phase is the optimal design and a specialised framework. 

System modelling seeks to create a general picture of functional dependency among 
the candidate classes using the collaboration diagram proposed by Wirfs-Brock et al. 
[90] where the candidate classes that have a relationship of dependency are linked by 
an arrow. This diagram is not the same thing as the old UML diagram with the 
homonymous name, which now, since UML 2.0, is called the Communication 
Diagram instead. Figure 3.11 shows the Collaboration Diagram notation for the 
Discovery Method. A Collaboration Diagram is a graph showing the communication 
paths among classes. A collaboration arrow is used to represent a functional 
dependency, which means, in practical terms, that an object of the source class sends 
a message to another object of the destination class. The arrow points to the class 
receiving the message. In the figure, class A has a functional dependency on classes B, 
C, and D, while class B and D have a dependency on class C. Functional dependency 
can be weak or strong. A strong functional dependency may evolve into a permanent 

, i.e., into a directed association or composition 
relationship, implemented using a reference.  Part of the activity in System Modelling 

ns.  Typically, this 
transformation process produces instances of recognisable design patterns [126], 
promoting a high-quality, generic and decoupled design for the system [125].  At this 
point the design of the system is considered to have the maturity of a white-box 
framework.  It consists of many levels of specialisation, with plug-in points for new 
classes, which expect to override some of the general methods provided for the 
system.  If some pre-existing framework has already been developed, the current 

relationship between the classes

is designed to discover which collaborations are robust and should be encoded this 
way.  Other collaborations will disappear after system transformation.       

 
Figure 3.11  Notation for the Collaboration Diagram in the Discovery Method 

Another important activity is to apply three kinds of design transformations based on 
[90]: the aggregation transformation, server generalisation, and client generalisation. 
With each transformation the flow of control changes and the object role cards have to 
be updated. These transformations tend to identify new intermediate abstractions and, 
in consequence, reduce the number of direct collaboratio
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Class D 
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system is compared against this.  At this point the developer has to decide whether it 
ystem to the optimal design, or adapt the system to the 
choice is taken after considering how mature the pre-

s are converted into explicit typed interfaces.  A black-box 
framework is less flexible to adaptation, but safer for type checking the inserted 
omponents. 

.4.4 Software Modelling 

n 
concepts, presented as code idioms. Responsibilities for the classes are implemented 

ethods. References between classes can be implemented as references if 
e connections are long-term, or, for short-term references, using method arguments. 

he pre- and 
ble assertions 

is better to deliver the current s
pre-existing framework.  This 
existing framework is.  A framework usually starts to stabilise after three or more 
systems of the same kind are built [Simons, pers. comm.]. Once the framework has 
stabilised, it is possible to convert it in a black-box framework.  This is one in which 
the plug-in point

c

3

The aim of the Software Modelling phase is to transform the system design obtained 
in the last phase into source code in an object-oriented language. The election of the 
programming language is dependent on the non-functional requirements or the 
availability of existing frameworks. 

The classes, interfaces and attributes of the design are translated to the language 
almost directly, but it is also possible to do particular translations of some desig

by several m
th
Pre- and post-conditions are coded like executable assertions.  T
postconditions defined in the narratives should be codified into executa
in order to preserve the semantics of the operations. 

Three kinds of testing are suggested to be used with diagrams in the Discovery 
method: protocol testing using state diagrams, flowgraph testing using narratives or 
communication diagrams, and acceptance testing. 

3.5 Summary 

In the previous chapter an introduction to formal methods was provided. In this 
chapter, a brief history of object-oriented methods was presented and some of the 
problems associated with UML were identified.  An introduction to the Discovery 
Method was offered, organised according to its four phases: Business Modelling, 
Object Modelling, System Modelling, and Software Modelling. The next chapter will 
focus on the task models used in the Business Modelling phase. 
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Models 

 

 

The previous chapter gave an introduction to object-oriented methods and compared 
the Discovery Method with other methods.  In this chapter, the informal semantics for 
the Task Structure and Task Flow Diagrams are explained, as well as an introduction 
to the approximation used to define the formal semantics.  Additionally, the possibility 
of using Alloy to define and verify the abstract syntax on the diagrams in the 
Discovery Method is explored.  This approach was previously published in [127].    

 

4.1 The informal semantics for the Task Diagrams  

The Business Modelling phase is task-oriented.  A task is defined in the Discovery 
Method as something that “has the specific sense of an activity carried out by 
stakeholders that has a business purpose” [Simons, pers. comm.]. This task-based 
exploration will lead eventually towards the two kinds of Task Diagrams: The Task 
Structure and Task Flow Diagrams. 

The Task Model in the Discovery Method consists of the Task Structure diagram and 
the Task Flow diagram.  The former is used to represent structural relationships 
between tasks: aggregation and generalisation.  In contrast, the Task flow diagram is 
able to depict workflow relationships between tasks.  Both diagrams have a number of 
limited correspondences [Simons, pers. comm.].  A set of generalisations in the task 
structure is only consistent with a selection between the specialised tasks in a Task 
Flow diagram.  In addition, having an aggregation of tasks in a Task Structure 

nd parallel composition of 
these tasks in a Task Flow diagram.   

k and another.  He also will recognise the 
stakeholders involved with the tasks and these will be presented as stick figures, 
known as actors.  The difference between a stakeholder and an actor is that, whereas a 

diagram is consistent with sequence, selection, repetition a

Two different approaches were used in this research to represent these diagrams.  
While Alloy is presented here to represent Task Structure diagrams, for the Task Flow 
diagrams a denotational semantics approach is used. 

4.1.1 Task Structure Diagram 

Based on the interviews, the developer discovers a collection of tasks and identifies 
the relationships between one tas
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stakeholder is a specific person with a unique set of priorities about the way the 
eventual system should operate, an actor relates to one formal role played by one or 

ity ranging from a small-grained use case, up to 
a large-grained business process.  Actors that participate in tasks are drawn as stick 
fi res; and participating objects as rectangles.  Relationships between actors or 

elationships between actors or objects with 

Figure 4.2 Structural relationships in the Task Structure Diagram 

more stakeholders in the system.  The notation used for the Task Diagrams in the 
Discovery Method is simple.  The elements are taken from the UML but are presented 
in a more concise and consistent form that is, in some parts, unique to the Discovery 
Method.  Figure 4.1 shows the elements used to relate tasks with actors and objects in 
the Task Structure Diagram. 

A task is represented as a labelled ellipse, using the UML notation for use cases, but 
standing for all kinds of business activ

gu
objects with tasks can be represented.  R
tasks  are called participation, drawn as a simple straight line linking the elements.  It 
indicates that the actor or object is involved with the task.  In the case the actor or 
object is not just involved but also responsible for the task, this is shown with a small 
filled circle drawn at the task-end of the relationship.  This is known as ownership. 

 
Figure 4.1 Basic elements of Task Structure Diagrams 

The elements mentioned above can be insufficient if a more detailed diagram is 
required.  The Task Structure Diagram utilises the generalisation and aggregation 
relationships, the two main structural relationships in UML, to define structural 
relationships between tasks.  Aggregation and generalisation are used with the same 
meaning, avoiding the confusing structural relationships in UML use cases shown in 
Chapter 3.  Figure 4.2 shows the generalization and aggregation notation in the Task 
Structure Diagram. 

 

Major task 

Subtask 1 Subtask 2 

Generic 
task 

Variant 1 Variant 2 

aggregation 

generalisation 

Task 1 

Task 2 

object 

Actor 

ownership 

participation
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Aggregation, represented with a diamond arrowhead, indicates a major task divided 
into smaller sub-tasks.  Aggregation specifies a whole-parts relationship where the 
whole indicated by the diamond arrowhead is formed by an encapsulated set of parts, 
at the other end of the relationship.  Generalisation, presented using a triangle 
arrowhead, depicts a general task on the side of the arrow, and specialised tasks at the 
other end of the relationship. Generalisation describes a general-specific relationship 
where a more general abstract task generalises over a collection of more specific 
concrete tasks.  

4.1.2 Task Flow Diagram 

At some point during the process of identifying the tasks and structural relationships 
for the different actor viewpoints in the model, it will also be necessary to represent 
workflow relationships.  The workflow is represented in the Discovery Method using 
the Task Flow Diagram.  It depicts the order in which the tasks are realised in the 
business, expressing also the logical dependency between tasks.  While the notation 
used in the Discovery Method is largely based on the Activity Diagram of UML, it 
maintains consistently the labelled ellipse notation for tasks. Figure 4.3 shows the 
notation for the Task Flow Diagram. 

f the Task Flow Diagram 

n arrow indicating the direction of the flow.  A choice is 

iven for each 

flowcharts and state diagrams.  There is also a particular kind of end identified as fail.  

Task 1 

 
Figure 4.3 Elements o

[cond] 

Tasks are connected by a
represented by a diamond; and an exception, a special case of a choice, is represented 
using a half-diamond symbol.  The full diamond is used to split the flow in two or 
more alternative flows, whereas the half-diamond symbol represents the choice 
between continuing the normal flow or branching to the exceptional flow.  Whereas 
mutually exclusive and exhaustive guard conditions must always be g
branch of a standard choice, only the failure condition need be notated in an 
exceptional choice, where the continuation condition is understood to be the logical 
complement.  Start and end symbols are the standard icons used elsewhere in 

Task 2 

Task a Task b 

Task y Task x 

flow fork 

choice 

Task I 

join 

start 

Task II 

success 

failure 
exception 

[cond] [¬cond] 
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Fail is notated as a circle crossed by a diagonal line and represents, in the Discovery 
Method, exit with failure from the process described by the diagram.  By contrast, the 
traditional end symbol represents exit with success from the current diagram.   

rk and join symbols are common to different notations used for 
flow and state diagrams.  A comparison of different statecharts can be seen in [128]. 

. The transition from the join to the next element 
is only taken when all the subflows have finished successfully.  Forks and joins have 

 a corresponding join symbol closing the parallel tasks 

Log bug is executed in the second flow.  Each flow may finish 

Finally, the Task Flow Diagram in the Discovery method allows the representation of 
parallel tasks.  This representation in the diagram is necessary because business 
processes, just like other kind of processes, are sometimes independent from other 
processes and, consequently, could be performed concurrently.  The Task Flow 
Diagram employs the fork and join symbols to delimit two or more potentially 
parallel flows.  The fo

A fork is a transition with one source task and multiple target tasks.  A join is a 
transition from multiple source tasks to one target task.  When a fork transition is 
taken, all of the target tasks after the fork transition are understood to begin 
simultaneously.  Tasks in each subflow are executed sequentially, assuming there are 
no more parallel tasks defined, but the interleaved order of execution of each 
concurrent subflow is undetermined

to be balanced: for each fork
section should exist.  Figure 4.4 shows the use of parallel tasks in a Task Flow 
diagram.  After the task Get bug report terminates, two parallel flows are initiated in 
the diagram. Fix bug and Rollout new release are task executed sequentially in one 
flow, while 
independently and the execution of the Notify client task can be made just after the 
two flows have synchronised in the join fork. 

Fix bug 

Rollout new 
release

Log bug 

 
Figure 4.4 Example showing parallel tasks (Modified from [129]) 

Notify client 

Get bug report 
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A particular feature of the workflow model supported by the Discovery Method is the 
interaction of concurrent flows and task exit points.  Both early success and early 
failure in one of several concurrent flows may result in the pre-emption of the other 
flows, a feature, which must later be e semantics.  

4.2 The Alloy approach 

Different ques ed  u covery 
Method.  Chapter 2 me e of the formal methods considere s research.  
In that chapter Alloy [34, 50], a language originally inspired by Z and based in first-
order logic [49], was mentioned. In an initial experiment, Alloy was utilised to 
represent the abstract syntax of diag l of the Discovery Method and the 
abstract syntax tree was used to check so
were jud din  t d to the rules of the abstract syntax. 
An abstract syntax tree for all the di the Meth nerated 
(see Fig

4.2.1 Methodology 

he abstract syntax was determined by examining each design model used in the 
ach model element and the constraints 

e property of being directed 

Successive versions of the ab on were tested by proposing 
che berate counterexamples which encoded 
violations of desired properties of the abstract syntax, for example that an Object is a 
com s ) of itself, recursively.  When these were checked, 
All w ected syntactic violation, indicating that the 
abstract syntax did not yet encode sufficient invariant properties to rule out 

 use of Discovery and Alloy, used as a 

 modelled in th

techni could be us
ntions som

 to formalise the notation sed by the Dis
d in thi

rams used in al
me exam

hey conforme
agrams in 

ple concrete m

Discovery 

odels [127], which 

od was ge
ged accor

ure 4.15). 

g to whether

T
Discovery Method in turn, then describing e
upon that element.  Initially, there was some freedom to develop either a single 
abstract syntax, or a collection of syntaxes, one for each type of model. 

Alloy contains certain built-in predicates that were useful when checking properties of 
the abstract syntax.  For example, some models had th
acyclic graphs (DAGs).  Provided that a relation could be constructed to generate the 
transitive graph, the built-in dag() constraint could be applied to this expression. 

stract syntax specificati
ck assertions in Alloy, to check deli

po ition (exclusive aggregation
oy ould sometimes not detect the exp

malformed diagrams. 

Later, when checking diagram instances against the abstract syntax, the model 
checking strategy was switched from using a refutation approach to using a predicate 
satisfaction approach, whereby diagram instances were encoded as predicates and the 
Alloy analyzer had to satisfy one instance of each predicate, to indicate that a diagram 
was valid.  The reasons for this change are described in the evaluation of using Alloy 
as a diagram-checking tool below. 

4.2.2 Abstract syntax 

The experiment was geared toward the
supporting formal method, with the aim of defining the formal representation for 
Discovery.   
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The abstract syntax for the notations of the Discovery Method was coded in Alloy 
with the aim of facilitating the mapping between the notation and the semantic 
domain [27].  The refutation approach was used to test the specification. The abstract 

antics [130], which 
edness is 

rammatical level using a BNF specification, but Alloy was 
act syntax and looking for an appropriate 
Discovery and experimenting with the model 

ntax for the five principal 
ct, State and Collaboration 
 naturally from the diagram 

 combined for each model to have single 
h shared properties.  A similar strategy for 

UML has been recommended by the 2U group in their UML 2.0 proposal [131]. 

 
System view 

 

syntax model also included well-formedness rules or static sem
 Discovery models. Checking for well-formgovern the correctness of

traditionally made at a diag
used, trying to define the whole abstr

of representation of the model instances 
checking supported by Alloy.  

The project involved the construction of a unified abstract sy
Discovery models (Task Structure, Task Flow, Obje

ss rules derivedmodels), which includes well-formedne
tions.  The abstract syntaxes werenota

definitions of the common elements wit

Evans et al. actually propose two abstract syntaxes to support all the concrete syntax 
of UML [132], separating the abstract syntax describing structure from that describing 
behaviour. Figure 4.5 shows the chosen abstract syntax architecture, with four layers: 
the System view, the Model view, the Diagram view and the base level for the 
elements of Discovery notation. 

The System view gives a complete representation of a specification, formed by a 
collection of models in the Discovery Method.  This view includes at most one model 
of each kind and maintains the relationships between the different models.  The Model 
view is used to define the different models supported by Discovery.  At this level, 
each model has n diagrams and the Model view maintains the consistency between 
these different diagrams. 

Model view 
 

Task Task Flow Data Model State Model Collaboration 
Model Structure Model 

Model 
 
 

Diagram view 
 

sk Flow Data Model Task Ta
diagramStructure 

diagrams 
s diagrams 

State model 
diagrams 

Collaboration 
diagrams 

 
 

Model elements 
  

 
Figure 4.5 General structure of the abstract syntax 

without concern for their interrelation, 
grams use the appropriate elements 

The Diagram view specifies single diagrams 
since the purpose at this level is to ensure that dia
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of Discovery’s notation.  The lowest level is used to specify all the relevant elements 

am separately.  

• Each model independently. 

• The whole system specification.    

4.2.3 Checking visual models with Alloy  

Visual models are modelled in the abstract syntax and checked using the predicate 
satisfaction approach mentioned in section 4.2.1.  The abstract syntax model supports 
the definition of generic syntax constraints, together with the specific constraints 

hile the Alloy representation may 

ture in Alloy.  The reasons for 

gramView{ 

of the Discovery notation and their basic relationships.   

With this layering of models and diagrams, it is possible to check, at different levels 
of detail:  

• Each diagr

relating to a particular diagram, model or system.  W
be checked for all three views shown in Figure 4.5, the Diagram view must always be 
included, since this declares the relevant primitive elements.  The strategy followed is 
to encode the general constraints for each type of diagram in one Alloy signature, and 
then to encode a specific diagram as a subtype signa
this are discussed below in section 4.2.4. 

Figure 4.6 shows the signature TaskStDiagramView, defining the general properties of 
a Task Structure Diagram in Alloy.  This basically declares the sets of elements that 
can possibly be part of the diagram.  The relationships among these elements are 
defined at the lowest level of the abstract syntax graph (see the metamodel in Figure 
4.15).   

 
sig TaskStDiagramView extends Dia
  task: set Task, 
  goal: set Goal, 
  gen: set Generalisation, 
  real: set Realisation, 
  agg: set Aggregation – Composition, 
  comp: set Composition, 
  actor: set Actor, 
  obj: set Object - AssociationClass, 
  parti: set Participation 
} 
Figure 4.6  Task Structure Di amagr  elements 

y encode a specific Task Structure Diagram, such as the 
e 4.7.  The corresponding Alloy 

ents the diagram instance, is given in Figure 
  This signature extends the basic TaskStDiagramView signature.  Signature 

properties of the base 

Given the above, we ma
sketch of a Library’s circulation system in Figur
signature sCirculationTS, which repres
4.8.
extension means that the derived signature has all of the 
signature, similar to the notion of inheritance in object-oriented programming.  In the 
upper declaration area, the particular elements of the diagram are declared.  These are 
all expressed in terms of diagram element types inherited from the generic signature.  
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In the lower predicate area, constraints are defined on the declared elements.  One 
constraint is used to specify the aggregation relationship, linking tasks to their 
corresponding source or target tasks in the structure.  A similar constraint is created to 
define the participation linking the actor and the top-level task. 

 

Circulation

Overdue Loan Transaction

Reader Services

 
 
Figure 4.7  Circulation Task Structure Diagram 

 
sig sCirculationTS extends 
   TaskStDiagramView { 
 part circulationTask, overdueTask, 
   loanTransactionTask: task, 
 readerServicesActor: actor, 
 part p: parti, 
 circAgg: agg 
}{ 
 // Aggregation 
 circulationTask in circAgg.head and 
   overdueTask + loanTransactionTask 
   in circAgg.tail  
 #circAgg.tail=2 
 // participation 
 circulationTask in p.tact and 
   readerServicesActor in p.user 
} 
Figure 4.8  Encoding the Circulation Task Structure Diagram 

The abstract syntax for further Task Structure Diagrams may be specified.  Figure 
4.9, for example, shows a diagram that represents a more detailed elaboration of one 
of the tasks in the Task Structure diagram given in Figure 4.7.  Eventually, the two 
independently-created diagrams should be made consistent within the same Task 
Structure model. 

 

  
Figure 4.9  Loan Transaction Task Structure Diagram 
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The corresponding signature sLoanTr
 similar way as bef

ansactionTS is shown in Figure 4.10.  The 
ore, but this time describes a 

s enough information to check each diagram 
rm to the legal syntax of a Task 
ng to treat them as part of the same 
r.  To achieve this, a new Alloy 

odel view, within which the two 
Loan Transaction task). 

nds  

specification is constructed in a
ad of an aggregation relationship.  generalisation inste

With these two definitions, there i
separately, to demonstrate that they each confo

ore interestiStructure Diagram.  However, it is m
Task Structure model and check them togethe
specification must be constructed, representing the M

 (the diagrams are merged on their common element
 

sig sLoanTransactionTS exte
   TaskStDiagramView { 
 p  loanTransactionTask, issart ueTask, 
   dischargeTask: task, 
 borrowerActor: actor, 
 p: parti, 
 loanGener: gen 
}{ 
// generalisation 
loanTransactionTask in loanGener.head 
  and issueTask + dischargeTask in 
  loanGener.tail  
#loanGener.tail=2 
// participation 
loanTransactionTask in p.tact and 
  borrowerActor in p.user  
} 
Figure 4.10  Encoding the Loan Transaction Task Structure diagram 

Figure 4.11 shows the signature sCirculationModel, representing a particular Task 
Structure model for the whole circulation subsystem, which merges the above 
diagrams consistently.  The signature extends a generic TaskStModel signature 

s to the model, there is 
ich elements are common to both diagrams. For instance, the 

st clause in Figure 4.11 defines the fact that the intersection between the tasks  from 
the Circulation Task diagram and the Loan ransaction diagram is equal to the Loan 

(whose detail is not given here) and specifies that the diagrams sCirculationTS and 
sLoanTransactionTS are part of the model.  All the information pertaining to the 
Model view is inherited from TaskStModel and the individual diagrams were specified 
above in the Diagram view, so apart from linking the diagram
only a need to assert wh
la

 T
Transaction task. 
sig sCirculationModel extends TaskStModel { 
}{ 
sCirculationTS in tm 
sLoanTransactionTS in tm 
sCirculationTS.loanTransactionTask  
  = LoanTransactionTS.loanTransactionTask 
sCirculationTS.task &  sLoanTransactionTS.task  
 = sLoanTransactionTS.loanTransactionTask 
} 
Figure 4.11  Encoding the Task Structure model 
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Having defined a particular Task Structure model consisting of two Task Structure 
diagrams, it is possible to check the consistency of these against the rules of the 
abstract syntax.  In the following, the second of the two checking strategies is used, 
instantiating a predicate, rather than the model refutation approach.  If Alloy cannot 
find a valid instance, this will mean that our model does not conform to all the syntax 
constraints defined for the Discovery notation.  Figure 4.12 illustrates the Alloy code 
that is executed to validate the model.  This consists of a dummy predicate 
circulationModel() which is run for an exactly-specified scope, within which Alloy 
must find all the elements of the model.  The scope is an enumeration of each element 

smaller scope Alloy cannot 
t in a larger scope Alloy will create additional 

valid with the whole abstract syntax, but not equivalent 

and relationship used in the model under test.  In a 
generate a valid instance, whils
elements, making the instance 
to our model.  Indicating the exact scope is necessary if satisfaction is to be 
interpreted as validating the model.  However, this also has the useful effect of 
limiting the state space searched by Alloy for a valid instance. 
pred circulationModel(){} 
run circulationModel  
 for 1 but  
 exactly 1 Model, 
  exactly 1 TaskStModel, 
    exactly 1 sCirculationModel, 
 exactly 2 DiagramView,  
    exactly 2 TaskStDiagramView, 
 exactly 1 sLoanTransactionTS, 
 exactly 1 sCirculationTS, 
 exactly 4 Relationship,  
    exactly 2 Structure,  
      exactly 1 Generalisation, 
 exactly 1 Aggregation,  
    exactly 2 Participation,  
 exactly 7  Node,  
    exactly 5 StateAndTask,  
      exactly 5 TaskActivity,  
   exactly 5 Task,  
    exactly 2 Actor, 
 0 Transition,  
 0 TaskFlowElement,  
 0 Member 
Figure 4.12  Empty predicate and exact scope specified for the run command 

When the above run command is executed, Alloy finds the unique instance, indicating 
that our example is in fact consistent with the Discovery abstract syntax.  What Alloy 
does is to satisfy the empty predicate (a trivial task in itself) in conjunction with 
making the particular diagram and model specifications consistent with the general 
syntax specifications, within a scope that only has one possible solution, if any.  Alloy 
presents its result either as a graph of linked signature instances (similar to the 
metamodel graph in Figure 4.15), or as a browseable tree (as shown in Figure 4.13). 

Figure 4.13 shows the tree view generated by Alloy for the example presented above, 
whose structure can be inspected interactively if you want to examine the result.  The 
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fact that Alloy finds an instance at all demonstrates that the example is valid.  If no 
result is returned, this means that the tested model is invalid.   

 

 
Figure 4.13  Solution generated by Alloy 

Figure 4.14 illustrates a second interesting example, for which we would expect no 
consistent solution to be found by Alloy. It is possible to verify that the individual 
exemplar diagrams (a) and (b) are syntactically correct in the Diagram view, but when 
both diagrams are included within the same data model in the Model view, Alloy 
cannot find a valid instance.  This is because the Z class is defined as a component of 
two different classes in the same model, something which violates the specification 
for a UML composition, which requires the composed elements to be uniquely-owned 
parts of the whole.  

Figure 4.14  Two diagrams creating an inconsistent Data Model 

4.2.4 Evaluating Alloy 

While Alloy is very effective in modelling and analysing simple, lightweight formal 
specifications written in a Z-like style, this experiment found that it is more difficult 
to use as the basis for model checking the syntax and static semantics of a design 

 

X

Z 

Y 

Z 

(a) (b) 
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notation.  At various times, the construction of the specification was forced into work-
ehaviour of the analyzer.  The following gives a 

 kinds of relationship, with a 

xes for the different model types were 

s notation.  This initially fostered a meta-modelling style of 
 

quence of 

ted against generated instances of 

he diagram 
e was set to generate exactly one instance of each 
gram, a brute force approach to ensure that Alloy did 

n was able to find single instances of 
consistently-merged diagrams.  The attempt to find an instance of mutually 

ugh no useful information could be 
reported about the detected inconsistency. 

syntax for the notation of the Discovery Method were presented.  This section 
described how the experiment used different approaches to design the abstract syntax 

arounds to constrain the searching b
flavour of some of the unexpected discoveries while modelling in Alloy. 

Initially, a separate abstract syntax for each type of model used in the Discovery 
Method was developed.  Therefore, for example, the Task Structure model had 
distinct generalisation and aggregation relationships from those in the Data model, 
although in the Discovery Method these are each single
uniform semantics across all model types.  This meant that the Alloy signatures for 
Generalisation and Aggregation were short and the scopes, within which model 
instances were checked, were quite small.  However, when models of different types 
were combined, this required a set of translations from one abstract model syntax to 
another. 

In the second version, all the abstract synta
unified, such that a single Aggregation relationship existed for all types of model.  
This was more in keeping with the philosophy of the Discovery Method.  However, 
the Alloy signature for Aggregation was made more complicated by the need to assert 
extra constraints that it either related two Tasks, or two Objects and not one of each.  
Alloy lends itself to creating hierarchies of disjoint subtypes in its abstract syntax, 
using the extend
construction, whereby all syntax elements descended from a common ModelElement
root, similar to the MMF [6]. However, this had the unexpected conse
requiring vastly larger scopes within which to search for model instances, since Alloy 
interprets all scope instructions as relating to the base instances in any tree.  As a 
necessity, the syntax tree was broken down into a series of shorter trees (see Figure 
4.15), losing the abstraction over all model elements. 

Once the abstract syntax had been fully validated using check assertions, Alloy 
representations of diagram instances were developed.  Initially, a diagram instance 
was represented as an Alloy predicate, to be evalua
the abstract syntax.  Eventually, this proved to be unwieldy, requiring the repetition of 
constraints whenever a part of the predicate referenced the same sub-elements in the 
diagram.  In the second version, diagram instances were constructed as subtypes of 
the canonical abstract syntax types, a strange but economical encoding, which 
avoided such repetition of constraints.  The eventual predicate to check was then 
trivial (empty), since all the analyser had to do was find one instance of t
itself.  To control this, the scop
model element present in the dia
not over-generate elements of the diagram.  If the search to satisfy the trivial predicate 
generated a single matching instance of the diagram, then this represented success in 
satisfying the abstract syntax.  The executio

inconsistent diagrams failed, as expected, altho

4.2.5 Conclusions on the Alloy approach 

To summarise this section, experiences using the Alloy analyzer to check an abstract 
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and to represent the diagram instances in Alloy, commenting on the naturalness, or 
otherwise, of the chosen encodings. 

 

 

Figure 4.15 Abstract syntax metamodel 
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A complete example of a valid model for Discovery (a Task Structure model) and the 
result generated by Alloy were illustrated, showing that the basic approach is feasible.  
The time taken to validate larger models with an exact scope is in the order of 
minutes.  In addition, a counter-example of an invalid model (a Data model) was 
illustrated, for which Alloy correctly found no instance. 

Additionally, impressions of Alloy as a candidate tool for checking the consistency of 
multiple diagrams in software engineering notations were given.  The feeling is that 
this is perhaps not an ideal deployment of Alloy.  The searching behaviour of the 

o be carefully controlled.  The notion of a single hierarchy of 
 abstract syntax specification was abandoned, since this gave 

 

4.3 From the Task Flow Diagram to the Task Algebra  

In order to give a formal representation for the Task Flow Diagram, the following 
chapter will present a Task Algebra, which is first introduced here.  The Task Algebra 
syntax is a straight translation from the Task Flow Diagram, the abstract 
representation is almost a direct copy of the diagram notation.  There are structures 
for every basic structure allowed in the Task Flow Diagram: sequence, selection, 
parallelism, and repetition.  Additionally encapsulation is considered as a formal 
structure for delimiting the scope of the diagrams.  

The syntax for this algebra and its axioms will be explained in detail in chapter 5, 
followed by the semantics in chapter 6.  In this section, the correspondence between 
the Task Flow Diagrams and the Task Algebra is explained by comparing simp

idea is to introduce the algebra as well as 
tween the diagram and the algebra is. 

el is {a; b; c}.   

constraint solver had t
model elements in the
rise to underconstrained instance generation. 

As was mentioned above, even when we were able to represent the Task Structure 
model in Alloy, the results were not what we expected.  In addition, in the objectives 
of the research it was established that we wanted to represent the semantics for the 
Task Flow diagrams in term of traces, so a process algebra style suited better for this 
kind of diagram.

le 
examples with the algebra notation.  The 
showing how clear the translation be

4.3.1 Sequence of tasks 

Figure 4.16, for instance, depicts a sequence of tasks. The equivalent expression in the 
Task Algebra for the task mod

c a b 

 
Figure 4.16  Sequence of tasks in the Task Flow Model 
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As can be seen, the start and end elements of the diagram have no direct 
representation because they are implicit from the scope of the curly brackets. While in 
the Task Flow Diagrams, order of execution of the tasks is specified by the arrows, in 
the Task Algebra the order of execution in sequences depends of the position of the 
task name in the expression.  Tasks are executed from the left to the right and 
separated by semicolons.  

4.3.2 Selection 

Figure 4.17 depicts the choice among three tasks a, b, and c.  This figure shows the 
selection symbol that can be used when two or more choices are needed. Guards are 
mutually exclusive and exhaustive.  The Task Flow Diagram showed in Figure 4.17 
may be presented in the Task Algebra as the following expression: {a+b+c}.  As can 
be seen, the selection is represented by the symbol ‘+’, and the conditions are not 
represented in the algebra.   

al 
 
 

 diagonal 

[p ^ ¬q ^ ¬r]

a b c 

[¬p ^ q ^ ¬r] 

[¬p ^ ¬q ^ r] 

 
Figure 4.17  Selection in the Task Flow Diagram 

The binary selection in Figure 4.18 is also represented with the symbol ‘+’.  The 
guards in the binary selections are also mutually exclusive and exhaustive and, in 
consequence, one of the guards could be omitted.  Figure 4.18a shows a norm
binary selection where in case of p the task a could be reached, and task b could be
reached if ¬p. {a+b} is the matching representation of Figure 4.18a in the Task
Algebra.  Figure 4.18b introduces the fail symbol using a small circle with a
line crossing it.  This symbol represents the exit with failure of the execution in the 
flow.  {φ + x} is the matching representation of Figure 4.18b in the Task Algebra, 
where φ is for fail in the algebra.  The fail symbol is employed in association with the 
half-diamond utilised to represent exceptions. 
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[p] 

 

 
Figure 4.18  Binary selection in the Task Flow Diagram 

 

It was mentioned before that guards have no direct representation in the abstract 
syntax, because they are initially not relevant.  The same could be argued about the 

, which might initially be encoded implicitly in the structure of 
s.  However, it is later found necessary to represent end symbols 

ram, φ represents a failure in the execution of the flow from that point and 
beyond.  This means that even if the diagram is part of another diagram, no further 
tasks are executed after a failure. 

4.3.3 Repetition 

Repetition is shown in Figure 4.19 in the form of until- and while-loop.  Like in the 
selection, the guard is implicit and there is not direct representation.  Figure 4.19a 
shows the repetition of the task a until p was false.  Its corresponding expression in 
the Task Algebra is µx.(a ; ε + x).  The while-loop is shown in Figure 4.19b and its 
representation in the algebra is µx.(ε + a ; x).  In the Task Algebra, ε represents the 
empty activity. 

start and end symbols
algebraic construction
explicitly, because of the different behaviour of normal exit and failure.  Fail is used 
to specify an end inside a context, but gives additional information about the global 
failure of the execution of the flow.  A normal end is considered as success and, if it is 
necessary to include it explicitly in the expression, the σ  symbol called succeed is 
used.  The σ symbol is needed if there is a requirement to represent a race-condition 
(multiple parallel threads with one of them expecting to win); also is useful to express 
an unary selection using the binary selection from the algebra.  However, probably the 
most important difference is that, while σ indicates the success of the execution of the 
actual diag

a b x 

[p] 

(a) (b) 

[¬p] 

60 



Chapter 4: The Informal Semantics for the Task Models  

a 

[p] 
[ ¬ p] 

a 

[p] 

[ ¬ p] 

(a) Until-loop (b) While-loop 

 
Figure 4.19  Repetition in the Task Flow Model 

4.3.4 Parallel composition 

Parallel composition is shown in Figure 4.20.  The diagram depicts two sequential 
compositions executing in parallel.  The Task Algebra expression for this Task Flow 
Diagram is {(a; b) || (c; d)}.  

In the next section, an example is depicted with its equivalent expression in the Task 
Algebra. 

 routine example 

tion from the Task Flow Diagram to the Task 

 
Figure 4.20  Parallel composition in the Task Flow Diagram 

4.3.5 The eating

In order to appreciate the transla
Algebra an example is shown in Figure 4.21.  The diagram represents the flow of 
tasks for having dinner and choosing between cooking it in the house or going out.  

a 

d 

c 

b 
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chooseDinner

 
Figure 4 e proc

As can be seen, th m
concurrent tasks.  Almost all of this infor represented in the Task 
Algebra s that a  not ra are the guard 
conditions on each branch.  The expression in the Task Algebra may be as follows: 

e bracketing 

kets:  

{ chooseDinner;(goHome;((findRecipe; getIngredients; 
cook) || setTable)) + (chooseRestaurant; orderMeal); eat 

f tasks and affects the scope of the 
behaviour of early exit tokens success, and fail, which jump to the nearest boundary.  

.21  Task Flow Diagram showing th ess of doing dinner 

e diagram uses a co bination of sequences, a choice, and 
mation can be 

.  The only element  re translated into the algeb

chooseDinner;(goHome;((findRecipe; getIngredients; cook) 
|| setTable)) + (chooseRestaurant; orderMeal); eat 

In this case, it is important to mention that expressions in the Task Algebra are right-
associative but parentheses are allowed where this is considered necessary.  In this 
example, the sequence of three tasks (findRecipe, getIngredients, and cook), being 
part of the parallel composition, is grouped using parentheses.  The sam
approach is used to cluster the tasks on each side of the selection operator.  Start and 
exit with success are implicit but the scope of the enclosing task (which we shall call 
Dinner) is specified explicitly using curly brac

} 

The use of curly brackets defines the boundary o

findRecipe 

getIngredients 

cook 

setTable 

chooseRestaurant

orderMeal 

eat 

[eat in]  [eat out] 
goHome 
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Therefore, the behaviour of an expression enclosed in curly brackets will typically 
differ from one which is not so enclosed.  The other effect of bracketing flows in this 
way is to define larger composite tasks.  Now, supposing that the expression above is 
bracketed, this may be named as a compound task called Dinner and then used as part 
of another Task Flow Diagram, as shown in Figure 4.22. 

the tasks: 
inner.  The execution of the sequence is guaranteed at least 
ure is an until-loop setting the condition at the end.  The 

. 

mmary 

hapter explained the informal semantics for the Task Structure and Task Flow 
Diagrams, as well as an introduction to the approximation used to define the formal 

ally the abstract syntax and chapter 6 
will explicate the formal semantics for the Task Flow Diagrams in the Discovery 
Method. 

Dinner 

Breakfast 

Lunch 

[ ¬ alive] 

  
Figure 4.22  Until-loop repetition in the Task Flow Diagram  

The diagram above uses the repetition structure containing a sequence of 
Breakfast, Lunch, and D
once because the struct
alternative construction, a while-loop, it is also allowed by the Task Flow Diagram.  
The corresponding expression for Figure 4.22 in the Task algebra should be: 

µx.( (breakfast; lunch; dinner); ε+x)  

The sequence has to be between parentheses because the syntax, explained in detail in 
the next chapter, is defined for one Activity and the right-associativity will derive in a 
syntax error for no atomic tasks

4.4 Su

This c

semantics.  Additionally, an experimental approach using Alloy to define and verify 
the abstract syntax of the diagrams in the Discovery Method is discussed, but this 
approach was eventually abandoned, due to problems in restricting the scope of the 
analyzer.  The next chapter will present form
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Chapter 5:  
An Abstract Syntax Representation 
for the Task Flow Model 

 

 

The previous chapter presented the informal semantics for the Task Structure and 
Task Flow Diagrams. In this chapter the abstract task algebra for the Task Flow 
Model is presented. The definition of the task algebra is initially depicted in Backus 
Naur form. Subsequently, the set of axioms constraining the initial definition are 
given and some examples are provided in order to show how the algebra works as 
expected for basic elements. The abstract task algebra is based in simple and 
compound tasks using operators such as sequence, selection, and parallel 
composition. Repetition is defined with recursion in the form of while- and until-
loops.  

 

5.1 Introduction 

A simple task in the Discovery Method [4, 5, 63] is the smallest unit of work with a 
business goal. In this context tasks are categorised as simple and compound tasks. A 
simple task is the minimal representation of a task in the model. A compound task can 

internal atomic steps of 
the simple tasks are not relevant for the Task Flow Model and for that reason this 

ation is not present in the abstract sy

d on to simple tasks and compound tasks, th  
definition of three instantaneous events. These may compound task in 
the abstract syntax. 

5.2 The Abstract Syntax 

The basic elements of the abstract syntax are the simple task, which is defined using a 
ctivity; and  the 

success σ and failure φ symbols representing a finished activity. 

be formed by either simple or compound tasks in combination with operators defining 
the structure of the Task Flow Model. 

Simple tasks are understood to consist of a series of steps and therefore are always 
considered to be intervals, from a temporal perspective. The 

inform ntax representation. 

In ad iti e abstract syntax also requires the
 form part of a 

unique name to distinguish from others; ε  representing the empty a

Simple and compound tasks are combined using the operators that construct the 
structures allowed in the Task Flow Model. The basic syntax structures for the Task 
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Flow Model are sequential composition, selection, parallel composition, repetition, 
and encapsulation:  

• Selection is represented with the symbol ‘+’ and it means that there is a choice 
between the operands.  

• Parallel composition defines the simultaneous execution of the elements in 
the expression. It is represented by the symbol ‘||’.  

• Repetition allows the reiteration of an expression in the form of an until-loop 
and while-loop structure. It is represented using the µx fixpoint. 

• Finally, encapsulation is used to group a set of tasks and structures. This 
constructs a compound task and is represented using curly brackets ‘{‘ ‘}’.  

: 

 -- a single task 
 | Activity ; Activity  -- a sequence of activity 
 | Activity + Activity  -- a selection of activity 
 llel activity 
 | µx.(Activity ; ε + x)  -- until-loop activity 

| µx.(ε + Activity ; x)  -- while-loop activity 

Task::= Simple mple task 
| { Activity }   -- encapsulated activity 

A task can be either a simple or a compound task. Compound tasks are defined 

xecution of the structure inside it. Curly 
brackets are used in the syntax context to represent diagrams and sub-diagrams but 
also have implications for the semantics that will be explained later. Also, parentheses 

• Sequential composition defines the chronological order of execution for a 
task or a group of tasks from the left to the right and ‘;’ is used as the operator.  

The abstract syntax has the following definition in Backus Naur form

Activity  ::=  ε    -- empty activity 
 | σ    -- succeed 

| φ    -- fail  
  | Task   

| Activity || Activity  -- para

   -- a si

between brackets ‘{‘ and ‘}’, and this is also called encapsulation because it 
introduces a different context for the e

can be used to help comprehension or to change the associativity of the expressions. 
Expressions associate to the right by default. 

The abstract syntax represents in a simple way every basic structure used for the Task 
Flow Diagram. For instance, supposing three tasks a, b and c; a sequence composition 
of these elements can be specified as follows: 

cba ;;  

Which means the execution of a, then b, and then c. The selection operator ‘+’ should 
be used for representing the choice among tasks: 

cba ++  

65 



Chapter 5: An Abstract Syntax Representation for the Task Flow Model  

The concurrent execution of these three tasks may be represented using the parallel 
composition operator ‘||’: 

cba ||||  

Meanin terminatg that a, b and c are executed simultaneously and may e in any order. 
Finally, the repetition operator works either as an until-loop or a while-loop. The 
difference between each repetition is, as can til-loop structure 

etition:  
 be supposed, that the un

guarantees at least one execution of the activity in the rep

);.( xax +εµ  

Repetition is modelled using recursion. In the example above, µx binds x to the 
expression (a;ε+x), where a occurs at least once and, if under the choice of x, the 
expression is expanded (i.e. the expression is repeated recursively, x being the fixed-
point of bound by µ.) The next example shows a while-loop: 

);.( xax +εµ  

As in the until-loop, µx binds x to the expression (ε+a; x), but the choice is put in 
front of the expression to be repeated. 

5.3 Task M

Just as can be composed, basic 
def s in the abstra ct syntax 
d  can ich, to accomplish an 
accurate representation of the diagram syntax, has to be limited by axioms. The 
a yntax lgebra. 

e 
or the expressions; whilst an Activity is formed 

nce, selection parallel composition, and 

nted with ε, success 
with σ  and fail using φ. The fact that simple tasks cannot be vacuous activities is 

odel Constructions 

 the graphical structures of the Task Flow Model 
inition ct syntax may form complex expressions. The abstra

efinition  be considered like a Universal Algebra wh

bstract s  definition and its axioms form an Ideal or Quotient A

5.3.1 Simple task 

As it was explained before, a simple task is the minimal representation of a task in th
abstract syntax with significance f
using a combination of operators (seque
repetition), simple tasks, empty activity, end with success and end with fail. Empty 
and finished activities are vacuous activities. Empty is represe

formalised in the next axioms: 

(sp.1) σφε ≠∧≠∧≠•∈∀ aaaSimplea  

(, yaActivityzySimplea
(sp.2)

xyxazya
zyaz

+≠∧≠∧ );.()||(
)();≠•∈∀•∈∀ +≠∧

εµ
 

Simple tasks are different from succeed, fail tasks 
represent processes with interval duration different from pty 

t  are c  

and empty activities because simple 
 zero. Succeed, fail and em

activi ies onsidered instantaneous events.
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5.3.2 Empty activity 

As was said before, the symbol ε is used to represent the empty activity. It is needed 
r and ε is used to characterise the empty 

bination with the selection operator e 
en doing something or nothing. 

a set of axioms must be defined to 
interpret the meaning of the empty activity when it is a part of other kinds of 

necessary to represent situations when an activity should 
terminate before the normal end. The abstract syntax representation allows two kind 
of finished activity: succeed and fail. Succeed is e
within an expression, returning the control to l 
is used to represent the termination of all tasks, and the failure is propagated to the 

σ  and φ are considered instantaneous events. Similar to the empty activity, the 

because the selection is a binary operato
branch, where in com  it is used as the choic
betwe

As a result of the existence of this element, 

expression. These rules are specified within each operator description. 

5.3.3 Finished activity 

The finished activity is 

 us ful to represent an early exit from 
 the higher scope. On the other hand, fai

higher levels.  

finished activities have an effect in many operator constructions, and they will be 
defined later.  

5.3.4 Sequential composition 

Sequential composition is defined as the consecutive execution of activities, from the 
left to the right. Tasks are separated by ‘;’. For example: 

));(;(;;;; dcbadcba ⇔  

The intuitive meaning is that first a will be executed, then b, and so on until the task 
d. Parentheses can be used to group elements but the meaning is not altered 
whatsoever. An associative axiom is defined to support this notion. Axioms for 
distribution, empty sequence and finished activity are also defined. Commutativity 
and idempotence properties are not considered for sequences: 

(s.1) cbacbaActivitycba );;();(;,, ⇔•∈∀   -- associative sequence 

(s.2) );();();(,, cbcacbaActivitycba •∈∀

(s.3) 

+⇔+  -- right distributivity of sequence 
over selection  

aaaActivitya ⇔⇔•∈∀ ;; εε  

(s.4) 

-- empty sequence    

φφ ⇔•∈∀ aActivitya ;   -- fail on sequence 

(s.5) σσ ⇔•∈∀ aActivitya ;   -- succeed on sequence 

le (s.2) defines that a right sequence is distributed over a left selection. Left 
ction is not allowed because, as in ACP [69, 133],  

 sequence distribution changes the point where the choice is made.  It follows that: 

Ru  
distribution of sequence over sele
left

67 



Chapter 5: An Abstract Syntax Representation for the Task Flow Model  

);();()(;,, cabacbaActivitycba +≠+•∈  

ecause  th  expr c), initially a  is executed and then the choice 
ee b and c is made; while in the expression (a;b)+(a;c) the choice is first  and 

fterward  a is executed. The difference in the branching position can be easily 
reciated in Figure 5.1. 

5.1. State ransiti r expressions a;(b+c) and (a;b)+(a;c) 

pty and finished activities may coexist in an expression, in which case the rule 
s.3) is c nfluent with rules (s.4) and (s.5) (i.e., the expression can be reduced in 
nother way a d may interact. All posible basic cases where these rules can be used 

confluently are shown as follows: 

∀

B in e ession a;(b+
betw n 
a s
app

a 
a a 

b c b c 

b) ( b) ( )
 

F    t on diagram foigure 

Em
( o
a ) n

a) φ;ε  

 ⇒ φ   -- by applying (s.3) or (s.4) 

b) σ;ε  

⇒ σ   -- by applying (s.3) or (s.5) 

5.3.5 Selection  

The selection of activities is perfor at hoice 
among a group of activities, for instance: 

med with the ‘+’ oper or. It represents the c

))(( dcbadcba +++⇔+++  

Intuitively each branch is evaluated from the left to the right. Guards are implicit and 
are not represented in the syntax. The guards are suppose usive 
and exhaustive. When a guard is satisfied the left activity is executed and the right 
b ch ise the left activity is discarded and the next guard is 
verified. Logically, the last guard does not need to be checked and the order in which 
the branches are considered is irrelevant.  

The ‘+’ operat ved in the se antics  in the mbol  
‘↓’, which was included to represent the commit point for a selection.  This is already 
a simplified version of the selection, where the guard conditions are not present but 
mentioned as a future extension for the algebra.  Even so, we think this approach 

d to be mutually excl

ran  is discarded, otherw

or will be preser m  form of a commit sy
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represents better the flow of tasks, making clear where the selection happened.  Figure 
5.1 above presented a case where the difference in the branching position can be seen. 

(sel.1) 

The axioms defined for the selection operator are: 

cbacbacbaActivitycba ++⇔++⇔++•∈∀ )()(,,   

-- Associative selection 

(sel.2) abbaActivityba +⇔+•∈∀ ,  -- commutative selection 

(sel.3) aaaActivitya ⇔+•∈∀   -- idempotent selection 

In the case of the empty activity, it is also possible to reduce the expression if both 

ts (right or left) is ε, then the selection has no reductions. ∀a ∈ Activity, the 
following expressions are irreducible: 

sides have the empty activity by the idempotent rule (sel.3). But, if just one of the 
elemen

a ε+   -- irreducible selection of empty activity or activity 

The same applies to the finished activities, where the selection between any of the 

φ + a  -- irreducible selection of fail or activity 

σ

ε + σ  -- irreducible selection of empty activity or succeed 

As described above, selection interacts with sequences and the right distributivity 
axiom may be applied. Its interaction with parallel composi

Parallel composition is defined as the simultaneous execution of all its tasks and it is 

a || b || c || d ⇔ a || ( b || ( c || d ) ) 

Intuitively it expresses that the elements a, b, c, and d are initiated at the same time 
and executed simultaneously. The end of any of th stic. Like the 
last operators, a set of axioms are defined: 

cbac

finished activities or a general Activity has no reduction: 

 + a  -- irreducible selection of succeed or activity 

ε + φ   -- irreducible selection of empty activity or fail 

tion is shown below. 

5.3.6 Parallel composition 

represented with the operator ‘||’. An example is the expression: 

 em is non-determini

(p.1) )||(,, baActivitycba )||(||||•∈∀ ⇔   

(p.2)  -- Commutative composition  

-- Associative parallel composition 

abbaActivityba ||||, ⇔•∈∀  
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(p.3) )||()||(||)(,, cbcacbaActivitycba +⇔+•∈∀  

-- right distributivity of concurrency over 
selection   

(p.4) aaActivitya ⇔•∈∀ ε||   -- instant synchronisation  

(p.5) φφ ⇔•∈∀ ||aActivitya   if a ≠ σ  -- instant failure 

σσ ⇔•∈∀ ||aActivitya(p.6)     -- instant success 

istribution is derived by 
applying (p.1) and (p.3): 

The associative and commutative axioms (p.1, p.2) reflect the nondeterministic order 
of concurrent activity. Also, it is possible to do right and left distribution of 
concurrent composition over selection, but only the one axiom is necessary. Right 
distribution over selection is defined in (p.3) and left d

)||()||()(||,, cabacbaActivitycba +⇔+•∈∀   -- left distribution of concurrency 
over selection, by axiom

 too in combination with 
parallel compo , (p.5) and (p.6) define instant synchronisation, fail 
and succeed respec .4) performs the elimination of ε whether it is on 
the right or the left of the parallel operator, (p.5) and (p.6) establish that any activity 
in parallel composition with fail or succeed is equivalent to ju

 the simultaneous execution of simple activities (i.e. 
le task and an Activity means that the single task could 

rom 
er 

the tasks.  The decision of having priorities on some elements prevents our algebra 
from satisfying the interleaving semantics.  In particular, we can say the algebra does 

a||b = (a;b) + (b;a) 

where a and b can be any valid symbol in the algebra.  With the non-interleaving 
a tics the difference between the elements can be represented. 

Logically, this set of rules is confluent, which can be easily proved. The specific cases 
involving the symbols σ, φ and ε can be resolved using any of the rules defined for 

 (p.1) and (p.3) 

In both, the axiom and the derived rule, simultaneously may occur any of the activity 
elements a, b or c. 

The use of instant events such as ε, σ and φ may occur
sition. Axioms (p.4)

tively. Whilst (p

st itself. Although the 
parallelism is resolved as
concurrency between a sing
occur at any time among all the simple actions of such Activity), Succeed and fail are 
considered as instantaneous events and they have priority over the elements of the 
Activity. In addition, succeed has a major priority than fail, therefore in the case of a 
parallel composition between these two elements succeed will prevail (p.6). Succeed 
and fail are considered as instantaneous since it was wanted to differentiate them f
a time consuming task, for this reason it was necessary to give them preference ov

not satisfy the expression: 

sem n

each symbol to work with parallel composition. All posible basic cases where these 
rules are used confluently are shown as follows: 
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a) φ ||ε  
 ⇒ φ   -- by (p.4) 
or 
    φ ||ε  
 ⇒ ε || φ  -- by (p.2) 
 ⇒ φ   -- by (p.5) 
b) ε ||φ  
 ⇒ φ   -- by (p.5) 
or 
    ε ||φ  
 ⇒ φ ||ε  -- by (p.2) 
 ⇒ φ   -- by (p.4) 
 
c) σ ||ε  
 ⇒ σ   -- by (
or 

p.4) 

    σ ||ε  
 ⇒ ε ||σ  -- by (p.2) 
 ⇒ σ   -- by (p.6) 
d) ε ||σ  
 ⇒ σ   -- by (p.6) 
or 
    ε ||σ  
 ⇒ σ ||ε  -- by (p.2) 
 ⇒ σ   -- by (p.4) 

The next ones are examples involving instantaneous events showing equivalent 
expressions: 

babababaActivityba ||||||)||(||||)||(, ⇔⇔⇔•∈∀ εεε    

-- by (p.1) and (p.4) 

aaaActivitya ⇔⇔•∈∀ |||| εε     -- by (p.2) and (p.4) 

φφφ ⇔⇔ aaa ||||  •∈∀ Activity if a ≠ σ   -- by (p.2) and (p.5) 

σσσ ⇔    -- b⇔•∈∀ aaActivitya ||||  y (p.2) and (p.6) 

•∈∀ ||(, aActivityba φφφφ ⇔⇔⇔ ||||)||(||||) babab   

if a ≠ σ ∧ b ≠ σ    -- by (p.1) and (p.5) 

σσσσ ⇔⇔⇔•∈∀ ||||)||(||||)||(, bababaActivityba  -- by (p.1) and (p.6) 

bababaActivityba +⇔+⇔+•∈∀ )||()||(||)(, εεε   -- by (p.3) and (p.4) 

φφφφ ⇔+⇔+•∈∀ )||()||(||)(, babaActivityba    

if a ≠ σ ∧ b ≠ σ    -- by (p.3) and (p.5) 
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5.3.7 Repetition 

Repetition of tasks is defined
abstract syntax are constructed using recursion. The u
Activity followed by an option of continuing or repeating x

 as an until- and while-loop. The structures in the 
ntil-loop is formed by an 
: 

);.( xax +εµ  

Intuitively it can be seen that the Activity is repeated as long as ε is not chosen. When 
ε is chosen (i.e. the end state of the recursion function is reached) the recursion 
terminates, which means that the next activity outside of the until-loop may be 
executed. The choice of the fixed-point x results in expanding unrolling the 
expression. 

The until-loop has only one axiom specifying the unrolling of the recursions on the 
loop: 

(r.1) );.(;);.( xaxaxaxActivitya ++⇔+•∈∀ εµεεµ    

-- unrolling one cycle of until-loop repetition 

This rule can be applied as many times as necessary resulting possibly in an infinite 
option to continue or repeat: repetition of the activity and the 

...));.(;(;);.(;);.( ⇒+++⇒++⇒+ xaxaaxaxaxax εµεεεµεεµ  -- by (r.1) 

Additionally, there are three special cases where the expression may be reduced, those 
ones when any of the instantaneous events is involved. In one case an until-loop 
containing just the empty element ε can be reduced just to ε : 

εεεµεεεεεεµεεεεµ ⇒⇒+++⇒++⇒+ ...));.(;(;);.(;);.( xxxxxx    

-- by (r.1) and (s.3)  

The reduction of empty sequences can be made by the axiom (s.3). The recursion 
keeps going infinitely or finishes when the ε in the selection is chosen.   

On the other hand, if the activity in the until-loop contains just φ or σ, the expression 
may be reduced and the recursion is eliminated: 

φεφµεφεφµ ⇒⇒++⇒+ ...);.(;);.( xxxx  -- by (r.1) and (s.4) 

σεσµεσεσµ ⇒⇒++⇒+ ...);.(;);.( xxxx  -- by (r.1) and (s.5) 

As the examples above show, it is possible to reduce the until-loop using the axioms 
(s.4) or (s.5) already defined.  

Alternatively, the while-loop is formed by the option of doing an Activity followed by 
repeating x, or the option of finishing the execution of the loop: 

);.( xax +εµ  
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As the until-loop, the while-loop has only one axiom specifying the unrolling of the 
recursions on the loop: 

(r.2) );.(;);.( xaxaxaxActivitya ++⇔+•∈∀ εµεεµ   -- unrolling one cycle  

of while-loop repetition 

Applying this rule as many times as necessary results in an infinite repetition of the 
option to finish the loop or doing the activity and repeat: 

...));.(;(;);.(;);.( ⇒+++⇒++⇒+ xaxaaxaxaxax εµεεεµεεµ  -- by (r.2) 

Additionally, there are three special cases where the expression may be reduced, those 
ones when any of the instantaneous events is involved. The while-loop containing just 
the empty element ε can be reduced just to ε :  

εεεµεεεεεεµεεεεµ ⇒⇒+++⇒++⇒+ ...));.(;(;);.(;);.( xxxxxx  

-- by (r.2) and (s.3)  

The reduction of empty sequences can be made by the axiom (s.3). The recursion 
keeps going infinitely or finishes when the ε in the selection is chosen. Finally, in the 
cases where the activity in the while-loop contains only the symbol φ or σ, the 
expression may be reduced and the recursion is eliminated: 

φεφεµφεφεµ ++⇒+ .(;);.( xxx +⇒⇒ ...); x   -- by (r.2) and (s.4) 

σεσεµσεσεµ +⇒⇒++⇒+ ...);.(;);.( xxxx   -- by (r.2) and (s.5) 

5.3.8 Encapsulation 

The encapsulation of tasks is used to isolate an Activity from the rest of the expression 
giving it a scope and a name. It is built by using curly brackets “{ }” around the 
Activity. Consequently, {act} represents the encapsulation of the Activity act. But, the 
real importance of encapsulation is denoting the scope of a compound task to limit the 
effect of  σ and φ, which represent early exit.. A more detailed example could be: 

{ }{ }{ }5;4;32;1 aaaaa +  

Supposing a1, a2, …, a5 are simple tasks, in that case the expression also could be 
expressed as a set of compound tasks: 

let { }32 aaX +=  

let { }4;;1 aXaY =  

{ }5;aY  

Using encapsulation is a way of abstracting the representation of a complex task flow 
and treating it as a single task (i.e. a subtask, part of another larger task), in the same 
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way that a complex diagram can be divided into different sub-diagrams to facilitate 
comprehension.  

As mentioned above, when a succeed event occurs in an expression, this corresponds 
to an early exit from the scope of the enclosing task. The normal flow of control 
resumes at the task boundary. A different result is obtained when a fail event occurs in 
the expression. In this case, the fail event is promoted to the higher level, beyond the 
immediate task boundary.  All the usual axioms apply to activity that is encapsulated 
within a task.  Some additional axioms describe the specific effects of σ at the task 
boundary: 

(e.1) }{}{ εεσ ⇔⇔     -- vacuous subtask 

}{};{ aaActivitya ⇔•∈∀ σ  (e.2)  -- coincident exit 

(e.3) εσ +⇔+•∈∀ }{}{ aaActivitya  -- vacuous selection 

(e.4) { }φ φ⇔      -- promotion of fail 

(e.5) { ; } { };a Activity a aφ φ∀ ∈ • ⇔   -- promotion of fail in sequence 

(e.6) { } { }a Activity a aφ φ∀ ∈ • + ⇔ +  -- promotion of fail in selection 

The vacuous subtask axiom (e.1) denotes that succeed alone within curly 
brackets is equivalent to the empty activity because succeed has no influence outside 

 is next to the right bracket, it has no effect and may 
f a sequence (e.2). The axiom (e.3) promotes the 

he curly brackets. 

Additio rallel composition and repetition, since the 
transformations can be derived from the existing ones: 

of its scope.  Similarly, if succeed
be removed even forming part o
selection outside of the encapsulation area changing succeed for ε. Basically it 
establishes that a selection between an activity and succeed is equivalent to the choice 
of that activity within brackets and nothing (ε).If fail is alone within the curly 
brackets, it is promoted to the higher level by the axiom (e.4). The axiom (e.5) 
denotes the promotion of fail when this is next to the left bracket in a sequence. 
Finally, the axiom (e.6) promotes the selection and fail outside t

nal axioms are not required for pa

εσ ⇔•∈∀ }||{aActivitya   -- by (p.5) and (e.1) 

σµ εε ⇔+ )}; x    -- by (r.1), (s.5) and (e.1) .({ x

5.4 Summary 

This ch
the Dis sk algebra is based on simple and compound 
tasks structured using operators such as sequence, selection, and parallel composition. 
Rec s
present
express  complex, Task Flow diagrams. The definition 
of the denotational semantics for this algebra, giving the semantics in terms of traces, 

apter presented the abstract syntax representation for the task flow model in 
covery method. The abstract ta

ur ion and encapsulation are also considered. The axioms of the algebra were 
ed as well as a set of examples showing a combination of basic elements in the 
ions denoting simple, and more

is depicted in the next chapter. 
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Chapter 6:  
The Semantics of Tasks 
 

 

The previous chapter described task diagrams formally in terms of an abstract task 
algebra, modelling all the syntactic constructions that may occur in task diagrams.  In 

through  denotes all possible execution paths.  The 
trace semantics may be used to prove the soundness of the axioms in the task algebra.  

this chapter, constructions in the algebra are given a simple denotational semantics 
in terms of traces.  The meaning of a system of tasks is given as a set of traces, in 
which a single trace is a symbolic string denoting one possible execution path 

 the system and the set of traces

They may also be used to show when syntactically different systems of tasks have the 
same underlying behaviour.  Congruence properties are also demonstrated for the 
algebra.  

 

6.1 Introdu an ics 

 
by a process [134].  Simple trace theories for systems describe all the execution paths 
through race theories are more often used to describe the behaviour 
of conc  
the con m an extended 
alphabe  
refusals [134].  The wor
the mo e theori  [137, 138].  Trace theories often include a 
descrip  belled transit tate automaton 
whose transition labels are the same ymbol .  The es of a 
system stri s em ed as aths through the 
automa  The races  a sys under ood to lude all 

ction to Trace Sem t

Trace theories were originally developed as semantic models of executing processes.  
A trace is a symbol string, where each symbol represents an atomic action executed

 a system [135].  T
urrent systems in terms of all possible interleavings of the atomic actions of
current processes [136].  The symbol strings may be drawn fro
t of symbols that also includes distinguished identifiers representing halting or

k of Mazurkiewicz is generally acknowledged as the basis for 
re sophisticated trac  es
tion of the underlying la ion system (LTS), a finite s

 s s collected in the traces  trac
 are those symbol ng itt  all possible transition p
ton are explored.  t of tem are usually st  inc

partial paths through the automaton.  A subset of these, known as the complete traces 
of a system, contains those paths describing the complete execution of the system. 

Trace theories form the basis for many process calculi.  Hoare’s theory of 
Communicating Sequential Processes (CSP) uses a simple model, whose semantics is 
based on traces and interleaving [78, 79].  Processes are sequentially executing 
blocks, which may be composed serially or in parallel.  Parallel processes are 
modelled as a choice between all possible serial interleavings of their respective 
atomic actions in interleaving semantics. However, in this work we are presenting a 
non-interleaving semantics because we want just a subset of the traces that all 
possible interleavings would generate. This subset is the result of the behaviour 
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required for three particular elements in the traces: commit, succeed and fail symbols. 
As it will be seen below, these symbols do not behave as normal elements in the 
trac . 
the tw
Comm lso forms the basis for the 
mo s
Proces
basis of whether one process can synchronise with another for the exchange of 
informa
in t m
generat
and
pres c

When j
to syste e traces.  Where systems have looping or recursive behaviour, the 

the equivalence of 
nstructions can be 

ries. 

s 

 
three m able to prove the soundness of the axioms of 
the abs is, constructions in the task algebra that were 
deemed equivalent by assertion mu  be shown to produ e iden traces in the 
semant f tasks 
exhibit ystem 
describ action 
are esse itional 
propert

 used to give the meaning of the operators in 

es  The equivalence between two systems is judged in terms of the equivalence of 
o sets of traces derived from each system [134].  Milner’s theory of 
unicating Concurrent Systems (CCS) [73], which a

re ophisticated π calculus [75], assumes a much higher degree of concurrency.  
ses are concurrent at a fine-grained level and execute atomic actions on the 

tion.  Equivalence is judged not just in terms of the observable traces, but also 
er s of the structure of the underlying labelled transition systems, which 

ed the traces.  The stronger equivalences, known as simulation, bisimulation 
 congruence, are needed because of the way in which processes synchronise in the 
en e of nondeterministic choice. 

udging equivalence on the basis of traces, it is common to restrict judgements 
ms with finit

traces are potentially infinite.  It is sometimes possible to judge 
infinite trace systems using fixpoints, if the same fixed-point co
derived in both systems.  However, there are difficulties combining both the unrolling 
of recursion and the interleaving semantics of concurrency, since this yields an 
infinite and non-repeating pattern in the traces.  In CSP, there are restrictions on the 
combination of these operators [78].  In CCS [73] and π [75], recursion is converted 
into the infinite (concurrent) replication of a process.  The semantics are given using 
the same mechanism that interprets concurrency and synchronisation, which are 
primitive in Milner’s theo

6.2 Trace Semantics for Task

When considering what kind of theory to use for the semantics of tasks in the 
Discovery Method, it seems appropriate initially to use a trace model similar to that 
used in CSP, since the task algebra developed in chapter 5 is similar in character to 
CSP.  The main differences are in the meaning of atomicity and the special treatment 
given to the early exit from a task.  The chosen semantic model must be able to satisfy

ain concerns.  The first is to be 
tract task algebra.  To achieve th

st c tical 
ic model.  The second concern is to be able to prove when two systems o
 equivalent behaviour.  Here, a system of tasks is understood to mean a s
ed in a hierarchy of task abstractions, where the chosen levels of abstr
ntially arbitrary.  The third concern is to be able to prove strong compos

ies for the task algebra, such as congruence. 

A denotational semantics in terms of sets of traces is presented in three parts.  Firstly, 
the semantic domain of traces is described in section 6.3, including the alphabet of 
atomic symbols and trace constructions.  Secondly, a set of semantic functions is 
presented in section 6.4.  These functions are used to manipulate traces and sets of 
traces in the semantic domain.  The kinds of function include trace concatenation, 
trace interleaving, the concatenated product of trace sets and the distributed 
interleaving of trace sets.  A special function is also given to unpack the traces of an 
encapsulated task.  These functions are
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the syntactic domain, which were described in chapter 5.  Finally, the main trace 
function is presented as a set of mapping functions in section 6.5, one for each type of 

 in the syntactic domain.  These functions translate an algebraic structure 
in the syntactic domain, representing a system of tasks, into a set of traces in the 
semantic domain, representing all possible complete executions of these tasks. 

Small examples of each fu ct eir intended usage.  A fuller 
treatment of the soundness of the axioms of the algebra from chapter 4 is presented in 
the following chapter 7.  Likewise, proofs of the equivalence of systems of tasks are 
given.  Finally, congruence properties ar onstrated in chapter 7 and 
appendix B.  The c antics is 
capable of describ
system su

race Domain 

The chosen trace domain is the infinite set of all traces, constructed according to the 
rules des of all lengths from zero to infinity, 
consistin et.  The trace domain consists of all 

traces of all possible lengths.  This domain is partially ordered under all 
presenting all shorter execution paths) and also under all suffixes 

(representing all path completions).  Either of these properties ensures that the trace 
domain is an ideal [139]. 

6.3.1 The Trace Alphabet 

The trace alphabet inclu iers, representing the 
names of that a simple task is the smallest 
unit of syntactic analysis, a ctivity on the same scale 

 in UML.  The individual actions, which would correspond to the internal 
steps of a use case, are not analysable in this model).  To this alphabet are added three 
distingu nting special semantic elements. 

S

ymbols have the following meaning: 

• The distinguished symbo commit symbol, meaning commitment to a 
choice.  This symbol is inserted into a trace at a selection point, to indicate that 
a paths were discarded. 

istinguished symbol σ is the succeed symbol, meaning early return with 
success.  This symbol is inserted into traces where an activity pre-empts all 
others with immediate success. 

• The distinguished symbol φ is the fail symbol, meaning early return with 
failure.  This symbol is inserted into traces where an activity pre-empts all 
others with

The com mmitment 
to a choice is made at a different point in each trace, notwithstanding all the other 

construction

n ion are given, to illustrate th

e also dem
urrent chapter presents the semantics of tasks.  The sem

ing all possible executions of a system of tasks and whether the 
cceeds or fails as a whole.   

6.3 The T

cribed below.  Traces are strings 
g of symbols drawn from an alphab

constructed 
prefixes (re

des the (potentially infinite) set of identif
 all the simple tasks to be analysed.  (Recall 

nd represents a unit of business a
as a use case

ished symbols, represe

ymbol ::= Identifier ∪ {↓, σ, φ} 

The special s

l ↓ is the 

particular path was chosen and other 

• The d

 immediate failure. 

mit symbol is needed to distinguish pairs of traces in which the co
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elements of the two traces being pairwise equal.  This is useful to restrict the 
application of distributive laws to state contexts in which the choice condition can be 

nd prevents the migration of the choice point outside this context.  The 
succeed and bols both have the effect of short-circuiting the analysis of the 
activity in which they appear.  Whereas succeed returns from the current activity to 
the next higher level, fail returns from the current activity to the top level and halts the 
execution of the system of tasks.  These symbols interact in the rules for 

g traces and unpacking traces. Both symbols σ and φ are used also in the 
 algebra for the syntax domain and, as with the identifier’s names, are 

overloaded for the semantic domain. 

6.3.2 C

tructed from the empty trace and a cons operator, 
 infix dot, which adds a symbol to the head of a trace: 

Trace  ::=   <>  |  Symbol . Trace  

It is assu  cannot be defined in terms of other 
ay be represented in a deconstructed way using infix cons, or 

e prettily as a sequence of symbols in angle brackets: 

∀a, b : Symbol • 
  empty trace 
 the singleton trace a   
 a.b.<> = a.<b> = <a, b> e ab 

In the following treatment, both kinds of notation are used interchangeably.  Given 
tax, some example traces and their intuitive meanings are given below: 

∀a, b : Identifier • 
  <>    the empty trace  (1) 
 <σ>    exit to higher level  (2) 
 <φ and terminate  (3) 
   a, b in order  (4) 
 <a,  (5) 
 <a  (6) 

<a, ↓, b>   do a, then commit to b (7) 
<↓, a, b>   commit to a, b   (8) 

N es (2) and (3) above are pairwise distinct, likewise cases 
(5) and (6).  The t level, whereas φ exits from the 
whole system.  Cases (4) and (5) locally behave in an identical way, but are in fact 
globally oncatenation with another trace 
<a>, their difference would be observable.  

uished by the different position of the commit ↓.  In (7) the state context 
for the choice is not available until after a, but in (8) this context is available before a. 

It is important to say that the universe of possible traces is limited by the mapping 
functions n into traces by using the appropriate 

evaluated; a
 fail sym

concatenatin
abstract task

onstruction of Traces 

Traces in the trace domain are cons
written as an

med that cons is primitive and so
operations.  Traces m
displayed mor

<>     the 
a.<>  = <a>    

  the length 2 trac

the above syn

>    halt 
<a, b>     do

b, σ>   do a, b and return 
, b, φ>   do a, b and halt 

 
 

ote how the meanings of cas
 effect of σ is to exit from the curren

distinct.  If these traces were extended by c
Note how the meanings of cases (7) and 

(8) are disting

, translating the syntactic expressio
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semantic functions. However, in order to prove completeness we need to specify 
explicit constraints on particular cases of traces that are not allowed: 

• Contiguous commits in a trace.  The commit symbol ↓ is merged for all 
contiguous occurrences, therefore traces containing more that one ↓ such as 
(< e not valid. 

• The succeed symbol not occurring at the end of a trace.  The succeed symbol 
represents son traces of the form of 
(Trace.σ.Trace) are not valid.  

il symbol not occurring at the end of a trace.  Just like the succeed 
symbol, the fail symbol represents end with fail of a trace and therefore traces 
of the form of (Trace.φ.Trace) are also not valid. 

• One trac ned above, the commit symbol 
represents th ing to be a trace of 

rm of  (Trace.↓.Trace) for each option represented in the task algebra 

6.4 Semantic Functions over the Trace Domain 

In this section the s anipulating the traces for the 
semantic functions are not used arbitrarily 
and they are employed by the mapping functions. There are semantic functions for 

 of traces, concatenated product of trace sets, interleaving of traces, and 
distributed interleaving of trace sets. Additionally, semantic functions for unpacking 
trace sets are presented. 

6.4.1 C

tion # is defined to concatenate two traces.  The # function is the basis 
for many other semantic functions described in later subsections.  In general, this 
appends all of argument 2 onto the end of argument 1.  Special treatment is required 
to handle occurrences of ↓, σ and φ at the head of a trace.  It is assumed that traces are 
in canoni l fo , suc d φ are always found as the last elements in a trace.   

_ # _ : Trac

<
 trace = <σ>      (tc2) 
trace = <φ>      (tc3) 

<↓ t = ↓.rest      (tc4) 
<↓> # a.rest = ↓.a.rest ,   a ≠ ↓   (tc5) 
a. ≠ σ, a ≠ φ  (tc6) 

 and tc6 define the empty trace <> as a left and right identity under 
concatenation.  This is an expected property of concatenation.  Cases tc2 and tc3 
define σ a a left zero, eliminating any trace on the right.  This causes the 
semantic translation of any sequence to short-circuit as desired, resulting in early exit.  
Cases tc4 rrences of ↓, such that all contiguous 

treated as a single commit.  This property is needed when resolving 
er parallel composition. 

↓, ↓>, <↓, ↓, ↓>, <↓, ↓, ↓, ↓>…) ar

 end with success of a trace and for this rea

• The fa

e with commit for option.  As mentio
e commitment of a choice, therefore there is go

the fo
expression. 

emantic functions are defined m
 domain. As mentioned before, the semantic 

concatenation

oncatenation of Traces 

An infix func

ca rm h that σ an

e → Trace → Trace 

> # trace  =  trace      (tc1) 
<σ> #
<φ> # 

> # ↓.res

rest # trace = a.(rest # trace), a 

The cases tc1

nd φ as 

 and tc5 merge all contiguous occu
commits are 
distribution ov
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Examples using the trace concatenation function are shown as follows: 

Example 1: 

∀ Idenzyx :,, ><><• zyxtifier #,  

><><⇒ zyx   -- by tc6 .( )#

)#.(. ><<> zyx   -- by tc6 ⇒

   -- by tc1 <⇒ zyx .. >

zy⇒< >x ,    -- cons operator 

Example 2: 

Identifierx :

,

><<> x#  •∀

⇒< x >    -- by tc1 

E

: Identifierx

xample 3: 

<>>< #x  •∀

)#.( <><>⇒ x    -- by tc6 

<>⇒ .x    -- by tc1 

>⇒< x    -- cons operator 

Example 4: 

<><>#    

⇒<>     -- by tc1 

Example 5: 

><><•∀ yxIdentifieryx ,#:, φ   

>⇒< φ    -- by tc3 

Example 6: 

><><•∀ φ#: xIdentifierx  

)#.( ><<>⇒ φx   -- by tc6 

><⇒ φ.x    -- by tc1 

>⇒< φ,x    -- cons operator    
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Example 7: 

<>>< #φ   

⇒< >φ    -- by tc3 

Example 8: 

><<> φ#   

>⇒< φ    -- by tc1 

Example 9: 

><>< φφ #  

>⇒< φ     by tc

Example

xr #  

   -- by tc5 

    -- cons operator 

Example 11: 

 -- by tc6 

,x    -- cons operator 

Example 12: 

 

  

   -- cons operator 

E

   

-- 3 

 10: 

><<↓>•∀ Identifiex :

<⇒↓ x. >

⇒<↓ x, >

<↓>><•∀ #: xIdentifierx  

)#.( <↓><>⇒ x  

<↓>.x    -- by tc1 ⇒

⇒< ↓>

<><↓>#    

<>⇒↓ .  -- by tc5 

⇒<↓>

xample 13: 

<↓><>#
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⇒<↓>    -- by tc1 

 

 -- by tc5 

  

 

Example 14:

><<↓> φ#  

><⇒↓ φ.   

>⇒<↓ φ,  -- cons operator 

Example 15:

<↓>>< #φ  

>⇒< φ    -- by tc3 

Example 16: 

   -- by tc4 

   -- 

><↓<↓>•∀ xIdentifierx ,#:  

><⇒↓ x.

>⇒<↓ x, cons operator 

Example 17: 

><><•∀ yxIdentifieryx ,#:, σ   

>⇒< σ    -- by tc2 

Example 18: 

><><•∀ σ#: xIdentifierx  

)#.( ><<>⇒ σx   -- by tc6 

><⇒ σ.x    -- by tc1 

>⇒< σ,x    -- cons operator    

Example 19: 

<>>< #σ   

>⇒< σ    -- by tc2 

Example 20: 

<<> >σ#   
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>⇒< σ    -- by tc1 

le 21: 

><

Examp

>< σ  

>⇒< σ    -- by tc2 

σ #

Example 22: 

><<↓> σ#  

><⇒↓ σ.    -- by tc5 

>⇒<↓ σ,    -- cons operator 

Example 23: 

<↓>>< #σ  

>⇒< σ    -- by tc2 

4: Example 2

><>< φσ #   

>⇒< σ  -- by tc2 

e 25: 

  

Exampl

><>#< φ σ   

>⇒< φ    -- by tc3 

Concatenated Product of Trace Sets 

In e tics deal in sets of traces, representing multiple execution paths, 
rather than single rac rsion of concatenation is provided for sets of traces.  

s con nated product, written as the infix function ⊗, which appends every 
trace in argumen 2 end of every trace in argument 1, using the simple 

atenation function # defined in section 5.4.1 above to concatenate each distinct 
pair of traces. 

_ ⊗ _ : {Trace} → {Trace} → {Trace} 

seta ⊗ setb = {a # b  | a, b ∈ seta, b ∈ setb } (cp1) 

The defin n by comprehension on all pairs of traces a, b from the two 
argument sets.  If either  , the comprehension yields ∅, showing that 

 is a left and right zero.  The singleton set containing the empty trace {<>} is a left 
and right identity resu ing in e to the other argument. 

6.4.2 

 general, th  seman
 t es.  A ve

Thi  is the cate
t onto the 

conc

∈ Trace, a 

ition cp1 is give
 seta or setb is ∅

∅
, lt  no chang
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Ex ma ples showing the trace concatenation function for sets: 

mple 1: 

:,, >

Exa

},{}{ <><⊗><•∀ zyx   

#{ >

xIdentifier zy

#, <><><> x }<⇒ zyx  -- by cp1 

   -- by tc 

>

},,,{ ><><⇒ zxyx

Example 2: 

{}{:, },><⊗<>•∀ xIdentifieryx < y  

>

}#,#{ ><<>><<>⇒ yx   -- by cp1 

{ }, <> yx    -- by tc 

Example 3: 

:,

<⇒

}{}{ , <>⊗>> <<•∀ yxIdentifieryx  

<>>< }#,# <>> yx   -- by cp1 {<⇒

},{ ><><⇒ yx    -- by tc 

Example 4: 

<>  

   -- by cp1 

    -- by tc 

Example 5: 

{},{ ⊗<><> }

}#,#{ <><><><>⇒

}{<>⇒

},{}{:, ><><⊗><•∀ yxIdentifieryx φ  

}#,#{ ><><><><⇒ yx φφ  -- by cp1 

}{ ><⇒ φ     -- by tc  

Example 6: 

}{},{:, ><⊗><><•∀ φyxIdentyx  ifier

#{ }#, ><><><><⇒ φφ yx  -- by cp1 

><> },,, φφ yx    -- by tc {<⇒
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Example 7: 

:, ><><⊗∀ yxId tifiyx   

   -- by c

Example 8: 

<↓>⊗><><• yxifier   

 -- by cp1 

   -- by tc 

xample 9: 

},{}{<↓>•en er

}#,#{ ><<↓>><<↓>⇒ yx p1 

},,,{ ><↓><↓ yx    -- by tc ⇒

:,∀ Identyx }{},{

}#,#{ <↓>><<↓>><⇒ yx  

},,,{ ↓><↓><⇒ yx

E

:, },{}{ ><><⊗><• yxentifier∀ Idyx σ  

}#,#{ ><><><><⇒ yx σσ  -- by cp1 

}{ ><⇒ σ     -- by tc 

Example 10: 

:, }{},{ ><⊗><><•∀ σyxentifier  Idyx

><><> }#,#{ <> σσ yx  -- by cp1 <⇒

},,,{ ><><⇒ σσ yx   -- by tc 

6.4.3 In

The semantics of concurrency is given by interleaving the traces of the composed 
tasks.  However, this is not understood in ic 
actions ot atomic in this 
sense, but execute over an interval of time.  Concurrent tasks literally overlap in the 
semantics.  They are initiated at a single instant, but may terminate at different 
instants.  This justifies the interleaving treatment, on the grounds that all tasks assert 
state properties on completion, which may enable other tasks.  So, the moment of task 
termination is what governs further control flow decisions, and it is these moments 
that are i

An infix function ~ is defined gs of two traces, 
returning the set of all interleaved combinations.  This function is biased to resolve 

on between events and intervals in favour of the events.  So, empty 
traces and any artefactual activity, such as commit, succeed and fail, are instantaneous 
events, which always pre-empt simple tasks, which are intervals.  Competition among 

terleaving of Traces 

the usual way as the interleaving of atom
 (as in CSP [78]).  Even the smallest analysable tasks are n

nterleaved. 

to compute all possible interleavin

any competiti
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simple tasks is resolved by comp mpetition 
among events is resolved by a priority rule.   

_ ~ _ : Trace → Trace → {Trace} 

<> ~ trace = {trace}       (ti1) 
trace ~ <> = {trace}       ( i2) 
<σ> ~ trace = {<σ>}       (ti3) 
tr    (ti4) 
<φ> ~ trace = {<φ>},   trace ≠ <σ>    (ti5) 
trace ~ <φ> = {<φ>},   ti6) 
↓.rest ~ trace = {<↓>} ⊗ (rest ~ trace),     trace ≠ <σ>, trace ≠ <φ> (ti7) 
tr e ≠ <σ>, trace ≠ <φ> (ti8) 
a.as ~ b.bs = ({<a>} ⊗ (as ~ b.bs)) ∪ ({<b>} ⊗ (bs ~ a.as)), 

 a ≠ σ, a ≠ φ, a ≠ ↓, b ≠ σ, b ≠ φ, b ≠ ↓  (ti9) 

Cases ti1 and ti2 describe the instant synchronisation of an empty trace on the left and 
ght, yie ing a singleton trace set containing the other trace.  Cases ti3, ti4, ti5 and 
6 descr e pr -emption on the left and right, exiting the composition with instant 

ess or failure.  Cases ti4, ti5 assert that success always takes priority over failure.  
e four cases are confluent with cases ti1 and ti2.  The cases ti7 and ti8 deal with 

commit on the left and right, resolving in favour of the commit event, unless the other 
trace is a pre-emptive exit.  These cases are confluent with cases ti1 and ti2. All 
posible b  are used confluently are shown as follows: 
a) 

uting all possible termination orders.  Co

t

ace ~ <σ> = {<σ>}    

trace ≠ <σ>    (

ace ~ ↓.rest = {<↓>} ⊗ (rest ~ trace),     trac

  

ri ld
ti ib e
succ
Thes

asic cases where these rules
    <>~<>

⇒ {<>} -- by ti1 
or: 
<>~<>  

⇒ {<>
  

-- by ti2 
b

} 
)     < σ >~<>

⇒ {< σ >} -- by ti2 
r: o

    < σ >~<>
⇒ {< σ >} -- by ti3 

b)     <>~< σ >
{< σ >} -- b⇒ y ti1 

or: 
    <>~< σ >

⇒ {< σ >} -- by ti4 
)c  < φ >~<>     

φ >} -- by ti2 ⇒ {<
or: 
< φ >~<>    

⇒ {< φ >} -- by ti5 
d) <>~< φ >    

⇒ {< φ >} -- by ti1 
or: 
<>~< φ >    

⇒ {< φ >} -- by ti6 
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e)  
 -- by ti1 

 -- ti8 
-- ti1 or ti2 

<>~<↓>
 }{<↓>⇒
or: 

 

)~(}{ <><>⊗<↓>⇒
)(}{ <>⊗<↓>⇒  

# <>}  by cp1   -- ⇒ {<↓>
⇒ {<↓>}  -- by tc5 

f) <↓>~<> 
 {<↓>⇒  }  
or: 

<⊗<↓⇒  ti7 
-- ti1 or ti2 

-- by ti2 

)~<>>>  --(}{
)(}{ <>⊗<↓>⇒  

⇒ {<↓># <>}  -- by cp1 
 -- by

The gene  first element is not one of the events 
handled ossible interleavings.  The priority rule 
stablishes a ranking among events:  σ > φ ↓, which was chosen to avoid having to 
ompute further interleavings. 

Example

Example 1: 

<⇒ x -- by ti1 

Example 2: 

 -- 

  -- by ti1 or ti2 

Example 4: 

x~

 }{<↓>⇒   tc5 

ral case ti9 deals with traces whose
in earlier cases, and computes all p

e > 
c

s showing combination of basic elements are presented below: 

><<>•∀ xIdentifierx ~:  

{ }>   

><•∀ ~: xIdentifierx <>  

}{ ><⇒ x  by ti2 

Example 3: 

}{~ <><>⇒<>

><><•∀ Identifierx : φ  

>{<⇒ }φ   -- by ti5 

Example 5: 

><><•∀ : Identifierx φ~x   
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}{ ><⇒ φ   -- by ti6 

Example 6: 

><>< φφ ~   

 }{ ><⇒ φ   -- by ti5 or ti6 

Example 7: 

><><•∀ yxIdentifieryx ~:,   

))~(}({))~(}({ ><<>⊗><∪><<>⊗><⇒ xyyx  -- by ti9 

}){}({}){}({ ><⊗><∪><⊗><⇒ xyyx    -- by ti1 

},{},{ ><∪><⇒ xyyx      -- by cp 

},,,{ ><><⇒ xyyx       -- union  

Example 8: 

><><•∀ zyxIdentifierzyx ,~:,,   

))~(}({)),~(}{( ><><⊗><∪><<>⊗><⇒ xzyzyx  -- by ti9 

}(({}({)),~(}({ ><⊗><∪><<>⊗><⇒ zyzyx
  ))))~(}({))~( >

    
<<>⊗><∪><<>⊗ zxx   -- by ti9 

(({}({}),{}({ ><⊗><∪>{} <⊗> }))){}({})<⊗><∪><⊗><⇒ zxzzyx
         -- by ti1 

  -- by cp 

>

xy

})),{},({}({},,{ zxxzyzyx ∪⊗∪⇒  

}),,,{}({},, <><⊗><∪> zxxzyzyx   -- union {<⇒

},,,,,{},,{ ><><∪><⇒ zxyxzyzyx    -- by cp 

},, >,,,,,,{ <><><⇒ xzyzyx  union 

Example

><•∀ yxIdentifieryx ,~:,   

><><⊗ xy    -- by ti8 

yxxy  

      -- by ti9 

zxy     --

 9: 

<↓ >

)~(}{<↓>⇒

)))~(}({))~(}(({}{ ><<>⊗><∪><<>⊗><⊗<↓>⇒
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({}){}(({}{ <∪><⊗><⊗<↓> xy })){} ><⊗>⇒ yx  -- by ti1 

 -- by cp 

><><⊗ yxxy   -- union 

   -- by cp 

Example 10: 

    -- by ti7 

><<>⊗><∪><<>⊗><⊗> xyyx  

       -- by ti9 

(({}{ ><⊗><∪><⊗<↓⇒ xyy  -- by ti1 

⊗<↓>⇒ -- by cp 

><><⊗ xyyx    -- union 

><↓> xyyx     -- by cp 

Example 11: 

}),{},({}{ ><∪><⊗<↓>⇒ yxxy  

},,,{}{<↓>⇒

},,,,,{ ><↓><↓⇒ yxxy

><><↓•∀ yxIdentifieryx ~,:,   

)~(}{ ><><⊗<↓>⇒ yx

{<↓⇒ )))~(}({))~(}(({}

} ⊗><> x })){}({}){

}),},({ ><∪>< xyyx    }{

},,,{}{<↓>⇒

},,,,,{<↓⇒

<>~<↓>  

 }{<↓>⇒   -- by ti1 

<><>⊗>  -- ti8 

-- ti1 or ti2 

 -- by cp 

Example 12: 

Or: 

{<↓⇒ )~(}

)(}{ <>⊗<↓>⇒  

 }{<↓>⇒  

<↓>~<> 

 }{<↓>⇒   -- by ti2 

Or: 
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)~(}{ <><>⊗<↓>⇒  -- ti7 

<>⊗  -- ti1 or ti2 

>   -- by cp 

Example 13: 

 -- by ti1 

Example 14: 

 

)(}{<↓>⇒

 }{<↓⇒

><↓<>•∀ xIdentifierx ,~:  

},{ ><↓⇒ x  

<>><↓•∀ ~,: xIdentifierx  

},{ ><↓⇒ x   -- by ti2 

Example 15: 

><↓><•∀ xIdentifierx ,~: φ  

}{ ><⇒ φ   -- by ti5 

Examp

∀ : Idex

le 16: 

<><↓• φ~, xntifier   >

 }{ ><⇒ φ   -- by ti6 

Example 17: 

><↓><↓•∀ yxIdentifieryx ,~,:,   

),~(}{ ><↓><⊗<↓>⇒ yx    -- by ti7 

 ))~(}({}{ <><⊗<↓>⊗<↓>⇒ y >x   -- by ti8 

({ ><<><∪ y  

 

}))~(}(({}({}{ ⊗>><<>⊗><⊗<↓>⊗<↓>⇒ xxy ))))~(
       -- by ti9 

}))){}({}){}(({}({}{ ><⊗><∪><⊗><⊗<↓>⊗<↓>⇒ yxxy   

-- by ti1 

})),{},({}({}{ ><∪><⊗<↓>⊗<↓>⇒ yxxy  -- by cp 

}),,,{}({}{ ><><⊗<↓>⊗<↓>⇒ yxxy  -- union

90 



Chapter 6: The Semantics of Tasks  

},,,,,{}{<↓>⇒ ><↓><↓⊗ yxxy   -- by cp 

>yx    -- by cp 

Example 1

xr ~

},,,,,{ <↓><↓⇒ xy

8: 

∀ Identifiex : ><><• σ  

}{ ><⇒ σ   -- by ti3 

Example 19: 

><><•∀ σ~: xIdentifierx   

}{ ><⇒ σ   -- by ti4 

Example 20: 

><>< σσ ~   

}{ ><⇒ σ    -- by ti3 or ti4 

6.4.4 Distributed Interleaving of Trace Sets 

ing of all 
possible pairs of traces from each set.  This is the infix function // for distributed 
interlea on to the concatenated product in section 5.4.2, the 
difference is that this function’s result must be flattened by taking the distributed 

terleaving of trace sets by set comprehension.  
ces 

 traces.  The comprehension collects a 
set of sets.  The result is flattened using ∪.  If either seta or setb is ∅, the 
compre wing that ∅ is a left 
and right zero.  The singleton set containing the empty trace {<>} is a left and right 
identity umen

In general, the semantics deal in sets of traces rather than single traces.  A version of 
interleaving is provided for trace sets, describing this as the interleav

ving.  Similar in constructi

union of the resulting trace sets. 

_ // _ : {Trace} → {Trace} → {Trace} 

seta // setb =  ∪{ a ~ b | a, b ∈ Trace,  a ∈ seta, b ∈ setb } (di1) 

The case di1 defines the distributed in
For each distinct pair of traces a, b in the argument sets, it computes the set of tra
resulting from the simple interleaving of those

hension collects {∅} and distributed union yields ∅, sho

, resulting in no change to the other arg t. 

Examples with the trace interleaving function for sets: 

Example 1: 

},//{}{:,, ><><><•∀ zyxIdentifierzyx   

}~,~{ ><><><><⇒ zxyxU   -- by di1 
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}},,,{},,,,{{ ><><><><⇒ xzzxxyyxU  -- by ti 

},,,,,,,{ ><><><><⇒ xzzxxyyx  

Example 2: 

}//{},{:,∀ yx <>><><• yxIdentifier  

}~,~{ <>><<>><⇒ yxU    -- by di1 

}}{},{{ ><><⇒ yxU    -- by ti 

},{ ><><⇒ yx  

Example 3: 

},//{}{:, ><><<>•∀ yxIdentifieryx    

}~,~{ ><<>><<>⇒ yxU    -- by di1 

    -- by ti 

 

}}{},{{ ><><⇒ yxU

},{ ><><⇒ yx  

Example 4: 

}//{},{:, ><><><•∀ φyxIdentifieryx   

}~,~{ ><><><><⇒ φφ yxU   -- by di1 

 }}{},{{ ><><⇒ φφU    -- by ti 

}{ ><⇒ φ       

Example 5: 

},//{}{:, ><><><•∀ yxIdentifieryx φ   

}~,~{ ><><><><⇒ yx φφU  -- by di1 

 }}{},{{ ><><⇒ φφU   -- by ti 

<⇒ }{ >φ    

Example 6: 

∀ zyx

><><↓> zx    -- by di1 

  

},//{},{ ><><><↓• zyxIdentifier   :,,

~,{ <><↓⇒ yxU }~,,
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,,<↓ x }},,,,,{},,,,{{ ><↓><↓><↓>⇒ xzzxzyyU  -- by ti 

Examp

},,,,,,,,,,,{ ><↓><↓><↓><↓⇒ xzzxzyyx  

le 7: 

//{},{:, }>><•∀ >< < σyxIdentifieryx

~{ >

  

~, <><> }<><⇒ σσ yxU   -- by di1 

 <⇒ {{ }}{}, ><> σσU  by ti    --

}{ ><⇒ σ  

Example 8: 

},//{}{:, ><><><•∀ yxIdentifieryx σ   

}~,~{ ><><><><⇒ yx σσU  -- by di1 

 }}{},{{ ><><⇒ σσU   -- by ti 

}{ ><⇒ σ  

Example 9: 

}//{}{:, ><><•∀ φσIdentifieryx   

}~,~{ ><><><><⇒ φσφσU  -- by di1 

 }}{},{{ ><><⇒ σσU   -- by ti 

{ }><⇒ σ  

6.4.5 

In theories dealing with type abstracti rning information hiding and 
the dua revealing are sometimes called packing and unpacking 
rules, respectively [140].  The task semantics requires an unpacking rule to remove 
the abstraction boundary from around an encapsulated task, while preserving the 
intended boundary seman cs f the p  events σ and φ.  The main goal of the 
unpacking function is to ensure that the effects of σ are only felt up to the task 
boundary gated up to the top level.  An auxiliary 
function e a boundary to outside the boundary: 

lift <> = <>      (li1) 
lift <σ> = <>      (li2) 
lift a.as = a.(lift as), a ≠ σ    (li3) 

Unpacking of Trace Sets 

on, the rules gove
l notion of information 

ti o re-empting

, but the effect of φ should be propa
lift is defined to lift a trace from insid

lift : Trace → Trace 
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This has the effect of stripping σ from the ends of a trace, but allows all other traces 
to proceed unaffected.  In particular, a trace of the form:  <a, b, c, σ>  will be reduced 
to:  <a, b, c>  at igher o will be able to combine with other traces.  
However, a trace of the form:  <a, b, c, φ>  will propagate upwards unchanged, such 
that any attem  to co  trace with others will eliminate the other traces. 

The general unpacking function for a trace set, unpack, is defined as the set 
comprehension: 

unpack : {Trace} → {Trace} 

unpack seta = { lift a | a ∈ Trace,  a ∈ seta }   (up1) 

This basically lifts every trace in the argument set.  Later, unpack is used on the set of 
traces c bstraction boundary of this task 
is removed.  Its normal and pre-empting traces are lifted to the higher level.  Whereas 
normal traces and at pr ith success will generate normally 
terminating traces at th  leve es that pre-empt with failure will be 
transmitted unchanged to the higher level, such that failure will occur at this level 
also.  Eventually, the tra ining failures will rise to the top level, indicating all 
those execution paths at cau  the s sks to fail.  

Example

the h level and s

pt mbine this

omputed from a constructed task, before the a

traces th e-empt w
e higher l, all trac

ces conta
th se ystem of ta

 1: 

•∀ Identifierzyx :,,  unpack {<x, y>, <z>} 

⇒  {<x, y>, <z>}  -- by up1 

Examp

unpac x, φ>

Example 3: 

-- by up1 

ast examples can be seen how identifiers and φ are passed directly to the higher 
level, w g a set of traces σ is eliminated 
by the function 

6.5 Interpreting Task Algebra in the Trace Domain 

The last part of the simple semantics  described as a translation function, or 
mapping ssion in the algebra into a set of traces 
in the trace dom

“_‘ : Activity  →  {Trace} 

le 2: 

•∀ Identifierx :  k {< φ>, < } 

⇒  {<x, φ>, <φ>}  -- by up1 

•∀ Identifierx :  unpack {<x, σ>, <σ>} 

⇒  {<x>, <>}   

In the l
hile the example 3 shows that where unpackin

lift (li2). 

 of tasks is
function, that maps a syntactic expre

ain.  The meaning of a syntactic expression is denoted by: 
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where “ ‘ indicates application of the trace function to the syntactic expression, t
yield a set of traces, w

o 
hich is the denotation of the expression’s meaning.  This tracing 

function is defined piece-wise over every construction case in the syntactic domain.  
In the following, the tracing function for each case is given separately. 

6.5.1 

The basic elem al elements that can be represented in the traces. 
Each of these functions generates a singleton: 

“ε‘ = {<>}     (tb1) 

∀x : Simple ∪ {σ, φ} • “x‘ = {<x>}  (tb2) 

Here, the elements σ and φ are presumed to exist in both the syntax and semantic 
domains. le tasks exist in both the syntax and 
semantic domains. 

6.5.2 Tracing a Sequence of Activity 

uences defines the mapping function for a sequence by applying the 
concatenated product of trace sets. Tracing a sequence is solved by the concatenation 

artial traces of the sequence: 

s1) 

Where both “a “  trace functions mapping activities to sets of traces. 
These functions have to be resolved before calculating their product. Below, the 
possible combinations of tom c trace  for sequences are exemplified.  

Sequence educing each element to its equivalent 
identifier. Subsequently the trace concatenation semantic function is applied. 

x; y‘ 

  fi “x‘ ⊗ “y‘   -- by ts1 

Tracing Basic Elements 

ents are the minim

  Similarly, the identifiers for simp

Trace of seq

of the p

∀a, b : Activity • “a ; b‘ = “a‘ ⊗ “b‘  (t

‘ and b‘ are also

 a i s in traces

 of Simple Task elements is made r

•∈∀ Simpleyx, “

}{}{ ><⊗><⇒ yx   -- by tb2 

⇒ {< x ># < y >}  -- by cp1 

⇒ {x.(<># < y >)}  -- by tc6 

⇒ {x. < y >}   -- by tc1 

⇒ {x,y}   -- cons operator 

nce of a Simple Task with an empty trace results in just the Simple Task, with 
ε working as the identity element, it is either on the left or on the right of the Simple 
Task. Empty trace on the right: 

A seque
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•mple “x; ε‘ 

 fi “x‘ ⊗ “ε‘   -- by ts1 

∈∀ Six

⊗><⇒ }{ x “ε‘  -- by tb2  

}{}{ <>⊗><⇒ x   -- by tb1  

⇒ {< x ># <>}  -- by cp1 

{x.(<># <>)} ⇒  -- by tc6 

{x. <>}   -- by tc1 ⇒

⇒ {< x >} -- cons operator 

 fi “ε‘

  

Empty trace on the left: 

•∈∀ Simplex “ε; x‘ 

 fi “ε‘ ⊗ “x‘   -- by ts1 

 }{ ><⊗ x   -- by tb2  

}{}{ ><⊗<> x   -- by tb1 ⇒  

<⇒ {<># x >} -- by cp1 

nce of a Simple Task element with succeed results in the two elements 
concatenated if succeed

x; σ‘ 

  

}{ ><⇒ x    -- by tc1 

A seque
 is on the right side: 

•∈∀ Simplex “

 fi “x‘ ⊗ “σ‘   -- by ts1 

><⇒ ⊗}  “σ‘ { x  -- by tb2  

}{}{ ><⊗>< σx   -- by tb2  ⇒

⇒ {< x ># < σ >}  -- by cp1 

⇒ {x.(<># < σ >)}  -- by tc6 

⇒ {x. < σ >}   -- by tc1 

},{ >< σx    -- cons operator ⇒
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But, if succeed is on the left side, the mapping function should return the singleton σ: 

 fi

 fi “σ‘ ⊗ {< x >}  

•∈∀ Simplex “σ; x‘ 

 “σ‘ ⊗ “x‘   -- by ts1 

-- by tb2  

}><{}{ ⊗> x<⇒ σ   -- by tb2  

⇒ {< σ ># < x >}  -- by cp1 

}{ ><⇒ σ    -- by tc2 

In the sequence of the empty activity and succeed, ε also works as the identity 
element: 

“ε; σ‘ 

 fi

“σ‘  -- by tb1  

 “ε‘ ⊗ “σ‘   -- by ts1 

⊗<>⇒ }{  

{}{ }><⊗<>⇒ σ   -- by tb2 

⇒ {<># < σ >}  -- by cp1 

}{ ><⇒ σ    -- by tc1    

“σ;ε‘ 

 fi

And succeed on the left: 

 “σ‘ ⊗ “ε‘   -- by ts1 

⊗><⇒ }{ σ  “ε‘  -- by tb2  

}{}{ <>⊗><⇒ σ   -- by tb1  

⇒ {< σ ># <>}  -- by cp1 

}{ ><⇒ σ  by tc2 

 the empty trace: 

 fi “ε‘ ⊗ “ε‘

  -- 

A sequence of empty activities is equivalent to

“ε;ε‘ 

   -- by ts1 
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{ }{} <>⊗  <>⇒  -- by tb1 

    by cp

-- by tc1 

A sequence of succeeds ter applying the trace 
concatenation semantic function: 

“σ; σ‘ 

 ⇒ {<># <>} -- 1 

}{<>⇒    

results in the singleton σ af

 fi “σ‘ ⊗ “σ‘   -- by ts1 

}{}{ ><⊗><⇒ σσ   -- by tb2  

⇒ {< σ ># < σ >}  -- by cp1 

}{ ><⇒ σ    -- by tc2 

Fail has the same behaviour as succeed in a sequence. For instance, a sequence of a 
simple task and fail: 

∈ Simx •∀ ple “x; φ‘ 

 fi “x‘ ⊗ “φ‘   -- by ts1 

⊗><⇒ }{ x  “ -- by tb2  φ‘  

}{}{ ><⊗><⇒ φx   -- by tb2  

⇒ {< x ># < φ >}  -- by cp1 

⇒ {x.(<># < φ >)}  -- by tc6 

⇒ {x. < φ >}   -- by tc1 

},{ ><⇒ φx    -- cons operator 

Some significant examples are the ones when succeed and fail are together in the 

“σ; φ‘ 

 fi “σ‘ ⊗ “φ‘  

expression: 

 -- by ts1 

}><{}{ ⊗><⇒ φσ   -- by tb2  

⇒ {< σ ># < φ >}  -- by cp1 
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}{ ><⇒ σ    -- by tc2 

And the other way around: 

“φ; σ‘ 

 fi “φ‘ ⊗ “σ‘   -- by ts1 

}{}{ ><⊗><⇒ σφ   -- by tb2  

⇒ {< φ ># < σ >}  -- by cp1 

}{ ><⇒ φ    -- by tc3 

efines the mapping function for the choice between two set of 
 

∀
       (ta1)  
      ⊗ (“a‘ ∪ “b‘) (ta2) 

Tracing a ted product of the singleton containing 
the commit symbol h operand. There exists a special 
case considering the idem  
mapping function defines only the trace of one activity if a is equal to b. This allows 
the idempotent behaviour in the next expressions: 

“x‘   -- by ta1 

 

The condition for idempotence is defined using a syntactic equivalence where a 
selection is considered idempotent if two activities, such as a and b, are the same; as it 
was defined in the chapter 4. 

The idem ce is shown in the next example: 

“ε + ε‘ 

“ε‘   -- by ta1 

 -- by tb1 

With succeed the difference is that it is mapped to σ: 

6.5.3 Tracing a Selection of Activity 

Trace for selection d
traces: 

a, b : Activity • “a + b‘ = if (“a‘ = “b‘)   
then “a‘ 
else {<↓>}

 selection is defined as the concatena
with the union of the traces of eac

potent axiom (sel.3) defined in the last chapter. The

•∈∀ Simplex “x + x‘ 

⇒  

}{ >< x  -- by tb2 ⇒

potence of the empty sequen

⇒  

}{<>⇒  
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“σ+ σ‘ 

“σ‘   -- ⇒  by ta1 

}{ ><⇒ σ   -- by tb2 

Simple “x + y‘ 

 by ta2  

   -- by iii   

  -- union of traces 

The choice between two different simple tasks is presented in the next example: 

∈∀ yx, •

⊗<↓>}{  “x‘ ∪ “y‘    --⇒

}{}{}{ ><∪><⊗<↓>⇒ yx

},{}{ ><><⊗<↓>⇒ yx  

⇒ {<↓># < x >,<↓># < y >}   -- by cp1 

pty activity: 

mple “x + ε‘ 

><⊗<↓>⇒ x  y tb1 and tb2    

 -- union of traces 

},,,{     -- by tc5 

The choice between a simple task and an em

><↓><↓⇒ yx

∈∀ Six •

⊗<↓>}{  “x‘ ∪ “ε‘   -- by ta2 ⇒

}{}{}{ <>∪  -- b

},{}{ <>><⊗<↓>⇒ x  

⇒ {<↓># < x >,<↓># <>}  -- by cp1 

   -- by tc5 

In a similar way, the choice between a simple task and succeed results in a trace with 

x‘ ∪ “σ‘   -- by ta2 

},,{ <↓>><↓⇒ x

x and a trace with σ, both preceded by a commit: 

•∈∀ Simplex “x + σ‘ 

⊗<↓>⇒ }{  “

}{}{}{ ><∪><⊗<↓>⇒ σx  -- by tb2 

},{}{ ><><⊗<↓>⇒ σx   -- union of traces 

⇒ {<↓># < x >,<↓># < σ >}  -- by cp1 

},,,{ ><↓><↓⇒ σx    -- by tc5 
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The selection between a simple task and fail is solved in the same way: 

∈∀ Simpx •le “x + φ‘ 

⊗<↓>⇒ }{  “x‘ ∪ “φ‘   -- by ta2 

}{}{}{ ><∪><⊗<↓>⇒ φx   -- by tb2 

},{}{ ><><⊗<↓>⇒ φx   -- union of traces 

⇒ {<↓># < x >,<↓># < φ >}  -- by cp1 

},,,{ ><↓><↓⇒ φx    -- by tc5  

A selection between 
two tra

“σ+ φ‘ 

{  

<↓⇒ by tb  

<↓⇒

succeed and fail results, as can be expected, results in a set with 
ces with σ and φ, both preceded by ↓: 

⊗}  “σ‘ ∪ “φ‘   -- by ta2 <↓>⇒

{ }{}{} ><∪><⊗> φσ  -- 2

{ },{} ><><⊗> φσ   -- union of traces 

># < σ >,<↓># < φ >}  -- by cp1 ⇒ {<↓

{ },,, ><↓> φσ    -- by tc5 <↓⇒

for parallelism of a||b is defined as the interleaving of the set of 
traces o e operator // which uses the union distribution 
is appli

Below,
tasks in parallel composition:  

x || y‘ 

 “x‘ // “y‘   -- by tp1 

 -- by tb2 

6.5.4 Tracing a Parallel Composition of Activity 

Parallelism was defined before simply as the simultaneous execution of tasks. The 
precise meaning expressed here is that parallel composition is solved as the 
interleaving of all the possible terminations of the simple tasks within the expression: 

∀a, b : Activity • “a || b‘ = “a‘ // “b‘   (tp1) 

Specifically, traces 
f a with the set of traces of b. Th
ed. 

 an example showing the transformation of an expression with two simple 

•∈∀ Simpleyx, “

⇒  

}//{}{ ><><⇒ yx  
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x >~< y >}  -- by di1 ⇒ ∪{<

< x,y >,< y,x >}} -- by⇒ ∪{{  ti9 

A simple task ctivit y in the simple 
task: 

},,,{ ><><⇒ xyyx  

in parallel composition with an empty a y results onl

•∈∀ Simplex “x || ε‘  

 ⇒  “x‘ // “ε‘   -- by tp1 

}//{}{ <>><⇒ x   -- by tb2 and tb1 

⇒ ∪{< x >~<>}  -- by di1 

⇒ ∪{{< x >}}  -- by ti2 

}{ ><⇒ x  

A finis
case, the example depicts a simple task with succeed as the other operand: 

x || σ‘ 

 “x‘ // “σ‘   -- by tp1 

hed activity predominates over any expression in parallel composition. In this 

•∈∀ Simplex “

⇒  

}//{}{ ><><⇒ σx   -- by tb2  

⇒ ∪{< x >~< σ >}  -- by di1 

⇒ ∪{{< σ >}}  -- by ti4 

}{ ><⇒ σ  

The case of a pair of empty activities in parallel composition is shown below: 

“ε || ε‘ 

“ε‘ //  -- by tp1 ⇒  “ε‘  

}//{}{ <><>    -- by tb1 ⇒  

∪{<>~<>}   -- by di1 ⇒

∪{{<>}}   ⇒ -- by ti1 

}{<>⇒  
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When succ  σ  p

“σ|| σ‘ 

eed is in both sides of the operator, only one revails: 

 “σ‘ // “σ‘   -- by tp1 ⇒

}//{}{ ><><⇒ σσ   -- by tb2  

⇒ ∪{< σ >~< σ >}  -- by di1 

⇒ ∪{{< σ >}}  -- by ti3  

}{ ><⇒ σ  

The next example shows the empty activity in parallel composition with succeed: 

“ε || σ‘ 

 “ε‘ // “σ‘  -- by tp1 ⇒

}//{}{ ><<>⇒ σ  -- by tb1 and tb2 

∪{<>~< σ >} -- by d⇒ i1 

⇒ ∪{{< σ >}} -- by ti1 

}{ ><⇒ σ  

In the case l, suc fail:  

“σ || φ‘ 

σ

 of succeed in parallel composition with fai ceed will prevail over 

 “ ‘ // “φ‘   -- by tp1 ⇒

}//{}{ ><><⇒ φσ   -- by tb2  

⇒ ∪{< σ >~< φ >}  -- by di1 

⇒ ∪{{< σ >}}  -- by ti3 

}{ ><⇒ σ  

The final c e ressio  is in both 
sides of the parallel composition operator: 

“φ || φ‘ 

“φ‘ // “φ‘   -- by tp1 

ase presented in this section presents an xp n where fail

⇒  

}//{}{ ><><⇒ φφ   -- by tb2  
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∪{< φ >~< φ >}  -- by di1 ⇒

∪{{< φ >}}  -- by ti5 ⇒

}{ ><⇒ φ  

6.5.5 Tracing a Repetition of Activity 

The interp tation f tions 

these in other rules. 

Just as the syntactic m nds a repetition over some activity x in: 
µx.f(x), i  with infinite traces, binding a 
fixpoint over a set of traces t)  is that to determine the correct 
form of th   be applied recursively 
within the scope of the fixpoint; but the mapping function is defined to be applied to 
syntactic up lated to the 
property of completeness of the semantics proposed for our algebra, because a way is 
needed of pe where t is bound. 
Completeness is a property not considered fully within the scope of this work because 

from this 
research. 

Supposing that the “ ‘ function has an abstract inverse, “ ‘-1, such that: 

∀x : Activity • ∀y : Trace • “x‘ = y ⇔ “y‘   = x ∧ “ “y‘ ‘ = y 

rms of t by referring to x as “t‘-1, and later expect “x‘= 
 -1 ccordance with the identity law that a function applied to its inverse 

ty function. With this supposition, the form of the trace expression g(t) 
can be der

∀ ‘

 -1 t 

 

) 

<↓>} ⊗ (“ε ‘ ∪ t ))  -- by the identity law 

µt.(“a‘ ⊗ ({<↓>} ⊗ {<>}) ∪ ({<↓>} ⊗ t )) 

re or repetition is more difficult to express. While the construc
already explained produce finite sets of traces, the repetition involve computing 
infinite sets of traces. Traces are usually records of finite executions [135]. Even 
when it is possible to express formally infinite traces, in practice it is hard to combine 

odel of repetition bi
t is also desirable to express the repetition

t in: µt.g( . The problem
e expression g(t), the mapping function “ ‘ should

 expressions. We need to make this s position, which is re

 referring to the recursion variable x in a sco

it is complex to prove and will be specified as possible future work arising 

-1 -1 

After this, x can be denoted in te
“ “t‘ ‘ = t, in a
yield the identi

ived by construction: 

a : Activity • “ µx.(a ; ε + x)  

= µt.(“ a; ε + “t‘ ‘)    -- mapping the fixpoin

= µt.(“a‘ ⊗ “ε + “t‘-1‘)    -- by (ts1)

= µt.(“a‘ ⊗ {<↓>} ⊗ (“ε ‘ ∪ ““t‘-1‘ ))  -- by (ta2

= µt.(“a‘ ⊗ {

= µt.(“a‘ ⊗ {<↓>} ⊗ ({<>}∪ t ))  -- by (tb1) 

= 
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= µt.(“a‘ ⊗ ( {<↓>} ∪ ({<↓>} ⊗   -- t) ))  left-distributive over ∪ 

Intuitively a es, co f the traces of a 
concatenated with the choice to stop the repetition or the choice to repeat the whole 
cycle. Fo loop. 
For any given set of traces, an unrolling rule may be constructed for the semantic 
expression, to unwrap one repetition of th  cycle The oint expression 
would be recursively substituted for t. 

In the same way, the form on 
for the while-loop: 

∀ ε + a ; x) ‘ 

= µt.( {<↓>} ⊗ (“ε‘  ∪ “a; “t‘ ‘ ))  -- by (ta2) 

= µt.( {<↓>} ⊗ ({<>}  ∪ “a; “t‘ ‘ ))  -- by (tb1) 

= µt.( {<↓>} ⊗ ({<>}  ∪ (“a‘ ⊗ ““t‘ ‘) )) -- by (ts1) 

= µt.( {<↓>} ⊗ ({<>}  ∪ (“a‘ ⊗ t) ))  -- by the identity law 

= µt.( ({<↓>} ⊗ {<>}) ∪  

({<↓>} ⊗ (“a‘ ⊗ t)) )  -- left-distributive over ∪ 

= µt.( {<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)) )  -- by (cp1) 

e to finish 
the while-loop or the choice of the traces of a followed with the repetition of the 
whole cycle. By derivation, this is the formal representation of infinite traces for the 
while-loop. As for the until-loop, for any given set of traces an unrolling rule may be 

whole fixpoint expression would be recursively substituted for t. 

The forms of the trace expressions explained before can be used as the general cases 
for infini r al 
case, becaus pty activity is transformed in the empty trace: 

∀a

   then {<>}     (tr1

    else µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) (tr2) 

∀a : Activity • “µx.(ε + a ; x)‘ =  if (a = ε)  

   then {<>}     (tr3)  

, this means t is bound over a set of tr c nsisting o

rmally, this is the complete representation of infinite traces for the until-

e . whole fixp

of the trace expression g(t) can be derived by constructi

a : Activity • “ µx.(

 = µt.(“ ε + a; “t‘-1 ‘)    -- mapping the fixpoint 

-1 

-1 

-1 

Intuitively, this means t is bound over a set of traces, consisting of the choic

constructed for the semantic expression, to unwrap one repetition of the cycle. The 

te repetitions. In addition, when the activity is empty is conside ed a speci
e the em

 : Activity • “µx.(a ; ε + x) ‘ =  if (a = ε)  

)  
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  } ⊗ (“a‘ ⊗ t))) (tr4) 

The until-loop ial case when the 
repetition is empty, (tr2) manages the general case where the fixpoint µx is converted 
into a fixpoint µt in the semantics.  In the same w
functions (tr3) and (tr4), where the functi e 
empty ac  
semant
express
µt: 

µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t ))) 

 ∪ ({<↓>} ⊗ t )))  -- by tb2 

µt.(

  

, ↓>} ∪ ( {<a, ↓>} ⊗ t ))   -- by cp1 

le depicted the repetition of a simple task. Repetition of empty activity 
is solved as a special case: 

“µx.(ε;ε+x) ‘ 

 {<>}      -- by tr1 

The reason is because the expression as the one in the las am y 
axioms (r. be 
reduced by

“µx.(φ; ε+x) ‘ 

µt.( “φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tr2 

µt.( {<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tb2 

µt.( ( {<φ>} ⊗ {<↓>} )  

∪ ( {<φ>} ⊗ ({<↓>} ⊗ t )))    -- by distributive law  

µt.( {<φ>} ∪ ( {<φ>} ⊗ ({<↓>} ⊗ t )))   -- by cp1 

  else µt.({<↓>} ∪ ({<↓>

 is defined in (tr1) and (tr2).Whilst (tr1) treats the spec

ay, the while-loop is defined by 
on (tr3) specifies the special case for th

tivity and the function (tr4) converts the fixpoint µx into a fixpoint µt in the
ics. Consequently, an abstract syntax repetition is translated to its resultant 
ion in the semantic domain. For instance, the function (tr1) maps to fixpoint 

•∈∀ Simplea “µx.(a;ε+x) ‘ 

⇒   -- by tr2 

 µt.( {<a>} ⊗ ({<↓>}⇒

⇒   ( {<a>} ⊗ {<↓>} )  

∪ ( {<a>} ⊗ ({<↓>} ⊗ t )))    -- by distributive law

 µt.( {<a, ↓>} ∪ ( {<a>} ⊗ ({<↓>} ⊗ t )))  -- by cp1 ⇒

⇒  µt.( {<a, ↓>} ∪ ( ({<a>} ⊗ {<↓>}) ⊗ t ))  -- by associative law 

⇒  µt.( {<a

The last examp

⇒

t ex ple may be reduced b
1) and (s.3). In a similar situation, a fail alone within the repetition may 
 axioms (r.1) and (s.4), but can be interpreted in the semantics: 

⇒  

⇒  

⇒  

⇒  
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 µt.( {<φ>} ∪ ( ({<φ>} ⊗ {<↓>}) ⊗ t ))   -- by associative law ⇒

⇒  µt.( {<φ>} ∪ ( {<φ>} ⊗ t ))    -- by cp1 

⇒  U
=

><
1

}{
i

φ
∞

infinite union 

 {<φ>}     

An expre  the same derivations: 

“µx.(σ; ε+x) ‘ 

 ⊗ {<↓>} )  

∪ ( {<σ>} ⊗ ({<↓>} ⊗ t )))    -- by distributive law  

tiv

1i

 {<σ>}      -- set union 

Similar examples are depicted for the while-loop structure to exemplify the behaviour 
defined by (tr3 yntax hile-loop 
is translated to its resultant expression in the semantic domain: 

µx.(ε+a; x) ‘ 

µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by tr4 

µt.({<↓>} ∪ ({<↓>} ⊗ ( {<a>} ⊗ t))) 

µ ↓ ∪ ↓ ⊗ ⊗

Repetition of e

“µx.(ε+ε; x) ‘ 

      -- 

 -- set union ⇒

ssion with succeed instead of fail can follow

 µt.( “σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tr2 ⇒

 µt.( {<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tb2 ⇒

⇒  µt.( ( {<σ>}

 µt.( {<σ>} ∪ ( {<σ>} ⊗ ({<↓>} ⊗ t )))   -- by cp1 ⇒

 µt.( {<σ>} ∪ ( ({<σ>} ⊗ {<↓>}) ⊗ t ))   -- by associa e law ⇒

 µt.( {<σ>} ∪ ( {<σ>} ⊗ t ))    -- by cp1 ⇒

 U >< }{ σ       -- infinite union 
∞

=

⇒

⇒

) and (tr4). The next example shows how an abstract s  w

•∈∀ Simplea “

⇒  

⇒  -- by tb2 

⇒  t.({< >}  ( ({< >}  {<a>})  t)) -- by associative law 

⇒  µt.({<↓>} ∪ ( {<↓, a>} ⊗ t))  -- by cp1 

mpty activity in a while-loop is treated also as a special case: 
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⇒  {<>}     

A fail alon axioms (r.1) and (s.4). This can 
be interpreted in the semantics: 

“µx.(ε+ φ; x) ‘ 

µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ t)))  -- by tr4 

µ ↓ ∪ ↓ ⊗ φ ⊗

ssociative law 

↓>} ∪ ( {<↓, φ>} ⊗ t))   -- by cp1 

-- by tr3 

e within the repetition may be reduced by 

⇒  

⇒  t.({< >}  ({< >}  ({< >}  t)))  -- by tb2 

⇒  µt.({<↓>} ∪ ( ({<↓>} ⊗ {<φ>}) ⊗ t))  -- by a

⇒  µt.({<

⇒  U ><↓<↓>
∞

=

 

An expression with succeed instead of fail can follow the same derivations: 

“µx.(ε+ σ; x) ‘ 

 -- by tr4 

µt.( -- by tb2 

µt.({<↓>} ∪ ( ({<↓>} ⊗ {<σ>}) ⊗ t)) 

 -- by cp1 

1

{
i

 {<↓>, <↓, σ>} 

Additionally, just as the unrolling axioms in the abstract syntax level are necessary to 
ressions, there are rules for unrolling in the semantic level. Rules (tr5) 

and (tr6) define the unrolling for the until- and while-loops: 

µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- unrolling until-loop (tr5) 

⇔ “a‘ ⊗ ({<↓>} ⊗ (“ ‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) 

if (a ≠ ε)          

 ({< >}  (“a‘ -- unrolling 

},{ φ     -- infinite union 
1i

 {<↓>, <↓, φ>} ⇒

⇒  µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t))) 

{<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t)))  ⇒  

 -- by associative law ⇒  

 µt.({<↓>} ∪ ( {<↓, σ>} ⊗ t))  ⇒

⇒  U
∞

=

><↓<↓> }, σ      -- infinite union 

⇒

expand the exp

•∈∀ Activitya

ε

•∈∀ Activitya µt.({<↓>} ∪ ↓ ⊗  ⊗ t)))  while-loop (tr6) 
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⇔ ⊗ (“a‘ ⊗ t))) ))  

  

Examples unrolling until-loop expressions by app
these examples shows the unrolling of an until-loop with a simple element: 

µx.(a;ε+x) ‘ 

 >} 

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) -- by tr5 

 ({<↓>} ⊗ ({<>} ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) -- by tb1 

µt.( ({<a>} ⊗ {<↓>}) ∪ ({<a>} ⊗ ({<↓>} ⊗ t))) ))  

     -- by distributive law of ⊗ ∪ 

⊗ ↓ ⊗ ∪ ↓ ⊗

µ ⊗ ↓ ∪ ⊗ ↓ ⊗ t))) ))  

-- by distributive law of ⊗ over ∪ 

⊗ ↓ ∪ ↓ ⊗ µ ↓>} ∪ ({<a>} ⊗ ({<↓>} ⊗ t))) )) 

         -- by cp1 

 ({<a>} ⊗ {<↓>}) ∪  

⊗ ↓ ⊗ µ ↓ ∪ ⊗ ↓ ⊗

↓ ∪ ({<a, ↓ ⊗ µ ↓ ∪ ↓ ⊗

        -- by cp1 

 {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} 

if (a ≠ ε)    

lying the rule (tr5).  The first of 

•∈∀ Simplea “

⇒  µt.( “a‘ ⊗ ({<↓ ∪ ({<↓>} ⊗ t)))      -- by tr2 

⇒  “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘

⇒  “a‘ ⊗

 {<a>} ⊗ ({<↓>} ⊗ ({<>} ∪ µt.( {<a>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ))  ⇒

-- by tb2 

 {<a>} ⊗ ({<↓>} ⊗ ({<>} ∪  ⇒

 over 

 {<a>}  (({< >}  {<>})   ({< >}   ⇒

t.( ({<a>}  {< >})  ({<a>}  ({< >} 

 {<a>}  ({< >}   ({< >}  t.( {<a, ⇒

⇒

({<a>}   ({< >}  t.( {<a, >}  ({<a>}  ({< >}  t))) )) 

-- by distributive law of ⊗ over ∪ 

⇒  ({<a>} ⊗ {<↓>}) ∪  

({<a>} ⊗ {<↓>} ⊗ µt.( {<a, ↓>} ∪ ({<a>} ⊗ {<↓>} ⊗ t)) ) 

       -- by associativity of ⊗ 

 {<a, >} >}  t.( {<a, >}  ({<a, >}  t))) ) ⇒
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Unrolling of fail: 

“µx.(φ; ε+x) ‘ 

 µt.( “φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))      -- by tr2 

{<↓>} ⊗ (“ε‘ ∪ µt.( “φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) -- by tr5 

“φ‘ ⊗ ({<↓>} ⊗ ({<>} ∪ µt.( “φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) -- by tb1 

 {<φ>} ↓>} ⊗  µt.( {<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ))  

-- by tb2 

 {<φ>} ⊗ ({ ↓>} ⊗   

>} ⊗ {<↓>}) ∪ ({<φ>} ⊗ ({<↓>} ⊗ t))) ))  

     -- by distributive law of ⊗ over ∪ 

 {< } ⊗ (   ({<↓>} ⊗  

-- by distributive law of ⊗ over ∪ 

 {<φ>} ↓>} ∪  ⊗ µt.( {<φ>} ∪ ({<φ>} ⊗ ({<↓>} ⊗ t))) )) 

         -- by cp1 

 ({<φ>}  {<↓>}) ⊗ ({<↓>} ⊗  

t.( {< φ>} ⊗ ({<↓>} ⊗ t))) ))   

 ({<φ>} ⊗ {<↓>}) ∪ ({<φ>} ⊗ {<↓>} ⊗  

µt.( {<φ>} ∪ ({<φ>} ⊗ ({<↓>} ⊗ t))) ) -- by associativity of ⊗ 

 {<φ>} φ>}   -- by cp1 

 {<     -- by set union 

Unrolling of succeed: 

“µx.(σ; ε

“σ‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) -- by tr5 

⇒  

⇒  “φ‘ ⊗ (

 ⇒

⊗ ({<  ({<>} ∪⇒

 <  ({<>} ∪⇒

µt.( ({<φ

φ> ({<↓>} ⊗ {<>}) ∪⇒

µt.( ({<φ>} ⊗ {<↓>}) ∪ ({<φ>} ⊗ ({<↓>} ⊗ t))) ))  

⊗ ({<   ({<↓>}⇒

⊗ ∪ ({<φ>} ⇒

µ φ>} ∪ ({<

-- by distributive law of ⊗ over ∪ 

⇒

∪ {<    ⇒

φ>}   ⇒

+x) ‘ 

⇒  µt.( “σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))      -- by tr2 

⇒  
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⇒  “σ‘  ⊗ ({<>} ∪ µt.( “σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) -- by tb1 

 ({<↓>} ∪ ({<↓>} ⊗ t))) ))  

-- by tb2 

} ⊗ ( {<>} ∪  

µt.( ({<σ>} ⊗ {<↓>})  ({<σ >} ⊗ t))) ))  

  -- by distributive law of ⊗ over ∪ 

 {<σ>} ⊗ (({<↓>}  {<>}) ∪  ({

 ⊗ ({<↓>} ⊗ t))) ))  

ributive law of ⊗ over ∪ 

 ∪ ({<σ>} ⊗ ({<↓>} ⊗ t))) )) 

         -- by cp1 

-- by distributive law of ⊗ over ∪ 

 ({<σ>} ⊗ {<↓>}) ∪ ({<σ>} ⊗ {<↓>} ⊗  

µt.( {<σ>} ∪ ({<σ>} ⊗ ({<↓>} ⊗ t))) ) -- by associativity of ⊗ 

 {<σ>} ∪ {<σ>}      -- by cp1 

 {<σ>}       -- by set union 

Finally, the exam xpressions by applying the rule (tr6) are 
presented below.  Unrolling an exp e ion w

a

µt.({<↓>}  -- by tr4 

 {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) )) -- by tr6 

↓>} ⊗ (“a‘ ⊗ t))) )) -- by tb1 

↓>} ∪ ({<↓>} ⊗ ({<a>} ⊗ t))) ))  

-- by tb2 

 ⊗ ({<↓>}

 {<σ>} ⊗ ({<↓>} ⊗ ({<>} ∪ µt.( {<σ>} ⊗⇒

 {<σ> {<↓>} ⊗ (⇒

 ∪ >} ⊗ ({<↓

   

⊗ <↓>} ⊗  ⇒

µt.( ({<σ>} ⊗ {<↓>}) ∪ ({<σ>}

-- by dist

 {<σ>} ⊗ ({<↓>} ∪  ({<↓>} ⊗ µt.( {<σ>}⇒

⇒  ({<σ>} ⊗ {<↓>}) ∪ ({<σ>} ⊗ ({<↓>} ⊗  

µt.( {<σ>} ∪ ({<σ>} ⊗ ({<↓>} ⊗ t))) ))   

⇒

⇒

⇒

ples unrolling while-loop e
r ss ith a simple element: 

•ple “µx.(ε+a; x) ‘ ∈∀ Sim

⇒  ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))   

⇒

 {<↓>} ⊗ ({<>} ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<⇒

⇒  {<↓>} ⊗ ({<>} ∪ ({<a>} ⊗ µt.({<
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 ({<↓>} ⊗ {<>}) ∪ ({<↓>}⊗ ({<a>} ⊗  ⇒

µt.({<↓>} ∪ ⊗ t))

-- by distributive law of ⊗ over ∪ 

 ({<↓>} ⊗ {<>}) ∪ ({<↓>}⊗ {<a>} ⊗  

 ∪ ({<↓>} ⊗ {<a>} ⊗ t)) ) -- by associativity of ⊗ 

 {<↓>} ∪ ({<↓, a>} ⊗ µ  by cp1 

Unrolling

“µx.(ε+φ; x) ‘ 

   -- by tr4 

 {<↓>} ⊗ (“ε‘ ∪ (“φ‘ ⊗ µ  )) -- by tr6 

↓>} ⊗ (“φ‘ ⊗ t))) )) -- by tb1 

 {<↓>} ⊗ ({< ))) ))  

-- by tb2 

<↓>} ⊗ {<>}) ∪ ({<↓>} ⊗ ({<φ>} ⊗  

  

 by distributive law of ⊗ over ∪ 

 ({<↓>} ⊗ {<>}) ∪ ({<↓>} ⊗ {<

 ∪ ({<↓>} ⊗ {<φ>} ⊗ t)) ) -- by associative law 

 {<↓>} ∪ ({<↓, φ>}  µt.({<↓>} φ>} ⊗ t)) )  -- by cp1 

Unrolling  in the while-loop:  

“µx.(ε+σ; x) ‘ 

  -- by tr4 

 ({<↓>} ⊗ ({<a>} ) )) 

⇒

µt.({<↓>}

t.({<↓>} ∪ ({<↓, a>} ⊗ t)) ) --⇒

 of fail in the while-loop: 

 µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ t))) ⇒

t.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ t)))⇒

 {<↓>} ⊗ ({<>} ∪ (“φ‘ ⊗ µt.({<↓>} ∪ ({<⇒

>} ∪ ({<φ>} ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t⇒

⇒  ({

µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t))) ))  

--

φ>} ⊗  ⇒

µt.({<↓>}

⊗ ∪ ({<↓, ⇒

 of succeed

 µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t)))  ⇒

⇒  {<↓>} ⊗ (“ε‘ ∪ (“σ‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t))) )) -- by tr6 

⇒  {<↓>} ⊗ ({<>} ∪ (“σ‘

 ))  

 ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t))) )) -- by tb1 

⇒  {<↓>} ⊗ ({<>} ∪ ({<σ>} ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t)))
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-- by tb2 

 ({<↓>} ∪ ↓> ⊗  

t.({<↓ >} ⊗ ({<σ>} ⊗ t))) ))    

by distributive law of ⊗ over ∪ 

 ({< >} ⊗ {<↓>} ⊗ {<σ>} ⊗  

µt. -- by associative law 

>} ⊗ t)) )  -- by cp1 

 corresponding examples 
without the unrolling). The general proof of soundness will be provided in Chapter 7.  

6.5.6 Tracing the Unpacking of Activity 

Encapsul ary, allowing to establish a limit 
for the effect of ed in the task boundary 
syntax, to facilitat

∀ vity • pack(“a‘)   (tu1) 

Unpacking an activity eliminates the task boundary promoting the activity to the 
higher level. σ oundary and is eliminated 
for the higher level. On the other hand, φ remains in the higher level propagating the 
failure. 

The encapsu  in the next examples.  Encapsulation 
of a simp

{x}T‘ 

⇒ unpack

 ⊗ {<>})  ({< } ⊗ ({<σ>} ⇒

µ >} ∪ ({<↓

-- 

↓ {<>}) ∪ (⇒

({<↓>} ∪ ({<↓>} ⊗ {<σ>} ⊗ t)) ) 

 {<↓>} ∪ ({<↓,σ>} ⊗ µt.({<↓>} ∪ ({<↓, σ⇒

It is important to remember that each unrolled expression is semantically equivalent to 
the expression in the first examples of this section (i.e., the

ation provides a scope within the task bound
Exit.  A subscript T is allowed to be add
e the identification of the compound tasks: 

a : Acti  “{a}T‘ = un

  is understood as early success within the b

lation of basic elements is depicted
le task: 

•∈∀ Simplex “

unpack (“x‘) -- by tu1 ⇒

})>< x  -- by tb2 ({

⇒ {lift(x)}   -- by up1 

⇒ {x.(lift <>)}  -- by li3 

⇒ {x. <>}  -- by li1 

The encapsulation

“{ε}T‘ 

}{ >  -- cons operator <⇒ x  

 of the empty activity results in the empty activity: 
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unpack⇒ (“ε‘) -- by tu1 

y tb1 

 

The use of succeed an psulation in the abstract 
syntax representation.  ed in an empty 
activity: 

“{σ}T‘ 

 -- by tu1 

})  -- b({<>⇒ unpack

⇒ {lift <>} -- by up1 

}{<>   -- by  li1 ⇒

d fail is the main reason of the enca
Succeed in an encapsulation is transform

unpack⇒ (“σ‘) 

})({ ><⇒ σunpack   -- by tb2 

{lift < σ >}   -- by up1 ⇒

}{<>    -- ⇒ by li2 

More interesting results can be seen using bination with a binary 
operator such as sequential com σ the right operand: 

{x; σ}T‘ 

succeed in com
position, being 

•∈∀ Simplex “

unpack (“x; σ⇒ ‘  by tu1 

“x‘ ⊗ “σ‘)  

({unpack ‘)  -- by tb2  

)   --

unpack⇒ (  -- by ts1 

⊗>}x  “σ<⇒

}){}({ ><⊗><⇒ σxunpack  -- by tb2  

unpack({< x ># < σ >})  -- by cp1 ⇒

}),({ ><⇒ σxunpack   -- by tc6 

⇒ {lift < x,σ >}   -- by up1 

   -- by li3 ⇒ {x.(lift < σ >)}

{x. <>}    -- by li2 ⇒

}{ >< x     -- cons op⇒ erator 
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Placing succeed over oduces first the elimination of the simple task in the 
right and, subsequently, the transformation of σ into the empty activity, when the 
lower level is eliminated: 

{σ, x}T‘ 

“σ

- by ts1 

“ ‘  {< x >})  -- by tb2  

the left pr

•∈∀ Simplex “

unpack⇒ ( ; x‘)   -- by tu1 

unpack (“σ‘ ⊗ “x‘)   -⇒

unpack⇒ ( σ ⊗

}){}({ ><⊗><⇒ xunpack σ  -- by tb2  

σ ># < x >})  -- by cp1 ⇒ unpack({<

})({ ><⇒ σunpack    -- by tc2 

⇒ {lift < σ >}    -- by up1 

 

}{<>⇒     -- by li2 

For selection being succeed in the right side: 

{x + σ}T‘ 

 unpack(“x + σ‘)    -- by tu1 

“x‘ U “σ‘)  -- by ta2 

-- by tb2 

 -- union of traces 

•∈∀ Simplex “

⇒

⊗<↓>⇒ }({unpack  

}){}{}({ ><∪><⊗<↓>⇒ σxunpack  

}),{}({ ><><⊗<↓>⇒ σxunpack  

⇒ unpack({<↓># < x >,<↓># < σ >})  -- by cp1 

   -- by tc5 ⇒ unpack({<↓, x >,<↓,σ >})

   -- by up1 ⇒ {lift <↓, x >, lift <↓σ >}

⇒ {↓ .(lift < x >),↓.(lift < σ >)}  -- by li3 

   -- by li2 ⇒ {↓ .(lift < x >),↓.(lift <>)}

   -- by li3 ⇒ {↓.x.(lift <>),↓.(lift <>)}

⇒ {↓.x. <>,↓ . <>}    -- by li1 
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⇒ {<↓, x >,<↓>}    -- cons operator 

cceed: 

ck(“x || σ‘)   -- by tu1 

“x‘ // “σ‘)   -- by tp1 

For parallel composition with su

•∈∀ Simplex “{x || σ}T‘ 

⇒ unpa

 unpack⇒ (

})//{}({ ><><⇒ σxunpack   -- by tb2 

⇒ unpack(∪{< x >~< σ >}) -- by di1 

⇒ unpack(∪{{< σ >}})  -- by ti4 

})({ ><⇒ σunpack   

⇒ {lift <>}    -- by up1 

    -- by li1 

Both selection and parallel composition are defined in the abstract syntax as 

“{φ} ‘ 

φ )  -- by tu1 

}{<>⇒

commutative, therefore inverting the order of the operands for the expressions in the 
last two examples will generate the same set of traces for each expression. Whilst σ is 
eliminated by the application of the unpacking function, φ is promoted to the higher 
level, propagating the fail and eliminating the traces that are combined with it: 

T

unpack⇒ (“ ‘

})({ ><⇒ φunpack   -- by tb2 

⇒ {lift < φ >}   -- by up1 

⇒ {φ.(lift <>)}   -- by li3 

⇒ {φ. <>}   -- by li1 

}{ ><⇒ φ    -- cons operator 

 in combination with a binary operator such as 
 right: 

 by tu1 

The next example depicts the use of fail
sequential composition, being fail the operand on the

•∈∀ Simplex “{x; φ}T‘ 

unpack⇒ (“x; φ‘)   --
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unpack⇒ (“ ⊗   --x‘  “φ‘)  by ts1 

-- by tb2  ⊗><⇒ }({ xunpack  “φ‘)  

}){}({ ><⊗><⇒ φxunpack  -- by tb2  

⇒ unpack({< x ># < φ >})  -- by cp1 

}),({ ><⇒ φxunpack   -- by tc6 

⇒ {lift < x,φ >}   -- by up1 

⇒ {x.(lift < φ >)}   -- by li3 

⇒ {x.φ.(lift <>)}    -- by li3 

⇒ {x.φ. <>}    -- by li1 

},{ ><⇒ φx     -- cons operator 

Placing fail over the left produces the elimination of the simple task in the right: 

{φ; x

by tu

by ts

•∈∀ Simplex “ }T‘ 

unpack⇒ (“φ; x‘)   -- 1 

unpack⇒ (“φ‘ ⊗ “x‘)   -- 1 

unpack⇒ (“φ‘ ⊗ {< x >})  -- by tb2  

}){}({ ><⊗><⇒ xunpack φ  -- by tb2  

⇒ unpack({< φ ># < x >})  -- by cp1 

})({ ><⇒ φunpack    -- by tc3 

{lift < φ >}    -- by up1 ⇒

⇒ {φ.(lift <>)}    -- by li3 

⇒ {φ. <>}    -- by li1 

}{ ><⇒ φ     -- cons operator 

For sel

x

 unpack(“x +

ection with fail: 

•mple “{x + φ}∈∀ Si T‘ 

 φ‘)    -- by tu1 ⇒
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⊗<↓>⇒ }({unpack  “x‘ U “φ‘)  -- by ta2 

}){}{}({ ><∪><⊗<↓>⇒ φxunpack  -- by tb2 

({<↓⇒ unpack }),{} ><><⊗> φx   -- union of traces 

⇒ unpack({<↓># < x >,<↓># < φ >})  -- by cp1 

)   -- by tc5 ⇒ unpack({<↓, x >,<↓,φ >}

⇒ {lift <↓, x >, lift <↓,φ >}   -- by up1 

⇒ {↓ .(lift < x >),↓.(lift < φ >)}  -- by li3 

⇒ {↓.x.(lift <>),↓.φ.(lift <>)}  -- by li3 

⇒ {↓.x. <>,↓ .φ. <>}    -- by li1 

⇒ {<↓, x >,<↓,φ >}    -- cons operator 

For parallel composition with fail:  

•∈∀ Simplex “{x || φ}T‘ 

unpack(“x || φ‘)   -- by tu1 

 “x‘ // “φ‘)   -- by tp1 

⇒

unpack⇒ (

})//{}({ ><><⇒ φxunpack   -- by tb2 

⇒ unpack(∪{< x >~< φ >})  -- by di1 

⇒ unpack(∪{{< φ >}})  -- by ti6 

⇒ unpack({< φ >}) 

⇒ {lift < φ >}    -- by up1 

⇒ {φ.(lift <>)}    -- by li3 

⇒ {φ. <>}    -- by li1 

}{ ><⇒ φ     -- cons operator  

6.6 S

bra 
presented in the previous chapter.  The semantics were presented in terms of trace sets 

prese tem.  The trace semantics 
ombinations of the basic 

ummary 

This chapter described the simple denotational semantics for the abstract task alge

re nting all possible complete execution paths for a sys
for the algebra was explained using examples showing c
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elements.  The soundness of the axioms from chapter 4 and congruence properties are 
presented in the next chapter.  
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Chapte
Sou
Tasks 
 

emantics in terms of traces of the 

r 7:  
ndness for the Semantics of 

 

The previous chapter described the denotational s
constructions in the abstract task algebra.  In this chapter, the t
used to prove the soundness of the axioms for the task algebra

race semantics are 
 illustrated in the 

chapter 4. Some examples of congruence properties are demonstrated for the algebra.  
A full listing of congruence properties is defined in Appendix B. 

 

 algebra to prove that the axioms are really trace 
equivalent; i.e. that the axioms are true for all the elements of the algebra.  The next 

In this section, the soundness of the abstract task algebra is proved.  The soundness of 
an algebra means  constructions which are equivalent, 
according to the axioms of the algebra, are also equivalent in the semantics.  In other 

interpretations.  Informally it can be said that it is impossible to derive contradictory 
s 

using the semantic definitions and a set of basic properties for the semantic functions 
s ollow  

• A.2 Distribution of ⊗ over union     

• A.3 Identity for ⊗      

• A.4 Associativity of  //     

• A.5 Commutativity of // 

• A.6 D

7.1 Introduction  

Soundness is a basic requisite in an

section demonstrates the soundness of the task algebra.  Each of the axioms of the 
task algebra is proved to hold, based on the given trace semantics, and on the 
fundamental properties of the semantic functions.  

7.2 Soundness  

 to prove that syntactic

words, every theorem that is provable in the axioms is also provable in all semantic 

propositions [141].  The soundness of the task algebra is proved for all their axiom

A.1 to A.8.  The set of basic properties are a  f s:

• A.1 Associativity of ⊗     

   

istribution of // over union   
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• A.7 Identity for //      

• A.8 Distribution of unpack over union 

These properties are assumed to hold here, and are derived in Appendix A. In 
ases 
 and 

identifier.  The base case of commit needed to be proved with a more profound 
analysis.  It was ne sible cases for trace2: ↓.rest and 
a.rest.  The ↓.rest case for trace2 was proved again by mathematical induction over 
the len
follows directly from

7.2.1 Sequenti

The ta osition: 
associative sequence (s.1), right distributivity of sequence over selection ty 
sequence (s.3), early end with fail (s.4), and early end with succeed (s.5).  In this 
section, und by deriving the semantics of each 
equival

7.2.1.1 Soun

property A.1, lemma 1 was proved by mathematical induction defining as base c
arbitrary traces of length 0 and 1. There are 5 base cases: <>, <φ>, <σ>, <↓>

cessary to analyse the two pos

gth of rest with base case of length 0 and 1. In the case of a.rest the proof 
 the properties. 

al composition 

sk algebra defines for the following axioms for sequential comp
(s.2), emp

 each of these axioms is proved so
ence expression in the axioms.  

dness for the associative sequence axiom 

•∈∀ Activitycba ,, “a; (b; c)‘ = “(a; b); c‘  

fi “a‘ ⊗ “(b; c)‘ = “(a; b)‘ ⊗ “c‘  -- by ts1 

fi “a‘ ⊗ (“b‘ ⊗ “c‘) = (“a‘ ⊗ “b‘) ⊗ “c‘  -- by ts1 

fi “a‘ ⊗ (“b‘ ⊗ “c‘) = “a‘ ⊗ (“b‘ ⊗ “c‘)  -- by A.1 

appin
concate

7.2.1.2

As can be seen the soundness for the associative sequence is proved by applying the 
m g function for tracing a sequence of Activity, followed by the associativity of 

nated product (property A.1).  

 Soundness for the right distributivity of sequence over 
selection axiom  

•∈∀ Activitycba ,, “(a + b); c‘ = “(a; c) + (b; c)‘  

fi “a + b‘ ⊗ “c‘ = “(a; c) + (b; c)‘      -- by ts1 

fi {<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘ = {<↓>} ⊗ (“a; c ‘ ∪ “b; c‘)  -- by ta2 

fi {<↓> ‘) ⊗ “c‘ = {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘)) -- by ts1 

 by A.2 

} ⊗ (“a‘ ∪ “b

fi {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))  

= {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))   --
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The so  a 
sequence of Activity in combination with the application of the general mapping 

s rmation by distribution 
of concatenated product over union is applied to the left expression to obtain the 

fi “a‘ ⊗  ⊗ “a‘ = “a‘    -- by tb1 

 

nction for 
ity ent, 

and th the 
concatenated product. 

 

φ‘     -- by ts1 

Exit with s proved deriving the left expression by mapping the sequence and 
applying the di ion of <φ> and {t1, t2, …, tn}.  
The right-side e for tracing basic elements. 

7.2.1.5 ess for the exit with success axiom 

Aa

undness for this axiom is proved applying the mapping function for tracing

function for tracing a selection of Activity.  Finally, the tran fo

equivalent semantics. 

7.2.1.3 Soundness for the empty sequence axiom 

•∈∀ Activitya “a; ε‘ = “ε; a‘ = “a‘  

 fi “a‘ ⊗ “ε‘ = “ε‘ ⊗ “a‘ = “a‘     -- by ts1 

 {<>} = {<>}

fi “a‘ = “a‘ = “a‘      -- by A.3

In this case, the expression are reduced by applying initially the mapping fu
tracing a sequence of Activ followed by the rule for mapping the empty elem

e set containing the empty sequence is eliminated by identity for 

7.2.1.4 Soundness for the exit with failure axiom

•∈∀ Activitya “φ; a‘ = “φ‘ 

 fi “φ‘ ⊗ “a‘  = “

fi {<φ>} ⊗ “a‘ = {<φ>}    -- by tb2 

 fi {<φ>} ⊗ {t1, t2, …, tn}= {<φ>}    Let “a‘ = {t1, t2, …, tn} 

 fi {<φ>} = {<φ>}      Ui it1
}#{

=
>< φ  

 failure i

n

stributed union for the trace concatenat
xpression is mapped by the second rule 

 Soundn

•∀ ctivity “σ; a‘ = “∈ σ

 

 

 }
i i1=

‘ 

fi “σ‘ ⊗ “a‘  = “σ‘     -- by ts1 

fi {<σ>} ⊗ “a‘ = {<σ>}    -- by tb2 

fi {<σ>} ⊗ {t1, t2, …, tn}= {<σ>}   Let “a‘ = {t1, t2, …, tn} 

fi {<σ>} = {<σ>      n t }#{ >< σ  U
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As in 6
sequence and applying the distributed union for the trace concatenation of <σ> and 
{t1, t2, 

ements. 

The ta ), commutative 
selection (sel. 2), and idempotent selection (sel. 3).  The soundness of these axioms is 
proved

7.2.2.1 Soun

.2.1.4, exit with success is proved deriving the left expression by mapping the 

…, tn}.  The right-side expression is mapped by the second rule for tracing 
basic el

7.2.2 Selection 

sk algebra defines the axioms of associative selection (sel.1

 below.  

dness for the associative selection axiom  

•∈ Activity “(a + b) + c‘ = “a+ (b + c)‘  ∀ cba ,,

fi {<↓

 A.2 

fi  ( {<↓>} ⊗ (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ) ∪ ({<↓>} ⊗ “c‘) 

>} ⊗ (“a + b‘ ∪ “c‘) = {<↓>} ⊗ (“a‘ ∪ “b + c‘)   -- by ta2 

fi {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘) 

= {<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘)))   -- by ta2 

fi {<↓>} ⊗ ((({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘))) ∪ “c‘) 

= {<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)))) -- by

=  ({<↓>} ⊗“

 ({<↓>} ⊗ ({<↓>} ⊗ “a‘)) ∪ ({<↓>} ⊗ ({<↓>} ⊗ “b‘)) )  

=  ({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ ({<↓>} ⊗ “b‘))  

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘))  )   -- by A.2 

fi  ( ({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘) )  ∪ ({<↓>} ⊗ “c‘) 

=  ({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘) ) -- by cp1 

selection into the semantics, followed by applying distribution of concatenated 
produc
product with the commit symbol.  Finally, the rule for concatenated product of trace 
sets is he expressions to eliminate the case where a redundant commit 
exists. 

a‘) ∪ ( {<↓>} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) 

-- by A.2 

fi  (

 ∪ ({<↓>} ⊗ “c‘) 

Soundness for the associative selection axiom is proved mapping initially the 

t over union to successively in order to place each activity in concatenation 

applied to t
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7.2.2.2

ba,

fi {<↓

As can lection axiom 
initially on of Activity. 
After that, the 

7.2.2.3

 fi “a‘ = “a‘         -

s six axioms in the task algebra: associative parallel 
tative parallel composition (p.2), right distributivity of 

allel composition axiom 

 Soundness for the commutative selection axiom 

•Activity “a + b‘ = “b + a‘  ∈∀

>} ⊗ (“a‘ ∪ “b‘) = {<↓>} ⊗ (“b‘ ∪ “a‘)    -- by ta2 

fi {<↓>} ⊗ (“a‘ ∪ “b‘) = {<↓>} ⊗ (“a‘ ∪ “b‘)   

-- by commutativity of union 

 be expected, to solve the soundness for the commutative se
 is applied the general mapping function for tracing a selecti

commutativity for set union is used. 

 Soundness for the idempotent selection axiom 

•∈∀ Activitya “a + a‘ = “a‘  

- by ta1 

Soundness for the idempotent selection axiom is resolved in one step by applying the 
special case of the mapping function for tracing a selection of Activity. 

7.2.3 Parallel composition 

Parallel composition define
composition (p.1), commu
concurrency over selection (p.3), instant synchronisation (p.4), fail in parallel 
composition (p.5), and succeed in parallel composition (p.6). 

7.2.3.1 Soundness for the associative par

•∈∀ Activitycba ,, “(a || b) || c‘ = “a || (b || c)‘  

 fi “(a || b)‘ // “c‘ = “a‘ // “(b || c)‘     -- by tp1 

Activity and deriving by associativity of the distributed interleaving of trace sets. 

7.2.3.2 Soundness for the commutative parallel composition axiom 

a || b‘ = “b || a‘  

fi “a‘ // “b‘ = “a‘ // “b‘      -- by A.5  

 fi (“a‘ // “b‘) // “c‘ = “a‘ // (“b‘ // “c‘)     -- by tp1 

 fi “a‘ // (“b‘ // “c‘) = “a‘ // (“b‘ // “c‘)     -- by A.4   

The present axiom is proved to be sound after tracing a parallel composition of 

•∈∀ Activityba, “

fi “a‘ // “b‘ = “b‘ // “a‘       -- by tp1 
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The axiom for commutative parallel composition is derived initially by mapping from 
parallel composition to the distributed interleaving of trace sets. Subsequently, the 
elements in the right-side expression are interchanged applying the commutativity for 

7.2.3.3 Soundness for the right distributivity of concurrency over 
selection axiom 

the distributed interleaving of trace sets. 

•∈∀ Activitycba ,, “(a + b) || c‘ = “(a || c) + (b || c)‘  

fi “a + b‘ // “c‘ = “(a || c) + (b || c)‘      -- by tp1 

fi {<↓>} ⊗ (“a‘ ∪ “b‘) // “c‘ = {<↓>} ⊗ (“a || c ‘ ∪ “b || c‘) -- by ta2 

fi {<↓>} ⊗ (“a‘ ∪ “b‘) // “c‘ = {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))  

-- by tp1 

fi {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) 

= {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))   -- by A.6 

In this case, the rule for tracing a selection of Activity and tracing the parallel 
composition to the distributed interleaving of trace sets are applied to both 
expressions.  The final transformation is made by distribution of distributed 
interleaving over union. 

7.2.3.4 Soundness for the instant synchronisation axiom 

•∈∀ Activitya “a || ε‘

 -- by A.7 

The instant synchronisation axiom is proved soundness by the identity rule for the 
distributed interleaving of trace sets, once the parallel composition has been mapped 

ace. 

a

  -- by tp1 

 fi “a‘ /

 = “a‘  

 fi “a‘ // “ε‘ = “a‘        -- by tp1 

fi “a‘ // {<>} = “a‘        -- by tb1 

fi “a‘ = “a‘        

to distributive interleaving and the empty element has been mapped to the empty 
tr

7.2.3.5 Soundness for instant failure in parallel composition axiom 

∈∀ A •ctivity “a || φ‘ = “φ‘  

fi “a‘ // “φ‘ = “φ‘     

/ {<φ>} = {<φ>}    -- by tb2 

125 



Chapter 7: Soundness for the Semantics of Tasks  

fi {t1, t2, …, tn} // {<φ>} = {<φ>}   Let “a‘ = {t1, t2, …, tn} 

 fi {<φ
1=

Soundn on axiom is proved by mapping from 
parallel composition to the distributed in
the fail eleme g basic lemen .  Fin is 
represen
in inter

7.2.3.6 Soun

a

>} = {<φ>}     U
n t }~{ >< φ  
i i

ess for the fail in parallel compositi
terleaving of trace sets, followed by mapping 

nt using the second rule for tracin  e ts ally, “a‘ 
ted as a set of traces {t1, t2, …, tn} and each ti applied, using distributed union, 

leaving with the fail trace. 

dness for instant success in parallel composition axiom 

∈∀ A •ctivity “a || σ‘ = “σ‘

 fi “a‘ /

  

/ “σ‘

 -- by tb2 

fi {t1, t et “a‘ = {t1, t2

 
=

>< σ  

The same process described in 6.2.4.5 is a
succeed is used instead of fail. 

7.2.4 Repetition 

Repetit  of an until- and while-loop. It 
has two axiom ned: unrolling one 
cycle of until- e cyc  of w le-loop repetition 
(r.2).  

7.2.4.1  of until-loop repetition 
axio

a

Case a=

fi {<>} = “ε; ε + µx.( ε ; ε + x) ‘     -- by tr1 

   -- by ts1 

fi {<>

 = “σ‘      -- by tp1 

fi “a‘ // {<σ>} = {<σ>}    

2, …, tn} // {<σ>} = {<σ>}   L , …, tn} 

fi {<σ>} = {<σ>}     U
n {
i it1

}~

pplied here, with the only difference that 

ion is represented in the task algebra in the form
s which recursively unfold the expression contai

loop repetition (r.1) and Unrolling on le hi

 Soundness for the unrolling one cycle
m 

∈∀ A •ctivity “µx.(a ; ε + x) ‘ = “a; ε + µx.(a ; ε + x) ‘ 

ε: 

 

fi {<>} = “ε‘ ⊗ “ε + µx.( ε ; ε + x) ‘  

} = “ε‘ ⊗ “ε + ε‘ 3      -- by r1 and s

fi {<>} = “ε‘ ⊗ “ε‘       -- by sel3 

fi {<>} = {<>} ⊗ {<>}      -- by tb1 
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fi {<>} = {<>#<>}       -- by cp1 

fi
by tc1 

 {<>} = {<>}        -- 

 Otherwise: 

fi µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) = “a; ε + µx.(a ; ε + x) ‘ -- by tr2 

fi “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) 

= “a; ε + µx.(a ; ε + x) ‘     -- by tr5 

fi “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) 

= “a‘ ⊗ “ε + µx.(a ; ε + x) ‘     -- by ts1 

fi “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) 

 ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) 

} ⊗ t))) ))   

-- by tr2 

In order to prove the 
be mapped to the trace s e expression 
has to ntics and, 
subsequently, both expressions are translate e trace 
semant

7.2.4.2 e of w p repetition 

 fi {<>} = “ε +   -- by tr3 

r2
     -- by sel3 

fi {<> -- by tb1 

 

= “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a ; ε + x) ‘))   -- by ta2 

fi “a‘ ⊗

= “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>

soundness of this axiom, the expressions on both sides have to 
emantics by tracing the repetitions.  The left-sid

be unrolled by using the unrolling until-loop rule for the sema
d, as far as possible, to the sam

ics. 

 Soundness for the unrolling one cycl hile-loo
axiom 

•∈∀ Activitya  “ µx.(ε + a ; x) ‘ = “ε + a; µx.(ε + a ; x) ‘ 

 Case a=ε: 

ε; µx.(ε + ε ; x) ‘   

fi {<>} = “ε + ε‘      -- by  and s3 
fi {<>} = “ε‘    

} = {<>}        

Otherwise: 
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fi µt.({ a µx.(ε -- by tr4 

; x) ‘     -- by tr6 

fi {<↓>} ⊗ (“ ⊗ (“a‘ ⊗ t))) )) 

) by ta2 

 (“ ) 

-- by ts1 

 (“a‘ ⊗ t))) )) 

“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) ) 

-- by tr4 

ed soundness by mapping both 
express e semantics by tracing the repetitions.  The left-side expression 

a

7.2.5 Encapsul

up asks and 
structures in the task algebra.  It is supported by three , 
coincid

<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) = “ε + ; + a ; x) ‘ 

fi {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.( {<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) )) 

= “ε + a; µx.(ε + a 

ε‘ ∪ (“a‘ ⊗ µt.( {<↓>} ∪ ({<↓>} 

= {<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x) ‘   -- 

fi {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.( {<↓>} ∪ ({<↓>} ⊗ a‘ ⊗ t))) )

= {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)) ‘)   

fi {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.( {<↓>} ∪ ({<↓>} ⊗

= {<↓>} ⊗ (“ε‘ ∪ (

In a similar way as in 6.2.5.1, this axiom is prov
ions to the trac

has to be unrolled by using the unrolling while-loop rule for the semantics and, 
subsequently, both expressions are translated to the same trace sem ntics. 

ation 

As is mentioned in chapter 5, encapsulation is used to gro a set of t
axioms: vacuous subtask (e.1)

ent exit (e.2), and vacuous selection (e.3). 

7.2.5.1 Soundness for the vacuous subtask axiom 

“{σ}T‘ = “ε‘ =  “{ε}T‘ 

 fi unpack(“σ‘) = “ε‘ ack(“ε‘)     -- by tu1 

 fi unpack({

 = unp

<σ>}) = “ε‘ = unpack(“ε‘ -- by tb2 )    

 fi unpack({<σ>}) = “ε‘    -- by tb1 

 by up1 

   -- by tb1 

acing cking of 
Activity, which, in the case of a subtask containing succeed, is transformed to the 
empty third expressions are derived 

 = unpack({<>}) 

 fi {<>} = “ε‘ = {<>}       --

fi {<>} = {<>} = {<>}    

Soundness for the vacuous subtask axiom is proved by tr  the unpa

trace by the unpacking function. The second and 
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from the empty sequence to the empty trace, where in the case of the third expression, 
this is passed to the unpack function and the empty trace prevails at the end.    

σ}T‘ = “{a}T‘  

 fi unpack(“a; σ‘) = unpack(“ ‘)     -- by tu1 

 fi unpack(“a‘  “ ‘) = unpack(“a‘)     -- by ts1 

 fi unpack(“a‘ ⊗ {< >}) = unpack(“a‘) by tb2 

fi unpack({t1, t2 n  {< >}) = unpack(“a‘)    

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘ ⊗ {<σ>}) 

lift (ti # <σ>) } 

fi “a‘ = unpack(“{t1, t2, …, tn}‘) Let “a‘ = {t1, t2, …, tn} in unpack(“a‘}) 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi “a‘ = “a‘      lift ti} 

The axiom for the coincident exit considers the case where the succeed symbol is next 
to the right boundary of a subtask. This, as is proved above, is equivalent to having 
the same subtask without the succeed symbol.  The derivation details formally the 
operation of the unpacking rule for task sets.  For this derivation, succeed is 
disallowed to be in the Activity a in order to avoid the examination of every t1, t2, …, 
tn.  If succeed could be in a, the activity should be resolved before the function lift 
eliminates fail, and the result should be a subset of a.  

7.2.5.3 Soundness for the vacuous selection axiom 

{a + σ}T‘ = “{a}T+ ε‘  

 fi unpack (“a + σ‘) = “{a}T+ ε‘      -- by tu1 

 fi unpack ({<↓>} ⊗ (“a‘ ∪ “σ‘)) = “{a}T+ ε‘   -- by ta2 

fi unpack ({<↓>} ⊗ (“a‘ ∪ {<σ>})) = “{a}T+ ε‘    -- by tb2 

fi unpack ({<↓>} ⊗ (“a‘ ∪ {<σ>}) ) 

= {<↓>} ⊗ (“{a}T‘ ∪ “ε‘)       -- by ta2 

7.2.5.2 Soundness for the coincident exit axiom 

• {a;∈∀ Activitya “

a

⊗ σ

σ    -- 

, …, t } ⊗ σ

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

 fi “a‘ = unpack(“a‘)     U
n

i 1=
{

 

U
n

i 1=
{

•∈∀ Activitya “
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fi unpack ({<↓>} ⊗ (“

= {<↓>} ⊗ (unp “ ‘ “ ‘

fi unpack ({<↓>} ⊗ (“a‘ ∪ {<σ>}) ) 

a‘ ∪ {<σ>}) ) 

ack( a ) ∪ ε )      -- by tu1 

= {<↓>} ⊗ (unpack(“a‘) ∪ {<>})      -- by tb1 

fi unpack ({<↓>} ⊗ “a‘ ∪  {<↓>} ⊗ {<σ>} ) 

fi unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>} ) 

= {<↓>} ⊗ (unpack(“a‘) ∪ {<>})      -- by A.8 

⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>} ) 

Let “a‘ = {t1, t2, …, tn}  

fi unpack ({<↓>} ⊗ {t , t , …, t }) ∪ {<↓>} 

fi {<↓t >, <↓t >, …, <↓t >}) ∪ {<↓>} 

= {<↓>} ⊗ (unpack(“a‘) ∪ {<>})      -- by A.2 

fi unpack ({<↓>} ⊗ “a‘ ∪  {<↓, σ>} ) 

= {<↓>} ⊗ (unpack(“a‘) ∪ {<>})      -- cp1 

fi unpack ({<↓>} 

= {<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>})    

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} 

= {<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>})      -- by up1 

1 2 n

= {<↓>} ⊗ {t1, t2, …, tn} ∪ {<↓>} ⊗{<>}   -- by A.2 

fi unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>} 

= {<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}   -- by cp1 

 

1 2 n

= {<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>} Ui 1=
{lift <↓ tn

i > } 

For this proof, it is necessary also to use some of the basic properties assumed at the 
start of this chapter, which are proved in Appendix A; namely the distribution of 
unpack over union and distribution of unpack over the concatenated product.  The rest 
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of the derivation depends on the semantics defined in chapter 5 and the distribution of 
the concatenated product over union. 

7.3 Congruence  

Congruence is a property showing an equivalence relation of the algebra.  This 
property can be proved directly with the axioms of the algebra. Nevertheless, 
congruence in an algebra can also be checked by taking equivalent expressions and

The semantics has to be equal for
the equivalent expression if the expression is congruent. However, this approach has 

work and specified as future 
work. Even so, in this section some examples of congruence properties are depicted.  
The co nce p perties can be seen in Appendix B. 

7.3.1 Show  the associative 

In this sectio  
demons rated e ators f se and parallel 
compos ion; a op) and the 
encapsulation. 

7.3.1.1  in s.

-- by ts1 

fi“a‘ ⊗ “b‘ ⊗ “c‘ ⊗ “d‘ ≡ “a‘ ⊗ “b‘ ⊗ “c‘ ⊗ “d‘  -- by ts1 

7.3.1.2 Congruence in s.1 with the selection operator 

If a; (b; c)‘ ≡ “ (a; b); c ‘, then 

(a; (b; c)) + d‘ ≡ “ ((a; b); c) 

(a; (b; c))‘ ∪ “d‘) ≡ {<↓>} ⊗ ( -- by ta2 

“a‘ ⊗ “(b; c)‘) ∪ “d‘)  

≡ {<↓>} ⊗ ((“(a; b)‘ ⊗ “c‘) ∪ “d‘)  -- by ts1 

 
 adding a subexpression to each of the equivalences. 

the disadvantage that formally, the proof depends of the proof of completeness for the 
algebra with respect to the semantics.  As mentioned in chapter 6, the property of 
completeness is considered beyond the scope of this 

mplete listing of congrue ro

ing congruence for basic operators in
sequence axiom  

 n, the congruence for the associative sequence axiom (s.1) is
t for the binary op r o quence, selection, 
it s well as for the repetition structures (while- and until-lo

 Congruence 1 with the sequence operator 

If •∈∀ Activitycba ,, “a; (b; c)‘ ≡ “ (a; b); c ‘, then 

•∈∀ Activitydcba ,,, “(a; (b; c)); d‘ ≡ “ ((a; b); c); d‘ 

fi“a; (b; c)‘ ⊗ “d‘ ≡ “(a; b); c‘ ⊗ “d‘   -- by ts1 

fi“a‘ ⊗ “(b; c)‘ ⊗ “d‘ ≡ “(a; b)‘ ⊗ “c‘ ⊗ “d‘  

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “ + d‘ 

fi {<↓>} ⊗ (“ “((a; b); c)‘ ∪ “d‘) 

fi {<↓>} ⊗ ((

fi {<↓>} ⊗ ((“a‘ ⊗ “b‘ ⊗ “c‘) ∪ “d‘)  
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≡ {<↓>} ⊗ ((“a‘ ⊗ “b‘ ⊗ “c‘) ∪ “d‘)  -- by ts1 

7.3.1.3 rallel com

If ∀ ba, c)‘ ≡ “ (a; b); c ‘, then 

cba ,, b; c)) || d‘ ≡ “ ((a; b); c) |

; b); c)‘ // “d‘)  p1 

(“(a; b)‘ ⊗ “c‘) // 

 Congruence in s.1 with the pa position operator 

•∈ Activityc, “a; (b; 

•∈ Activityd, “(a; (

 

∀ | d‘ 

fi (“(a; (b; c))‘ // “d‘) ≡ (“((a  -- by t

fi ((“a‘ ⊗ “(b; c)‘) // “d‘) ≡ ( “d‘)  -- by ts1 

fi ((“a‘ ⊗ “b‘ ⊗ “c‘) // “d‘) ≡ ((“a‘ ⊗ “b‘ ⊗ “c‘) // “d‘)  -- by ts1 

7.3.1.4 Congruence in s.1 with the until-loop 

If •∈∀ Activitycba ,, “a; (b; c)‘ ≡ “ (a; b); c ‘, then 

•∈∀ Activitycba ,, “µx.( (a; (b; c)); ε + x) ‘ ≡ “ µx.( ((a; b); c); ε + x)‘ 

 fi µt.( “a; (b; c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

  ≡ µt.( “(a; b); c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tr2 

fi µt.( “a‘ ⊗ “(b; c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

  ≡ µt.( “(a; b)‘ ⊗ “c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ts1 

fi µt.( “a‘ ⊗ “b‘ ⊗ “c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

-- by ts1 

 ≡ “(a; b then

  ≡ µt.( “a‘ ⊗ “b‘ ⊗ “c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

7.3.1.5 Congruence in s.1 with the while-loop 

If •∈∀ Activitycba ,, “a; (b; c)‘ ); c ‘,  

∈∀ Activitcba ,, •y “µx.(ε + (a; (b; c)); x)‘ ≡ “µx.(ε + ((a; b); c); x)‘ 

↓ ⊗ ⊗  -- by tr4 

b;

 (“a

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a; (b  ⊗ t))) ; c)‘

  ≡ µt.({<↓>} ∪ ({< >}  (“(a; b); c‘  t))) 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ “(  c)‘ ⊗ t))) 

  ≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“(a; b)‘ ⊗ “c‘ ⊗ t))) -- by ts1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ‘ ⊗ “b‘ ⊗ “c‘ ⊗ t))) 
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  ≡ µt.({<↓  ({ } ⊗ (“a‘ ⊗ “b‘ ⊗ “c>} ∪ <↓>  ⊗ t))) -- by ts1 

∀a, ≡ “(a

‘

7.3.1.6 Congruence in s.1 with the encapsulation 

If •∈ Activitycb, “a; (b; c)‘ ; b); c ‘, then  

•∈∀ Activitycba ,, “{a; (b; c)}T ‘ ≡ “{(a; b); c}T‘ 

; c)‘) ≡ unpack(“(a; b); c‘)   -- by tu1 

‘) ≡ unpack(“(a; b)‘ ⊗ “c‘)  -- by ts1 

⊗ “b‘ ⊗ “c‘) -- by ts1 

 this revious chapter were used to prove 
ra illustrated in chapter 4.  Some 

onstrated for the algebra.  A full listing 
icted in Appendix B. 

fi “ bunpack( a; (

fi unpack(“a‘ ⊗ “(b; c)

fi unpack(“a‘ ⊗ “b‘ ⊗ “c‘)  ≡ unpack(“a‘ 

7.4 Summary 

In chapter, the trace semantics defined in the p
algebthe soundness of the axioms for the task 

rties were demexamples of congruence prope
of congruence properties is dep
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Chapter 8:  
The Task Algebra Implementation 

 

 

 

The previous chapters demonstrated the soundness of the task algebra semantics
presented in chapter 6.  In this chapter, the implementation of the algebra is 

properties of the 

presented using a case study translating a Task Flow Diagram into the task algebra.  
The traces generated by the program are then interrogated by LTL and CTL queries 
to demonstrate how it is possible to model-check temporal logic 
described system. 

 

8.1 Introduction  

The syntax for the task algebra was presented in chapter 5 followed by its semantics 

r, the objectives of een developed in previous chapters. The last 
as to provide an implementation of the algebra.  

 

plementation showing the main algorithms 

was developed in the Haskell language, 
ge based on lambda calculus [142].  The application 

in chapter 6.  This chapter presents the implementation of the algebra and some 
results from applying the algebra to represent task flow diagrams and model-checking 
temporal logic properties in the trace outputs.  

So fa  this work have b
objective proposed for this work w
This implementation is necessary to test the feasibility of the formal representation. 
In addition, the task algebra implementation will be complemented with model-
checking extensions (allowing LTL and CTL expressions) in an attempt to show 
practical uses of this work. 

The next section describes the im
implemented.  The full code of the programs is shown in Appendix C.  Section 8.3 
presents an example where a task flow diagram is translated to its corresponding task 
algebra representation and the trace semantics generated by the program.  From the 
traces, it is possible to obtain useful semantic information about task flows, such as 
whether two alternative flow diagrams are equivalent, or whether certain properties 
hold always or eventually.  To determine the first requires no more than simple set 
operations upon trace sets; whereas the latter requires temporal logic expressions, as 
shown in section 8.4.  

8.2 Task algebra implementation 

The implementation for the task algebra 
which is a lazy functional langua
in Haskell is a compiler that transforms a task algebra expression and, if the 
expression is correct, generates the corresponding traces for the expression.  The 
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process will be similar to a one-pass compiler [143]. Figure 8.1 shows the process for 
a task algebra expression in the implementation to generate the set of traces.  

 
Figure 8.1.  Structure of the Task A

Syntax-Lexical 
analyser directed 

translator 

Task algebra 
expression 

Token 
stream 

Set of 
Traces 

lgebra implementation 

Activity  ::=  Epsilon    -- empty activity 

| Phi     -- φ fail  
  | Task     -- a single task 
 | Activity ; Activity   -- a sequence of activity 
 | Activity + Activity   -- a selection of activity 
 | Activity || Activity   -- parallel activity 
 | Mu.x(Activity ; Epsilon + x)  -- until-loop activity 

| Mu.x(Epsilon + Activity ; x)  -- while-loop activity 

Task::= Simple    -- a simple task 
| { Activity }    -- encapsulated activity 

Evidently, the Greek symbols used in the algebra had to be converted into machine-
readable tokens in the Latin character set.  Also, the Mu symbol was separated from 
the variable x using a dot to simplify their identification in the lexical analyser (the 
bound expression is then contained in parentheses).  Table 8.1 shows the 
correspondence between the expression written in the original algebra syntax and the 
machine-readable syntax for the Haskell application. 

 

Task Algebra Task Algebra implementation 

From the BNF definition for the task algebra described in chapter 4, there are just a 
couple of changes that have been made with the aim of facilitating the analysis of the 
input string representing an expression in the algebra:   

 | Sigma    -- σ succeed 

a; φ; c  a; Phi; c  

a + ε + b  a + Epsilon + b  

a || b || σ  a || b || Sigma  

µx.(a ; ε + x) Mu.x(a ; Epsilon + x) 

µx.(ε + a ; x) Mu.x(Epsilon + a ; x) 
Table 8.1 Comparison between original Task Algebra syntax and the Haskell implementation 

dditionally, the traces for the expression are generated executing the function tr.  
a; Phi; c” creates the traces for the expression a; 

A
For instance, the execution of   tr “
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Phi; c.  Consequently, the expressions depicted above have the following set of 
traces: 

tr “a; Phi; c” {[a,Phi]} 

tr “a + Epsilon + b”  {[!],[!,a],[!,b]}  

tr “a || b || Sigma”  {[Sigma]} 

tr “Mu.x(a ; Epsilon + x)” {[a,!],[a,!,a]} 

tr “Mu.x(Epsilon + a ; x)” {[!],[!,a,!],[!,a,!,a]} 

As can be seen, traces are produced following the semantics d
  Traces for the unt

efined in chapter 5 with 
il- and while-loops are 
maximum limit of two 

 trace sets 
e [!] is produced in the while-loop as 

 trace notation 
ckets to delimit 
ion, simple task 
compound tasks 

algebra, which 
ace semantics. 

e lexical 
 the appropriate constructor for the Activity data 

pe.  

'{' Activity '}'  { Task (Encapsulation $2) } 

Activity :  
Activity ';' Activity { Sequence $1 $3 } 

 | Activity '+' Activity { Selection $1 $3 } 
 | Activity '||' Activity { Parallel $1 $3 } 
 --  Until-loop 
 | 'Mu' '.' simple '(' Activity ';'  
 'Epsilon' '+' simple ')' { UntilLoop $5 (Simple $3) 
(Simple $9) } 
 -- While-loop 
 |'Mu' '.' simple '(' 'Epsilon' '+' Activity';' simple ')' 
   { WhileLoop $7 (Simple $3) (Simple $9) } 
 | '(' Activity ')' { Task (Brackets $2) } 
 | Encapsulation  { $1 } 

the exception of the repetition structures.
generated for a finite number of cycles, setting an arbitrary 
repetitions for each loop.  While- and until-loop show, as expected, different
due to the position of the condition (e.g., the trac
a result of the possibility of doing nothing).  Minor differences in th

and the use of square bra
e

are the syntax for commit ‘!’ instead of ‘↓’, 
traces as a substitute for the angle brackets used originally.  In addit

for names should begin with a lowercase; uppercases are reserved 
and the algebra keywords.    

The implementation takes a string as an input for the expression in the 
is translated to the corresponding functions to generate the resulting tr

arser generator for Haskell.  In addition, a The parser was built using the Happy p
simple hand-written lexical analyser was built.  Together, the parser and th
an
ty

alyser are responsible of linking to

Model : Activity   { $1 } 
 | CompoundTask Model { Model $1 $2 } 
    
CompoundTask :  

'let' taskName '=' Encapsulation { CompoundTask $2 $4 } 
 
Encapsulation:  
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 | 'Epsilon'  { Epsilon } 
 | 'Phi'   { Fail } 
 | 'Sigma'   { Succeed } 
 | simple   { Task (Simple $1) } 
 | taskName   { Task (Compound $1) } 

The definition of the Activity data type is as follows: 

-- Activity 
data Activity  
 = Epsilon  
 | Fail 
 | Succeed 
 | Task Task 
 | Sequence Activity Activity 
 | Selection Activity Activity 
 | Parallel Activity Activity 
 | UntilLoop Activity Task Task 
 | WhileLoop Activity Task Task 
 | CompoundTask String Activity 
 | Model Activity Activity  
   deriving (Eq, Ord) 

Then, an instance declaration of Show Activity is defined for each constructor, where 
the trace operation is called for most of the constructors together with the consequent 
data type, allowing by pattern matching to do the aproppiate calls to generate the set 

trace is as follows: 

type Trace   = [Event] 

type SetOfTraces = Set Trace 

Event is a data type defining the trace elements: 

data Event = Ident String | Phi | Sigma | Commit  

  deriving (Eq, Ord) 

From here, the use of the function trace, by pattern matching, calls the appropriate 
functions implementing the semantics from Chapter 6.  For example, for sequence 
composition the function trace is called as follows: 

trace (Sequence a b) dict 

which is equal to: 

trace a dict #* trace b dict 

of traces.  The definition of the function 

trace :: Activity -> DataDictionary -> SetOfTraces 

where SetOfTraces is declared as a set if the Trace type.  Trace is declared as a list of 
Event: 
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 meaning that the trace of a sequence of a followed by b is equal to the trace of a 
concatenated with the trace of b, using the concatenated product operation (#*).  As 
defined in Chapter 6, the concatenated product works over set of traces: 

(#*) :: SetOfTraces -> SetOfTraces -> SetOfTraces 
setA #* setB 
 | setA == empty = empty 
 | setB == empty = empty 
 | otherwise  

= union (insert (findMin setA # findMin s
  (singleton (findMin setA) #* (difference setB 
(singleton (findMin setB)))))  
 ((difference setA (singleton (findMin setA))) #* s

which uses the concatenation function to append the traces.  The sema
concatenation of traces implemented in Haskell: 

(#) :: Trace -> Trace -> Trace 
[Sigma] # (item:rest)   = 
[Phi] # (item:rest)    = [Phi] # rest 
[Commit] # trace@(item:rest) 
 | item == Commit   = trace 
 | otherwise    = Commit : trace 
(item:rest) # trace   = item : (rest # trac
epsilon#trace    = trace 

As mentioned above, the implementation for the rest of the semanti
seen in Appendix C.  The next section introduces a case of study
implementation can be used. 

8.3 An electronic journal 

An interesting case study was developed by Adams [144] working with the Discovery
Method for modelling a web based electronic journal.  The study models an electronic 
journal, which is offered free to all subscribers, where the authors submit their articles
and pay towards the costs of their online publication by conducting peer reviews of
articles submitted by other authors.   

There are four actor roles identified in the system.  Reader is the role denoting 
someone who wants to browse the j

etB)  

etB )  

ntic function for 

[Sigma] # rest 

e) 

c functions can be 
 to show how this 

 

 
 

ournal, read articles or search for information in 
e journal.  The role of Author defines someone who wants to publish his/her articles.  
e Reviewer is the role of an author who is required to review other unpublished 

 of publishing his/her own paper.  The 
f the administrator of the system.  The 

This section focuses on the Task Flow analysis, which is the part of the Discovery 
Method where Task Flow Diagrams are constructed in order to determine the 

th
Th
papers with the aim of paying towards the cost
last role is that of the Editor, which is the role o
editor role is subdivided into a master editor and sub-editors, which can be assigned 
their role by any master editor.  In the study, a Task Structure diagram is developed 
for each of the four main roles, describing the tasks they individually perform.  The 
diagrams can be seen in chapter 3 in [144]. 

8.3.1 Task Flow analysis 
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workflows linking the identified tasks.  For every Task Structure Diagram in the case 
study, there is a corresponding Task Flow Diagram, illustrating the order in which the 
tasks are carried out for each role.  In general, Task Flow diagrams are constructed 
from the viewpoint of the principal users of a system. 

Figure 8.2 shows the Task Flow Diagram for the reader role.  The diagram describes 
the choice the reader has initially to decide between reading information about the 
journal, searching for an article, or reading about content alerting before subscribing 
to the content alerting service. 

The diagram is formed by six tasks: Read Info on Journal, Search for Article, Read 
Abstract, Download Article, Read about Content Alerting, and Register for Content 
Alerting.  The first task is clearly defined as a compound task, which is formed by the 
subtasks Read Journal Aims, and Read Submission Instructions. 

The task algebra expression for the diagram from Figure 8.2 should be as follows: 

Mu.x(ReadInfoOnJournal;Epsilon + x)
+Mu.x((searchForArticle;Phi + readAbstract;downloadArticle + Epsilon);Epsilon + x)
+(readAboutContentAlerting;Epsilon + registerForContentAlerting)

 
 
Figure 8.2.  Reader Task Flow Diagram 
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Additionally, the compound task ReadInfoOnJournal can be defined like this: 

let ReadInfoOnJournal = {readJournalAims + readSubmissionInstructions}  

In the trace semantics only simple tasks are represented.  The compound t
ReadInfoOnJournal is unpacked and its subtasks promoted to the higher level as 
defined by the semantics in chapter 5.  After the task algebra expression is defined
may be processed by the tr function to generate the set of traces.  For this case
of traces is:  

ask 

, it 
, the set 

{ [!,readAboutContentAlerting,!], 
[!,readAboutContentAlerting,!, registerForContentAlerting], 
[!,readJournalAims,!], 
[!,readJournalAims,!,readJournalAims], 
[!,readJournalAims,!,readSubmisiionInstructions], 
[!,readSubmisiionInstructions,!], 
[!,readSubmisiionInstructions,!,readJournalAims], 
[!,readSubmisiionInstructions,!,readSubmisiionInstructi
[!,searchForArticle,!,readAbstract,!], 
[!,searchForArticle,!,readAbstract,!,downloadArticle,!]
[!,searchForArticle,!,readAbstract,!,downloadArticle,!, 
searchForArticle,!,readAbstract,!], 
[!,searchForArticle,!,readAbstract,!,downloadArticle,!, 
searchForArticle,!,readAbstract,!,downloadArticle], 
[!,searchForArticle,!,readAbstract,!,downloadArticle,!, 
searchForArticle,!,Phi], 
[!,searchForArticle,!,readAbstract,!,searchForArticle,!, 
readAbstract,!], 
[!,searchForArticle,!,readAbstract,!,searchForArticle,!, 
readAbstract,!,downloadArticle], 
[!,searchForArticle,!,readAbstract,!,searchForArticle,!,Phi], 

ons], 

, 

[!,searchForArticle,!,Phi] }  
 

8.3.1.1 Author Task Flow Diagram 

The role of author is used for someone who wants to publish his/he
involves the options of Read Instructions, Obtain Style, Complete Res
(such as Read Reviews or Check Article Status), and Submit Article.  Figur
the Task Flow Diagram for the author role.  All tasks in the diagram
with the exception of Login, which is defined later.  

The Task Algebra expression for the Author diagram is represented as follows:   

(readAuthorGuidelines;readReviewerGuidelines)

r articles.  It 
tricted Task 
e 8.3 shows 

 are simple tasks 

+ viewStyleGuide
+(Mu.x(Login;Epsilon + x);(readReviews;obtainEditorsDecision;
submitReworkedArticle + Epsilon) + checkArticleStatus)
+(completeSubmissionEform;obtainReviewerID)
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Figure 8.3.  Author Task Flow Diagram 

The compound task Login contemplates the complete process for login into 
system, including the case when the user fails to introduce correctly the password,
with the possibility to activate a password reminder.  Figure 8.4 presents th
Flow diagram for this task.  The resultant expression in the task algebra is: 

   { (    ( ;    ));  let Login Phi Epsilon requestPassword Epsilon Phi= + + +

the 
 

e Task 

enterPassword
 

      }

 
Figure 8.4.  Login Task Flow Diagram 

Submit article 

Complete submission 
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Obtain editors 
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Article approved
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article
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The set of traces resulting from the task algebra expression includes the task Login 
which, as was mentioned above, manages the success and failure cases of logging into 
the system by entering the password.  Because Login is in a cycle to allow multiple 
opportunities to gain entry into the system, an until-loop structure Mu.x(Login; 
Epsilon + x) is needed.  The set of traces from Login is unpacked within the set of 
traces in the general expression to generate the complete set of traces: 

{[!,completeSubmissionEform,obtainReviewerID], 
[!,enterPassword,!,checkArticleStatus], 
[!,enterPassword,!,enterPassword,!,checkArticleStatus], 
[!,enterPassword,!,enterPassword,!,readReviews,obtainEditorsDecision,
!],[!,enterPassword,!,enterPassword,!, 
readReviews,obtainEditorsDecision,!,submitReworkedArticle], 
[!,enterPassword,!,readReviews,obtainEditorsDecision,!], 
[!,enterPassword,!,readReviews,obtainEditorsDecision,!, 
submitReworkedArticle], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
checkArticleStatus], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
readReviews,obtainEditorsDecision,!], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
readReviews,obtainEditorsDecision,!,submitReworkedArticle], 
[!,enterPassword,!,requestPassword,!,Phi], [!,enterPassword,!,Phi], 
[!,readAuthorGuidelines,readReviewerGuidelines], 
[!,requestPassword,!,enterPassword,!,checkArticleStatus], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
checkArticleStatus], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
readReviews,obtainEditorsDecision,!], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
readReviews,obtainEditorsDecision,!,submitReworkedArticle], 
[!,requestPassword,!,enterPassword,!, 
readReviews,obtainEditorsDecision,!], 
[!,requestPassword,!,enterPassword,!, 
readReviews,obtainEditorsDecision,!,submitReworkedArticle], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,checkArticleStatus], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readReviews,obtainEditorsDecision,!], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readReviews,obtainEditorsDecision,!,submitReworkedArticle], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,Phi], 
[!,requestPassword,!,enterPassword,!,Phi], [!,requestPassword,!,Phi], 
[!,viewStyleGuide], [!,Phi]} 

 

8.3.1.2 Reviewer Task Flow Diagram 

 a 
er 

 “pay” by doing reviews), or 
Task Flow 

y compound task 
 8.4. 

The reviewer role defines the behaviour in the system for a user who wants to write
review of an article or perform some related activity, such as read an abstract in ord
to choose a paper, check his/her payment status (authors
simply checking the guidelines for the reviewers.  Figure 8.5 presents the 
Diagram for this role where, as for the previous role, Login is the onl
in this diagram.  The flow for Login is the same defined earlier in Figure
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viewer Task Flow 
s 

: 

 
Figure 8.5.  Reviewer Task Flow Diagram 

In a similar manner to the section above, the content of the Re
Diagram may be expressed directly in the syntax of the task algebra, incorporating a
unitary wholes any tasks that encapsulate further flows, such as the Login task

readReviewerGuidelines + (Mu.x(Login; Epsilon + x);checkPaymen
+completeReviewForm + (Mu.x((Mu.y(readAnAbstract;Epsilon + y);
selectPaper);Epsilon + x);confirmSelection;receivePapers))

From applying the trace function to the task algebra expression above, the foll
set of traces is obtained, in which once again the behaviour of the 
unpacked:  

tStatus
 

owing 
Login task is 

{[!,enterPassword,!,checkPaymentStatus], 
[!,enterPassword,!,completeReviewEform], 
[!,enterPassword,!,enterPassword,!,checkPaymentStatus], 
[!,enterPassword,!,enterPassword,!,completeReviewEform], 
[!,enterPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract, 
selectPaper,!,confirmSelection,receivePapers], 
[!,enterPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract, 
selectPaper,!,readAnAbstract,!,readAnAbstract,selectPaper, 
confirmSelection,receivePapers], 
[!,enterPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract, 
selectPaper,!,readAnAbstract,!,selectPaper,confirmSelection, 
receivePapers],[!,enterPassword,!,enterPassword,!,readAnAbstract,!, 
selectPaper,!,confirmSelection,receivePapers], 

Login 

¬ done

Check payment 
status 

Read reviewer 
guidelines 

done 

Check payment 
status 

Complete review  
E-form 

Submit review

Read an abstract 

Choose papers 

Read instructions

Complete reviewer 
task

Choose  

Don’t choose 

Select/deselect 
paper 

Confirm 
selection 

Rec
Pap

eive 
er(s) 

Continue 
 browsing 

Confirm
[legal selection]
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[!,enterPassword,!,enterPassword,!,readAnAbstract,!,selectPaper,!, 
readAnAbstract,!,readAnAbstract,selectPaper,confirmSelection, 
receivePapers],[!,enterPassword,!,enterPassword,!,readAnAbstract,!, 
selectPaper,!,readAnAbstract,!,selectPaper,confirmSelection, 
receivePapers], 
[!,enterPassword,!,readAnAbstract,!,readAnAbstract,selectPaper,!, 
confirmSelection,receivePapers], 
[!,enterPassword,!,readAnAbstract,!,readAnAbstract,selectPaper,!, 
readAnAbstract,!,readAnAbstract,selectPaper,confirmSelection, 
receivePapers], 
[!,enterPassword,!,readAnAbstract,!,readAnAbstract,selectPaper,!, 
readAnAbstract,!,selectPaper,confirmSelection,receivePapers], 
[!,enterPassword,!,readAnAbstract,!,selectPaper,!,confirmSelection, 
receivePapers], 
[!,enterPassword,!,readAnAbstract,!,selectPaper,!,readAnAbstract,!, 
readAnAbstract,selectPaper,confirmSelection,receivePapers], 
[!,enterPassword,!,readAnAbstract,!,selectPaper,!,readAnAbstract,!, 
selectPaper,confirmSelection,receivePapers], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
checkPaymentStatus], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
completeReviewEform], 
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,confirmSelection,receivePapers], 
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,readAnAbstract,!,readAnAbstract, 
selectPaper,confirmSelection,receivePapers], 
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,readAnAbstract,!,selectPaper, 
confirmSelection,receivePapers], 
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,confirmSelection,receivePapers], 
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,readAnAbstract,!,readAnAbstract,selectPaper, 
confirmSelection,receivePapers], 
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,readAnAbstract,!,selectPaper,confirmSelection, 
receivePapers], [!,enterPassword,!,requestPassword,!,Phi], 
[!,enterPassword,!,Phi], [!,readReviewerGuidelines], 
[!,requestPassword,!,enterPassword,!,checkPaymentStatus], 
[!, q Password,!,completeReviewEform], re uestPassword,!,enter
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
che Pck aymentStatus], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
com epl teReviewEform], 
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,readAnAbstract,!,readAnAbstract, 
selectPaper,confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,readAnAbstract,!,selectPaper, 
confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,readAnAbstract,!,readAnAbstract,selectPaper, 
confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,readAnAbstract,!,selectPaper,confirmSelection, 
receivePapers], 
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[!,requestPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract,
selectPaper,!,confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract,
selectPaper,!,readAnAbstract,!,readAnAbstract,selectPaper, 
confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract,
selectPaper,!,readAnAbstract,!,selectPaper,confirmSelection, 
receivePapers], 
[!,requestPassword,!,enterPassword,!,readAnAbstract,!,selectPaper,!, 
confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,readAnAbstract,!,selectPaper,!, 
readAnAbstract,!,readAnAbstract,selectPaper,confirmSelection, 
receivePapers], 
[!,requestPassword,!,enterPassword,!,readAnAbstract,!,selectPaper,!, 
readAnAbstract,!,selectPaper,confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,checkPaymentStatus], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,completeReviewEform], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,readAnAbstract,selectPaper,!,confirmSelection, 
receivePapers], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,readAnAbstract,selectPaper,!,readAnAbstract,!, 
readAnAbstract,selectPaper,confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,readAnAbstract,selectPaper,!,readAnAbstract,!, 
selectPaper,confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,selectPaper,!,confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,selectPaper,!,readAnAbstract,!,readAnAbstract, 
selectPaper,confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,selectPaper,!,readAnAbstract,!,selectPaper, 
confirmSelection,receivePapers], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,Phi], 
[!,requestPassword,!,enterPassword,!,Phi], [!,requestPassword,!,Phi], 
[!,Phi]} 

 

8.3.1.3  Flow Diagram 

The ehaviour is specified in Figure 8.6.  As can be seen, an editor is able 
to e l les and reviews, publish a new edition of the journal, and even to 
assign sub-editor privileges.  The Task Flow Diagram shows the different tasks 
involved for the execution of this role and, like the other roles, but with the exception 
of the reader role, the compound task of Login is required.  The rest of the tasks used 
in th  d e considered simple tasks. 

 Editor Task

 Editor role b
va uate artic

is iagram ar
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Login 

¬ done

 
Figure 8.6. Editor Task Flow Diagram 

The expression in the Task Algebra includes the until-loop for the verification of the 
login before carrying out the remaining tasks.  After the editor has logged in, s/he has 
to choose which of the activities want to perform.  The task algebra expression is 
presented here: 

Mu.x(Login;Epsilon + x);(assignEditorPrivileges
+(obtainListFRArticles;selectFRArticle;
Phi + (approveArticle + referArtForCorrections + rejectArticle))
+(obtainListReviews;selectReview;approveReview + referReview)

 

+(obtainApprovedList;completePublication)

The many different executions of this Task Algebra expression may be obtained by 
app n acing function, which obtains the following traces: lyi g the tr tr

{[!,enterPassword,!,assignEditorPrivileges], 
[!,enterPassword,!,enterPassword,!,assignEditorPrivileges], 
[!,enterPassword,!,enterPassword,!,obtainApprovedList, 
completePublication], 
[!,enterPassword,!,enterPassword,!,obtainListFRArticles, 
selectFRArticle,!,approveArticle], 
[!,enterPassword,!,enterPassword,!,obtainListFRArticles, 
selectFRArticle,!,referArtForCorrections], 

Assign editor 
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done Assign editor 
privileges 
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[!,enterPassword,!,enterPassword,!,obtainListFRArticles, 
selectFRArticle,!,rejectArticle], 
[!,enterPassword,!,enterPassword,!,obtainListFRArticles, 
sel tec FRArticle,!,Phi], 
[!,enterPassword,!,enterPassword,!,obtainListReviews,selectReview,!, 
app vro eReview], 
[!,enterPassword,!,enterPassword,!,obtainListReviews,selectReview,!, 
ref Rer eview], 
[!,enterPassword,!,obtainApprovedList,completePublication], 
[!,enterPassword,!,obtainListFRArticles,selectFRArticle,!, 
approveArticle], 
[!,enterPassword,!,obtainListFRArticles,selectFRArticle,!, 
referArtForCorrections], 
[!,enterPassword,!,obtainListFRArticles,selectFRArticle,!, 
rejectArticle], 
[!,enterPassword,!,obtainListFRArticles,selectFRArticle,!,Phi], 
[!,enterPassword,!,obtainListReviews,selectReview,!,approveReview], 
[!,enterPassword,!,obtainListReviews,selectReview,!,referReview], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
assignEditorPrivileges], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
obtainApprovedList,completePublication], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
obtainListFRArticles,selectFRArticle,!,approveArticle], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
obtainListFRArticles,selectFRArticle,!,referArtForCorrections], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
obtainListFRArticles,selectFRArticle,!,rejectArticle], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
obtainListFRArticles,selectFRArticle,!,Phi], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
obtainListReviews,selectReview,!,approveReview], 
[!,enterPassword,!,requestPassword,!,enterPassword,!, 
obtainListReviews,selectReview,!,referReview], 
[!,enterPassword,!,requestPassword,!,Phi], [!,enterPassword,!,Phi], 
[!,requestPassword,!,enterPassword,!,assignEditorPrivileges], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
assignEditorPrivileges], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
obtainApprovedList,completePublication], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
obtainListFRArticles,selectFRArticle,!,approveArticle], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
obtainListFRArticles,selectFRArticle,!,referArtForCorrections], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
ob ListFRArticles,selectFRArtictain le,!,rejectArticle], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
obtainListFRArticles,selectFRArticle,!,Phi], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
obtainListReviews,selectReview,!,approveReview], 
[!,requestPassword,!,enterPassword,!,enterPassword,!, 
obtainListReviews,selectReview,!,referReview], 
[!,requestPassword,!,enterPassword,!,obtainApprovedList, 
completePublication], 
[!,requestPassword,!,enterPassword,!,obtainListFRArticles, 
selectFRArticle,!,approveArticle], 
[!,requestPassword,!,enterPassword,!,obtainListFRArticles, 
selectFRArticle,!,referArtForCorrections], 
[!,requestPassword,!,enterPassword,!,obtainListFRArticles, 
selectFRArticle,!,rejectArticle], 
[!,requestPassword,!,enterPassword,!,obtainListFRArticles, 
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selectFRArticle,!,Phi], 
[!,requestPassword,!,enterPassword,!,obtainListReviews,selectReview,!
,approveReview], 
[!,requestPassword,!,enterPassword,!,obtainListReviews,selectReview,!
,referReview], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,assignEditorPrivileges], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainApprovedList,completePublication], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListFRArticles,selectFRArticle,!,approveArticle], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListFRArticles,selectFRArticle,!,referArtForCorrections], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListFRArticles,selectFRArticle,!,rejectArticle], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListFRArticles,selectFRArticle,!,Phi], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListReviews,selectReview,!,approveReview], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListReviews,selectReview,!,referReview], 
[!,requestPassword,!,enterPassword,!,requestPassword,!,Phi], 
[!,requestPassword,!,enterPassword,!,Phi], [!,requestPassword,!,Phi], 
[!,Phi]} 

s in the 
aces, illustrating the possible executions of the 

ade in different ways.  The simplest operations 

e cases, for instance, two 

{[!,a,b],[!,a,c]}. It is 

These examples show how it is possible to express realistic Task Flow diagram
ask Algebra and convert them to trT

diagrams.  

8.4 Operations on traces 

A set of traces is the trace semantic representation for a Task Flow Diagram.  The 
verification of the diagram may be m
could be performed by set operators but more operations may be applied over the 
traces using temporal logic. In this work, we offer three different approaches for 
checking the models represented with the algebra: 

 
• Set operations on traces 
• Model-checking with LTL 
• Model-checking with CTL 

.4.1 Set operations on traces 8

Operations over a set of traces can be easily applied.  In som
or more trace sets may be compared to demonstrate equality (or inequality). For 
example, comparing two expressions in the task algebra such as a;b+c and 
(a;b)+(a;c) can be done using the equal operator in Haskell: 

Main> tr "{a;b+c}" == tr "{(a;b)+(a;c)}" 

False 

Which is the expected result because the trace semantics for the expression a;b+c is 
{[a,!,b],[a,!,c]},  while the trace semantics for (a;b)+(a;c) is 
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easy to see that while in the first case the commit symbol occurs after a, in the second 
mit symbol is placed in the first place for every trace in the semantics.  

rPassword} 
{Login}") 

ion.  The next sections will focus in 
in results reasoning temporal 

g with LTL 

mporal logic has being extensively applied with specification and verification of 
ftwa obtained from a task algebra expression, may be used to 

gical properties within the specification expressed by the 
LTL 

 a Task Algebra 
f the Task 
 use LTL 

me examples 
 

e calculus. 
ation over 

ths.  inhe ted fr  prepositional calculus are the usual ones: (¬, 
pression is as follows6:  

case the com

In the same way, it is possible to use common set operations (e.g., set membership, 
subset, union, difference, intersection) to obtain results over two or more sets of 
traces.  For instance, we could ask whether the trace describing a normal login is one 
of the identified traces for the Login task (Figure 8.4):  

Main> member ([Commit, Ident "enterPassword"]) (tr "let 
Login={(Phi+Epsilon+(requestPassword; Epsilon + Phi)); ente

True 

The last example uses the standard member function from the Haskell Library to 
search through the results produced by the tr funct
the use of LTL and CTL operators in order to obta
aspects on the Task Flow diagrams. 

8.4.2 Model-checkin

Te
, so re. A set of traces

verify some temporal and lo
diagrams.  For this reason, a simple implementation of LTL was built.  This 
implementation works over the trace semantics generated from

press e e trace sema tics reex ion.  Becaus th n present every possible path o
 toFlow diagram expressed in the Task Algebra, it is straightforward

rmulas to quantify universally over ll tho his section, sofo  a se paths.  In t
using Linear Temporal Logic (LTL) are presented, to illustrate the reasoning
capabilities of the LTL module.   

LT  a temporal lo ic e in poral operators to the predicat
tific

L is g , form d add g tem
These operators that can be used to refer to future states with no quan
pa Logical operators ri om
∧, ∨, →) and the syntax of the LTL ex

• Not p 

• And p q 

• Or p q 

• Impl p q 

The modal operators are divided into the unary (next, always or globally, and finally): 

• X p.  p holds on the next state. 

                                                 
6 As e d here, this is just the syntax of the LTL expression, whicxplaine h is applied to a set of traces 
generated from a Task Algebra expression. An example showing the whole functions is depicted later. 
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• G p.  p  holds globally.    

in some future state. 

s (until, weak-until, release): 

task>  

 or special task symbol.  Pr is a 

 never reaches a 
ess (“once X occurred, Y 

8.4.3 Model-checking with CTL 

 of paths.  
ted 

gainst a set of traces obtained from a task algebra expression, in  the same way that 
heorems 

e, the application has to transform 

ination with temporal modal 
operators.  The modal operators are (next, always or globally, finally and until): 

• F p.  p  holds 

And the binary modal operator

• U p q.  q  holds on the current state or p is true and then q. 

• W p q.  q  holds on the current state or p is true and then q, or p  is true for all 
the states. 

• R p q.  q  holds in all the states or until p  is true. 

Where for this project, the operands p and q are LTL expressions and the basic 
expression is the propositional denoted by: 

• Pr <

<task> is any valid name for an simple task
constructor used to identify such tasks. 

With temporal logic, system properties such as safety (“the system
bad state”), liveness (“there is progress in the system”), fairn
will ocurr in n steps”) and self-stabilisation (“the system recovers from a failure in a 
finite number of steps”) can be proven [145].  Property specification of functional 
requirements written, for instance, in LTL can help to find errors in the design of 
systems. 

While LTL formulas express temporal properties over all undifferentiated paths, 
Computational Tree Logic (CTL) also considers quantification over sets
CTL is a branching-time logic [146] and theorems in this logic may also be tes
a
LTL theorems were tested above.  A CTL application was built to test CTL t
against expressions in the task algebra.  In this cas
the traces in a tree representation before applying the expression. 

CTL is formed by a combination of logical operators, path operators and temporal 
modal operators.  Logical operators are the usual (¬, ∧, ∨, →) and are used as follows: 

• Not p 

• And p q 

• Or p q 

• Impl p q 

Path operators are quantifiers A expressing “all paths” and E expressing “exists at 
least one path”.  Path operators are used in comb
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• X p.  p holds on the next state. 

• G p.  p  holds globally. 

• F p.  p  holds in some future state. 

• U p q.  q  holds on the current state or p is true and then q. 

Where for this project, the operands p and q are CTL expressions and the basic 
expression is the propositional denoted by: 

• Pr <task>  

<task> is any valid name for an simple task or special task symbol.  Pr is a 

ators X, G, F and U just like path operators cannot be used 
without a modal operator.  Accordingly, LTL-like expressions are not allowed in 

TL. 

y  

 8.2 is also used.  To check a 
function check is defined.  The 

L expression. In 
eturns true: 

constructor used to identify such tasks. 

In CTL path operators have to be used together with modal operators.  A and E cannot 
be used without modal oper

C

8.4.4 An implementation of model-checking with LTL 

The implementation of LTL model-checking uses Phi, which is a data type defined to 
specify  the LTL expressions: 

data Phi 
    = Bool Bool 
    | Pr String 
    | Not Phi 
    | And Phi Phi 
    | Or Phi Phi 
    | Impl Phi Phi 
    | X Phi                -- Next phi 
    | G Phi                -- All future states  
    | F Phi                -- Eventuall
    | U Phi Phi            -- Until  
    | W Phi Phi            -- Weak-until 
    | R Phi Phi            -- Release 
 deriving (Eq, Ord, Show) 

Additionally, the function trace presented in  section
LTL expression against a model in the algebra, the 
function check is declared as follow: 

check :: String -> Phi -> (Bool, Trace) 

check expr phi = evalAllTraces (toList (tr expr)) phi 

where evalAllTraces evaluates every possible path against the LT
order to do this, the function eval is called for each trace, while eval r

eval :: Trace -> Phi -> Bool 
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where eval initiates the evaluation of each trace by calling the
matching the corresponding constructor. If the evaluation is tru
to the next trace; on the contrary, if the eva
evaluating and returns the Boolean value together with c

The syntax for using the LTL application is as fol

check <task-algebra-expression> <LTL-expression> 

where task-algebra-expression is a string expressing a w
algebra, and LTL-expression is a valid expression in LTL. As ex
result is presented as a tuple showing the result (true or false) and, 
expression is false, a counterexample.  Evident
counterexample (an empty list is presented).  

In the implementation of LTL for the task algebra, it is possible 
to test against the task algebra for the diagram in Figure 8.4, asserting that eventual
every path leads to a fail.  It is easy to see that this expression is false and, when it
executed, the result is accompanied by a counterexample

 
MyLTL> check "(Phi+Epsilon+(requestPasswor
enterPassword" (F (Pr "Phi")) 
 
(False,[!,enterPassword]) 

The counterexample shows that there is a case when, after a choice, the password
entered and then the trace finishes without fail.  It is important to note that, while f
is represented on the semantics as fail, there is no correspo
successfully terminating path.  

The same kind of LTL theorem could be tested agains
8.5. This diagram shows no fail at the top level, but the possib
compound task Login (see Figure 8.4) is considered, as depicted in the lat
The execution command is as follows: 

MyLTL> check "let Login={(Phi+Epsilon+(requestPas
Phi)); enterPassword} {readReviewerGuidelines + (
+ x); checkPaymentsStatus + completeReviewEForm 
(Mu.x((Mu.y(readAnAbstract; Epsilon + y); select

 appropiate functions by 
e, evalAllTraces goes 

luation is false, evalAlltraces stops 
ounterexample. 

lows: 

ell-formed expression in the 
plained above, the 
in the case the LTL 

ly, a true result would show no 

to construct a theorem 
ly 
 is 

: 

d; Epsilon + Phi)); 

 is 
ail 

nding symbol to represent a 

t the larger diagram from Figure 
ility of failure inside the 

ter example.  

sword; Epsilon + 
Mu.x(Login; Epsilon 
+ 
Paper); Epsilon + x); 

no 
e, the password is introduced 

 next example, just 
ed in order to verify if the task 

hich it is true because no 

); 

 ) 

confirmSelection; receivePapers))}" (F (Pr "Phi")) 
 
(False,[!,enterPassword,!,checkPaymentsStatus]) 

As expected, the search to prove the LTL theorem finds a counterexample, where 
fail is found in at least one path:  namely, after a choic
and then the task of checking the payments status is chosen.  In the
an extract of the diagram in Figure 8.5 is analys
receivePapers is eventually specified after selectPaper, w
counterexample could be found: 
 
MyLTL> check "{Mu.x((Mu.y(readAnAbstract; Epsilon + y); selectPaper
Epsilon + x); confirmSelection; receivePapers}"  
(F(U (Pr "selectPaper") (F(Pr "receivePapers")))
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(True,[]) 

As could be seen, the LTL queries were interpreted 
existence of events, or relationships between events found
using the semantics proposed here for the task flow diagrams.  These 
kinds of property can be verified globally for the workflows expres
diagrams.  The limitation with LTL is that the theorem has to hol
be falsifiable for at least one path).  It may be desirable 
different sets of paths, allowing a finer-grained kind of model checking. 

8.4.5 An implementation of model-checking with CTL  

As with the LTL code, the implementation of CTL model-checking defines the da
type Phi in order to specify the CTL expressions: 

data Phi    -- Path and State Operators 
 -- operands and logical operators  
 = Pr String  
 | Bool Bool 
 | Not Phi 
 | And Phi Phi 
 | Or Phi Phi 
 | Impl Phi Phi 
-- A ? - All: ? has to hold on all paths starting f
current state. 
 | AX Phi    -- Next phi 
 | AG Phi    -- All future states  
 | AF Phi    -- Eventually  
 | AU Phi Phi   -- Unti
-- E ? - Exists: there exists at least one path
the current state where ? holds. 
 | EX Phi    -- Next p
 | EG Phi    -- All future stat
 | EF Phi    -- Eventually  
 | EU Phi Phi   -- Until  
   deriving (Eq, Ord, Show) 

As in the LTL implementation, the function tr
used.  In addition, to check a CTL expression against a model in the algebra, the 
function check is defined.  The function check is declared as follow

check :: String -> Phi ->  ([ [Integer] ], 

check expr phi = (sort (sat (tree (Set.toList(tr exp
tree (Set.toList(tr expr)) ) 

In this implementations, the expression expr  is passed to 
the result is used by tree to build a tree representation 

as logical statements about the 
 in the traces generated 

and similar 
sed by the 

d for every path (or 
instead to quantify over 

ta 

rom the 

l  
 starting from 

hi 
es  

ace presented in section 8.2 is also 

: 

Node) 

r))) phi), 

tr  to generate the traces and 
based in the data type Node: 

 Node = Empty 

 |  Node ([Integer], Event) (SubTree) 

data

153 



Chapter 8: The Task Algebra Implementation  

   deriving (Eq, Ord, Show) 

type Empty =[] 

type SubTree = [Node] 

where as can be seen, a node may be an empty node, or a node containing a value (to 
identify the node, and Event which, as was mentioned above, represents the elements 
of the traces. In addition, a node may have a Subtree which, as can be seen, is defined 
as a lists of nodes. 

The result of check is a tuple containing first, a list with the numbers of the nodes for 
which the expression in CTL is true (or an empty list if its not the case), and the 
second element of the tuple is the whole tree representation.  The list of nodes is 
obtained by the function sat, which takes the CTL expression and, calling specific 
functions (e.g., satAX, satEF ) when necessary, returns the list of nodes satisfying the 
expression: 

sat :: Node -> Phi -> [ [Integer] ]

ression> 

 
 

e 

erting that the task 
able at least once (viz. in at least one trace), and 

1]],Node ([0],null) [Node ([0,3],Phi) 
[0,2],requestPassword) [Node ([0,2,2],Phi) [Empty],Node 

0,2,1],enterPassword) [Empty]],Node ([0,1],enterPassword) [Empty]]) 

second element of the 
 integrate 
 the level 

0, 2] 
, 2, 2].  As can be seen, the 

 
 

shows a visual tree 

 

The syntax for using the CTL applications is as follows: 

eck <task-algebra-expression> <CTL-expch

where task-algebra-expression is a string expressing a well-formed expression in the
algebra, and CTL-expression is a valid expression in CTL.  In this case, the result is
expressed as a pair of values containing first, the set of nodes for which the CTL 
expression is true (if there is any), and second, the structure of the tree built from th

aces. tr

In CTL for example, we could construct a theorem ass
enterPassword was eventually reach
test this against the algebra expression denoting the diagram in Figure 8.4:  

 
MyCTL> check "(Phi+Epsilon+(requestPassword; Epsilon + Phi)); 
enterPassword" (EF (Pr "enterPassword")) 
 
([[0],[0,1],[0,2],[0,2,
[Empty],Node (
[

As mentioned above, the result of check is a tuple containing first, a list with the 
numbers of the nodes for which the expression in CTL and the 
tuple is the whole tree representation.  The node [0] is null and it is used to
all the paths.  The enumeration of the nodes is consecutive and also depicts
of the node in the tree.  Consequently, subnodes of node [0] are nodes [0, 1], [
and [0, 3].  Node [0, 2] have as subnodes to [0, 2, 1] and [0
CTL application returns the nodes that are considered valid under the CTL expression
([0],[0,1],[0,2],[0,2,1]); where nodes [0,1] and [0,2,1] are the nodes representing the
states where the task enterPassword happens. Figure 8.7 
representation where the valid states can be observed.  
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Figure 8.7. Tree representation of traces from diagram in Figure 8.4 

Again, we may test the same CTL formula against the larger diagram from Figure 8.5 
where the compound task described in Figure 8.4 is embedded.  The Haskell 
command and the corresponding result are presented as follows (see Figure 8.8 for the 
visual tree representation): 

 
MyCTL> check "let Login={(Phi+Epsilon+(requestPassword; Epsilon + 

 
+ x); checkPaymentsStatus + completeReviewEForm + 

1],enterPassword) [Node ([0,3,1,6],Phi) [Empty],Node 
([0,3,1,5],requestPassword) [Node ([0,3,1,5,2],Phi) [Empty],Node 

,3,1,5,1,3],readAnAbstract) 
Node 

([0,3,1,5,1,3,2,1],confirmSelection) [Node 

vePapers) [Empty]]],Node 

lectPaper) 

Phi)); enterPassword} {readReviewerGuidelines + (Mu.x(Login; Epsilon

(Mu.x((Mu.y(readAnAbstract; Epsilon + y); selectPaper); Epsilon + x); 
confirmSelection; receivePapers))}" (EF (Pr "enterPassword")) 
 
([[0],[0,1],[0,3],[0,3,1]],Node ([0],null) [Node ([0,4],Phi) 
[Empty],Node ([0,3],requestPassword) [Node ([0,3,2],Phi) [Empty],Node 
([0,3,

([0,3,1,5,1],enterPassword) [Node ([0
[Node ([0,3,1,5,1,3,2],selectPaper) [
([0,3,1,5,1,3,2,2],readAnAbstract) [Node 
([0,3,1,5,1,3,2,2,2],selectPaper) [Node 
([0,3,1,5,1,3,2,2,2,1],confirmSelection) [Node 
([0,3,1,5,1,3,2,2,2,1,1],receivePapers) [Empty]]],Node 
([0,3,1,5,1,3,2,2,1],readAnAbstract) [Node 
([0,3,1,5,1,3,2,2,1,1],selectPaper) [Node 
([0,3,1,5,1,3,2,2,1,1,1],confirmSelection) [Node 
([0,3,1,5,1,3,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node 

([0,3,1,5,1,3,2,1,1],receivePapers) [Empty]]],Node 
([0,3,1,5,1,3,1],readAnAbstract) [Node 
([0,3,1,5,1,3,1,1],selectPaper) [Node 
([0,3,1,5,1,3,1,1,2],readAnAbstract) [Node 
([0,3,1,5,1,3,1,1,2,2],selectPaper) [Node 
([0,3,1,5,1,3,1,1,2,2,1],confirmSelection) [Node 
([0,3,1,5,1,3,1,1,2,2,1,1],recei
([0,3,1,5,1,3,1,1,2,1],readAnAbstract) [Node 
([0,3,1,5,1,3,1,1,2,1,1],selectPaper) [Node 
([0,3,1,5,1,3,1,1,2,1,1,1],confirmSelection) [Node 
([0,3,1,5,1,3,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,3,1,5,1,3,1,1,1],confirmSelection) [Node 
([0,3,1,5,1,3,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,3,1,5,1,2],completeReviewEForm) [Empty],Node 
([0,3,1,5,1,1],checkPaymentsStatus) [Empty]]],Node 
([0,3,1,4],readAnAbstract) [Node ([0,3,1,4,2],selectPaper) [Node 
([0,3,1,4,2,2],readAnAbstract) [Node ([0,3,1,4,2,2,2],se
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[Node ([0,3,1,4,2,2,2,1],confirmSelection) [Node 
([0,3,1,4,2,2,2,1,1],receivePa
([0,3,1,4,2,2,1],readAnAbstract) [Node 

pers) [Empty]]],Node 

,selectPaper) [Node 
1],confirmSelection) [Node 

([0,3,1,4,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node 

[0,3,1,4,1,1,2,1,1,1],confirmSelection) [Node 
[0,3,1,4,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node 

[0,3,1,4,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,3,1,3],enterPassword) [Node ([0,3,1,3,3],readAnAbstract) [Node 
([0,3,1,3,3,2],selectPaper) [Node ([0,3,1,3,3,2,2],readAnAbstract) 
[Node ([0,3,1,3,3,2,2,2],selectPaper) [Node 
([0,3,1,3,3,2,2,2,1],confirmSelection) [Node 
([0,3,1,3,3,2,2,2,1,1],receivePapers) [Empty]]],Node 
([0,3,1,3,3,2,2,1],readAnAbstract) [Node 
([0,3,1,3,3,2,2,1,1],selectPaper) [Node 
([0,3,1,3,3,2,2,1,1,1],confirmSelection) [Node 
([0,3,1,3,3,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,3,1,3,3,2,1],confirmSelection) [Node 
([0,3,1,3,3,2,1,1],receivePapers) [Empty]]],Node 
([0,3,1,3,3,1],readAnAbstract) [Node ([0,3,1,3,3,1,1],selectPaper) 
[Node ([0,3,1,3,3,1,1,2],readAnAbstract) [Node 
([0,3,1,3,3,1,1,2,2],selectPaper) [Node 
([0,3,1,3,3,1,1,2,2,1],confirmSelection) [Node 
([0,3,1,3,3,1,1,2,2,1,1],receivePapers) [Empty]]],Node 
([0,3,1,3,3,1,1,2,1],readAnAbstract) [Node 
([0,3,1,3,3,1,1,2,1,1],selectPaper) [Node 
([0,3,1,3,3,1,1,2,1,1,1],confirmSelection) [Node 
([0,3,1,3,3,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,3,1,3,3,1,1,1],confirmSelection) [Node 
([0,3,1,3,3,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,3,1,3,2],completeReviewEForm) [Empty],Node 
([0,3,1,3,1],checkPaymentsStatus) [Empty]],Node 
([0,3,1,2],completeReviewEForm) [Empty],Node 
([0,3,1,1],checkPaymentsStatus) [Empty]]],Node 
([0,2],readReviewerGuidelines) [Empty],Node  
([0,1],enterPassword) [Node ([0,1,6],Phi) [Empty],Node 
([0,1,5],requestPassword) [Node ([0,1,5,2],Phi) [Empty],Node 
([0,1,5,1],enterPassword) [Node ([0,1,5,1,3],readAnAbstract) [Node 
([0,1,5,1,3,2],selectPaper) [Node ([0,1,5,1,3,2,2],readAnAbstract) 
[Node ([0,1,5,1,3,2,2,2],selectPaper) [Node 
([0,1,5,1,3,2,2,2,1],confirmSelection) [Node 
([0,1,5,1,3,2,2,2,1,1],receivePapers) [Empty]]],Node 
([0,1,5,1,3,2,2,1],readAnAbstract) [Node 
([0,1,5,1,3,2,2,1,1],selectPaper) [Node 
([0,1,5,1,3,2,2,1,1,1],confirmSelection) [Node 
([0,1,5,1,3,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,1,5,1,3,2,1],confirmSelection) [Node 
([0,1,5,1,3,2,1,1],receivePapers) [Empty]]],Node 
([0,1,5,1,3,1],readAnAbstract) [Node ([0,1,5,1,3,1,1],selectPaper) 
[Node ([0,1,5,1,3,1,1,2],readAnAbstract) [Node 

([0,3,1,4,2,2,1,1]
([0,3,1,4,2,2,1,1,

([0,3,1,4,2,1],confirmSelection) [Node 
([0,3,1,4,2,1,1],receivePapers) [Empty]]],Node 
([0,3,1,4,1],readAnAbstract) [Node ([0,3,1,4,1,1],selectPaper) [Node 
([0,3,1,4,1,1,2],readAnAbstract) [Node 
([0,3,1,4,1,1,2,2],selectPaper) [Node 
([0,3,1,4,1,1,2,2,1],confirmSelection) [Node 
([0,3,1,4,1,1,2,2,1,1],receivePapers) [Empty]]],Node 
([0,3,1,4,1,1,2,1],readAnAbstract) [Node 
([0,3,1,4,1,1,2,1,1],selectPaper) [Node 
(
(
([0,3,1,4,1,1,1],confirmSelection) [Node 
(
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([0,1,5,1,3,1,1,2,2],selectPaper) [Node 
nfirmSelection) [Node 
eceivePapers) [Empty]]],Node 
Abstract) [Node 
ctPaper) [Node 
nfirmSelection) [Node 

[0,1,5,1,3,1,1,1],confirmSelection) [Node 

[0,1,5,1,2],completeReviewEForm) [Empty],Node 
[0,1,5,1,1],checkPaymentsStatus) [Empty]]],Node 
([0,1,4],readAnAbstract) [Node ([0,1,4,2],selectPaper) [Node 

2,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,1,4,2,1],confirmSelection) [Node ([0,1,4,2,1,1],receivePapers) 

[0,1,4,1,1],selectPaper) [Node ([0,1,4,1,1,2],readAnAbstract) [Node 
([0,1,4,1,1,2,2],selectPaper) [Node 

1],confirmSelection) [Node 
1,1],receivePapers) [Empty]]],Node 

1,1,1],confirmSelection) [Node 
([0,1,3,3,1,1,1,1],receivePapers) [Empty]]]]],Node 

([0,1,5,1,3,1,1,2,2,1],co
([0,1,5,1,3,1,1,2,2,1,1],r
([0,1,5,1,3,1,1,2,1],readAn
([0,1,5,1,3,1,1,2,1,1],sele
([0,1,5,1,3,1,1,2,1,1,1],co
([0,1,5,1,3,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node 
(
([0,1,5,1,3,1,1,1,1],receivePapers) [Empty]]]]],Node 
(
(

([0,1,4,2,2],readAnAbstract) [Node ([0,1,4,2,2,2],selectPaper) [Node 
([0,1,4,2,2,2,1],confirmSelection) [Node 
([0,1,4,2,2,2,1,1],receivePapers) [Empty]]],Node 
([0,1,4,2,2,1],readAnAbstract) [Node ([0,1,4,2,2,1,1],selectPaper) 
[Node ([0,1,4,2,2,1,1,1],confirmSelection) [Node 
([0,1,4,2,

[Empty]]],Node ([0,1,4,1],readAnAbstract) [Node 
(

([0,1,4,1,1,2,2,
([0,1,4,1,1,2,2,
([0,1,4,1,1,2,1],readAnAbstract) [Node 
([0,1,4,1,1,2,1,1],selectPaper) [Node 
([0,1,4,1,1,2,1,1,1],confirmSelection) [Node 
([0,1,4,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,1,4,1,1,1],confirmSelection) [Node 
([0,1,4,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,1,3],enterPassword) [Node ([0,1,3,3],readAnAbstract) [Node 
([0,1,3,3,2],selectPaper) [Node ([0,1,3,3,2,2],readAnAbstract) [Node 
([0,1,3,3,2,2,2],selectPaper) [Node 
([0,1,3,3,2,2,2,1],confirmSelection) [Node 
([0,1,3,3,2,2,2,1,1],receivePapers) [Empty]]],Node 
([0,1,3,3,2,2,1],readAnAbstract) [Node 
([0,1,3,3,2,2,1,1],selectPaper) [Node 
([0,1,3,3,2,2,1,1,1],confirmSelection) [Node 
([0,1,3,3,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,1,3,3,2,1],confirmSelection) [Node 
([0,1,3,3,2,1,1],receivePapers) [Empty]]],Node 
([0,1,3,3,1],readAnAbstract) [Node ([0,1,3,3,1,1],selectPaper) [Node 
([0,1,3,3,1,1,2],readAnAbstract) [Node 
([0,1,3,3,1,1,2,2],selectPaper) [Node 
([0,1,3,3,1,1,2,2,1],confirmSelection) [Node 
([0,1,3,3,1,1,2,2,1,1],receivePapers) [Empty]]],Node 
([0,1,3,3,1,1,2,1],readAnAbstract) [Node 
([0,1,3,3,1,1,2,1,1],selectPaper) [Node 
([0,1,3,3,1,1,2,1,1,1],confirmSelection) [Node 
([0,1,3,3,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,1,3,3,

([0,1,3,2],completeReviewEForm) [Empty],Node 
([0,1,3,1],checkPaymentsStatus) [Empty]],Node 
([0,1,2],completeReviewEForm) [Empty],Node 
([0,1,1],checkPaymentsStatus) [Empty]]]) 
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Figure 8.8 A partial tree representation of traces from diagram in Figure 8.5 

Or it could be asked, for example, if either the password is always requested initially 

er); Epsilon + x); 

lly readAnAbstract happens, followed by selectPaper (see Figure 8.9 for the 
visual tree representation): 

],Node ([0,1,1],readAnAbstract) [Node ([0,1,1,1],selectPaper) 
[Node ([0,1,1,1,2],readAnAbstract) [Node ([0,1,1,1,2,2],selectPaper) 

(the task requestPassword happens), or the task readReviewerGuidelines is always 
executed (the full tree representation is omitted): 
 
MyCTL> check "let Login={(Phi+Epsilon+(requestPassword; Epsilon + 
Phi)); enterPassword} {readReviewerGuidelines + (Mu.x(Login; Epsilon 
+ x); checkPaymentsStatus + completeReviewEForm + 
(Mu.x((Mu.y(readAnAbstract; Epsilon + y); selectPap
confirmSelection; receivePapers))}" (AX ( Or (Pr "requestPassword") 
(Pr "readReviewerGuidelines"))) 
 
([],Node ([0],null) [Node ([0,4],Phi) [Empty],Node 
([0,3],requestPassword) ...) 

In this case, since the CTL theorem is falsified, executing the CTL command returns 
an empty list in the first part of the result (denoting no solutions) and the second part 
returns the constructed CTL trace tree, as before.  In the next example, just an extract 
of the diagram in Figure 8.5 is analysed to verify whether, on at least one path, 
eventua

 
MyCTL> check "{Mu.x((Mu.y(readAnAbstract; Epsilon + y); selectPaper); 
Epsilon + x); confirmSelection; receivePapers}"  
(EF(EU (Pr "readAnAbstract") (Pr "selectPaper")))  
 
([[0],[0,1],[0,1,1],[0,1,1,1],[0,1,2]],Node ([0],null) [Node 
([0,1],readAnAbstract) [Node ([0,1,2],selectPaper) [Node 
([0,1,2,2],readAnAbstract) [Node ([0,1,2,2,2],selectPaper) [Node 
([0,1,2,2,2,1],confirmSelection) [Node 
([0,1,2,2,2,1,1],receivePapers) [Empty]]],Node 
([0,1,2,2,1],readAnAbstract) [Node ([0,1,2,2,1,1],selectPaper) [Node 
([0,1,2,2,1,1,1],confirmSelection) [Node 
([0,1,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,1,2,1],confirmSelection) [Node ([0,1,2,1,1],receivePapers) 
[Empty]]
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[Node ([0,1,1,1,2,2,1],confirmSelection) [Node 
([0,1,1,1,2,2,1,1],receivePapers) [Empty]]],Node 
([0,1,1,1,2,1],readAnAbstract) [Node ([0,1,1,1,2,1,1],selectPaper) 
[Node ([0,1,1,1,2,1,1,1],confirmSelection) [Node 
([0,1,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node 
([0,1,1,1,1],confirmSelection) [Node ([0,1,1,1,1,1],receivePapers) 
[Empty]]]]]]) 
 

 
Figure 8.9 A partial tree representation of traces from an extract of the diagram in Figure 8.5 

With the examples above it was shown that it is possible to model-check task flow 
models represented in the algebra, by testing CTL formulas against the corresponding 
traces.  A tree is first built from the traces in order to use this branching-time logic 
and then the theorem is tested, yielding the set of branches in which the theorem 
holds. 

8.5 Tests of the implementation 

There are some attempts to apply LTL and CTL queries to traces.  Traces semantics 
for positive core Xpath(a subset of XML Path Language), which translates into LTL 
an uses SPIN model checker [147]. Eleftherakis uses X-Machines to model and test 
software [148].  In [149, 150], Eleftherakis mentions XmCTL, an extended CTL 

ed in some 
queries.  Still, it takes no more than a few seconds to obtain the results from the 
ueries.  However, optimising the source code in Haskell or moving the 

implementation to another language could increase the performance. 

including two memory quantifier operators.  In [151],  it is described a query checking 
tool using CTL. This tool works over XChek, a multi-valued model-checker [152]. 

In our project, the task algebra and the model-checking tools were developed in 
Haskell. The implementation for the task algebra was tested using small and medium 
sized examples.  So far, no problems of execution were found while computing traces. 
The case of study, as was mentioned, is a medium sized project, and the limited 
number of loop-cycles also helps.  In addition, the level of detail in the task flows is 
usually not as high as in programming. 

Additionally, the implementation for the LTL and CTL queries with the examples 
presented here, and others of similar size are executed in a matter of seconds.  As can 
be expected, CTL queries are more time consuming because the tree has to be 
constructed from the trace sets and because exhaustive searching is need

q
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As mentioned above, the source code for the task algebra, and the LTL and CTL 
dix C.  

y 

e previous chapters demonstrated the soundness and congruence of the task 
ell 
w 

Diagram from the case study into the task 
ut 

ral 
logic pr heorems.  

 

queries can be seen in Appen

8.6 Summar

Th
algebra.  In this chapter, an implementation of the algebra in the Hask
programming language was described using a previously published Task Flo

 case study and translating the diagrams 
algebra.  The traces generated by the program were then the subject of queries abo
(in-)equality, tested using set operations, and more general theorems about tempo

operties, tested using LTL and CTL t

 

160 



 

Chapter 9:  
n

 

L query 

Co clusions  

 

In the previous chapter, the implementation of the algebra and the LTL/CT
tools w sults are summarized and the 
expecte  is also 
mentioned. 

ere presented.  In this chapter, the research re
d contribution is shown. The possible future work of this research

 

9.1 R

e 
depend ing more reliable.  What is needed is a 
better way to carefully examine software for accuracy and reliability.  In order for 

se 
specification.  However, it should be clear that the aim of specification is to 

 
program ion 
must b atics, but must also be comprehensible to, 

eeds 
 fo em.  

Traditi ability, 
through the expected problem of semantic 

Conseq ware 
uing this intention, an experimental 

f 
the diag  
simplic e goal was to go further and define the 

nt s 
tua he 

analyze

It was then decided to limit the scope of the research to providing a precise semantics 
 

rac  
present  
based on simple and com  
selection, and parallel composition.  Recursion and encapsulation were also 
considered.  The axioms of the algebra were presented as well as a set of examples 

esults 

Software has become increasingly important in everyday life; yet while we are mor
ent on it, it does not appear to be gett

software to be amenable to such an examination, it should have a preci

communicate the problem that we want to solve between users, designers and
mers.  Therefore, as Henderson mentions in [153], a formal specificat

e as elegant and precise as mathem
and readable by, people with different backgrounds.  These are contradictory n
and, r that reason, it is difficult to find the ideal balance between th

onally, software engineering follows the approach emphasising read
 intuitive diagrammatic notations, with 

imprecision and the difficulty of checking the specification. 

uently, major effort should continue to be directed into modelling soft
using notations with precise semantics.  Purs
approach was first followed, using Alloy to define and verify the abstract syntax o

rams in the Discovery Method, where these were chosen for their clarity and
ity over full UML notations.  Initially, th

sema ics for the Discovery Method using the Alloy analyzer.  This approach wa
even lly abandoned, due to problems encountered in restricting the scope of t

r.   

for the Task Model, consisting of Task Structure and Task Flow diagrams.  The
abst t syntax representation for the Task Flow model in the Discovery Method was

ed in chapter 5. This abstract syntax was used to define a task algebra, which is
pound tasks structured using operators such as sequence,
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showing a combination of basic elements in the expressions denoting simple, and 
omplex, Task Flow diagrams.  The task algebra was able to represent task 
 in a clear and elegant style.  Task Flow diagrams were 

more c
models also related to State 
Diagrams and Task Structure diagrams, as described in chapter 4.  

Subseq
semantics was designed in terms of trace sets representing all possible complete 

sk 
algebra
implem ped 
and pre  analysed 
by sub  
more g out temporal logic properties, tested using LTL and CTL 

In addi  published case- study was used to validate the task algebra. 
 

nt poral 
logic to

formal 
represe  can 
be used per 
creating task models does not need to learn any complicated formal language to 

e 
al 

 
 

and sim  be used even by software engineers having little 
s 
 

system vide a graphical 
, 

hand.   

All objec e achieved with different levels of satisfaction.  
the 

relation
restrict the 
developer, because these relationships are not established directly in the semantics.  

n 
the actual proposal, selection is just represented as a commitment that a choice 

re 
informa to the 
algebra e 
algebra. 

uently, the precise semantics for the abstract task algebra was developed.  The 

execution paths for a system of tasks.  The soundness and congruence of the ta
 was proved in Chapter 7 and Appendix B respectively.  In addition, an 
entation of the algebra in the Haskell programming language was develo
sented in chapter 8.  The traces generated by the program were then
mitting these to queries about (in-)equality, tested using set operations, and
eneral theorems ab

theorems. 

tion, a previously
The diagrams were translated from the case- study into the abstract syntax; the
sema ic traces were generated, and these were then submitted to queries in tem

 check for a selection of properties. 

Subsequently, as an outcome of our research, it is now possible to have 
ntations of the Task Model as used in the Discovery Method.  Task Models
 to represent in a precise way the interactions between tasks. The develo
 the 

create the intended formal specification.  The Task Model is itself equivalent to th
form specification, since it has a fully formal interpretation. 

From this perspective, it is believed that the work presented here could be easy to
integrate into the process of modelling software.  By itself, the task algebra is an easy

ple enough formalism to
previous experience with formal languages.  The abstract syntax and axiomatic rule
offer a means of proving the equivalence (or otherwise) of different workflow-based

s.  However, the intention of this approach is eventually to pro
tool to generate the diagrams and translate them automatically into the abstract syntax
so that the developer need not generate the representation in the formal language by 

9.2 Evaluation  

tives of this research wer
Whilst our approach proposes a precise abstract syntax for tasks and activities, 

ship between the Task Structure and the Task Flow diagram and the 
ions that this relationship defines have to be taken into account by 

Additionally, the task algebra is limited by not representing guards on selections.  I

happened in a trace (which is common in other trace-based approaches), but no mo
tion about the guards represented in the Task Flow diagram is mapped in
. This is a desirable characteristic to be considered in future version of th
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The denotational semantics were proposed in term of traces presenting a non-
ving model for parallinterlea el composition due to the necessity to restrict the 

interleaving for special cases involving the succeed and fail symbols that have the 
it 

symbol atment, compared with an identifier representing a simple 
task, being inserted at a selection point for each choice.  In addition, soundness and 

comple

em ons of 
model- ion.    

Inevita nt 
ered important 
.  

 
lat  

support pers, 
directly d in 
visualis eries, which are 

apable of visualising 
 of 

queries

pport for 
w 

the use w 
diagram ry Method.  Modelling guards will have clearly an impact in 

em

Finally
the representation of simple and compound tasks is unified at the lowest level of 

 determine 
the ss, the 

semantics abstrac s and 
 A future 

develop t 
represe in conditional expressions.  This could be 
developed, if simple tasks were decomposed further to express, in some form, how 

ns of 
each ta e triggering of 
differen d 
unsatisfied atomic preconditions.  What kind of symbolic calculus would be sufficient 

 

behaviour of finishing the execution of the activity in which they appear.  The comm
 has also a special tre

congruence is presented, but congruence was proved from the semantics and to be 
tely valid the completeness property still has to be proved. 

The last objective proposed to test the feasibility of the formal representation.  This 
impl entation was presented and also included additional implementati

checking tools, so taking advantage of the task algebra implementat

9.3 Future work 

bly, this research is never finished, it is merely published at a certain mome
when a line must be drawn under the work.  Some further work consid
for the future of this research involves in different aspects of the project

As was mentioned above, a graphical tool is still needed to generate the diagrams and
trans e them into the algebra.  This tool, which is envisaged as future work, will

 the automatic construction and simplification of formal models by develo
 from diagram specifications.  In addition, further work should be investe
ing the results from applying LTL and, particularly, CTL qu

not easy to interpret in their current form.  A graphical browser, c
and navigating over trees of traces, should help the developer understand the results

.   

In addition, for a future version of the algebra, it will be useful to add su
mapping the guards from the task diagrams into the algebra.  The guards should allo

 of values, variables and logical operators, which are allowed by the Task Flo
s in the Discove

the s antics and it will enhance the kind of queries to be applied over the models. 

, the formal semantics developed in this work is sufficient to demonstrate how 

representation.  This is enough to represent the tasks in some detail, to
whe r or not these tasks succeed or fail in their execution.  Neverthele

ts over the details of choices taken in conditional expression
does not further analyse simple tasks, which are considered atomic. 

ment in the semantics should consider including a suitable abstrac
ntation of the states tested 

they affected system states, which could be modelled as the atomic postconditio
sk.  This would support more detailed reasoning about th
t branches and the ability to handle exceptional cases, based on satisfied an

to represent such atomic stateful properties is a matter for future research. 
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Appendix A:  
Proving Basic Properties 

 

Chapte e axioms for the task algebra illustrated in 

 

r 7 described the soundness of th
chapter 5.  The trace semantics from chapter 6 and basic properties demonstrated 
here, w ppendix B will demonstrate 
the entire congruence properties for the axioms of the algebra.  

ere used to prove the soundness of the axioms.  A

A set o ssume ment. 
In this appendix, the proof for these properties is presented. The set of basic properties 
are as f

• A.1 A f ⊗     

• A.2 D

• A.5 Commutativity of //    

• A.6 Distribution of // over union   

• A.7 Identity for //      

• A.8 Distribution of unpack over union  

A.1 Associativity of ⊗ 
For:  

seta ⊗ b ∈ se ) 

 
Lemm lds:  

f basic operations were used in chapter 7 and a d as true at that mo

ollows: 

ssociativity o

istribution of ⊗ over union     

• A.3 Identity for ⊗      

• A.4 Associativity of  //     

setb = {a # b  | a, b ∈ Trace, a ∈ seta, tb } (cp1

 
We need to prove that:  
({Trace1}⊗{Trace2})⊗{Trace3}={Trace1}⊗({Trace2}⊗{Trace3}) 
 

a 1. It ho

 (Trace1#Trace2)#Trace3 = Trace1#(Trace2#Trace3)  
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where Trace1, Trace2 and Trace3 are any trace. 

Proof by induction. 

The formulae depicted from 1 to 5 are the base cases of the formula to prove. 

 

2. (<σ>#Trace2)#Trace3 = <σ>#(Trace2#Trace3) 

 = <σ>#Trace3  -- by (tc2) 

by (t

Trace2#Trace3) = <σ>    -- by (tc2) 

 Proof: 

ce2)#Trace3 = <φ>#Trace3  -- by (tc3) 

 

Trace2#Trace3) = <φ>    -- by (tc3) 

<

The formula to prove in this case is as follows: 

(<↓>#↓.rest)#Trace3 = <↓>#(↓.rest #Trace3) 

lent to: 

a.1   (<↓>#↓.rest)#Trace3 = (↓.rest)#Trace3   

1. (<>#Trace2)#Trace3 = <>#(Trace2#Trace3)

 Proof:  

(<>#Trace2)#Trace3 = Trace2#Trace3  -- by (tc1) 

and 

<>#(Trace2#Trace3) = Trace2#Trace3  -- by (tc1) 

Proof: 

(<σ>#Trace2)#Trace3

   = <σ>    -- c2) 

and 

<σ>#(

3. (<φ>#Trace2)#Trace3 = <φ>#(Trace2#Trace3) 

 (<φ>#Tra

    = <φ>    -- by (tc3) 

and 

 <φ>#(

4. (<↓>#Trace2)#Trace3 = ↓>#(Trace2#Trace3) 

Case 4.a: Trace2= ↓.rest 

Equiva

and 
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Appendix A: Proving Basic Properties  

a.2     <↓>#(↓.rest #Trace3) = (↓.rest)#Trace3   

Proof:  

4.a.1:  

(<↓>#↓.rest)#Trace3  =  (↓.rest)#Trace3  -- by (tc4) 

4.a.2:   

        To prove:  <↓>#(↓.rest #Trace3) = (↓.rest)#Trace3   

We are going to prove by induction over the length of rest: 

4.a.2.1 Base cases:  

Zero length:   rest = < > . 

 follows: 

↓ ↓ ↓

Observe that:  ( ↓.< >)#Trace3 = <↓ >#Trace3 

<↓>#(↓.< >#Trace3)  = <↓>#(<↓ >#Trace3)  

4.a.2.1.a)    If Trace3 =  ↓.Trace4, then  

)  

race4)                                                

4.a.2.2 For base cases of length 1: 

race3)  

For this case the formula to prove is as

 < >#( .< >#Trace3) =  (< >)#Trace3 

Proof: 

          <↓>#(<↓ >#Trace3)= <↓>#( <↓ >#(↓.Trace4)

                               = <↓>#( Trace3) .                                               

4.a.2.1.b)  If  a ≠↓  and Trace3 = a.Trace4,  then 

 <↓>#(↓.< >#Trace3) =<↓>#(<↓ ># a.Trace4) =  <↓>#(↓. a.T

                           =↓. a.Trace4 =  <↓>#(Trace3). 

Case 4.a.2.2.a :  s is an identifier.  

Formula to prove: 

                          <↓>#(↓.<s> #Trace3) = (↓.<s>)#Trace3   

Proof: 

<↓>#(↓.< s>#Trace3)  = <↓>#(↓.< s> # T
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                                     =<↓>#(↓.(< s> # Trace3))                 -- by (tc6) 

                                    = ↓.(< s> # Trace3)                            -- by (tc4) 

↓ -- by (tc6) 

Case 4.a.2.2.b :  s = σ . 

race3) = (↓.<σ>)#Trace3   

Proof:  

<↓>#(↓.<σ>#Trace3)  = <↓>#(↓.(<σ> # Trace3))            -- by (tc6) 

Proof: 

Trace3)                     -- by (tc4) 

race3  =↓.(<φ> # Trace3))                    -- by  (tc6) 

race3) = (↓.<↓>)#Trace3 

In addition,  

(↓.<s>)#Trace3 =   .(< s> # Trace3)                             

Formula to prove: 

                          <↓>#(↓.<σ> #T

                                       = ↓.(<σ> # Trace3)                     -- by (tc4) 

In addition, 

    (↓.<σ>)#Trace3  =↓.(<σ> # Trace3)                     -- by (tc6) 

Case 4.a.2.2.c :  s = φ . 

Formula to prove: 

                          <↓>#(↓.<φ> #Trace3) = (↓.<φ>)#Trace3   

<↓>#(↓.<φ>#Trace3)  = <↓>#(↓.(< φ> # Trace3))             -- by (tc6) 

                                       = ↓.(<φ> # 

In addition, 

    (↓.<φ>)#T

Case 4.a.2.2.d : s = ↓ 

Formula to prove: 

 <↓>#(↓.<↓> #T

Proof: 

<↓>#(↓.< ↓ >#Trace3)  = <↓>#(↓.(< ↓ >#Trace3))    -- by (tc6)  

                                       =  ↓.(< ↓ >#Trace3)             -- by (tc4)  
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4.a.2.3 Induction hypothesis.  Supposing it holds for traces in rest of until k 
symbols, k ≥ 1: 

<↓>#(↓.rest #Trace3) = (↓.rest)#Trace3 

4.a.2.4 Induction step.  Let rest=s. rest1, where rest1 is a trace of k symbols and 

>. ↓.↓ is transformed 

<↓>#(↓.rest #Trace3) = <↓>#(↓.s.rest1 #Trace3) 

                                    =<↓>#(↓.(s.rest1 #Trace3))             -- by (tc6) 

-- by (tc4) 

                                   = Trace3) 

In addition,  

(↓.rest)#Trace3 = (↓.s.rest1)#Trace3 = ↓. (s.rest1#Trace3)       -- by (tc6) 

Case 4b: Trace2= a.rest where φ. 

a ≠ σ y o length 1 already 
proved

 prove is: 

.rest)#Trace3 = <↓>#( a.rest #Trace3) 

of:  

Trace3 = (↓.a.rest)#Trace3  -- by (tc5) 

y (tc6) 

↓>#(a.rest#Trace3)  -- by (tc6) 

#Trace2)#Trace3 = <a>#(Trace2#Trace3) where a  is an identifier 
ifferent to σ, φ and ↓) 

(<a>#Trace2)#Trace3 = (a.<>#Trace2)#Trace3 -- by cons operator 

   = (a.(<>#Trace2))#Trace3 -- by (tc6) 

s  is an identifier.    

rest is a trace of length 1, <σ> or <φFot other cases in s, 
in ↓ and the formula holds by the induction hypothesis. 

Case 4.a.2.4.a : s is an identifier. 

                                    = ↓.(s.rest1 #Trace3)   

 ↓.(rest #

a is different of  ↓, σ and 

  a ≠ φ can be assumed since these cases are reduced t
. 

The formula to

(<↓>#a

Pro

(<↓>#a.rest)#

           =  .(a.rest#Trace3)  -- b↓

                     = <

 

5.  (<a>
(d

Proof:  
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 -- by (tc1) 

   = a.(Trace2# race3)  -- by (tc6) 

 and  

<a> e2#Tr

   = a.(<>#(Trace2#Trace3)) -- by (tc6) 

   = a.(Trace2#Trace3)  -- by (tc1) 

6. Induction hypothesis. Assuming the formula  

(Trace1#Trace2) #Trace3 = Trace1#(Trace2#Trace3) ,  holds for every trace Trace2, 
Trace3  longer than k, where k ≥ 1. 

7. Induction step. Assuming that Trace1=a.Trace, where Trace is a trace of length 
k and a is an identifier or a=↓.  For other cases, the trace has a length of 1. 

Case 7.a:  a is an identifier. 

(a.Trace #Trace2) #Trace3  =  (a.(Trace #Trace2)) #Trace3    -- by (tc6) 

                            =   a.( (Trace #Trace2) #Trace3)    -- by (tc6) 

In addition,  

a.Trace #(Trace2#Trace3) = a.(Trace #(Trace2#Trace3))      -- by (tc6) 

= a.( (Trace #Trace2)#Trace3)     -- by  6 

Case 7.b:  a =↓ 

(↓.Trace #Trace2) #Trace3  = (↓.(Trace #Trace2)) #Trace3        -- by (tc6) 

In a i

↓.Trac race3)  =↓.(Trace #(Trace2#Trace3))  

     
 

 

Theorem.  Let {Trace1}, {Trace2} and {Trace3} be three non-empty sets of traces. 
Then it holds 
({Trace1}⊗{Trace2})⊗{Trace3}={Trace1}⊗({Trace2}⊗{Trace3}) 

Proof: 
Let c be an element of ({Trace1}⊗{Trace2})⊗{Trace3}.  Then c=Trace#Trace3’, 

  = (a.Trace2)#Trace3  

T

#(Trac ace3) =  a.<>#(Trace2#Trace3) -- by cons operator 

, if Trace1 is no

                                  = ↓.( (Trace #Trace2) #Trace3)      -- by (tc6) 

dd tion,  

e #(Trace2#T -- by (tc6) 

                                        =↓.((Trace #Trace2)#Trace3)           -- by 6 
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where Trace∈({Trace1}⊗{Trace2}) and Trace3’∈{Trace3}.  
Trace∈({Trace1}⊗{Trace2}), implies that Trace=Trace1’#Trace2’, for some 
Trace1’∈{Trace1} and some Trace2’∈{Trace2}.  In consequence, 
=(Trace1’#Trace2’)#Trace3’.  By lemma 1, 
race1’#Trace2’)#Trace3’=Trace1’#(Trace2’#Trace3’).  Then, 

Conversely, let c be an element of {Trace1}⊗({Trace2}⊗{Trace3}).  Then, there is a 
e3}), such that 

c=Trace1’#Trace.  Trace has the form Trace2’#Trace3’, where Trace2’ belongs  to 
race3}.  Then, c=Trace1’#(Trace2’#Trace3’).  By 

Trace1’#(Trace2’#Trace3’)=(Trace1’#Trace2’)#Trace3’.  Then, 
})⊗{Trace3}.  

This m

A.2 Distribution of ⊗ over union 
For:  
 
seta ⊗ setb = {a # b  | a, b ∈ Trace, a ∈ seta, b ∈ setb } (cp1) 
 
We need to prove that:  
({Trace ∪{Trace2})⊗{Trace3}  
     = ({Trace1}⊗({Trace3})∪({Trace2}⊗{Trace3}) 

Proof. 

Let  c  be a  arbitrary element of ({Trace1}∪{Trace2}⊗{Trace3},  then c=a#b, for 
some a∈({Trace1}∪{Trace2}) and for some b∈{Trace3}.   

Since a n element of the union of two sets, then a∈{Trace1}  or  a∈{Trace2} 
holds.   If a∈{Trace1}, then a#b∈{Trace1}⊗{Trace3} holds, by definition.     

If a∈{Trace2}, then  a#b∈{Trace2}⊗{Trace3}, by definition.  Thus, 
a#b∈({Trace1}⊗({Trace3})∪({Trace2}⊗{Trace3}) is true. 

It follows that c∈({Trace1}⊗{Trace3})∪ ({Trace2}⊗{Trace3}), as desired. 

 

Conversely, let c be an element of   ({Trace1}⊗{Trace3})∪ ({Trace2}⊗{Trace3)}. 

In this case, c∈{Trace1}⊗{Trace3} or  c∈{Trace2}⊗{Trace3}. 

If c∈{Trace1}⊗{Trace3} holds. Then, c is of the form  a#b,  for some a∈{Trace1}  
and  for some b∈{Trace3}.  This implies, a∈({Trace1}∪{Trace2}), b∈{Trace3} and, 

ition,  a#b∈({Trace1}∪{Trace2})⊗{Trace3}.  Then, 
c∈({Trace1}∪{Trace2})⊗{Trace3}, as desired. 

In the second case, c∈{Trace2}⊗{Trace3} holds, the proof is similar. 

c
(T
c=Trace1’#(Trace2’#Trace3’).  This implies c∈{Trace1}⊗({Trace2}⊗{Trace3}). 
 

trace Trace1’ of {Trace1} and a trace Trace of ({Trace2}⊗{Trac

{Trace2} and Trace3’ belongs to {T
lemma 1, 
c=(Trace1’#Trace2’)#Trace3’.  This implies c∈({Trace1}⊗{Trace2

eans that both sets are equals. 

1}

n

 is a

by defin
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In b }⊗{Trace3)}  implies 
c∈({Trace1

A.3  Identity ⊗
For
 
seta ⊗ setb = {a # b  | a, b ∈ Trace, a ∈ seta, b ∈ setb } (cp1) 
 
We need to prove that:  
 {Trace}⊗{<>}={Trace}  
and 
 {<>}⊗{Trace}={Trace}  

 
Proof. 
 
For the first equality, let c be an arbitrary element of {Trace}⊗{<>}, then 
c=Trace1#<>, where Trace1∈{Trace} and <>∈{<>}, by properties (tc6, tc1 and 
cons operator) Trace1#<>=Trace1.  Therefore, c=Trace1 and then c∈{Trace}. 
 
Reciprocally, if c∈{Trace}, then c=Trace1, where Trace1∈{Trace}.  However, by 
(tc6, tc1 and cons operator) Trace1=Trace1#<>, consequently 
Trace1∈{Trace}⊗{<>}. Therefore, c∈{Trace}⊗ {<>}. 
 
Therefore, we have proved that all the elements in the set {Trace}⊗{<>} are elements 
in the set {Trace}. In addition, that all the elements in the set {Trace} are elements in 
the set race}⊗ {<>}. This implies the equality of both sets. 
 
 
For the second equality, let  c be and arbitrary element of {<>}⊗{Trace}, then 
c=< ) <>#Trace1=Trace1. 
Therefore, . 
 
Rec o Trace1, where Trace1∈{Trace}. However, by 
(tc1) Trace1∈{<>}⊗{Trace}.  Therefore, 
c∈{
 
The et {<>}⊗{Trace}  are 
elements in the set {Trace}. In addition, that all the elements in the set {Trace} are 
elem

A.4 Associativity of // 

In orde e associativity of  //,   we need to calculate  the image of the 
function ~ over all the possible pair of traces.  However,  note  that   we only need to 
know the image of  pairs  taken from the set {< >, <σ>, <φ>, <↓>} and of a particular 
set  of  pairs of traces , the called basic traces (Definition 3), to   characterise  the 
general behaviour of  ~ .  Moreover, we claim that it is enough to prove the 
associativity of  //  for  sets with only one element.  This follows as a consequence of   

oth cases, c∈({Trace1}⊗{Trace3})∪({Trace2
}∪{Trace2})⊗{Trace3}. 

for  
:  

{T

>#Trace1, where Trace1∈{Trace} and <>∈ {<>}, by (tc1
c=Trace1 and then c∈{Trace}

ipr cally, if c∈{Trace}, then c=
Trace1=<>#Trace1, consequently 

<>}⊗{Trace}. 

refore, we have proved that all the elements in the s

ents in the set {<>}⊗{Trace}. This implies the equality of both sets. 

r to prove th
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Proposition 1.  In this section, we only will show the proof for sets containing one 
element, to give the idea of our approach. 
 
Definition 1.  We will call  a´  a  symbol,  if   a´= a  or  a´= a, ↓  holds,  where  a  is 
an identifier . 
 
Definit  Let Trace1, Trace2 and Trace3 be three traces.  Trace2 is a truncation  
of   Trace1, if and only if there exists a trace Trace3, such that  
Trace1= Trace2 # Trace3. 
 
Definition 3.  A trace Trace will be called  a trace in the basic form  or , in short, a  
basic tr

a) , where r  ,  for    

ion 2 . 

ace ,  if  Trace   has one of these forms: 

  1 ,..., kTrace a a′ ′=< >
,

i

i

i

a
a o

a

⎧
⎪′ = ⎨
⎪ ↓⎩

1 i k≤ ≤   and   are 

a σ′ ′ > ,  where r
⎧
⎪′ = ⎨

↓
 ,  for    

1, ..., ka a

identifiers,  k  is an integer greater or equal than   1. 

b) Trace a=< 1 ,..., ,k

,

i

i

i

a
a o

a⎪
⎩

1 i k≤ ≤   and   are 

identifiers,  k  is an integer greater or equal than   1. 

c) ,  where r  ,  for    

1, ..., ka a

 1 ,..., ,kTrace a a φ′ ′=< >
,

i

i

i

a
a o

a

⎧
⎪′ = ⎨
⎪ ↓⎩

1 i k≤ ≤   and   are 

identifiers,  k  is an integer greater or equal than   1. 
 

Notation 1.   
 1. If we have ,  then  its  truncation   is equal to   < >,  if  
k = 1. 

2. 
i=
U  = 1  and    is a  collection of sets,  m  ≥1. 

i
oid confusions we will change our notation: 

 are non-empty sets consisting of 

 A, B and C be non-empty sets of traces. Then it holds: 

a) 

1, ..., ka a

1 ,..., kb b′ ′< > 1 1,..., kb b −
′ ′< >

1

iA
−

= ∅ , if  k
1

k

{ } 1

m
i i

A
=

 
on 2.  Notat

To av
A will denote {Trace1}, B, {Trace2} and C, {Trace3}. 
 
We want to prove: 
 
(A // B) //  C = A // (B // C),   where A, B and C
races. t

 

Proposition 1.   Let 

  / / ~A B a b= U  
( ),a b A B∈ ×
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{ } { }~ / /a b a b=b) If   a and b are two arbitrary traces, then . 

on o on-empty sets of traces, then 

∈ ∈

⎛ ⎞

c) { } { }( )/ / / /A B a b= U  
( ),a b A B∈ ×

d) If { }i i I
A

∈
 is a non-empty collecti f n

( )/ / / /i iA B A B=⎜ ⎟
⎝ ⎠i I i I
U U

∈
 is a non-empty collection of non-empty sets of traces, then 

( ) ( )

. 

e) If { }iB
i I

/ / / /i i
i I i I

A B A B
∈ ∈

=U U . 

f) Then it holds  

( ) { } { }( ) { }( )
(( ,

/ / / /
a b

A B C =
) ) ( )

( ) { }( )
,

/ / / /

~ / /

c A B C

a b A B C

a b c

a b c

∈ × ×

∈ × ×

U
  

 And  

( ), , c

= U

{ } { } { }( )( )( )
( )( ), ,a b c A B C∈ × ×

 
{ } ( )( )

/ / / / / / / /

/ / ~

A B C a b c

a b c

=

=

U
        

( ), ,a b c A B C∈ × ×
U

g) { } { } { }/ / / /B Bφ< φ φ> = < > = < > , if B doesn’t contain the trace σ< > . 

h) { } { } { }/ / σ= < > = < > .  / /B Bσ σ< >

i) If B is a set of traces of the form ↓.rest, where rest is a trace.  Then {↓}⊗ B=B. 

j) If for each arbitrary chosen traces  ,  ,a b   c ( ) { } { } ( )~ / / / / ~a b c a b c=  

holds, then ( ) ( ) holds for each non-empty sets of traces / / / / / / / /A B C A B C=
A, B and C. 

k) Let Trace1 and Trace2 be two traces, a and b two identifiers. Then 

( ) ( ).1 , # 1 ~ # 2k a Trace b Trace< ↓> < > =

{ } ( )( ) { } ( )( ), 1 ~ # 2 , # 1 ~ 2a Trace b Trace b a Trace Trace< ↓> ⊗ < > < > ⊗ < ↓>U=

( ) ( ).2 # 1 ~ , # 2k a Trace b Trace< > < ↓> =

{ } ( )( )( ) { } ( )( )( )1 ~ , # 2 , 1 ~a Trace b Trace b Trace T= < > ⊗ < ↓> < ↓> ⊗ <U # 2a race>
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( ) ( ).3 ,k a< ↓>

{ } ( )( )( ) { } ( )(( ))
# 1 ~ , # 2

2

Trace b Trace

race

< ↓> =

this re son we 
will use the following generalisation of (ti9): 

         a.as ~ b.bs = ({<a>})⊗(as ~b.bs) ∪ ({<b>}⊗(bs ~ a.a

bols. 

his section we will mention this generalisation as (ti9) too. 

 that  
( ) { }

, 1 ~ , # 2 , , # 1 ~a Trace b Trace b a Trace T= < ↓> ⊗ < ↓> < ↓> ⊗ < ↓>U

 

These  statements show that symbols behaviour like  identifiers. For a

s))  

           where a and b are sym

During t

l) Let Trace1, Trace2 and Trace3 be traces. Suppose
{ } ( )  holds. 

Thus, the following relations holds: 

. 

1 ~ 2 / / 3 1 / / 2 ~ 3Trace Trace Trace Trace Trace Trace=

( )( ) { } { } ( )# 1 ~ 2 / / 3 # 1 / / 2 ~Trace Trace Trace Trace Trace Trace<↓> = <↓>1 3

 

2. ( )( ) { } { } ( )( )1 ~ # 2 / / 3 1 / / # 2 ~Trace Trace Trace Trace Trace Tra<↓> = <↓>

 

3ce

3. ( ) { } { } ( )( )1 ~ 2 / / # 3 1 / / 2 ~ # 3Trace Trace Trace Trace Trace Trace<↓> = <↓>

 

4. ( ) ( )( ) { } { } ( )( )# 1 ~ # 2Trace Trace<↓> <↓> / / 3 # 1 / / # 2 ~ 3Trace Trace Trace Trace= <↓> <↓>

 

5. ( )( ) { } { } ( )( )# 1 ~ 2 / / # 3 # 1 / / 2ace Trace Trace Trace Trace<↓> = <↓> ~ # 3Tr Trace<↓> <↓>

 

6. ( )( ) { }# 1 ~Trace↓> 2 / / # 3Trace Trace< <↓> =  

{ } ( )( )# 1 / /Trace T<↓> 2 ~ # 3race Trace= <↓>  

7. ( )( ) ( ) { }# 1 ~ # 2 / / # 3Trace Trace Trace<↓> <↓> =  <↓>

      { } ( ) ( )( )# 1 / / # 2 ~ # 3Trace Trace Trace= <↓> <↓> <↓>  

Proof.  

a) It is straightforward from the definitions. 
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b) It is str e definitions. 

c) It follows by b) and by the definition of //. 

d) If   is a pty s ts of tr , by  c), 

/ / / / / / / /
i i

i
i I i I a A b B i I a A

b B
b B

i
i I

A B a b a b a b
∈ ∈ ∈ ∈ ∈ ∈

∈
∈

∈

⎛
= = =⎜ ⎟

⎝

=

U U UUU UU
  

e) This proof is similar to the previous. 

f)  From the previous properties and because there exits a bijection between the 
 and   

aightforward from th

{ }i i I
A

∈
  non-empty collection of non-em e aces.  Then

⎞ { } { }( ) { } { }( ) { } { }( )
i

i I

a A
∈

∈⎠ U

( )/ / .A BU

sets  ( )A B C× × A B C× ×  it follows: 

} { } { } { } { }

( ) { } { }( ) { } { }( ) { }

{ } {((
( )

) ) ( )( )
( )( ) ( )

( ) { }( )
, ,

/ / / / / / / / / / / /

/ / / / / /

~ / / .

a A c C a A
b B b B

a b c A B C

A B C a b C a b c

b c a b c

a b c

∈ ∈ ∈
∈ ∈

∈ × ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

=⎟⎟

=

U U U

U

U

 b), f) and the hypothesis. 

  Without lost of generality we can suppose that the first element of the trace 
 

⎛ ⎞

,

/ /
c C a b A B

a
∈ ∈ ×

= ⎜⎜
⎝ ⎠

U U
⎛ ⎞

( ), ,a b c A B C∈ × ×

 

The other equality is proven similarly. 

g) It follows from the definitions and from (ti5) and (ti6). 

h) It follows from (ti3), (ti4) and b). 

i) It is consequence of (tc4). 

j) It follows straightforward from

k) It follows from (ti9), (ti7) and (ti8). 

l)
(from left to right) is not  ↓.  We will prove 1 and 4.  The other proofs are
similar. 

Proof  of 1. 
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By (ti7) and the hypothesis,  
( )( ) { } { } (( )) { }

{ } ( ) ))
1 ~ 2 / / 3

3 .

race Trace Trace

ce

=

{ }( ) { } { } ((1 ~ 2 / / 3 1 / / 2 ~Trace Trace Trace Trace Trace Tra= <↓> ⊗ = <↓> ⊗

 

# 1 ~ 2 / / 3Trace Trace Trace T<↓> = <↓> ⊗

Thus, 
( )( ) { } { } { } ( )( )1 / / 2 ~ 3 .race Trace Trace

On the other hand,   using (ti7) and the hypothesis: 

# 1 ~ 2 / / 3Trace Trace Trace T<↓> = <↓> ⊗

 

( )( ) { } { } ( )( ) { }

{ } ( )( ) { } { } ))
# 1 ~ 2 / / 3 1 ~ 2 / / 3

3

Trace Trace Trace Trace Trace Trace

Trace

<↓> = <↓> ⊗

me set. 

((1 ~ 2 / / 3 1 / / 2 ~Trace Trace Trace Trace Trace= <↓> ⊗ = <↓> ⊗

Therefore,   both members of the equality to prove are the sa

 Proof  of  4.  

By (ti7) the hypothesis and (ti8) we have: 

( ) ( )( ) { } { } ( )( ) { }

{ } ( )

( ) ( )( )
} ( )( )

( ) ( )( )

# 1 ~ # 2 / / 3 1 ~ 2 / / 3

# 1 / / 2 ~ 3

2 ~ 3

# 1 / / # 2 ~ 3

Trace Trace Trace Trace Trace Trace

e

Trace Trace Trace

Trace Trace

Trace Trace Trace

<↓> <↓> = <↓> ⊗

= <↓>

↓> ⊗

= <↓> <↓>

tb =  U{ a ~ b | a, b ∈ Trace,  a ∈ seta, b ∈ setb }  (di1) 

where Trace1 and Trace2 are any trace 

{ }( )1 ~ 2 / / 3Trac Trace Trace= <↓> ⊗

{ } { } ( )( )1 / / 2 ~ 3Trace Trace Trace= <↓> ⊗

( ) {# 1 / /Trace= <↓> <

Remember :  #<↓> <↓> = <↓> . 

A.5 Commutativity of // 
For: 

seta // se
 
We need to prove that:  
 
{Trace1} // {Trace2} = {Trace2} // {Trace1} 
 
 
Lemma 1. It holds: 

Trace1~Trace2 = Trace2~ Trace1  
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Proof  by cases. 

Case 1. <>~Trace2 = Trace2~<>     -- by  (ti1) and  (ti2). 

i3) and (ti4). 

φ>~Trace2   -- by (ti5) and (ti6). 

We just need to prove the equality on the next case. The other cases have been proved 
 1-3. 

a ≠ σ y  a ≠ φ can be assu ed since these cases are reduced to length 1 already 

tor 

 =  {<↓>} ⊗ ( <> ~ a.rest)   -- by (ti7)  

ti1)  

cons operator 

 

 (ti2) 

ase 5.  <a>~Trace2 = Trace2~<a> where a  is an identifier (different to σ, φ and ↓). 

nly two cases remain to be proved. The other cases are already proved in cases 1-4.  

ase 5.a: Trace2=b.rest where b is different of σ, ↓ and φ. 

roof:  

a>~b.rest  = a.<> ~ b.rest      -- by cons operator 

 = ({<a>} ⊗ (<> ~ b.rest)) ∪ ({<b>} ⊗ (rest ~ a.<>)) -- by (ti9) 

Case 2. <σ>~Trace2 = Trace2~<σ>   -- by (t

Case 3. <φ>~Trace2 = <

Case 4. <↓>~Trace2 = Trace2~<↓> 

in cases

Trace2 = a.rest,  where a is different of σ and φ. 

m
proved. 

The formula to prove is: 

<↓>~a.rest = a.rest ~<↓> 

Proof:  

<↓>~a.rest  =  ↓.<> ~ a.rest   -- by cons opera

 

  =  {<↓>} ⊗ {a.rest}    -- by (

In addition, 

a.rest ~<↓> = a.rest ~↓.<>    -- by 

  = {<↓>} ⊗ (a.rest ~<> )  -- by (ti8)

 = {<↓>} ⊗ {a.rest}    -- by

 

C

O

C

P

<
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In addition,  

   -- by cons operator 

(ti9) 

 ({<a>} ⊗ (<> ~ b.rest)) ∪ ({<b>} ⊗ (rest ~ a.<>))  

-- by commutativity of the 
union of sets. 

 Trace2=↓.rest . 

.rest ~<a> = {< ↓>}⊗ (rest ~<a>)    -- by (ti7). 

} ⊗ (Trace ~ b.rest)) ∪ ({<b>} ⊗ (rest ~ a.Trace)) 
        -- by (ti9) 

race   

.rest))  

-- by (ti9) 

    ({<b>} ⊗ (rest ~ a.Trace))  

b.rest~<a>  = b.rest ~ a.<>   

  = ({<b>} ⊗ (rest ~ a.<>)) ∪ ({<a>} ⊗ (<> ~ b.rest)) -- by 

  =

Case  5.b:

Proof:  

<a>~↓.rest = {< ↓>}⊗ (rest ~<a>)    -- by (ti8). 

In addition, 

↓

 

Cases 6. Assuming that Trace1=a.Trace, where Trace is a trace of length k, k ≥1,  and 
a is an identifier or a=↓.  For other cases, the trace has a length of 1, and these cases 
have been already proved. 

Case 6.a:  a is an identifier. 

 Case 6.a.a: Trace2=b.rest, where rest is a trace of length k and b is an 
identifier or b=↓. 

  Case 6.a.a.a: b is an identifier 

a.Trace ~b.rest  

=  ({<a>

In addition,  

b.rest ~ a.T

 = ({<b>} ⊗ (rest ~ a.Trace)) ∪ ({<a>} ⊗ (Trace ~ b

= ({<a>} ⊗ (Trace ~ b.rest)) ∪

-- by commutativity of the 
union of sets. 

189 



Appendix A: Proving Basic Properties  

Case 6.a.a.b: b=↓ 

a.Trace ~ ↓.rest  

=    {<↓>} ⊗ (rest ~ a.Trace)   -- by (ti8) 

In addi

↓.rest ~ a.Trace   

= {<↓>} ⊗ (rest ~ a.Trace)   -- by (ti7) 

Case 6.b:  a =↓ 

↓.Trace ~Trace2  = {<↓>} ⊗ (Trace ~Trace2)  -- by (ti7) 

In addition,  

ce ~Trace2)  -- by (ti8) 

 

Theorem. Let {Trace1} and {Trace2} be two non-empty sets of traces. Then it holds 
ace1}//{Trace2}={

 
Proof: 
Let c  be an arbitrary element of  {Trace1}//{Trace2}. Then c∈Trace1’~Trace2’, 
where B  lemm ow 
Trace1’~Trace2’=Trace2’~Trace1’. Then, c∈ Trace2’~Trace1’. This set is a subset 
of  {Tra
 
Conver  a trace Trace2’ 
of {Trace2} and a trace Trace1’ of {Trace1} such that c∈Trace2’~Trace1’.  By 

∈Trace1’~Trace2’.  This 
implies c∈{Trace1}//{Trace2}, by definition. 

This means that both sets are equals. 

A.6 Distribution of // over union 
or: 

 
We nee
 

     = ({Trace1}//({Trace3})U({Trace2}// {Trace3}) 

Proof. 

tion,  

Trace2 ~↓.Trace   = {<↓>} ⊗ (Tra

 

{Tr Trace2}//{Trace1}  

Trace1’∈{Trace1} and Trace2’∈{Trace2}.  y a 1, we kn

ce2}//{Trace1}, by definition. 

sely, let c be an element of {Trace2}//{Trace1}.  Then, there is

lemmas 1, Trace2’~Trace1’=Trace1’~Trace2’.  Then, c

 

F

seta // setb =  U{ a ~ b | a, b ∈ Trace,  a ∈ seta, b ∈ setb }  (di1) 

d to prove that: 

({Trace1}U{Trace2})//{Trace3}  
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Let c be an arbitrary element of ({Trace1}U{Trace2})//{Trace3} en c=a~b, th , for 
some a∈({Trace1} {Trace2}) and for some b∈{Trace3}.   

Since a is an element of the union of two sets, then a∈{Trace1} or a∈{Trace2} holds.  
∈{Trace1}, then a , by definition.   

If a∈{Trace2}, then
a~b∈({Trace1}//({Trace3})U({Trace2}//{Trace3}) is true. 

It follows that c∈({Trace1}//{Trace3})U({Trace2}//{Trace3}), as desired. 

 

Conversely, let c be an element of ({Trace1}//({Trace3})U({Trace2}// {Trace3}). 

In this case, c∈({Trace1}//({Trace3}) or c∈({Trace2}// {Trace3}). 

If c∈({Trace1} {Trace3})  the fo ~ ome a∈{Trace1}  and  for 
y 

definition,  a~b∈({Trace1}U{Trace2})//{Trace3}.  Then, 

he second case, c∈ e proof is similar. 

In both cases, c∈({T //{Trace3)} implies 
c∈({Trace1}U{Trace2})//{Trace3}. 

A.7  Identity for // 
For: 

seta // s

 

, where 
ace1}.  Therefore 

{Trace1}, because race}.  Thus c∈{Trace}. 

Reciprocally, if c∈{Tr Trace}.  However, by 
(ti2) {Trace1}=Trace  c∈Trace1~<>.  
Becaus e}//{< n conclude that 
c∈{Tra
 
We have proved that the elem e in { d vice versa. 

U

If a ~b∈{Trace1}//{Trace3} holds

 a~b∈{Trace2}//{Trace3}, by definition. Thus, 

//( . Then c is of rm a b, for s
some b∈{Trace3}. This implies, a∈({Trace1}U{Trace2}), b∈{Trace3} and, b

c∈({Trace1}U{Trace2})//{Trace3}, as desired. 

In t {Trace2}//{Trace3} holds, th

race1}//{Trace3})U({Trace2}

etb =  U{ a ~ b | a, b ∈ Trace,  a ∈ seta, b ∈ setb }  (di1) 
 
We need to prove that:  

 {Trace}//{<>}={Trace} 
 

Proof.  
 
Let c be an arbitrary element of {Trace}//{<>}, then c∈Trace1~<>
Trace1∈{Trace} and <>∈{<>}, by property (ti2) Trace1~<>={Tr
c∈ Trace1∈{Trace} then {Trace1} ⊂{T
 

ace}, then c=Trace1, where Trace1∈{
1~<>; consequently, c∈{Trace1}, then

e by definition Trace1~<>is a subset of {Trac >}, we ca
ce}//{<>}. 

ents of {Trace}//{<>} ar Trace} an
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A.8 D  union  
For: 
 
unpack seta = { lift a | a ∈ Trace,  a ∈ seta }   (up1) 
 
We need to prove that:  
 
unpack({Trace1}U{Trace2 }) =unpack({Trace1})U unpack({Trace2}) 
 

lift a, where a∈{Trace1}U{Trace2}.   

Since a is part of the union of two set of traces, then a∈{Trace1} or a∈{Trace2} 
ds.  If a∈{Trace1} , by definition.   

If a∈{Trace2}, then li s  

lift a∈ } is true. 

It follows that e }, as d
 
 
Reciprocally, let b be an element of unpack{Trace1}U unpack{Trace2}. 
In this case,  b .  
If b∈ unpack{Trace1} holds. Then, b is of the form lift a, for some a∈{Trace1}.  
This im ({Trace1}U{Trace2}). 
Then, b∈ unpack({Trace1}{Trace2})
 
In the second case, b∈ unpack{Trace2}, the proof is similar.  
 
In both cases, b∈ unpack({Trace1} {Trace2 }) implies 
b∈ unpack({Tr
 

 

 

 

 

 

istribution of unpack over

Proof. 

Let b be an arbitrary element of unpack({Trace1}U{Trace2}), then b is of the form of  

hol , then lift a∈ unpack{Trace1} holds

ft a∈ unpack{Trace2}, by definition.  Thu

unpack{Trace1}U unpack{Trace2

b∈ unpack {Trace1} U unpack {Trac 2 esired. 

∈ unpack{Trace1} or b∈ unpack{Trace2}

plies, a∈ {Trace1} and, by definition, lift a∈ unpack
, as desired. 

U
ace1})Uunpack({Trace2}). 
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Appendix B:  
Congruence for the Semantics of 
Tas
 

for the bra illustrated in 

ks 

 

The chapter 7 described the soundness of the axioms  task alge
the chapter 5.  The trace semantics from chapter 6 and basic properties explained in  

ppend s of the axioms.  In the present appendix, 
the entire congruence properties are demonstrated for axioms of the algebra.   
A ix A were used to prove the soundnes

 

2 Showing co omposition 

Congruence for sequential composition is depicted in this section for the axioms of 
associative sequenc  sequence, 
fail on sequence, and succeed on sequence.  Every axiom is represented in 
combin  the task algebra. 

B.2.1 e ative 
sequence axiom  

In this section, the c  (s.1) is 
demonstrated  parallel 
composition; as well as for the repetition structures (while- and until-loop) and the 
encaps

B.2.1.1 Cong

If ∈∀ Accba ,,

cba ,,

fi“a; (b

B.1 Introduction 

Informally, congruence in an algebra can be checked by taking equivalent expressions 
and adding a subexpression to each of the equivalences.  The result has to be the same 
if the expressions are congruent.  

B. ngruence for sequential c

e, right distributivity of sequence over selection, empty

ation with one of the basic operators defined for

Showing congruence for basic operators in th  associ

ongruence for the associative sequence axiom
for the binary operators of sequence, selection, and

ulation. 

ruence in s.1 with the sequence operator 

•tivity “a; (b; c)‘ ≡ “ (a; b); c ‘, then  

•∈ Activityd, “(a; (b; c)); d‘ ≡ “ ((a; b); c); d‘ ∀

; c)‘ ⊗ “d‘ ≡ “(a; b); c‘ ⊗ “d‘   -- by ts1 
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fi“a‘ ⊗

fi {<↓>} ⊗ (“ ); c)‘ ∪ “d‘) -- by ta2 

fi {<↓>} ⊗

-- by ts1 

fi {<↓

-- by ts1 

B.2.1.3 Cong

If ∀ ba,

dcba ,,,

fi ((“a‘ 1 

fi ((“a‘  “b‘ ⊗

B.2.1.

 “(b; c)‘ ⊗ “d‘ ≡ “(a; b)‘ ⊗ “c‘ ⊗ “d‘  -- by ts1 

fi“a‘ ⊗ “b‘ ⊗ “c‘ ⊗ “d‘ ≡ “a‘ ⊗ “b‘ ⊗ “c‘ ⊗ “d‘  -- by ts1 

B.2.1.2 Congruence in s.1 with the selection operator 

If •∈∀ Activitycba ,, “a; (b; c)‘ ≡ “ (a; b); c ‘, then 

•∈∀ Activitydcba ,,, “(a; (b; c)) + d‘ ≡ “ ((a; b); c) + d‘ 

(a; (b; c))‘ ∪ “d‘) ≡ {<↓>} ⊗ (“((a; b

 ((“a‘ ⊗ “(b; c)‘) ∪ “d‘)  

≡ {<↓>} ⊗ ((“(a; b)‘ ⊗ “c‘) ∪ “d‘)  

>} ⊗ ((“a‘ ⊗ “b‘ ⊗ “c‘) ∪ “d‘)  

≡ {<↓>} ⊗ ((“a‘ ⊗ “b‘ ⊗ “c‘) ∪ “d‘)  

ruence in s.1 with the parallel composition operator 

•∈ Activityc, “a; (b; c)‘ ≡ “ (a; b); c ‘, then  

•tivity “(a; (b; c)) || d‘ ≡ “ ((a; b); c) || d‘ ∈∀ Ac

fi (“(a; (b; c))‘ // “d‘) ≡ (“((a; b); c)‘ // “d‘)   -- by tp1 

 ⊗ “(b; c)‘) // “d‘) ≡ ((“(a; b)‘ ⊗ “c‘) // “d‘)  -- by ts

 ⊗  “c‘) // “d‘) ≡ ((“a‘ ⊗ “b‘ ⊗ “c‘) // “d‘)  -- by ts1 

4 Congruence in s.1 with the until-loop 

If •∈∀ Activitycba ,, “a; (b; c)‘ ≡ “ (a; b); c ‘, then 

•∈∀ Activitycba ,, “µx.( (a; (b; c)); ε + x) ‘ ≡ ((a; b); c); ε + x)‘ “ µx.( 

 ≡ µt.( “ )  -- by tr2 

fi µt.( “a‘ ⊗

 )  

 fi µt.( “a; (b; c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

 (a; b); c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))

 “(b; c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

 ≡ µt.( “(a; b)‘ ⊗ “c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t )) -- by ts1 

fi µt.( “a‘ ⊗ “b‘ ⊗ “c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 
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  ({<↓>} ⊗ t))) -- by ts1 

B.2.1.5 Cong

If ∀ ba, en 

 ≡ µt.( “a‘ ⊗ “b‘ ⊗ “c‘ ⊗ ({<↓>} ∪

ruence in s.1 with the while-loop 

•∈ Activityc, “a; (b; c)‘ ≡ “(a; b); c ‘, th 

∈∀ Activ •ity “µx.(ε + (a; (b; c)); x)‘ ≡ “cba ,, µ ; x)‘

 

µ ↓ ∪ ↓ ⊗ ⊗ ⊗ ⊗

cba ,,  ‘, then 

x.(ε + ((a; b); c)  

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a; (b; c)‘ ⊗ t))) 

  ≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“(a; b); c‘ ⊗ t)))  -- by tr4 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ “(b; c)‘ ⊗ t))) 

  ≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“(a; b)‘ ⊗ “c‘ ⊗ t))) -- by ts1 

fi t.({< >}  ({< >}  (“a‘  “b‘  “c‘  t))) 

  ≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ “b‘ ⊗ “c‘ ⊗ t))) -- by ts1 

B.2.1.6 Congruence in s.1 with the encapsulation 

If •ity “a; (b; c)‘ ≡ “(a; b); c∈∀ Activ

∈∀ Activitycba ,, “{a; (b; c)}T ‘ ≡ “{(a; b); c}T• ‘ 

‘) by tu1 

‘) by ts1 

‘) by ts1 

.2.2 as  ope ators
over sele tion 

demonstrated in this 
 selection, and parallel composition; as 

ll as for the rep  and until-loop) and the encapsulation. 

B.2.2.1 Congru e operator 

If ∀ ba,

dcba ,,,

fi “a +

fiunpack(“a; (b; c)‘) ≡ unpack(“(a; b); c   -- 

fi unpack(“a‘ ⊗ “(b; c)‘) ≡ unpack(“(a; b)‘ ⊗ “c  -- 

fi unpack(“a‘ ⊗ “b‘ ⊗ “c‘)  ≡ unpack(“a‘ ⊗ “b‘ ⊗ “c   -- 

B Showing congruence for b ic r  in the right 
distributivity of sequence c axiom  

The right distributivity of sequence over selection axiom (s.2) is 
section for the binary operators of sequence,
we etition structures (while-

ence in s.2 with the sequenc

•∈ Activityc, “(a + b); c‘ ≡ “(a; c) + (b; c)‘, then  

•tivity “((a + b); c); d‘ ≡ “ ((a; c) + (b; c)); d‘ ∈∀ Ac

fi “(a + b); c ‘ ⊗ “d‘ ≡  “ (a; c) + (b; c)‘ ⊗ “d‘  -- by ts1 

 b‘ ⊗ “c‘ ⊗ “d‘ ≡  “ (a; c) + (b; c)‘ ⊗ “d‘ -- by ts1 
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fi {<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘ ⊗ “d‘  

≡  {<↓>} ⊗ (“a; c‘ ∪ “b; c‘) ⊗ “d‘  -- by ta2 

fi {<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘ ⊗ “d‘  

≡  {<↓>} ⊗ ((“a‘ ⊗ “c‘ ) ∪ (“b‘ ⊗ “c‘)) ⊗ “d‘  -- by ts1 

fi {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))  ⊗ “d‘  

 {<↓>} ⊗ ((“a‘ ⊗ “c‘ ) ∪ ( ≡  “b‘ ⊗ “c‘)) ⊗ “d‘   

       -- by distribution of ⊗ over union 

B.2.2.

If ∀ ba,  

cba ,, ‘ 

 

-- by ta2 

fi {<↓>} 

‘) ∪ “d‘)  

∪ “d‘)  -- by ta2 

fi {<↓  “d‘)  

 (“b‘ ⊗ “c‘))) ∪ “d‘) -- by ts1 

fi {<↓   

“b‘ ⊗ ‘) 

-- by associativity of ⊗ 

fi {<↓ “d‘)  

 “b‘ ⊗ ‘) 

-- by distribution of ⊗ over union 

2 Congruence in s.2 with the selection operator 

•∈ Activityc, “(a + b); c‘ ≡ “(a; c) + (b; c)‘, then 

•∈ Activityd, “((a + b); c) + d‘ = “ ((a; c) + (b; c)) + d∀

fi {<↓>} ⊗ (“(a + b); c ‘ ∪ “d‘ )

≡  {<↓>} ⊗ (“ (a; c) + (b; c)‘ ∪ “d‘)  

⊗ ((“a + b‘ ⊗ “c ‘)∪ “d‘)  

≡  {<↓>} ⊗ (“ (a; c) + (b; c)‘ ∪ “d‘)  -- by ts1 

fi {<↓>} ⊗ ((({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ “c 

≡  {<↓>} ⊗ (({<↓>} ⊗ (“a; c‘ ∪ “b; c‘)) 

>} ⊗ ((({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ “c ‘) ∪

≡  {<↓>} ⊗ (({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪

>} ⊗ (({<↓>} ⊗ ((“a‘ ∪ “b‘) ⊗ “c ‘)) ∪ “d‘)

≡  {<↓>} ⊗ (({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ ( “c‘))) ∪ “d

     

>} ⊗ (({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))) ∪ 

≡  {<↓>} ⊗ (({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ ( “c‘))) ∪ “d
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B.2.2.3 Cong  composition operator 

If ∈∀ Accba ,,  

 || d‘ 

fi “(a + b) c)‘ // “d‘  -- by tp1 

fi (“a +

  -- by ta2 

 fi ({<↓

))) // “d‘  -- by ts1 

fi {<↓

  “d‘  

 by distribution of ⊗ over union 

B.2.2.4 Cong

If ∈∀ Accba ,,  

ruence in s.2 with the parallel

•tivity “(a + b); c‘ ≡ “(a; c) + (b; c)‘, then 

•∈∀ Activitydcba ,,, “((a + b); c) || d‘ ≡ “ ((a; c) + (b; c))

; c ‘ // “d‘ ≡  “ (a; c) + (b; 

 b‘ ⊗ “c‘) // “d‘ ≡  “ (a; c) + (b; c)‘ // “d‘ -- by ts1 

 fi ({<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) // “d‘  

≡  ({<↓>} ⊗ (“a; c‘ ∪ “b; c‘)) // “d‘  

>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) // “d‘  

  ≡  ({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘

>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))  // “d‘  

≡  {<↓>} ⊗ ((“a‘ ⊗ “c‘ ) ∪ (“b‘ ⊗ “c‘)) //  

       --

ruence in s.2 with the until-loop 

•tivity “(a + b); c‘ ≡ “(a; c) + (b; c)‘, then 

•∈∀ Activity “µx.(((a + b); c) ; ε + x)‘ ≡cba ,,  “µx.(((a; c) + (b; c)); ε + x)‘ 

fi µt.( )  

 ↓>} ⊗

 ≡ ↓>} ∪ ({<↓>} ⊗ t))) -- by ts1 

fi µt.( (  ({<↓>} ∪ ({<↓>} ⊗ t))) 

>}  ({<↓  

c‘))) ⊗ ⊗ t))) 

“(a + b); c ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))

≡ µt.( “ (a; c) + (b; c)‘ ⊗ ({<↓>} ∪ ({<  t))) -- by tr2 

fi µt.( (“a + b‘ ⊗ “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

µt.( “ (a; c) + (b; c)‘ ⊗ ({<

{<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) ⊗

≡  µt.( ({<↓>} ⊗ (“a; c‘ ∪ “b; c‘)) ⊗ ({<↓ ∪ >} ⊗ t))) 

       -- by ta2 

fi µt.( ({<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ ((“a‘ ⊗ “c‘ ) ∪ (“b‘ ⊗ “  ({<↓>} ∪ ({<↓>} 
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       -- by ts1 

fi µt.( ({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

       -- by distribution of ⊗ over union 

B.2.2.5 Congruence in s.2 with the while-loop 

If (a + b); c‘ ≡ “(a; c) + (b; c)‘, then 

  ≡ µt.( ({<↓>} ⊗ ((“a‘ ⊗ “c‘ ) ∪ (“b‘ ⊗ “c‘))) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

 •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “µx.(ε + ((a + b); c); x)‘ ≡ “µx.(ε + ((a; c) + (b; c)); x)‘ 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“(a + b); c ‘  ⊗ t)))  

≡  µt.({<↓>} ∪ ({<↓>} ⊗ (“ (a; c) + (b; c)‘ ⊗ t)))  -- by tr4 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a + b‘ ⊗ “c‘)  ⊗ t)))  

≡  µt.({<↓>} ∪ ({<↓>} ⊗ (“ (a; c) + (b; c)‘ ⊗ t)))  -- by ts1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘ ) ⊗ t))) 

c‘)) ⊗ t)))   -- by ta2 

fi µt.({<↓ ↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) ⊗ t))) 

≡  ⊗ ( ({<↓>} ⊗ ((“a‘ ⊗ “c‘ )  

‘

“ ‘ “b‘ ⊗ c‘)))  ⊗

  

 by distribution of ⊗ over union 

B.2.2.6 Cong

If ∀ ba,

≡  µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (“a; c‘ ∪ “b; 

>} ∪ ({<↓>} ⊗ ( ({<

µt.({<↓>} ∪ ({<↓>} 

 ∪ (“b  ⊗ “c‘)))  ⊗ t)))     -- by ts1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (( a‘ ⊗ “c ) ∪ ( “  t)))  

≡  µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ ((“a‘ ⊗ “c‘ )  

  ∪ (“b‘ ⊗ “c‘)))  ⊗ t)))  -- 

ruence in s.2 with the encapsulation 

•∈ Activityc, “(a + b); c‘ ≡ “(a; c) + (b; c)‘, then  

•∈∀ Activitycba ,, “{(a + b); c}T‘ ≡ “{(a; c) + (b; c)}T‘ 

fi unpack pack(“ (a; c) + (b; c)‘)  -- by tu1 

fi unpack pack(“ (a; c) + (b; c)‘)  -- by ts1 

(“(a + b); c‘)  ≡  un

(“a + b‘ ⊗ “c‘)  ≡  un
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fi unpack({<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘ ) 

≡  unpack({<↓>} ⊗ (“a; c‘ ∪ “b; c‘))   -- by ta2 

∪ (“b ⊗ “c‘)))  

“c‘)))   

    -- by distribution of ⊗ over union 

B.2.3 Showi ators in the empty 
seque

The em ated in this section for the binary 
operators of sequence, selection, and parallel composition; as well as for the repetition 
structures (wh n. 

B.2.3. e operator 

If ∈∀ Activia

ba,

 fi“a; ε‘

 s1 

 fi“a‘ ⊗ ‘ 

  -- by identity for ⊗ 

B.2.3.2 Cong erator 

Activityb, ) + b‘ ≡ “a + b‘ 

fi {<↓>  ∪ “b‘)  

 -- by ta2 

fi {<↓ ‘ ⊗ “a  ∪ “b‘

 -- by ts1 

fi unpack({<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘)  

≡  unpack({<↓>} ⊗ ((“a‘ ⊗ “c‘ ) ∪ (“b‘ ⊗ “c‘))) -- by ts1 

fi unpack({<↓>} ⊗ ((“a‘ ⊗ “c‘) ‘ 

  ≡ unpack({<↓>} ⊗ ((“a‘ ⊗ “c‘ ) ∪ (“b‘ ⊗ 

   

ng congruence for basic oper
nce axiom 

pty sequence axiom (s.3) is demonstr

ile- and until-loop) and the encapsulatio

1 Congruence in s.3 with the sequenc

•ty “a; ε‘ ≡ “ε; a‘ ≡ “a‘, then  

•Activity “(a; ε); b‘ ≡ “(ε; a); b‘ ≡ “a; b‘ ∈∀

 ⊗ “b‘ ≡ “ε; a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘  -- by ts1 

fi“a‘ ⊗ “ε‘ ⊗ “b‘ ≡ “ε‘ ⊗ “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘  -- by t

 {<>} ⊗ “b‘ ≡ {<>} ⊗ “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b -- by tb1 

fi“a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘  

ruence in s.3 with the selection op

If •∈∀ Activitya “a; ε‘ ≡ “ε; a‘ ≡ “a‘, then 

•∈∀a “(a; ε) + b‘ ≡ “(ε; a

} ⊗ (“a; ε‘ ∪ “b‘) ≡ {<↓>} ⊗ (“ε; a‘

≡ {<↓>} ⊗ (“a‘ ∪ “b‘)   

>} ⊗ ((“a‘ ⊗ “ε‘) ∪ “b‘) ≡ {<↓>} ⊗ ((“ε ‘) )  

≡ {<↓>} ⊗ (“a‘ ∪ “b‘)   
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fi {<↓ ({<>}  “a‘) 

-- by tb1 

fi {<↓

tity for ⊗ 

B.2.3.3 Cong mp

If ∈∀a

ba,

 by tp1 

fi (“a‘ ⊗ “

>} ⊗ ((“a‘ ⊗ {<>}) ∪ “b‘) ≡ {<↓>} ⊗ (  ⊗ ∪ “b‘)  

≡ {<↓>} ⊗ (“a‘ ∪ “b‘)    

>} ⊗ (“a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘)  

≡ {<↓>} ⊗ (“a‘ ∪ “b‘)    -- by iden

ruence in s.3 with the parallel co osition operator 

•Activity “a; ε‘ ≡ “ε; a‘ ≡ “a‘, then  

•y “(a; ε) || b‘ ≡ “(ε; a) || b‘ ≡ “a || b‘ ∈∀ Activit

fi “a; ε‘ // “b‘ ≡ “ε; a‘ // “b‘ ≡ “a‘ // “b‘   --

ε‘) // “b‘ ≡ (“ε‘ a‘) // “b‘ ≡ “a‘ // “b‘ -- by ts1 

fi (“a‘ ⊗ >} ⊗ “a‘) // “b‘ ≡ “a‘ // “b‘  -- by tb1 

  ⊗ 

B.2.3.

If ∈∀a

a ; ε + x)‘ ≡ “µx.(a; ε + x)‘ 

 fiµt.(“

⊗ t)))  

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tr2 

 

 ⊗ “

 {<>}) // “b‘ ≡ ({<

fi“a‘ // “b‘ ≡ “a‘ // “b‘ ≡ “a‘ // “b‘   -- by identity for

4 Congruence in s.3 with the until-loop 

•Activity “a; ε‘ ≡ “ε; a‘ ≡ “a‘, then  

∈∀ A •ctivity “µx.((a; ε); ε + x)‘ ≡ “µx.( (ε; a)

a; ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“ε; a‘ ⊗ ({<↓>} ∪ ({<↓>} 

fiµt.(“a‘ ⊗ “ε } ∪ ({<↓>} ⊗ t)))  

-- by ts1 

‘⊗ ({<↓>

≡ µt.(“ε‘ ⊗ “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

 fiµ

≡ µ ↓>} ∪ ({<↓>} ⊗ t))) 

≡ µ “  ({<↓>} ⊗ t)))  -- by tb1 

 

t.(“a‘ ⊗ {<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

t.({<>} ⊗ “a‘ ⊗ ({<

t.( a‘ ⊗ ({<↓>} ∪

fiµt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  
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≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by identity for ⊗ 

B.2.3.

If ∈∀a

 x)‘ 

fiµt.({<↓ ε‘ ⊗ t))) 

≡ µ  (“ε; a‘ ⊗ t)))  

 

5 Congruence in s.3 with the while-loop 

•Activity “a; ε‘ ≡ “ε; a‘ ≡ “a‘, then  

•∈∀ Activitya “µx.(ε + (a; ε); x)‘ ≡ “µx.(ε + (ε; a); x)‘ ≡ “µx.(ε +a;

 >} ∪ ({<↓>} ⊗ (“a; 

t.({<↓>} ∪ ({<↓>} ⊗

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))   -- by tr4 

fiµ

 -- by ts1 

 fiµt.({

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ “a‘ ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))   -- by tb1 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))  -- by identity for ⊗ 

B.2.3.6 Congruence in s.3 with the encapsulation 

If a; ε‘ ≡ “ε; a‘ ≡ “a‘, then 

{a; ε}T‘ ≡ “{ε; a}T‘ ≡ “{a}T‘ 

 fi unpack(“a; ε‘) ≡ unpack(“ε; a‘) ≡ unpack(“a‘)  -- by tu1 

 fi unpack(“a‘  “ ‘) ≡ unpack(“ ‘  “a‘)   unpack(“a‘) -- by ts1 

npack(“a‘) -- by tb1 

fi unpack ≡ unpack(“a‘)  -- by identity for ⊗ 

t.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ “ε‘ ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“ε‘ ⊗ “a‘ ⊗ t)))   

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))  

<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ {<>} ⊗ t)))  

 •∈∀ Activitya “

•∈∀ Activitya “

⊗ ε ε ⊗ ≡

 fi unpack(“a‘ ⊗ {<>}) ≡ unpack({<>} ⊗ “a‘) ≡ u

 (“a‘) ≡ unpack(“a‘) 
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B.2.4 Showi ators in the fail on 
sequence 

The fail on sequence axiom (S.4) is demonstrated in this section for the binary 
operators of se ition; as well as for the repetition 
structures (while- and until-loop) and the encapsulation. 

B.2.4. erator 

If ∈∀ Activitya

ng congruence for basic oper

quence, selection, and parallel compos

1 Congruence in s.4 with the sequence op

 • “φ; a‘ ≡ “φ‘

ba,

, then 

•Activity “(φ; a); b‘ ≡ “∈∀ φ

fi“φ; a‘

; b‘ 

 ⊗ “b‘ ≡ “φ‘

fi“φ‘  “a‘  “b‘ “ ‘  “b‘    -- by ts1 

fi{<φ>} ⊗ “a‘  “b‘ ≡ {< >}  “b‘   -- by tb2 

⊗ 1, t2 n}⊗ “ ‘ ≡ φ  “b‘ Let “a‘ = {t1, t2, …, tn} 

fi {<φ>} ⊗ “ ‘ ≡ φ>}  “ ‘

φ ‘

; a) + b‘ “ ‘ 

fi {< >}  (“φ; a‘ ∪ “b‘)  (“ ‘ ∪ “b‘)   -- by ta2 

fi {<↓>} ⊗ “ ‘ “a‘  “ ‘ ≡ {<↓ “φ‘ ∪ “b‘

 {< “a‘ ∪ “b‘ ⊗ ({<φ>} ∪ “b‘) -- by tb2 

fi {<↓>} ⊗ ⊗ 1, t2 n}) ∪ “ ‘

 {< >} >} “b‘ “a‘ = {t1, t2, …, tn} 

fi {<↓>} ⊗ ({<φ>} ∪ “b‘) ≡ {<↓>} ⊗ ({<φ>} ∪ “b‘) 

B.2.4.3 Congruence in s.4 with the pa p

If φ ≡ φ

 ⊗ “b‘    -- by ts1 

⊗ ⊗ ≡ φ ⊗  

⊗ φ ⊗

fi {<φ>}  {t , …, t  b  {< >} ⊗

U
n

i it1
}#{

=
>< φ   b   {< ⊗ b    

B.2.4.2 Congruence in s.4 with the selection operator 

If ; a‘ ≡ “φ , then •∈∀ Activitya “

•∈∀ Activityba, “(φ  ≡ φ + b

↓ ⊗ ≡ {<↓>} ⊗ φ

 (( φ  ⊗ ) ∪ b ) >} ⊗ ( )  -- by ts1 

fi ↓>} ⊗ (({<φ>} ⊗ )  ) ≡ {<↓>} 

 (({<φ>}  {t , …, t  b )  

≡ ↓ ⊗ ({<φ ∪ )   Let 

U
n

i it1
}#{

=
>< φ  

rallel com osition operator 

 •∈∀ Activitya “ ; a‘  “ ‘

(φ; a) || b‘ ≡ “φ || b‘ 

, then 

•∈∀ Activityba, “

202 



Appendix B: Congruence for the Semantics of Tasks    

 fi “φ; a‘ // “b‘ ≡ “φ‘  

fi (“φ‘ ⊗ “

 // “b‘   -- by tp1

 a‘) // “b‘ ≡ “φ‘ ‘   -- by ts1 

fi({<φ> φ>} // “b‘   -- by tb2 

, tn} 

1=

B.2.4. p 

If ∈∀a

 // “b

} ⊗ “a‘) // “b‘ ≡ {<

fi ({<φ>} ⊗ {t1, t2, …, tn}) // “b‘ ≡ {<φ>} // “b‘ Let “a‘ = {t1, t2, …

fi {<φ>} // “b‘ ≡ {<φ>} // “b‘   U
n t }#{ >< φ  
i i

4 Congruence in s.4 with the until-loo

•Activity “φ; a‘ ≡ “φ‘

)  

, then  

•∈∀ Activitya “µx.((φ; a); ε + x)‘ ≡ “µx.(φ; ε + x)‘ 

fi µt.(“φ; a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))

≡ µt.(“φ‘ -- by tr2  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

fi µt.(“φ‘ ⊗ “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“φ‘

 ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb2 

Let “a‘ = {t1, t2, …, tn} 

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) it }#{ >< φ  

B.2.4.5 Congruence in s.4 with the while-loop 

If φ; a‘ ≡ “φ‘, then 

µx.(ε + (φ; a); x)‘ ≡ “µx.(ε +φ; x)‘ 

fiµt.({<↓>} ∪ ({<↓>} ⊗ (“φ; a‘ ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘  ⊗ t)))   -- by tr4 

fiµt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ “a‘ ⊗ t))) 

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by ts1 

fi µt.({<φ>} ⊗ “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.({<φ>} ⊗

fi µt.({<φ>} ⊗ {t1, t2, …, tn} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

fi µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

U
n

i 1=

 •∈∀ Activitya “

•∈∀ Activitya “
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≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘  -- by ts1 

fiµt.({

, tn} 

fi µt.({

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t

B.2.4.

If ∈∀ Activia

  ⊗ t)))  

<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ “a‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t)))  -- by tb2 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ {t1, t2, …, tn} ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t))) Let “a‘ = {t1, t2, …

<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t)))  

)))  U
n

i it1
}#{

=
>< φ  

6 Congruence in s.4 with the encapsulation 

•ty “φ; a‘ ≡ “φ‘

fi unpack(“φ; a‘) ≡ unpack(“φ‘)  

, then  

•∈∀ Activitya “{φ; a}T‘ ≡ “{φ}T‘ 

 -- by tu1 

fi unpack(“φ‘ ⊗ “a‘) ≡ unpack(“φ‘

fi unpack({< φ>})  -- by tb2 

fi unpack({< 1 2 n

et “a‘ = {t1, t2, …, tn} 

fi unpack({<φ>}) ≡ unpack({<φ>})   

B.2.5 Showing congruence for basic operators in the succeed on 

The succeed o the binary 
operators of sequence, selection, and parallel composition; as well as for the repetition 
structures (wh

σ; a

)   -- by ts1 

φ>} ⊗ “a‘) ≡ unpack({<

φ>} ⊗ {t , t , …, t })  

≡ unpack({<φ>})    L

U
n

i it1
}#{

=
>< φ  

sequence axiom  

n sequence axiom (s.5) is demonstrated in this section for 

ile- and until-loop) and the encapsulation. 

B.2.5.1 Congruence in s.5 with the sequence operator 

If ‘ ≡ “σ•∈∀ Activitya “ , then ‘

(σ; •∈∀ Activityba, “ a); b‘ ≡ “σ; b‘ 

fi“σ; a‘ ⊗ “b‘ ≡ “σ‘ ⊗ “b‘    -- by ts1 
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fi“σ‘ ⊗

-- by tb2 

fi {<σ et “a‘ = {t1, t2, …, tn} 

fi {<σ
1
{

=
<

If ∈∀ Activia

 “a‘ ⊗ “b‘ ≡ “σ‘ ⊗ “b‘    -- by ts1 

fi{<σ>} ⊗ “a‘ ⊗ “b‘ ≡ {<σ>} ⊗ “b‘   

>} ⊗ {t1, t2, …, tn}⊗ “b‘ ≡ {<σ>} ⊗ “b‘ L

>} ⊗ “b‘ ≡ {<σ>} ⊗ “b‘   U t }#>σ  n

i i

B.2.5.2 Congruence in s.5 with the selection operator 

 •ty “σ; a‘ ≡ “σ‘

ba,

fi {<↓

, then 

•y “(σ; a) + b‘ ≡ “σ + b‘ ∈∀ Activit

fi {<↓>} ⊗ (“σ; a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“σ‘ ∪ “b‘)  -- by ta2 

>} ⊗ ((“σ‘ ⊗ “a‘) ∪ “b‘) ≡ {<↓>} ⊗ (“σ‘

fi {<↓

fi {<↓>} ⊗ (({<σ>} ⊗ {t1, t2, …, tn}) ∪ “b‘

“ t1, t2, …, tn} 

fi {<↓>} ⊗ ({<σ>} ∪ “b‘) ≡ {<↓>} ⊗ ({<σ>} ∪ “b‘) 

B.2.5.3 Congruence in s.5 with the parallel composition operator 

If σ; a‘ ≡ “σ‘, then 

(σ; a) || b‘ ≡ “σ || b‘ 

 fi “σ; a‘ // “b‘ ≡ “σ‘ // “b‘   -- by tp1 

 fi (“σ‘ ⊗ “a‘) // “b‘ ≡ “σ‘ // “b‘   -- by ts1 

fi{<σ>} ⊗ “a‘ // “b‘ ≡ {<σ>} // “b‘   -- by tb2 

fi {<σ>} ⊗ {t1, t2, …, tn}// “b‘ ≡ {<σ>} // “b‘ Let “a‘ = {t1, t2, …, tn} 

fi {<σ }  

B.2.5.4 Cong

If ∈∀a

 ∪ “b‘) -- by ts1 

>} ⊗ (({<σ>} ⊗ “a‘) ∪ “b‘) ≡ {<↓>} ⊗ ({<σ>} ∪ “b‘) -- by tb2 

)  

≡ {<↓>} ⊗ ({<σ>} ∪ b‘)   Let “a‘ = {

U
n

i it1
}#{

=
>< σ  

 •∈∀ Activitya “

•∈∀ Activityba, “

>} // “b‘ ≡ {<σ>} // “b‘    Ui it1
#{

=
>< σ

n

ruence in s.5 with the until-loop 

•Activity “σ; a‘ ≡ “σ‘, then  
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•∈∀ Activitya “µx.(( σ; a); ε + x)‘ ≡ “µx.( σ; ε + x)‘ 

fi µt.(“  ⊗ t)))  

y tr2 

fi µt.(“

fi µt.({<σ>} ⊗

≡ µt.({

, tn} 

fi µt.({

 

B.2.5.5 Cong

If ∈∀ Activia

 σ; a‘ ⊗ ({<↓>} ∪ ({<↓>}

≡ µt.(“ σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- b

σ‘ ⊗ “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by ts1 

 “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb2 

fi µt.({<σ>} ⊗ {t1, t2, …, tn} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) Let “a‘ = {t1, t2, …

<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

U
n

i it1
}#{

=
>< σ  ≡ µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

ruence in s.5 with the while-loop 

 •ty “σ; a‘ ≡ “σ‘

a

fiµt.({

 

fiµt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ “a‘ ⊗ t))) 

fiµt.({<

fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ {t1, t2, 

t1, t2, …, tn} 

fi µt.({ >} ⊗ t)))  

≡ µt.( {<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t)))  

, then 

∈∀ A •ctivity “µx.(ε + (σ; a); x)‘ ≡ “µx.(ε +σ; x)‘ 

<↓>} ∪ ({<↓>} ⊗ (“σ; a‘ ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘  ⊗ t)))   -- by tr4

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘  ⊗ t)))   -- by ts1 

↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ “a‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t)))  -- by tb2 

…, tn} ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t))) Let “a‘ = {

<↓>} ∪ ({<↓>} ⊗ ({<σ

U
n

i it1
}#{

=
>< σ  
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B.2.5.6 Congruence in s.5 with the encapsulation 

If ∈∀ Activia •ty “σ; a‘ ≡ “σ‘

fi unp

fi unp

≡ unpa {t1, t2, …, tn} 

fi unpack({
1

}
=

 

B.3 Showin election 

r the axioms of associative 
selection, comm   Every axiom is 
represented in defined for the task 
algebra. 

B.3.1 Showing congruence for basic operators in the associative 

The associativ r the binary 
operators of sequence, selection, and parallel composition; as well as for the repetition 
structures (wh

If ∈∀ Accba ,, , then 

 c)) ; d‘ ≡ “ (a + b + c) ; d‘ 

 fi “((a 

≡ “ (a +

≡ {<↓>

, then 

•∈∀ Activitya “{σ; a}T‘ ≡ “{σ}T‘ 

fi unpack(“σ; a‘) ≡ unpack(“σ‘)   -- by tu1 

ack(“σ‘ ⊗ “a‘) ≡ unpack(“σ‘)   -- by ts1 

ack({<σ>} ⊗ “a‘) ≡ unpack({<σ>})  -- by tb2 

fi unpack({<σ>} ⊗ {t1, t2, …, tn})  

ck({<σ>})    Let “a‘ = 

<σ>}) ≡ unpack({<σ>})   U
n t#{ >< σ
i i

g congruence for s

Congruence for selection is depicted in this section fo
utative selection, and idempotent selection.

 combination with one of the basic operators 

selection axiom  

e selection axiom (sel.1) is demonstrated in this section fo

ile- and until-loop) and the encapsulation. 

B.3.1.1 Congruence in sel.1 with the sequence operator 

•tivity “(a + b) + c‘ ≡ “a + (b + c)‘ ≡ “a + b + c‘ 

•∈∀ Activitydcba ,,, “((a + b) + c); d‘ ≡ “ (a + (b +

+ b) + c)‘ ⊗ “d‘ ≡ “ (a + (b + c))‘ ⊗ “d‘  

 b + c)‘ ⊗ “d‘   -- by ts1 

 fi {<↓>} ⊗ (“a + b‘ ∪ “c‘) ⊗ “d‘  

} ⊗ (“a‘ ∪ “ b + c‘) ⊗ “d‘  

≡ {<↓>} ⊗ (“a‘ ∪ “ b + c‘) ⊗ “d‘ -- by ta2 
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 fi {<↓ } ⊗ ((  “d‘  

 {<↓> “c

 

 ({<↓>} ⊗ “c‘)) ) ⊗ “d‘  

-- by distribution of ⊗ over union 

fi  ( {<

  ({<↓

> {<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘) ⊗

≡ {<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘))) ⊗ “d‘  

≡ } ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ ‘))) ⊗ “d‘ -- by ta2 

fi {<↓>} ⊗ ( (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗  “b‘)) ∪ “c‘ ) ⊗ “d‘  

≡ {<↓>} ⊗ (“a‘ ∪ ( ({<↓>} ⊗ “b‘) ∪

≡ {<↓>} ⊗ (“a‘ ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) ⊗ “d‘ 

↓>} ⊗ (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ) ∪ ({<↓>} ⊗ “c‘)  ⊗ “d‘ 

≡ >} ⊗“ >} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) ⊗ “d‘ 

≡  ({<↓>} ⊗“a‘) ∪ ( {<↓>} ⊗ (({<↓>} 

-- by distribution of  over union 

fi  ( ({<  “b‘)) )  

a‘) ∪ ( {<↓>} ⊗ (({<↓

⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) ⊗ “d‘ 

⊗

↓>} ⊗ ({<↓>} ⊗ “a‘)) ∪ ({<↓>} ⊗ ({<↓>} ⊗

 ∪ ({<↓>} ⊗ “c‘)  ⊗ “d‘ 

≡  ({<↓>} ⊗“ “

‘

a‘) ∪ ( ({<↓>} ⊗ ({<↓>} ⊗ b‘))  

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)) ) ⊗ “d  

≡  ({<↓>} ⊗“ “

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)) ) ⊗ “d‘ 

fi  ( ({< >} ⊗ “a‘)  ({<↓>} ⊗ “b‘) )   ({<↓>} ⊗ “c‘)  “d‘ 

  ({< >} “a‘)  ( ({< >} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘) ) ⊗ “d‘ 

≡  ({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘) ) ⊗ “d‘    -- by cp1 

B.3.1.2 Congruence in sel.1 with the selection operator 

If (a + b) + c‘ ≡ “a + (b + c)‘ ≡ “a + b + c‘, then 

((a + b) + c) + d  ≡  (a + (b + c)) + d‘ = “ (a + b + c) + d‘ 

 fi {<↓>} ⊗ (“(a + b) + c  ∪ d ) ≡ {<↓>} ⊗ ( a + (b + c)  ∪ “d‘) 

a‘) ∪ ( ({<↓>} ⊗ ({<↓>} ⊗ b‘))  

-- by distribution of ⊗ over union 

↓ ∪ ∪ ⊗ 

≡ ↓ ⊗ ∪ ↓

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “ ‘ “

‘ “ ‘ “ ‘
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≡ {<

 fi {<↓  “c‘)) ∪ “d‘)  

d‘) 

-- by ta2 

 fi {<↓ ∪ “d   

) ∪ “d‘) 

)     -- by ta2 

 fi {<↓ “c‘ ) ∪ “d‘)  

≡ {<↓>

“d‘) 

n of ⊗ over union 

fi {<↓>} ⊗ ( “a‘) ∪ ({<↓>} ⊗ “b‘)) )  

≡  {<↓

≡  {<↓  (({<↓>} ⊗ “b‘)  

ver union 

fi {<↓>} ⊗ (  ∪ ({<↓>} ⊗ ({<↓>} ⊗ “b‘)) )  

≡  {<↓ <↓

≡  {<↓ {<↓>} ⊗ ({<↓>} ⊗ “b‘))  

ion 

fi {<↓>} ⊗ (   ∪ ({<↓>} ⊗ “c‘)  ∪ “d‘) 

↓>} ⊗ (“a + b + c‘ ∪ “d‘)   -- by ta2 

>} ⊗ (({<↓>} ⊗ (“a + b‘ ∪

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b + c‘)) ∪ “

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b + c‘)) ∪ “d‘)  

>} ⊗ (({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘)) ‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘)))

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘)))) ∪ “d‘

>} ⊗ ({<↓>} ⊗ ( (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗  “b‘)) ∪ 

} ⊗ ({<↓>} ⊗ (“a‘ ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) ∪ “d‘)  

≡ {<↓>} ⊗ ({<↓>} ⊗ (“a‘ ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) ∪ 

-- by distributio

( {<↓>} ⊗ (({<↓>} ⊗ 

∪ ({<↓>} ⊗ “c‘)  ∪ “d‘) 

>} ⊗ ( ({<↓>} ⊗“a‘) ∪ ( {<↓>} ⊗ (({<↓>} ⊗ “b‘)  

∪ ({<↓>} ⊗ “c‘)) ) ∪ “d‘) 

>} ⊗ ( ({<↓>} ⊗“a‘) ∪ ( {<↓>} ⊗

∪ ({<↓>} ⊗ “c‘)) ) ∪ “d‘)  -- by distribution of ⊗ o

( ({<↓>} ⊗ ({<↓>} ⊗ “a‘))

 ∪ ({<↓>} ⊗ “c‘)  ∪ “d‘) 

>} ⊗ ( ({<↓>} ⊗“a‘) ∪ ( ({ >} ⊗ ({<↓>} ⊗ “b‘))  

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)) ) ∪ “d‘) 

>} ⊗ ( ({<↓>} ⊗“a‘) ∪ ( (

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)) ) ∪ “d‘) -- by distribution of ⊗ over un

( ({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘) )
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≡  {<↓>} ⊗ ( ({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ “b‘)  

∪ ({<↓

≡ {<↓>} ⊗ ( ({<↓>} ⊗“a‘) ∪ ( ({<↓>

B.3.1.3 Congruenc on operator 

If ∈∀ Accba ,,

 + c) || d‘ 

 fi “(a + 1 

 fi ({<↓>} ⊗ (  // “d‘

≡ ({<↓>} ⊗ (“a‘ ∪ “b + c‘)) // “d‘ 

 

≡ ({<↓ ↓>} ⊗ (“b‘ ∪ “c‘)))) // “d‘  

y ta2 

fi {<↓>} ⊗ (   “b‘)) ∪ “c‘ ) // “d‘  

≡ {<↓> ∪ ({<↓>}  “c‘)) ) // “d‘ 

ution of ⊗ over union 

fi  ( {<↓>} ⊗  “c‘)  // “d‘ 

≡  ({

>} ⊗ “c‘) ) ∪ “d‘) 

} ⊗ “b‘)  

∪ ({<↓>} ⊗ “c‘) ) ∪ “d‘)   -- by cp1 

e in sel.1 with the parallel compositi

•tivity “(a + b) + c‘ ≡ “a + (b + c)‘ ≡ “a + b + c‘, then  

•∈∀ Activitydcba ,,, “((a + b) + c) || d‘ ≡ “(a + (b + c)) || d‘ ≡ “(a + b

 b) + c‘ // “d‘ ≡ “a + (b + c)‘ // “d‘ ≡ “a + b + c‘ // “d‘  -- by tp

“a + b‘ ∪ “c‘)) // “d‘ ≡ ({<↓>} ⊗ (“a‘ ∪ “b + c‘))   

   -- by ta2 

fi ({<↓>} ⊗ (({<↓>} ⊗  (“a‘ ∪ “b‘)) ∪ “c‘)) // “d‘  

>} ⊗ (“a‘ ∪ ({<

≡ ({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘)))) // “d‘  -- b

(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗

≡ {<↓>} ⊗ (“a‘ ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) // “d‘  

} ⊗ (“a‘ ∪ ( ({<↓>} ⊗ “b‘)  ⊗

-- by distrib

 (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ) ∪ ({<↓>} ⊗

<↓>} ⊗“  ⊗ “c‘)) ) // “d‘ a‘) ∪ ( {<↓>} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>}

≡  ({<↓>} ⊗“  “b‘) ∪ ({<↓>} ⊗ “c‘)) ) // “d‘ 

↓>} ⊗ ({<↓>} ⊗ “b‘)) )  

a‘) ∪ ( {<↓>} ⊗ (({<↓>} ⊗

-- by distribution of ⊗ over union 

fi  ( ({<↓>} ⊗ ({<↓>} ⊗ “a‘)) ∪ ({<

 ∪ ({<↓>} ⊗ “c‘)  // “d‘ 

≡  ({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ ({<↓>} ⊗ “b‘))  
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∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)) ) // “d‘ 

≡  ({<↓>} ⊗“

 of ⊗ n 

a‘) ∪ ( ({<↓>} ⊗ ({<↓>} ⊗ “b‘))  

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)) ) // “d‘ -- by distribution  over unio

fi  ( ({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘) )  ∪ ({<↓>} ⊗ “c‘)  // “d‘ 

≡  ({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘) ) // “d‘ 

≡  ({<↓>} ⊗“ y cp1 

B.3.1.4 Congruence in sel.1 with the until-

If ∀ ba,

a‘) ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘) ) // “d‘    -- b

loop 

•∈ Activityc, “(a + b) + c‘ ≡ “a + (b + c)‘ ≡ “a + b + c‘, then  

∈∀ Activ •ity “µx.(((a + b) + c); ε + x)‘ ≡ “µx.((a + (b + c)); ε + x)‘  cba ,,

≡ “µx.( ε + x)‘ 

 fi µt.(“

≡ µt.(“ (a + (b + c))‘ ⊗ {<↓>} ∪ ({<

y tr2 

 fi µt.({ c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

)) 

 ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ta2 

 fi µt.({ >} ⊗ t))) 

 (“b‘ 

ta2 

 fi µt.({<↓>} ⊗ ( (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗  “b‘)) ∪ “c‘ )  

⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.({<↓>} ⊗ (“a‘ ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) )  

(a + b + c); 

((a + b) + c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

 ( ↓>} ⊗ t)))  

≡ µt.(“ (a + b + c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- b

<↓>} ⊗ (“a + b‘ ∪ “

≡ µt.({<↓>} ⊗ (“a‘ ∪ “ b + c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)

≡ µt.({<↓>} ⊗ (“a‘ ∪ “ b + c‘)  ⊗

<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘) ⊗ ({<↓>} ∪ ({<↓

≡ µt.({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ ∪ “c‘)))  

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘)))   

⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))    -- by 
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 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.({<↓>} ⊗ (“a‘ ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) 

fi  µt.( ( {<↓>} ⊗ (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ) ∪ ({<↓>} ⊗ “c‘) 

  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡  µt.( ({<↓>} ⊗“a‘) ∪ ( {<↓>} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) 

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡  µt.( ({< >} ⊗“a‘) ∪ ( {<↓>} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) 

  ({<↓>} ∪ ({<↓>} ⊗ t))) 

y b

fi  µt.( (( ({<↓>} ⊗ ({<↓>} ⊗ “a‘)) ∪ ({<↓>} 

≡  µt.( (({< >} ⊗ “a‘) ∪ ( ({<↓>} ⊗ ({<↓>} ⊗ “b‘))  

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)) ))  ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡  µt.( (({<↓>} “a‘) ∪ ( ({<↓>} ⊗ ({<↓ ⊗ “b‘))  

∪ ({<↓>} ⊗ ({<↓ ⊗ “c‘)) )) ↓>} ∪ ({<↓>} ⊗ t)))   

⊗ over union 

‘  ∪ ({<↓>} ⊗ “c‘)) 

  

≡  µt.( (({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ “

≡  µt <↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘) )) 

1 

f ∀ ba,

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by distribution of ⊗ over union 

↓

⊗

-- b  distri ution of ⊗ over union 

⊗ ({<↓>} ⊗ “b‘)) )  

 ∪ ({<↓>} ⊗ “c‘) ) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

↓

⊗

⊗ >} 

>}  ⊗ ({<

-- by distribution of 

fi  µt.( ((({<↓>} ⊗ “a ) ∪ ({<↓>} ⊗ “b‘) ) 

⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

b‘) ∪ ({<↓>} ⊗ “c‘) )) 

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

.( (({<↓>} ⊗“a‘) ∪ ( ({

⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by cp

B.3.1.5 Congruence in sel.1 with the while-loop 

I •∈ Activityc, “(a + b) + c‘ ≡ “a + (b + c)‘ ≡ “a + b + c‘, then  
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•∈∀ Activity “µx.(ε + ((a + b) + c); x)‘ ≡ “µx.(ε + (a + (b + c));cba ,,  x)‘  

≡ “µx.(ε + (a + b + c); x)‘ 

≡ µt.  (a + (b + c))‘ ⊗ t))) 

≡ µ   -- by tr4 

 b‘ ∪ “c‘) ⊗ t))) 

∪ “ b + c‘)  t))) 

‘)) ∪ “c‘) ⊗ t)))  

⊗ (“b‘ ∪ “c‘))) ⊗ t)))  

{<↓>}  

     -- by ta2 

 fi µt.({<↓ ‘)  

 t))) 

∪ ( ({<↓>}  “b‘) 

‘) 

tion of ⊗ over union 

fi µt.({ } ⊗ “b‘)) )  

∪ ({<↓>} ⊗ “c‘)) ⊗ t))) 

<↓>} ⊗ (({<↓>}  

“c‘)) )) ⊗ t))) 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“((a + b) + c)‘ ⊗ t))) 

({<↓>} ∪ ({<↓>} ⊗ (“

t.({<↓>} ∪ ({<↓>} ⊗ (“ (a + b + c)‘ ⊗ t)))

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a +

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ⊗

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ∪ “ b + c‘)  

⊗ t)))       -- by ta2 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ∪ ({<↓>}  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ∪ (

⊗ (“b‘ ∪ “c‘))) ⊗ t)))

>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ ( (({<↓>} ⊗ “a

∪ ({<↓>} ⊗  “b‘)) ∪ “c‘ ) ⊗

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘  ⊗  

∪ ({<↓>} ⊗ “c‘)) ) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ∪ ( ({<↓>} ⊗ “b  

∪ ({<↓>} ⊗ “c‘)) ) ⊗ t))) -- by distribu

<↓>} ∪ ({<↓>} ⊗ ((( {<↓>} ⊗ (({<↓>} ⊗ “a‘) ∪ ({<↓>

≡  µt.({<↓>} ∪ ({<↓>} ⊗ ( (({<↓>} ⊗“a‘) ∪ ( {

⊗ “b‘) ∪ ({<↓>} ⊗ 
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≡  ↓>} ⊗“a‘) ∪ ( {<↓>} ⊗ (({<↓>}  

 ⊗ n 

⊗ ({<↓>} ⊗ “b‘)) ) ∪ ({<↓>}

⊗ “b‘)) ∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)) )) ⊗ t))) 

 

-- by distribution of ⊗ over union 

fi µt.({<↓ ↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘) )  ∪ ({<↓>}  

 t.({<↓  

≡ µ ⊗ ( (({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ “b‘)  

⊗ t)))      -- by cp1 

≡ ≡ a + b + c‘, then

µt.({<↓>} ∪ ({<↓>} ⊗ ( (({<

⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) )) ⊗ t))) 

-- by distribution of  over unio

fi  µt.({<↓>} ∪ ({<↓>} ⊗ ( (( ({<↓>} ⊗ ({<↓>} ⊗ “a‘)) ∪ ({<↓>}  

 ⊗ “c‘)) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( (({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ ({<↓>}  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( (({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ ({<↓>}  

⊗ “b‘)) ∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)) )) ⊗ t)))  

>} ∪ ({<↓>} ⊗ ((( ({<

⊗ “c‘)) ⊗ t))) 

≡ µ >} ∪ ({<↓>} ⊗ ( (({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ “b‘)  

∪ ({<↓>} ⊗ “c‘) )) ⊗ t))) 

t.({<↓>} ∪ ({<↓>} 

∪ ({<↓>} ⊗ “c‘) )) 

B.3.1.6 Congruence in sel.1 with the encapsulation 

If (a + b) + c‘  “a + (b + c)‘  “   •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “{(a + b) + c}T‘ ≡ “{a + (b + c)}T‘ ≡ “{a + b + c}T‘ 

 “(a + b) + c‘) ≡ unpack(fi unpack( “a + (b + c)‘)  

≡ unpack( by tu1 

≡ unpack({<↓>} ⊗ (“a‘ ∪ “ b + c‘) )    -- by ta2 

“a + b + c‘)      -- 

 fi unpack({<↓>} ⊗ (“a + b‘ ∪ “c‘) ) 

≡ unpack({<↓>} ⊗ (“a‘ ∪ “ b + c‘) ) 
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 fi unpack({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘) ) 

≡ u a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘))) ) 

“b‘ ∪ “c‘))) )  -- by ta2 

<↓>} ⊗  “b‘)) ∪ “c‘ ) ) 

↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) ) 

n 

“b‘)) ) ∪ ({<↓>} ⊗ “c‘) ) 

≡ u a‘) ∪ ( {<↓>} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>}  

} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>}  

er union 

 ∪ ({<↓>} ⊗ ({<↓>} ⊗ “b‘)) )  

 “b‘))  

∪  “c‘)) ) ) 

“a‘) ∪ ( ({<↓>} ⊗ ({<↓>} ⊗ “b‘))  

n 

 “c‘) ) ) 

npack({<↓>} ⊗ (“

≡ unpack({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (

 fi unpack({<↓>} ⊗ ( (({<↓>} ⊗ “a‘) ∪ ({

≡ unpack({<↓>} ⊗ (“a‘ ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ) ) 

≡ unpack({<↓>} ⊗ (“a‘ ∪ ( ({<

-- by distribution of ⊗ over unio

fi unpack( ( {<↓>} ⊗ (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ 

npack( ({<↓>} ⊗“

⊗ “c‘)) ) ) 

≡  unpack( ({<↓>} ⊗“a‘) ∪ ( {<↓>

⊗ “c‘)) ) )   -- by distribution of ⊗ ov

fi unpack(( ({<↓>} ⊗ ({<↓>} ⊗ “a‘))

 ∪ ({<↓>} ⊗ “c‘) ) 

≡ unpack(({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ ({<↓>} ⊗

({<↓>} ⊗ ({<↓>} ⊗

≡ unpack( ({<↓>} ⊗

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)) )) -- by distribution of ⊗ over unio

fi unpack( ( ({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘) )  ∪ ({<↓>} ⊗ “c‘) ) 

≡ unpack( ({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗

≡ unpack( ({<↓>} ⊗“a‘) ∪ ( ({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘) ) )   

-- by cp1 
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B.3.2 Showing congruence for basic operators in the commutative
selection axiom 

 

 

The commutative selection axiom (sel.2) is demonstrated in this section for the binary 
operators of sequence, selection, and parallel composition; as well as for the repetition 
structures (while- and until-loop) and the encapsulation. 

B.3.2.1 Congruence in sel.2 with the sequence operator

If •∈∀ Activityba, “a + b‘ ≡ “b + a‘, then 

•∈∀ Activitycba ,, “(a

 by ts1 

 ‘ ∪ “a -- by ta2 

 ∪ “b  

tivity of union 

.2.2 Congruenc n operator 

If

 + b); c‘ ≡ “(b + a); c‘ 

fi “a + b‘ ⊗ “c‘ ≡ “b + a‘ ⊗ “c‘     -- 

fi ({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ “c‘ ≡ ({<↓>} ⊗ (“b ‘)) ⊗ “c‘ 

fi ({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ “c‘ ≡ ({<↓>} ⊗ (“a‘ ‘)) ⊗ “c‘ 

-- by commuta

B.3 e in sel.2 with the selectio

 •∈∀ Activityba, “a + b‘ ≡ “b + a‘, then 

•∈ Activity “(a + b) + c‘ ≡ “(b + a) + c‘ ∀ cba ,,

 } ⊗ (“b + a‘ ∪ “c‘) -- by ta2 

 fi {<↓

 “a‘)) ∪ “c‘)  -- by ta2 

 fi {<↓

 by commutativity of union 

B.3.2.3 Congruenc position operator 

If

fi {<↓>} ⊗ (“a + b‘ ∪ “c‘) ≡ {<↓>

>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘)  

≡ {<↓>} ⊗ (({<↓>} ⊗ (“b‘ ∪

>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘)  

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘)   

--

e in sel.2 with the parallel com

∀ ba, •∈ Activity “a + b‘ ≡ “b + a‘, then  

•∈ Activity “(a + b) || c‘ ≡ “(b + a) || c‘ ∀ cba ,,

 -- by tp1 

 fi ({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘ = ({<↓>} ⊗ (“b‘ ∪ “a‘)) // “c‘  -- by ta2 

fi “a + b‘ // “c‘ ≡ “b + a‘ // “c‘      
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 fi ({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘ ≡ ({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘  

 by commutativity of union 

B.3.2.4 Congrue

If

--

nce in sel.2 with the until-loop 

•∈ Activity “a + b‘ ≡ “b + a‘, then  ∀ ba,

ba,

 

by tr2 

  t)))  

⊗ by ta2 

 ⊗ t))) 

 ≡ µt.(  ∪ ({<↓>} ⊗ t)))  

 of union 

B.3.2. op 

If

•y “µx.((a + b); ε + x)‘ ≡ “µx.((b + a); ε + x)‘ ∈∀ Activit

fi µt.(“a + b‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“b + a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- 

fi µt.( ({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗

≡ µt.( ({<↓>} ⊗ (“b‘ ∪ “a‘)) ⊗ ({<↓>} ∪ ({<↓>}  t))) -- 

 fi µt.( ({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ ({<↓>} ∪ ({<↓>}

({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ ({<↓>}

-- by commutativity

5 Congruence in sel.2 with the while-lo

 •∈∀ Actiba,

ba, )‘ 

 fi µt.({

  -- by tr4 

 fi µt.({

‘)) ⊗ t))) -- by ta2 

fi µt.({<↓>} ∪ b‘)) ⊗ t))) 

≡ µt.  (“a‘ ∪ “b‘)) ⊗ t)))  

 by co muta ion 

B.3.2.6 latio  

If

vity “a + b‘ ≡ “b + a‘, then 

•Activity “µx.(ε + (a + b); x)‘ ≡ “µx.(ε + (b + a); x∈∀

<↓>} ∪ ({<↓>} ⊗ (“a + b‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“b + a‘ ⊗ t))) 

<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (“b‘ ∪ “a

  ({<↓>} ⊗ ( ({<↓>} ⊗ (“a‘ ∪ “

({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗

-- m tivity of un

 Congruence in sel.2 with the encapsu n

a + b‘ ≡ “b + a‘, then  •∈∀ Activityba, “

217 



Appendix B: Congruence for the Semantics of Tasks    

•∈∀ Activityba, “{a + b}T‘ ≡ “{b + a}T‘ 

 fi unpack(“a + b‘) ≡ unpack(“b + a‘)     -- by tu1 

b‘))  

-- by commutativity of union 

B.3.3 Showing congruence for basic operators in the idempotent 
selection

The ide the binary 
operators of sequence, selection, and parallel composition; as well as for the repetition 
structu

B.3.3.

Activityb, “(a

 fi “a + a‘ ⊗  -- by ts1 

 fi “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘     -- by ta1 

B.3.3.2 Congruence in sel.3 with the selection operator 

If a + a‘ ≡ “a‘, then 

(a + a) + b‘ ≡ “a + b‘ 

 fi {<↓>} ⊗  (“a + a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘)  -- by ta2 

 fi {<↓>} ⊗  (“a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘)  -- by ta1 

B.3.3.3 Congruence in sel.3 with the parallel composition operator 

If a + a‘ ≡ “a‘, then 

(a + a) || b‘ ≡ “a || b‘ 

 fi “a + a‘ // “b‘ ≡ “a‘ // “b‘    -- by tp1 

 fi “a‘ // “b‘ ≡ “a‘ // “b‘     -- by ta1 

 fi unpack({<↓>} ⊗ (“a‘ ∪ “b‘)) ≡ unpack({<↓>} ⊗ (“b‘ ∪ “a‘)) -- by ta2 

 fi unpack({<↓>} ⊗ (“a‘ ∪ “b‘)) ≡ unpack({<↓>} ⊗ (“a‘ ∪ “

 axiom  

mpotent selection action (sel.3) is demonstrated in this section for 

res (while- and until-loop) and the encapsulation. 

1 Congruence in sel.3 with the sequence operator 

If •∈∀ Activitya “a + a‘ ≡ “a‘, then 

•∈∀a  + a); b‘ ≡ “a; b‘ 

 “b‘ ≡ “a‘ ⊗ “b‘   

 •∈∀ Activitya “

•∈∀ Activityba, “

 •∈∀ Activitya “

•∈∀ Activityba, “
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B.3.3.4 Congruence in sel.3 with the until-loop 

If a + a‘ ≡ “a‘, then 

µx.((a + a); ε + x)‘ ≡ “µx.(a; ε + x)‘ 

 fi µt.(“a + a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tr2 

 

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by ta1 

B.3.3.5 Congruence in sel.3 with the while-loop 

If a + a‘ ≡ “a‘, then 

µx.(ε + (a + a); x)‘ ≡ “µx.(ε + a; x)‘ 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a + a‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))   -- by tr4 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))   -- by ta1 

B.3.3.6 Congruence in sel.3 with the encapsulation 

If a + a‘ ≡ “a‘, then 

{a + a}T‘ ≡ “{a}T‘ 

 fi unpack(“a + a‘) ≡ unpack(“a‘)    -- by tu1 

 fi unpack(“a‘) ≡ unpack(“a‘)     -- by ta1 

B.4 Showing congruence for parallel composition 

Parallel composition has the axioms of associative parallel composition, commutative 
composition, right distributivity of concurrency over selection, instant 
synchronisation, fail in parallel composition, and succeed in parallel composition. In 
this section, the congruence is demonstrated for each of these axioms.    

 •∈∀ Activitya “

•∈∀ Activitya “

fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

 •∈∀ Activitya “

•∈∀ Activitya “

 •∈∀ Activitya “

•∈∀ Activitya “
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B.4.1 Showing congruence for basic operators in the associative 
parallel composition axiom 

The associative parallel composition axiom (p.1) is demonstrated in this section for 
the binary operators of sequence, selection, and parallel composition; as well as for 
the repetition structures (while- and until-loop) and the encapsulation. 

B.4.1.1 Congruence in p.1 with the sequence operator 

If (a || b) || c‘ ≡ “a || (b || c)‘, then 

((a || b) || c); d‘ ≡ “(a || (b || c)); d‘ 

fi “(a || b) || c‘ ⊗ “d‘ ≡ “a || (b || c)‘ ⊗ “d‘  -- by ts1 

fi (“a || b‘ // “c‘) ⊗ “d‘ ≡ (“a‘ // “b || c‘) ⊗ “d‘  -- by tp1 

fi (“a‘ // “b‘ // “c‘) ⊗ “d‘ ≡ (“a‘ // “b‘ // “c‘) ⊗ “d‘ -- by tp1 

B.4.1.2 Congruence in p.1 with the selection operator 

If (a || b) || c‘ ≡ “a || (b || c)‘, then 

((a || b) || c) + d‘ ≡ “(a || (b || c)) + d‘ 

fi {<↓>} ⊗ (“(a || b) || c‘ ∪ “d‘) ≡  {<↓>} ⊗ (“a || (b || c)‘ ∪ “d‘) -- by ta2 

fi {<↓>} ⊗ ((“a || b‘ // “c‘) ∪ “d‘)  

≡  {<↓>} ⊗ ((“a‘ // “b || c‘) ∪ “d‘)  -- by tp1 

fi {<↓>} ⊗ ((“a‘ // “b‘ // “c‘) ∪ “d‘)  

≡  {<↓>} ⊗ ((“a‘ // “b‘ // “c‘) ∪ “d‘)  -- by tp1 

B.4.1.3 Congruence in p.1 with the parallel composition operator 

If (a || b) || c‘ ≡ “a || (b || c)‘, then 

((a || b) || c) || d‘ ≡ “(a || (b || c)) || d‘ 

fi “(a || b) || c‘ // “d‘ ≡ “a || (b || c)‘ // “d‘  -- by tp1 

fi “a || b‘ // “c‘ // “d‘ ≡ “a‘ // “b || c‘ // “d‘  -- by tp1 

fi “a‘ // “b‘ // “c‘ // “d‘ ≡ “a‘ // “b‘ // “c‘ // “d‘  -- by tp1 

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “
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B.4.1.4 Congruence in p.1 with the until-loop 

If (a || b) || c‘ ≡ “a || (b || c)‘, then  •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “µx.(((a || b) || c); ε + x)‘ ≡ “µx.((a || (b || c)); ε + x)‘ 

fi µt.(“(a || b) || c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“a || (b || c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tr2 

fi µt.( (“a || b‘ // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.( (“a‘ // “b || c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tp1 

fi µt.( (“a‘ // “b‘ // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.( (“a‘ // “b‘ // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tp1 

B.4.1.5 Congruence in p.1 with the while-loop 

If (a || b) || c‘ ≡ “a || (b || c)‘, then  •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “µx.(ε + ((a || b) || c); x)‘ ≡ “µx.(ε + (a || (b || c)); x)‘ 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“(a || b) || c‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a || (b || c)‘ ⊗ t)))  -- by tr4 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a || b‘ // “c‘) ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // “b || c‘) ⊗ t))) -- by tp1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // “b‘ // “c‘) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // “b‘ // “c‘) ⊗ t))) -- by tp1 

B.4.1.6 Congruence in p.1 with the encapsulation 

If (a || b) || c‘ ≡ “a || (b || c)‘, then  •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “{(a || b) || c}T‘ ≡ “{a || (b || c)}T‘ 

fi unpack(“(a || b) || c‘) ≡ unpack(“a || (b || c)‘)  -- by tu1 

fi unpack(“a || b‘ // “c‘) ≡ unpack(“a‘ // “b || c‘)  -- by tp1 

fi unpack(“a‘ // “b‘ // “c‘) ≡ unpack(“a‘ // “b‘ // “c‘)  -- by tp1 
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B.4.2 Showing congruence for basic operators in the commutative 
parallel composition axiom 

The commutative parallel composition axiom (p.2) is demonstrated in this section for 
the binary operators of sequence, selection, and parallel composition; as well as for 
the repetition structures (while- and until-loop) and the encapsulation. 

B.4.2.1 Congruence in p.2 with the sequence operator 

If a || b ‘ ≡ “b || a ‘, then  •∈∀ Activityba, “

•∈∀ Activitycba ,, “(a || b); c‘ ≡ “(b || a); c‘ 

fi “a || b‘ ⊗ “c‘ ≡ “b || a‘ ⊗ “c‘    -- by ts1 

fi (“a‘ // “b‘) ⊗ “c‘ ≡ (“b‘ // “a‘) ⊗ “c‘   -- by tp1 

fi (“a‘ // “b‘) ⊗ “c‘ ≡ (“a‘ // “b‘) ⊗ “c‘   -- by commutativity of // 

B.4.2.2 Congruence in p.2 with the selection operator 

If a || b ‘ ≡ “b || a ‘, then  •∈∀ Activityba, “

•∈∀ Activitycba ,, “(a || b) + c‘ ≡ “(b || a) + c‘ 

fi {<↓>} ⊗ (“a || b‘ ∪ “c‘) ≡ {<↓>} ⊗ (“b || a‘ ∪ “c‘)   -- by ta2 

fi {<↓>} ⊗ ((“a‘ // “b‘) ∪ “c‘) ≡ {<↓>} ⊗ ((“b‘ // “a‘) ∪ “c‘)  -- by tp1 

fi {<↓>} ⊗ ((“a‘ // “b‘) ∪ “c‘) ≡ {<↓>} ⊗ ((“a‘ // “b‘) ∪ “c‘)   

-- by commutativity of // 

B.4.2.3 Congruence in p.2 with the parallel composition operator 

If a || b ‘ ≡ “b || a ‘, then  •∈∀ Activityba, “

•∈∀ Activitycba ,, “(a || b) || c‘ ≡ “(b || a) || c‘ 

fi “a || b‘ // “c‘ ≡ “b || a‘ // “c‘    -- by tp1 

fi (“a‘ // “b‘) // “c‘ ≡ (“b‘ // “a‘) // “c‘   -- by tp1 

fi (“a‘ // “b‘) // “c‘ ≡ (“a‘ // “b‘) // “c‘   -- by commutativity of // 

B.4.2.4 Congruence in p.2 with the until-loop 

If •∈∀ Activityba, “a || b ‘ ≡ “b || a ‘, then 
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•∈∀ Activityba, “µx.((a || b); ε + x)‘ ≡ “µx.((b || a); ε + x)‘ 

fi µt.(“a || b‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.(“b || a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tr2 

fi µt.( (“a‘ // “b‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.( (“b‘ // “a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tp1 

fi µt.( (“a‘ // “b‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.( (“a‘ // “b‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))    

-- by commutativity of // 

B.4.2.5 Congruence in p.2 with the while-loop 

If •∈∀ Activityba, “a || b ‘ ≡ “b || a ‘, then 

µx.(ε + (a || b); x)‘ ≡ “µx.(ε + (b || a); x)‘ 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a || b‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“b || a‘ ⊗ t)))  -- by tr4 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // “b‘) ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( (“b‘ // “a‘) ⊗ t)))  -- by tp1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // “b‘) ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // “b‘)  ⊗ t))) -- by commutativity of // 

B.4.2.6 Congruence in p.2 with the encapsulation 

If

•∈∀ Activityba, “

 •∈∀ Activityba, “a || b ‘ ≡ “b || a ‘, then 

{a || b}T‘ ≡ “{b || a}T‘ 

fi unpack(“a || b‘) ≡ unpack(“b || a‘)   -- by tu1 

fi unpack(“a‘ // “b‘)  ≡ unpack(“b‘ // “a‘)  -- by tp1 

fi unpack(“a‘ // “b‘)  ≡ unpack(“a‘ // “b‘)  -- by commutativity of // 

•∈∀ Activityba, “
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B.4.3 Showing congruence for basic operators in the right 
distributivity of concurrency over selection axiom   

The right distributivity of concurrency over selection axiom (p.3) is demonstrated in 
this section for the binary operators of sequence, selection, and parallel composition; 
as well as for the repetition structures (while- and until-loop) and the encapsulation. 

B.4.3.1 Congruence in p.3 with the sequence operator 

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then 

((a + b) || c); d‘ ≡ “((a || c) + (b || c)); d‘ 

fi “(a + b) || c‘ ⊗ “d‘ ≡ “(a || c) + (b || c)‘ ⊗ “d‘  -- by ts1 

fi (“a + b‘ // “c‘) ⊗ “d‘ ≡ “(a || c) + (b || c)‘ ⊗ “d‘  -- by tp1 

fi (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ “d‘  

≡ ({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) ⊗ “d‘   -- by ta2 

fi (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ “d‘  

≡ ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) ⊗ “d‘  -- by tp1 

fi {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ “d‘ 

≡ {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ “d‘ -- distribution of // over ∪ 

B.4.3.2 Congruence in p.3 with the selection operator 

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then 

((a + b) || c) + d‘ ≡ “((a || c) + (b || c)) + d‘ 

fi {<↓>} ⊗ (“(a + b) || c‘ ∪ “d‘)  

≡ {<↓>} ⊗ (“(a || c) + (b || c)‘ ∪ “d‘)   -- by ta2 

fi {<↓>} ⊗ ((“a + b‘ // “c‘) ∪ “d‘)  

≡ {<↓>} ⊗ (“(a || c) + (b || c)‘ ∪ “d‘)   -- by tp1 

fi {<↓>} ⊗ ((({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ∪ “d‘)  

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) ∪ “d‘) -- by ta2 

fi {<↓>} ⊗ ((({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ∪ “d‘) 

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “
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≡ {<↓>} ⊗ (({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) ∪ “d‘) -- by tp1 

fi {<↓>} ⊗ ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ∪ “d‘) 

≡ {<↓>} ⊗ ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ∪ “d‘)  

-- distribution of // over ∪ 

B.4.3.3 Congruence in p.3 with the parallel composition operator 

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then 

((a + b) || c) || d‘ ≡ “((a || c) + (b || c)) || d‘ 

fi “(a + b) || c‘ // “d‘ ≡ “(a || c) + (b || c)‘ // “d‘   -- by tp1 

fi (“a + b‘ // “c‘) // “d‘ ≡ “(a || c) + (b || c)‘ // “d‘  -- by tp1 

fi (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) // “d‘  

≡ ({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) // “d‘   -- by ta2 

fi (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) // “d‘  

≡ ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) // “d‘  -- by tp1 

fi {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) // “d‘ 

≡ {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) // “d‘ -- distribution of // over ∪ 

B.4.3.4 Congruence in p.3 with the until-loop 

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then 

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “

 •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “µx.( ((a + b) || c); ε + x)‘ ≡ “µx.( ((a || c) + (b || c)); ε + x)‘ 

fi µt.(“(a + b) || c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.(“(a || c) + (b || c)‘  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tr2 

fi µt.( (“a + b‘ // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“(a || c) + (b || c)‘  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tp1 

fi µt.( (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 
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-- by ta2 

fi µt.( (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

        -- by tp1 

fi µt.({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

      -- distribution of // over ∪ 

B.4.3.5 Congruence in p.3 with the while-loop 

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then  •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “µx.(ε + ((a + b) || c); x)‘ ≡ “µx.(ε + ((a || c) + (b || c)); x)‘ 

fi µt.({<↓>} ∪ ({<↓>} ⊗ “(a + b) || c‘ ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ “(a || c) + (b || c)‘ ⊗ t)))  -- by tr4 

fi µt.({<↓>} ∪ ({<↓>} ⊗  (“a + b‘ // “c‘) ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ “(a || c) + (b || c)‘ ⊗ t)))  -- by tp1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) ⊗ t))) 

        -- by ta2 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) ⊗ t))) 

        -- by tp1 

fi µt.({<↓>} ∪ ({<↓>} ⊗{<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ t))) 

      -- distribution of // over ∪ 

B.4.3.6 Congruence in p.3 with the encapsulation 

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then  •∈∀ Activitycba ,, “
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•∈∀ Activitycba ,, “{(a + b) || c}T‘ ≡ “{(a || c) + (b || c)}T‘ 

fi unpack(“(a + b) || c‘)  ≡ unpack(“(a || c) + (b || c)‘)  -- by tu1 

fi unpack(“a + b‘ // “c‘)  ≡ unpack(“(a || c) + (b || c)‘)  -- by tp1 

fi unpack( ({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘)  

≡ unpack({<↓>} ⊗ (“a || c‘ ∪ “b || c‘))  -- by ta2 

fi unpack( {<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘)  

≡ unpack({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)))  -- by tp1 

fi unpack({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ) 

≡ unpack({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ) 

-- distribution of // over ∪ 

B.4.4 Showing congruence for basic operators in the instant 
synchronisation axiom 

The instant synchronisation axiom (p.4) is demonstrated in this section for the binary 
operators of sequence, selection, and parallel composition; as well as for the repetition 
structures (while- and until-loop) and the encapsulation. 

B.4.4.1 Congruence in p.4 with the sequence operator 

If a || ε‘ ≡ “a‘, then 

(a || ε); b‘ ≡ “a; b‘ 

 fi “a || ε‘ ⊗ “b‘  ≡ “a‘ ⊗ “b‘     -- by ts1 

 fi (“a‘ // “ε‘) ⊗ “b‘ ≡ “a‘ ⊗ “b‘     -- by tp1 

 fi (“a‘ // {<>}) ⊗ “b‘ ≡ “a‘ ⊗ “b‘    -- by tb1 

 fi “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘      -- by di1 

B.4.4.2 Congruence in p.4 with the selection operator 

If a || ε‘ ≡ “a‘, then 

(a || ε) + b‘ ≡ “a + b‘ 

 fi {<↓>} ⊗ (“a || ε‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘)  -- by ta2 
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 fi {<↓>} ⊗ ((“a‘ // “ε‘) ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘)  -- by tp1 

 fi {<↓>} ⊗ ((“a‘ // {<>}) ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘) -- by tb1 

 fi {<↓>} ⊗ (“a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘)  -- by di1 

B.4.4.3 Congruence in p.4 with the parallel composition operator 

If a || ε‘ ≡ “a‘, then 

(a || ε) || b‘ ≡ “a || b‘ 

 fi “a || ε‘ // “b‘  ≡ “a‘ // “b‘     -- by tp1 

 fi (“a‘ // “ε‘) // “b‘ ≡ “a‘ // “b‘     -- by tp1 

 fi (“a‘ // {<>}) // “b‘ ≡ “a‘ // “b‘    -- by tb1 

 fi “a‘ // “b‘ ≡ “a‘ // “b‘      -- by di1 

B.4.4.4 Congruence in p.4 with the until-loop 

If a || ε‘ ≡ “a‘, then 

µx.((a || ε); ε + x)‘ ≡ “µx.(a; ε + x)‘ 

 fi µt.(“a || ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tr2 

 fi µt.( (“a‘ // “ε‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tp1 

 fi µt.( (“a‘ // {<>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tb1 

 fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by di1 

B.4.4.5 Congruence in p.4 with the while-loop 

If a || ε‘ ≡ “a‘, then 

µx.(ε + (a || ε); x)‘ ≡ “µx.(ε + a; x)‘ 
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 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a || ε‘ ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))   -- by tr4 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // “ε‘) ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))   -- by tp1 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // {<>}) ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))   -- by tb1 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))   -- by di1 

B.4.4.6 Congruence in p.4 with the encapsulation 

If a || ε‘ ≡ “a‘, then 

{a || ε}T‘ ≡ “{a}T‘ 

 fi unpack(“a || ε‘) ≡ unpack(“a‘)    -- by tu1 

 fi unpack(“a‘ // “ε‘) ≡ unpack(“a‘)    -- by tp1 

 fi unpack(“a‘ // {<>}) ≡ unpack(“a‘)    -- by tb1 

 fi unpack(“a‘) ≡ unpack(“a‘)     -- by di1 

B.4.5 Showing congruence for basic operators in the fail in parallel 
composition axiom 

The fail in parallel composition axiom (p.5) is demonstrated in this section for the 
binary operators of sequence, selection, and parallel composition; as well as for the 
repetition structures (while- and until-loop) and the encapsulation. 

B.4.5.1 Congruence in p.5 with the sequence operator 

If a || φ‘ ≡ “φ‘, then 

(a || φ); b‘ ≡ “φ; b‘ 

 fi “a || φ‘ ⊗ “b‘  ≡ “φ‘ ⊗ “b‘     -- by ts1 

 fi (“a‘ // “φ‘) ⊗ “b‘ ≡ “φ‘ ⊗ “b‘     -- by tp1 

 fi (“a‘ // {<φ>}) ⊗ “b‘ ≡ {<φ>} ⊗ “b‘    -- by tb2 
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fi ({t1, t2, …, tn} // {<φ>}) ⊗ “b‘ ≡ {<φ>} ⊗ “b‘ Let “a‘ = {t1, t2, …, tn} 

fi {<φ>} ⊗ “b‘ ≡ {<φ>} ⊗ “b‘    

B.4.5.2 Congruence in p.5 with the selection operator 

If a || φ‘ ≡ “φ‘, then 

(a || φ) + b‘ ≡ “φ + b‘ 

fi {<↓>} ⊗ (“a || φ‘ ∪ “b‘) ≡ {<↓>} ⊗ (“φ‘ ∪ “b‘)   -- by ta2 

fi {<↓>} ⊗ ((“a‘ // “φ‘) ∪ “b‘) ≡ {<↓>} ⊗ (“φ‘ ∪ “b‘)  -- by tp1 

fi {<↓>} ⊗ ((“a‘ // {<φ>}) ∪ “b‘) ≡ {<↓>} ⊗ ({<φ>} ∪ “b‘) -- by tb2 

fi {<↓>} ⊗ (({t1, t2, …, tn} // {<φ>}) ∪ “b‘) 

 ≡ {<↓>} ⊗ ({<φ>} ∪ “b‘)   Let “a‘ = {t1, t2, …, tn} 

fi {<↓>} ⊗ ({<φ>} ∪ “b‘) ≡ {<↓>} ⊗ ({<φ>} ∪ “b‘) 

B.4.5.3 Congruence in p.5 with the parallel composition operator 

If a || φ‘ ≡ “φ‘, then 

(a || φ) || b‘ ≡ “φ || b‘ 

 fi “a || φ‘ // “b‘  ≡ “φ‘ // “b‘     -- by tp1 

 fi (“a‘ // “φ‘) // “b‘ ≡ “φ‘ // “b‘     -- by tp1 

 fi (“a‘ // {<φ>}) // “b‘ ≡ {<φ>} // “b‘    -- by tb2 

fi ({t1, t2, …, tn} // {<φ>}) // “b‘ ≡ {<φ>} // “b‘ Let “a‘ = {t1, t2, …, tn} 

fi {<φ>} // “b‘ ≡ {<φ>} // “b‘     

B.4.5.4 Congruence in p.5 with the until-loop 

If a || φ‘ ≡ “φ‘, then 

µx.((a || φ); ε + x)‘ ≡ “µx.(φ; ε + x)‘ 

 fi µt.(“a || φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  
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≡ µt.(“φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tr2 

 fi µt.( (“a‘ // “φ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tp1 

 fi µt.( (“a‘ // {<φ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tb2 

fi µt.( ({t1, t2, …, tn} // {<φ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) Let “a‘ = {t1, t2, …, tn} 

fi µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

B.4.5.5 Congruence in p.5 with the while-loop 

If a || φ‘ ≡ “φ‘, then 

µx.(ε + (a || φ); x)‘ ≡ “µx.(ε + φ; x)‘ 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a || φ‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘  ⊗ t)))   -- by tr4 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // “φ‘) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘  ⊗ t)))   -- by tp1 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // {<φ>}) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>}⊗ t)))  -- by tb2 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( ({t1, t2, …, tn} // {<φ>})  ⊗ t))) 

 = {t1, t2, …, tn} 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>}⊗ t)))  

B.4.5.6 Congruence in p.5 with the encapsulation 

If a || φ‘ ≡ “φ‘, then 
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•∈∀ Activitya “{a || φ}T‘ ≡ “{φ}T‘ 

 fi unpack(“a || φ‘) ≡ unpack(“φ‘)    -- by tu1 

 fi unpack(“a‘ // “φ‘) ≡ unpack(“φ‘)    -- by tp1 

 fi unpack(“a‘ // {<φ>}) ≡ unpack({<φ>})   -- by tb2 

fi unpack({t1, t2, …, tn} // {<φ>})   

≡ unpack({<φ>})    Let “a‘ = {t1, t2, …, tn} 

fi unpack({<φ>}) ≡ unpack({<φ>})    

B.4.6 Showing congruence for basic operators in the succeed in 
parallel composition axiom 

The succeed in parallel composition axiom (p.6) is demonstrated in this section for the 
binary operators of sequence, selection, and parallel composition; as well as for the 
repetition structures (while- and until-loop) and the encapsulation. 

B.4.6.1 Congruence in p.6 with the sequence operator 

If a || σ‘ ≡ “σ‘, then 

(a || σ); b‘ ≡ “σ; b‘ 

 fi “a || σ‘ ⊗ “b‘ ≡ “σ‘ ⊗ “b‘     -- by ts1 

 fi (“a‘ // “σ‘) ⊗ “b‘ ≡ “σ‘ ⊗ “b‘    -- by tp1 

fi (“a‘ // {<σ>}) ⊗ “b‘ ≡ {<σ>} ⊗ “b‘    -- by tb2 

fi ({t1, t2, …, tn} // {<σ>}) ⊗ “b‘ ≡ {<σ>} ⊗ “b‘ Let “a‘ = {t1, t2, …, tn} 

fi {<σ>} ⊗ “b‘ ≡ {<σ>} ⊗ “b‘    

B.4.6.2 Congruence in p.6 with the selection operator 

If a || σ‘ ≡ “σ‘, then 

(a || σ) + b‘ ≡ “σ + b‘ 

fi {<↓>} ⊗ (“a || σ‘ ∪ “b‘) ≡ {<↓>} ⊗ (“σ‘ ∪ “b‘)  -- by ta2 

fi {<↓>} ⊗ ((“a‘ // “σ‘) ∪ “b‘) ≡ {<↓>} ⊗ (“σ‘ ∪ “b‘) -- by tp1 
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fi {<↓>} ⊗ ((“a‘ // {<σ>}) ∪ “b‘) ≡ {<↓>} ⊗ ({<σ>} ∪ “b‘) -- by tb2 

fi {<↓>} ⊗ (({t1, t2, …, tn} // {<σ>}) ∪ “b‘) 

 ≡ {<↓>} ⊗ ({<σ>} ∪ “b‘)   Let “a‘ = {t1, t2, …, tn} 

fi {<↓>} ⊗ ({<σ>} ∪ “b‘) ≡ {<↓>} ⊗ ({<σ>} ∪ “b‘) 

B.4.6.3 Congruence in p.6 with the parallel composition operator 

If a || σ‘ ≡ “σ‘, then 

(a || σ) || b‘ ≡ “σ || b‘ 

 fi “a || σ‘ // “b‘  ≡ “σ‘ // “b‘     -- by tp1 

 fi (“a‘ // “σ‘) // “b‘ ≡ “σ‘ // “b‘     -- by tp1 

fi (“a‘ // {<σ>}) // “b‘ ≡ {<σ>} // “b‘    -- by tb2 

fi ({t1, t2, …, tn} // {<σ>}) // “b‘ ≡ {<σ>} // “b‘ Let “a‘ = {t1, t2, …, tn} 

fi {<σ>} // “b‘ ≡ {<σ>} // “b‘     

B.4.6.4 Congruence in p.6 with the until-loop 

If a || σ‘ ≡ “σ‘, then 

µx.((a || σ); ε + x)‘ ≡ “µx.(σ; ε + x)‘ 

 fi µt.(“a || σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tr2 

 fi µt.( (“a‘ // “σ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tp1 

 fi µt.( (“a‘ // {<σ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tb2 

fi µt.( ({t1, t2, …, tn} // {<σ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) Let “a‘ = {t1, t2, …, tn} 

fi µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  
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≡ µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

B.4.6.5 Congruence in p.6 with the while-loop 

If a || σ‘ ≡ “σ‘, then 

µx.(ε + (a || σ); x)‘ ≡ “µx.(ε + σ; x)‘ 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a || σ‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘  ⊗ t)))   -- by tr4 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // “σ‘) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘  ⊗ t)))   -- by tp1 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ // {<σ>}) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>}⊗ t)))  -- by tb2 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( ({t1, t2, …, tn} // {<σ>})  ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>}⊗ t))) Let “a‘ = {t1, t2, …, tn} 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>}⊗ t)))  

B.4.6.6 Congruence in p.6 with the encapsulation 

If a || σ‘ ≡ “σ‘, then 

{a || σ}T‘ ≡ “{σ}T‘ 

 fi unpack(“a || σ‘) ≡ unpack(“σ‘)    -- by tu1 

 fi unpack(“a‘ // “σ‘) ≡ unpack(“σ‘)    -- by tp1 

 fi unpack(“a‘ // {<σ>}) ≡ unpack({<σ>})   -- by tb2 

fi unpack({t1, t2, …, tn} // {<σ>})   

≡ unpack({<σ>})    Let “a‘ = {t1, t2, …, tn} 

fi unpack({<σ>}) ≡ unpack({<σ>})    
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B.5 Showing congruence for repetition 

In this section, congruence for repetition is illustrated for each its axioms.  Repetition 
is formed by only two axioms: unrolling one cycle of until-loop repetition and 
unrolling one cycle of while-loop repetition. 

B.5.1 Showing congruence for basic operators in the unrolling one 
cycle of until-loop repetition axiom 

The unrolling one cycle of until-loop axiom (r.1) is demonstrated in this section for 
the binary operators of sequence, selection, and parallel composition; as well as for 
the repetition structures (while- and until-loop) and the encapsulation. 

B.5.1.1 Congruence in r.1 with the sequence operator 

If µx.(a; ε + x)‘ ≡ “(a; ε + µx.(a; ε + x))‘, then 

µx.(a; ε + x); b‘ ≡ “(a; ε + µx.(a; ε + x)); b‘ 

 fi “µx.(a; ε + x)‘ ⊗ “b‘ ≡ “a; ε + µx.(a; ε + x)‘ ⊗ “b‘  -- by ts1 

 fi “µx.(a; ε + x)‘ ⊗ “b‘ ≡ (“a‘ ⊗ “ε + µx.(a; ε + x)‘) ⊗ “b‘ -- by ts1 

 fi “µx.(a; ε + x)‘ ⊗ “b‘  

≡ ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘)) ) ⊗ “b‘ -- by ta2 

 fi µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ⊗ “b‘  

≡ ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))) ) ⊗ “b‘ 

       -- by tr2 

 fi (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) ) ⊗ “b‘  

≡  ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) ) ⊗ “b‘ 

       -- by tr5 

B.5.1.2 Congruence in r.1 with the selection operator 

If µx.(a; ε + x)‘ ≡ “(a; ε + µx.(a; ε + x))‘, then 

µx.(a; ε + x) + b‘ ≡ “(a; ε + µx.(a; ε + x)) + b‘ 

fi {<↓>} ⊗ (“µx.(a; ε + x)‘ ∪ “b‘)  

≡ {<↓>} ⊗ (“a; ε + µx.(a; ε + x)‘ ∪ “b‘)  -- by ta2 
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 fi {<↓>} ⊗ (“µx.(a; ε + x)‘ ∪ “b‘)  

≡ {<↓>} ⊗ ((“a‘ ⊗ “ε + µx.(a; ε + x)‘) ∪ “b‘)  -- by ts1 

 fi {<↓>} ⊗ (“µx.(a; ε + x)‘ ∪ “b‘)  

≡ {<↓>} ⊗ (( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘)) )  

∪ “b‘)  -- by ta2 

 fi {<↓>} ⊗ (µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ∪ “b‘)  

≡ {<↓>} ⊗ (( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪  

({<↓>} ⊗ t))))) ) ∪ “b‘)   -- by tr2 

 fi {<↓>} ⊗ ((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) )  

∪ “b‘ ) 

≡ {<↓>} ⊗ (( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>}  

∪ ({<↓>} ⊗ t))) )) ) ∪ “b‘)   -- by tr5 

B.5.1.3 Congruence in r.1 with the parallel composition operator 

If µx.(a; ε + x)‘ ≡ “(a; ε + µx.(a; ε + x))‘, then 

µx.(a; ε + x) || b‘ ≡ “(a; ε + µx.(a; ε + x)) || b‘ 

 fi “µx.(a; ε + x)‘ // “b‘ ≡ “a; ε + µx.(a; ε + x)‘ // “b‘  -- by tp1 

 fi “µx.(a; ε + x)‘ // “b‘ ≡ (“a‘ ⊗ “ε + µx.(a; ε + x)‘) // “b‘ -- by ts1 

 fi “µx.(a; ε + x)‘ // “b‘  

≡ ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘)) ) // “b‘ -- by ta2 

 fi µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) // “b‘  

≡ ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))) ) // “b‘ 

       -- by tr2 

 fi (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) ) // “b‘  

≡  ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) ) // “b‘ 
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       -- by tr5 

B.5.1.4 Congruence in r.1 with the until-loop 

If µx.(a; ε + x)‘ ≡ “a; ε + µx.(a; ε + x)‘, then 

µx.(µx.(a; ε + x); ε + x)‘ ≡ “µx.( (a; ε + µx.(a; ε + x)); ε + x)‘ 

 fi µt.(“µx.(a; ε + x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.(“a; ε + µx.(a; ε + x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2 

 fi µt.(“µx.(a; ε + x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( (“a‘ ⊗ “ε + µx.(a; ε + x)‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ts1 

 fi µt.(“µx.(a; ε + x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘)) )  

⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))    -- by ta2 

 fi µt.(µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))) )  

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))    -- by tr2 

 fi µt.( (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) )  

   ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) )  

   ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))    -- by tr5 

B.5.1.5 Congruence in r.1 with the while-loop 

If µx.(a; ε + x)‘ ≡ “a; ε + µx.(a; ε + x)‘, then 

µx.(ε + µx.(a; ε + x); x)‘ ≡ “µx.(ε + (a; ε + µx.(a; ε + x)); x)‘ 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(a; ε + x)‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a; ε + µx.(a; ε + x)‘ ⊗ t))) -- by tr4 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(a; ε + x)‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ ⊗ “ε + µx.(a; ε + x)‘) ⊗ t))) -- by ts1 
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 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(a; ε + x)‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘)) ) 

 ⊗ t)))       -- by ta2 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} 

 ∪ ({<↓>} ⊗ t))))) ) ⊗ t)))    -- by tr2 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>}  

∪ ({<↓>} ⊗ t))) )) ) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} 

  ∪ ({<↓>} ⊗ t))) )) ) ⊗ t)))    -- by tr5 

B.5.1.6 Congruence in r.1 with the encapsulation 

If µx.(a; ε + x)‘ ≡ “(a; ε + µx.(a; ε + x))‘, then 

{µx.(a; ε + x)}T‘ ≡ “{a; ε + µx.(a; ε + x)}T‘ 

 fi unpack(“µx.(a; ε + x)‘) ≡ unpack(“a; ε + µx.(a; ε + x)‘)  -- by tu1 

 fi unpack(“µx.(a; ε + x)‘) ≡ unpack(“a‘ ⊗ “ε + µx.(a; ε + x)‘) -- by ts1 

 fi unpack(“µx.(a; ε + x)‘)  

≡ unpack( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘)) )  -- by ta2 

 fi unpack(µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ) 

≡ unpack( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>}  

∪ ({<↓>} ⊗ t))))) )     -- by tr2 

 fi unpack(“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) )) )  

≡  unpack( “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.( “a‘ ⊗ ({<↓>}  

∪ ({<↓>} ⊗ t))) )) )      -- by tr5 
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B.5.2 Showing congruence for basic operators in the unrolling one 
cycle of while-loop repetition axiom 

The unrolling one cycle of while-loop repetition axiom (r.2) is demonstrated in this 
section for the binary operators of sequence, selection, and parallel composition; as 
well as for the repetition structures (while- and until-loop) and the encapsulation. 

B.5.2.1 Congruence in r.2 with the sequence operator 

If µx.(ε + a ; x)‘ ≡ “(ε + a; µx.(ε + a ; x))‘, then 

µx.(ε + a ; x); b‘ ≡ “(ε + a; µx.(ε + a ; x)); b‘ 

 fi “µx.(ε + a ; x)‘ ⊗ “b‘ ≡ “ε + a; µx.(ε + a ; x)‘ ⊗ “b‘  -- by ts1 

 fi “µx.(ε + a ; x)‘ ⊗ “b‘  

≡ ({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) ⊗ “b‘  -- by ta2 

 fi “µx.(ε + a ; x)‘ ⊗ “b‘  

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘) )) ⊗ “b‘ -- by ts1 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) ⊗ “b‘  

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) ))  

⊗ “b‘      -- by tr4 

 fi ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.( {<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) )) ⊗ “b‘  

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) )) ⊗ “b‘ 

        -- by tr6 

B.5.2.2 Congruence in r.2 with the selection operator 

If µx.(ε + a ; x)‘ ≡ “(ε + a; µx.(ε + a ; x))‘, then 

µx.(ε + a ; x) + b‘ ≡ “(ε + a; µx.(ε + a ; x)) + b‘ 

 fi {<↓>} ⊗ (“µx.(ε + a ; x)‘ ∪ “b‘)  

≡ {<↓>} ⊗ (“ε + a; µx.(ε + a ; x)‘ ∪ “b‘)   -- by ta2 

 fi {<↓>} ⊗ (“µx.(ε + a ; x)‘ ∪ “b‘)  

≡ {<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) ∪ “b‘) -- by ta2 
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 fi {<↓>} ⊗ (“µx.(ε + a ; x)‘ ∪ “b‘)  

≡ {<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘) )) ∪ “b‘)  

-- by ts1 

 fi {<↓>} ⊗ (µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) ∪ “b‘)  

≡ {<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗  

µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) )) ∪ “b‘)  -- by tr4 

 fi {<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗  

µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) )) ∪ “b‘)  

≡ {<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗  

µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) )) ∪ “b‘)  -- by tr6 

B.5.2.3 Congruence in r.2 with the parallel composition operator 

If µx.(ε + a ; x)‘ ≡ “(ε + a; µx.(ε + a ; x))‘, then 

µx.(ε + a ; x) || b‘ ≡ “(ε + a; µx.(ε + a ; x)) || b‘ 

 fi “µx.(ε + a ; x)‘ // “b‘ ≡ “ε + a; µx.(ε + a ; x)‘ // “b‘  -- by tp1 

 fi “µx.(ε + a ; x)‘ // “b‘  

≡ ({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) // “b‘  -- by ta2 

 fi “µx.(ε + a ; x)‘ // “b‘  

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘) )) // “b‘ -- by ts1 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) // “b‘  

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) ))  

// “b‘      -- by tr4 

 fi ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.( {<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) )) // “b‘  

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) )) // “b‘ 

        -- by tr6 
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B.5.2.4 Congruence in r.2 with the until-loop 

If µx.(ε + a ; x)‘ ≡ “ε + a; µx.(ε + a ; x)‘, then 

µx.(µx.(ε + a ; x); ε + x)‘ ≡ “µx.( (ε + a; µx.(ε + a ; x)); ε + x)‘ 

 fi µt.(“µx.(ε + a ; x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.(“ε + a; µx.(ε + a ; x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2 

 fi µt.(“µx.(ε + a ; x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

        -- by ta2 

 fi µt.(“µx.(ε + a ; x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘) ))  

⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))    -- by ts1 

 fi µt.(µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) ))  

⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))    -- by tr4 

 fi µt.( ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.( {<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) ))   

⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) ))  

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))    -- by tr6 

B.5.2.5 Congruence in r.2 with the while-loop 

If µx.(ε + a ; x)‘ ≡ “ε + a; µx.(ε + a ; x)‘, then 

µx.(ε + µx.(ε + a ; x); x)‘ ≡ “µx.(ε + (ε + a; µx.(ε + a ; x)); x)‘ 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(ε + a ; x)‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“ε + a; µx.(ε + a ; x)‘ ⊗ t))) -- by tr4 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(ε + a ; x)‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) ⊗ t))) 
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        -- by ta2 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(ε + a ; x)‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘) ))  

⊗ t)))       -- by ts1 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ( µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} 

 ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) )) ⊗ t)))    -- by tr4 

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.( {<↓>}  

∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) )) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>}  

∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) )) ⊗ t)))   -- by tr6 

B.5.2.6 Congruence in r.2 with the encapsulation 

If µx.(ε + a ; x)‘ ≡ “ε + a; µx.(ε + a ; x)‘, then 

{µx.(ε + a ; x)}T‘ ≡ “{ε + a; µx.(ε + a ; x)}T‘ 

 fi unpack(“µx.(ε + a ; x)‘)≡ unpack(“ε + a; µx.(ε + a ; x)‘)  -- by tu1 

 fi unpack(“µx.(ε + a ; x)‘ ) 

≡ unpack({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘))  -- by ta2 

 fi unpack(“µx.(ε + a ; x)‘ ) 

≡ unpack({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘) ))  -- by ts1 

 fi unpack(µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) ) 

≡ unpack({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) ))  

       -- by tr4 

 fi unpack({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.( {<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) ))  

≡ unpack({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))) ))  

        -- by tr6 
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B.6 Showing congruence for encapsulation 

This section shows the last group of axioms for the task algebra. Encapsulation is 
formed by the axioms of vacuous subtask, coincident exit, and vacuous selection. 
Every axiom is represented in combination with one of the basic operators defined for 
the task algebra. 

B.6.1 Showing congruence for basic operators in the vacuous 
subtask axiom 

The vacuous subtask axiom (e.1) is demonstrated in this section for the binary 
operators of sequence, selection, and parallel composition; as well as for the repetition 
structures (while- and until-loop) and the encapsulation.  

B.6.1.1 Congruence in e.1 with the sequence operator 

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then 

{σ}T; a‘ ≡ “ε; a‘ ≡ “{ε}T; a‘ 

fi “{σ}T‘ ⊗ “a‘ ≡ “ε‘ ⊗ “a‘ ≡ “{ε}T‘ ⊗ “a‘    -- by ts1 

fi unpack(“σ‘) ⊗ “a‘ ≡ “ε‘ ⊗ “a‘ ≡ unpack (“ε‘) ⊗ “a‘   -- by tu1 

fi unpack(“σ‘) ⊗ “a‘ ≡ {<>} ⊗ “a‘ ≡ unpack ({<>}) ⊗ “a‘  -- by tb1 

fi unpack({<σ>}) ⊗ “a‘ ≡ {<>} ⊗ “a‘ ≡ unpack ({<>}) ⊗ “a‘ -- by tb2 

fi {<>} ⊗ “a‘ ≡ {<>} ⊗ “a‘ ≡ {<>} ⊗ “a‘    -- by up1 

B.6.1.2 Congruence in e.1 with the selection operator 

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then 

{σ}T + a‘ ≡ “ε + a‘ ≡ “{ε}T + a‘ 

fi {<↓>} ⊗ (“{σ}T‘ ∪ “a‘) ≡ {<↓>} ⊗ (“ε‘ ∪ “a‘)  

≡ {<↓>} ⊗ (“{ε}T‘ ∪ “a‘)    -- by ta2 

fi {<↓>} ⊗ (unpack(“σ‘) ∪ “a‘) ≡ {<↓>} ⊗ (“ε‘ ∪ “a‘)  

≡ {<↓>} ⊗ (unpack(“ε‘) ∪ “a‘)   -- by tu1 

fi {<↓>} ⊗ (unpack(“σ‘) ∪ “a‘) ≡ {<↓>} ⊗ ({<>} ∪ “a‘)  

≡ {<↓>} ⊗ (unpack({<>}) ∪ “a‘)   -- by tb1 

fi {<↓>} ⊗ (unpack({<σ>}) ∪ “a‘) ≡ {<↓>} ⊗ ({<>} ∪ “a‘)  
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≡ {<↓>} ⊗ (unpack({<>}) ∪ “a‘)   -- by tb2 

fi {<↓>} ⊗ ({<>} ∪ “a‘) ≡ {<↓>} ⊗ ({<>} ∪ “a‘)  

≡ {<↓>} ⊗ ({<>}) ∪ “a‘)    -- by up1 

B.6.1.3 Congruence in e.1 with the parallel composition operator 

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then 

{σ}T || a‘ ≡ “ε || a‘ ≡ “{ε}T || a‘ 

fi “{σ}T‘ // “a‘ ≡ “ε‘ // “a‘ ≡ “{ε}T‘ // “a‘    -- by tp1 

fi unpack(“σ‘) // “a‘ ≡ “ε‘ // “a‘ = unpack (“ε‘) // “a‘   -- by tu1 

fi unpack(“σ‘) // “a‘ ≡ {<>} // “a‘ ≡ unpack ({<>}) // “a‘  -- by tb1 

fi unpack({<σ>}) // “a‘ ≡ {<>} // “a‘ ≡ unpack ({<>}) // “a‘  -- by tb2 

fi {<>} // “a‘ ≡ {<>} // “a‘ ≡ {<>} // “a‘    -- by up1 

B.6.1.4 Congruence in e.1 with the until-loop 

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then 

“µx.({σ}T; ε + x)‘ ≡ “µx.(ε; ε + x)‘ ≡ “µx.({ε}T; ε + x)‘ 

fi µt.(“{σ}T‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“{ε}T‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tr4 

fi µt.(unpack(“σ‘)⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.(“ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(unpack (“ε‘)⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tu1 

fi µt.(unpack(“σ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.({<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(unpack ({<>})⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tb1 

fi µt.(unpack({<σ>})⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

•∈∀ Activitya “
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≡ µt.({<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(unpack ({<>})⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tb2 

fi µt.({<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.({<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.({<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by up1 

B.6.1.5 Congruence in e.1 with the while-loop 

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then 

“µx.(ε + {σ}T; x)‘ ≡ “µx.(ε + ε; x)‘ ≡ “µx.(ε + {ε}T; x)‘ 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“{σ}T‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“ε‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“{ε}T‘ ⊗ t)))   -- by tr2 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“σ‘) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“ε‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack (“ε‘)⊗ t)))   -- by tu1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“σ‘)⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack ({<>}) ⊗ t)))  -- by tb1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({<σ>}) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack ({<>}) ⊗ t)))  -- by tb2 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ t)))   -- by up1 

B.6.1.6 Congruence in e.1 with the encapsulation 

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then 
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“{{σ}T}T‘ ≡ “{ε}T‘ ≡ “{{ε}T}T‘ 

fi unpack(“{σ}T‘) ≡ unpack(“ε‘) ≡ unpack(“{ε}T‘)   -- by tu1 

fi unpack(unpack(“σ‘)) ≡ unpack(“ε‘) ≡ unpack(unpack(“ε‘)) -- by tu1 

fi unpack(unpack(“σ‘)) ≡ unpack({<>})  ≡ unpack(unpack({<>}) -- by tb1 

fi unpack(unpack({<σ>})) ≡ unpack({<>})  

≡ unpack(unpack({<>})     -- by tb2 

fi unpack({<>})  ≡ unpack({<>})  ≡ unpack({<>})   -- by up1 

B.6.2 Showing congruence for basic operators in the coincident 
exit axiom 

The coincident exit axiom (e.2) is demonstrated in this section for the binary operators 
of sequence, selection, and parallel composition; as well as for the repetition 
structures (while- and until-loop) and the encapsulation. 

B.6.2.1 Congruence in e.2 with the sequence operator 

If {a; σ}T‘ ≡ “{a}T‘, then 

{a; σ}T; b‘ ≡ “{a}T; b‘ 

fi “{a; σ}T‘ ⊗ “b‘ ≡ “{a}T‘ ⊗ “b‘    -- by ts1 

fi unpack(“a; σ‘) ⊗ “b‘ ≡ unpack(“a‘) ⊗ “b‘   -- by tu1 

fi unpack(“a‘ ⊗ “σ‘) ⊗ “b‘ ≡ unpack(“a‘) ⊗ “b‘  -- by ts1 

fi unpack(“a‘ ⊗ {<σ>}) ⊗ “b‘  

≡ unpack(“a‘) ⊗ “b‘    -- by tb2 

fi unpack({t1, t2, …, tn} ⊗ {<σ>}) ⊗ “b‘  

≡ unpack(“a‘) ⊗ “b‘     Let “a‘ = {t1, t2, …, tn} 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi “a‘ ⊗ “b‘ ≡ unpack(“a‘) ⊗ “b‘   lift (ti # <σ>) } 

fi “a‘ ⊗ “b‘ ≡ unpack({t1, t2, …, tn}) ⊗ “b‘  

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘}) 

 •∈∀ Activitya “

•∈∀ Activityba, “
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where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘     lift ti} 

B.6.2.2 Congruence in e.2 with the selection operator 

If {a; σ}T‘ ≡ “{a}T‘, then 

{a; σ}T + b‘ ≡ “{a}T + b‘ 

fi {<↓>} ⊗ (“{a; σ}T‘ ∪ “b‘) ≡ {<↓>} ⊗ (“{a}T‘ ∪ “b‘) -- by ta2 

fi {<↓>} ⊗ (unpack(“a; σ‘) ∪ “b‘)  

≡ {<↓>} ⊗ (unpack(“a‘) ∪ “b‘)   -- by tu1 

fi {<↓>} ⊗ (unpack(“a‘ ⊗ “σ‘) ∪ “b‘)  

≡ {<↓>} ⊗ (unpack(“a‘) ∪ “b‘)   -- by ts1 

 

fi {<↓>} ⊗ (unpack(“a‘ ⊗ {<σ>}) ∪ “b‘)  

≡ {<↓>} ⊗ (unpack(“a‘) ∪ “b‘)   -- by tb2 

fi {<↓>} ⊗ (unpack({t1, t2, …, tn} ⊗ {<σ>}) ∪ “b‘)  

≡ {<↓>} ⊗ (unpack(“a‘) ∪ “b‘)   Let “a‘ = {t1, t2, …, tn} 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi {<↓>} ⊗ (“a‘ ∪ “b‘)  

≡ {<↓>} ⊗ (unpack(“a‘) ∪ “b‘)  lift (ti # <σ>) } 

fi {<↓>} ⊗ (“a‘ ∪ “b‘) ≡ {<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ “b‘)  

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘}) 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi {<↓>} ⊗ (“a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘) lift ti} 

B.6.2.3 Congruence in e.2 with the parallel composition operator 

If {a; σ}T‘ ≡ “{a}T‘, then 
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•∈∀ Activityba, “{a; σ}T || b‘ ≡ “{a}T || b‘ 

fi “{a; σ}T‘ // “b‘ ≡ “{a}T‘ // “b‘    -- by tp1 

fi unpack(“a; σ‘) // “b‘ ≡ unpack(“a‘) // “b‘   -- by tu1 

fi unpack(“a‘ ⊗ “σ‘) // “b‘ ≡ unpack(“a‘) // “b‘   -- by ts1 

fi unpack(“a‘ ⊗ {<σ>}) // “b‘  

≡ unpack(“a‘) // “b‘    -- by tb2 

fi unpack({t1, t2, …, tn} ⊗ {<σ>}) // “b‘  

≡ unpack(“a‘) // “b‘     Let “a‘ = {t1, t2, …, tn} 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi “a‘ // “b‘ ≡ unpack(“a‘) // “b‘   lift (ti # <σ>) } 

fi “a‘ // “b‘ ≡ unpack({t1, t2, …, tn}) // “b‘  

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘}) 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi “a‘ // “b‘ ≡ “a‘ // “b‘     lift ti} 

B.6.2.4 Congruence in e.2 with the until-loop 

If {a; σ}T‘ ≡ “{a}T‘, then 

µx.({a; σ}T; ε + x)‘ ≡ “µx.({a}T; ε + x)‘ 

fi µt.(“{a; σ}T‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   

≡ µt.(“{a}T‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tr2 

fi µt.(unpack(“a; σ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   

≡ µt.(unpack(“a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tu1 

fi µt.(unpack(“a‘ ⊗ “σ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   

≡ µt.(unpack(“a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by ts1 

fi µt.(unpack(“a‘ ⊗ {<σ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 
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≡ µt.(unpack(“a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  -- by tb2 

fi µt.(unpack({t1, t2, …, tn} ⊗ {<σ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.(unpack(“a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   

Let “a‘ = {t1, t2, …, tn} 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   

≡ µt.(unpack(“a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))      lift (ti # <σ>) } 

fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(unpack({t1, t2, …, tn}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘}) 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   lift ti} 

B.6.2.5 Congruence in e.2 with the while-loop 

If {a; σ}T‘ ≡ “{a}T‘, then 

µx.(ε + {a; σ}T; x)‘ ≡ “µx.(ε + {a}T; x)‘ 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“{a; σ}T‘ ⊗ t)))   

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“{a}T‘ ⊗ t)))   -- by tr4 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a; σ‘) ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘) ⊗ t)))   -- by tu1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘ ⊗ “σ‘)  ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘) ⊗ t)))   -- by ts1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘ ⊗ {<σ>})  ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘)  ⊗ t)))  -- by tb2 
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fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({t1, t2, …, tn} ⊗ {<σ>}) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘) ⊗ t)))      Let “a‘ = {t1, t2, …, tn} 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘) ⊗ t)))       lift (ti # <σ>) } 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({t1, t2, …, tn}) ⊗ t)))  

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘}) 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))   lift ti} 

B.6.2.6 Congruence in e.2 with the encapsulation 

If {a; σ}T‘ ≡ “{a}T‘, then 

{{a; σ}T}T‘ ≡ “{{a}T}T‘ 

fi unpack(“{a; σ}T‘)  ≡ unpack(“{a}T‘)    -- by tu1 

fi unpack(unpack(“a; σ‘))  ≡ unpack(unpack(“a‘))   -- by tu1 

fi unpack(unpack(“a‘ ⊗ “σ‘))  ≡ unpack(unpack(“a‘))  -- by ts1 

fi unpack(unpack(“a‘ ⊗ {<σ>})) ≡ unpack(unpack(“a‘))  -- by tb2 

fi unpack(unpack({t1, t2, …, tn} ⊗ {<σ>}))  

≡ unpack(unpack(“a‘))      Let “a‘ = {t1, t2, …, tn} 

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi unpack(“a‘)  ≡ unpack(unpack(“a‘))  lift (ti # <σ>) } 

fi unpack(“a‘) ≡ unpack(unpack({t1, t2, …, tn}))  

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘}) 
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where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi unpack(“a‘) ≡ unpack(“a‘)    lift ti} 

B.6.3 Showing congruence for basic operators in the vacuous 
selection axiom 

The vacuous selection axiom (e.3) is demonstrated in this section for the binary 
operators of sequence, selection, and parallel composition; as well as for the repetition 
structures (while- and until-loop) and the encapsulation. 

B.6.3.1 Congruence in e.3 with the sequence operator 

If {a + σ}T‘ ≡ “{a}T + ε‘, then 

{a + σ}T; b‘ ≡ “({a}T + ε); b‘ 

fi “{a + σ}T‘ ⊗ “b‘ ≡ “{a}T + ε‘ ⊗ “b‘    -- by ts1 

fi unpack(“a + σ‘) ⊗ “b‘ ≡ “{a}T + ε‘ ⊗ “b‘   -- by tu1 

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ “b‘  

≡ ({<↓>} ⊗ (“{a}T‘ ∪ “ε‘)) ⊗ “b‘   -- by ta2 

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ “b‘  

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ “ε‘)) ⊗ “b‘  -- by tu1 

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ “b‘  

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ “b‘  -- by tb1 

fi unpack({<↓>} ⊗ (“a‘ ∪ {<σ>})) ⊗ “b‘  

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ “b‘  -- by tb2 

fi unpack(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ {<σ>})) ⊗ “b‘  

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ “b‘   

-- by distribution of ⊗ over union 

fi unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>}) ⊗ “b‘  

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ “b‘  -- by cp1 

fi (unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>} )) ⊗ “b‘ 
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≡ {<↓>} ⊗ (unpack(“a‘) ∪ {<>})  ⊗ “b‘  

-- by distribution of unpack over union 

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>} )) ⊗ “b‘ 

≡ {<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>})  ⊗ “b‘ 

Let “a‘ = {t1, t2, …, tn}  

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} ) ⊗ “b‘ 

≡ {<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>})  ⊗ “b‘  -- by up1 

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} ) ⊗ “b‘ 

≡ (({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>} ⊗ {<>}))  ⊗ “b‘   

-- by distribution of ⊗ over union 

fi (unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>} ) ⊗ “b‘ 

≡ ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})  ⊗ “b‘  -- by cp1 

fi ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>} ) ⊗ “b‘ 

≡ ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})  ⊗ “b‘ 

lift <↓ ti >} 

B.6.3.2 Congruence in e.3 with the selection operator 

If {a + σ}T‘ ≡ “{a}T + ε‘, then 

{a + σ}T + b‘ ≡ “({a}T + ε) + b‘ 

fi {<↓>} ⊗ (“{a + σ}T‘ ∪ “b‘)  

≡ {<↓>} ⊗ (“{a}T + ε‘ ∪ “b‘)    -- by ta2 

fi {<↓>} ⊗ (unpack(“a + σ‘) ∪ “b‘)  

≡ {<↓>} ⊗ (“{a}T + ε‘ ∪ “b‘)    -- by tu1 

fi {<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ∪ “b‘)  
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≡ {<↓>} ⊗ ( ({<↓>} ⊗ (“{a}T‘ ∪ “ε‘)) ∪ “b‘)  -- by ta2 

fi {<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ∪ “b‘)  

≡ {<↓>} ⊗ ( ({<↓>} ⊗ (unpack(“a‘) ∪ “ε‘)) ∪ “b‘)  -- by tu1 

fi {<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ∪ “b‘)  

≡ {<↓>} ⊗ ( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ∪ “b‘) -- by tb1 

fi {<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ {<σ>})) ∪ “b‘)  

≡ {<↓>} ⊗ ( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ∪ “b‘) -- by tb2 

fi {<↓>} ⊗ (unpack(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ {<σ>})) ∪ “b‘)  

≡ {<↓>} ⊗ ( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ∪ “b‘)   

-- by distribution of ⊗ over union 

fi {<↓>} ⊗ (unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>}) ∪ “b‘)  

≡ {<↓>} ⊗ ( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ∪ “b‘) -- by cp1 

fi {<↓>} ⊗ ((unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>} )) ∪ “b‘) 

≡ {<↓>} ⊗ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})  ∪ “b‘)  

-- by distribution of unpack over union 

fi {<↓>} ⊗ ((unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>} )) ∪ “b‘) 

≡ {<↓>} ⊗ ({<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>})  ∪ “b‘) 

Let “a‘ = {t1, t2, …, tn}  

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi {<↓>} ⊗ ( (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} ) ∪ “b‘) 

≡ {<↓>} ⊗ ({<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>})  ∪ “b‘) -- by up1 

fi {<↓>} ⊗ ( (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} ) ∪ “b‘) 

≡ {<↓>} ⊗ ( (({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>} ⊗ {<>}))  ∪ “b‘)  

-- by distribution of ⊗ over union 
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fi {<↓>} ⊗ ( (unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>} ) ∪ “b‘) 

≡ {<↓>} ⊗ ( ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})  ∪ “b‘) -- by cp1 

fi {<↓>} ⊗ ( ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>} ) ∪ “b‘) 

≡ {<↓>} ⊗ ( ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})  ∪ “b‘) 

lift <↓ ti >} 

B.6.3.3 Congruence in e.3 with the parallel composition operator 

If {a + σ}T‘ ≡ “{a}T + ε‘, then 

{a + σ}T || b‘ ≡ “({a}T + ε) || b‘ 

fi “{a + σ}T‘ // “b‘ ≡ “{a}T + ε‘ // “b‘    -- by tp1 

fi unpack(“a + σ‘) // “b‘ ≡ “{a}T + ε‘ // “b‘   -- by tu1 

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) // “b‘  

≡ ({<↓>} ⊗ (“{a}T‘ ∪ “ε‘)) // “b‘   -- by ta2 

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) // “b‘  

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ “ε‘)) // “b‘   -- by tu1 

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) // “b‘  

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) // “b‘  -- by tb1 

fi unpack({<↓>} ⊗ (“a‘ ∪ {<σ>})) // “b‘  

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) // “b‘  -- by tb2 

fi unpack(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ {<σ>})) // “b‘  

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) // “b‘   

-- by distribution of ⊗ over union 

fi unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>}) // “b‘  

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) // “b‘  -- by cp1 

fi (unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>} )) // “b‘ 

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activityba, “
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≡ {<↓>} ⊗ (unpack(“a‘) ∪ {<>})  // “b‘  

-- by distribution of unpack over union 

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>} )) // “b‘ 

≡ {<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>})  // “b‘ 

Let “a‘ = {t1, t2, …, tn}  

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} ) // “b‘ 

≡ {<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>})  // “b‘  -- by up1 

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} ) // “b‘ 

≡ (({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>} ⊗ {<>}))  // “b‘   

-- by distribution of ⊗ over union 

fi (unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>} ) // “b‘ 

≡ ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})  // “b‘  -- by cp1 

fi ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>} ) // “b‘ 

≡ ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})  // “b‘ 

lift <↓ ti >} 

B.6.3.4 Congruence in e.3 with the until-loop 

If {a + σ}T‘ ≡ “{a}T + ε‘, then 

µx.({a + σ}T; ε + x)‘ ≡ “µx.(({a}T + ε); ε + x)‘ 

fi µt.(“{a + σ}T‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

 ≡ µt.(“{a}T + ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tr2 

fi µt.(unpack(“a + σ‘)  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(“{a}T + ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))   -- by tu1 

fi µt.(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activitya “
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≡ µt.( ({<↓>} ⊗ (“{a}T‘ ∪ “ε‘))  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ta2 

fi µt.(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘))  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (unpack(“a‘) ∪ “ε‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

        -- by tu1 

fi µt.(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>}))  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

        -- by tb1 

fi µt.(unpack({<↓>} ⊗ (“a‘ ∪ {<σ>}))  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

        -- by tb2 

fi µt.(unpack(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ {<σ>}))  ⊗ ({<↓>}  

∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>}))  ⊗ ({<↓>}  

∪ ({<↓>} ⊗ t)))  -- by distribution of ⊗ over union 

fi µt.(unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>})  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>}))  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

        -- by cp1 

fi µt.( (unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>} )) ⊗ ({<↓>}  

∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>}))   ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

    -- by distribution of unpack over union 

fi µt.( (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>} ))  

  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.(({<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>}) )  

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  Let “a‘ = {t1, t2, …, tn}  
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where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi µt.( (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} ) 

  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.(({<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>}))  ⊗ ({<↓>}  

∪ ({<↓>} ⊗ t)))       -- by up1 

fi µt.( (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} )  

  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))  

≡ µt.( (({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>} ⊗ {<>}))     

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by distribution of ⊗ over union 

fi µt.( (unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>} ) 

  ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) 

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))    -- by cp1 

fi µt.( ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>} ) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) 

≡ µt.( ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})  ⊗ ({<↓>}  

∪ ({<↓>} ⊗ t)))   lift <↓ ti >} 

B.6.3.5 Congruence in e.3 with the while-loop 

If {a + σ}T‘ ≡ “{a}T + ε‘, then 

µx.(ε + {a + σ}T; x)‘ ≡ “µx.(ε + ({a}T + ε); x)‘ 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“{a + σ}T‘ ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“{a}T + ε‘ ⊗ t)))   -- by tr4 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a + σ‘)  ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“{a}T + ε‘ ⊗ t)))   -- by tu1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ t)))  

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (“{a}T‘ ∪ “ε‘)) ⊗ t))) -- by ta2 

U
n

i 1=
{
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257 



Appendix B: Congruence for the Semantics of Tasks    

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘))  ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (unpack(“a‘)  

∪ “ε‘)) ⊗ t)))      -- by tu1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘))  ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗  

(unpack(“a‘) ∪ {<>})) ⊗ t)))    -- by tb1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ {<σ>}))  ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (unpack(“a‘)  

∪ {<>}))  ⊗ t)))     -- by tb2 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(({<↓>} ⊗ “a‘)  

∪ ({<↓>} ⊗ {<σ>}))  ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>}))  ⊗ t)))  

-- by distribution of ⊗ over union 

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>})  ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ t))) 

        -- by cp1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (unpack ({<↓>} ⊗ “a‘)  

∪ unpack({<↓, σ>} )) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (unpack(“a‘) ∪ {<>}) )  ⊗ t))) 

-- by distribution of unpack over union 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (unpack ({<↓>} ⊗ {t1, t2, …, tn})  

∪ unpack({<↓, σ>} )) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ (unpack({t1, t2, …, tn})  

∪ {<>}) ) ⊗ t)))   Let “a‘ = {t1, t2, …, tn}  

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 
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fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (unpack ({<↓>} ⊗ {t1, t2, …, tn})  

∪ {<↓>} ) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓>} ⊗ ({t1, t2, …, tn}  

∪ {<>}))  ⊗ t)))     -- by up1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (unpack ({<↓>} ⊗ {t1, t2, …, tn})  

∪ {<↓>} ) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( (({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>}  

⊗ {<>})) ⊗ t)))  -- by distribution of ⊗ over union 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( (unpack ({<↓t1>, <↓t2>, …, <↓tn>})  

∪ {<↓>} ) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓t1>, <↓t2>, …, <↓tn>}  

∪ {<↓>}) ⊗ t)))     -- by cp1 

fi µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>} ) ⊗ t))) 

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ( ({<↓t1>, <↓t2>, …, <↓tn>}  

∪ {<↓>}) ⊗ t)))   lift <↓ ti >} 

B.6.3.6 Congruence in e.3 with the encapsulation 

If {a + σ}T‘ ≡ “{a}T + ε‘, then 

{{a + σ}T}T‘ ≡ “{{a}T + ε}T‘ 

fi unpack(“{a + σ}T‘) ≡ unpack(“{a}T + ε‘)    -- by tu1 

fi unpack(unpack(“a + σ‘))  ≡ unpack(“{a}T + ε‘)   -- by tu1 

fi unpack(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) )  

≡ unpack({<↓>} ⊗ (“{a}T‘ ∪ “ε‘) )    -- by ta2 

fi unpack(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ) 

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ “ε‘) )   -- by tu1 

fi unpack(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ) 
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≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ {<>}) )   -- by tb1 

fi unpack(unpack({<↓>} ⊗ (“a‘ ∪ {<σ>})) ) 

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ {<>}) )   -- by tb2 

fi unpack(unpack(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ {<σ>})) ) 

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ {<>}) )   

-- by distribution of ⊗ over union 

fi unpack(unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>}) ) 

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ {<>}) )   -- by cp1 

fi unpack(unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>} ) )  

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ {<>}) ) 

-- by distribution of unpack over union 

fi unpack(unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>} ) )  

≡ unpack({<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>}) )  

Let “a‘ = {t1, t2, …, tn}  

where t1≠<σ>, t2≠<σ>, …, tn≠<σ> 

fi unpack(unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} )  

≡ unpack({<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>}) )   -- by up1 

fi unpack(unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>} )  

≡ unpack( ({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>} ⊗ {<>}))     

-- by distribution of ⊗ over union 

fi unpack(unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>} ) 

≡ unpack({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})  -- by cp1 

fi unpack({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>} ) 

≡ unpack({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})       lift <↓ ti >} U
n

i 1=
{
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B.7 Summary 

The previous chapter described the soundness of the axioms for the task algebra 
illustrated in the chapter 4.  The trace semantics from the chapter 5 and basic 
properties explained in the Appendix A were used to prove the soundness of the 
axioms.  In the present chapter, the congruence properties were demonstrated for 
axioms of the algebra, by combining the equivalences with each basic operator 
defined in the task algebra.  An implementation of the task algebra will be presented 
in the next chapter. 
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Appendix C:  
Source Code 
 

 

The Haskell source code of the software mentioned in Chapter 8 is presented in this 
appendix. Initially, the code of the Task Algebra is depicted.  Section2 shows the code 
for the LTL implementation.  Finally, section 3 presents the code for the CTL 
implementation. 

 

 

C.1 Task Algebra 

The parser for the Task Algebra expressions was written with the Happy program.  
Happy is a parser generator software for Haskell  [154]. The lexical analyser was 
hand-written in Haskell and included in the source code of Happy. 
 
{ 
-- Simple task abstract syntax version 1 
 
module MainTaskAlgebra where 
 
import Char 
import System (getArgs) 
-- Data types to represent the parsed expression are in 
Traces.hs 
import Traces 
import Data.Set as Set 
 
} 
 
%name taskAlgebraParser 
%tokentype { Token } 
 
%token 
 simple  { TokenSimple $$ } 
 taskName  { TokenTaskName $$ } 
 'let'   { TokenLet } 
 'Epsilon'  { TokenEpsilon } 
 'Phi'   { TokenFail } 
 'Sigma'  { TokenSucceed } 
 'Mu'   { TokenMu } 
 '+'   { TokenSelection } 
 ';'   { TokenSequence } 
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 '||'   { TokenParallel } 
 '('   { TokenOB } 
 ')'   { TokenCB } 
 '{'   { TokenOEnc } 
 '}'   { TokenCEnc } 
 '.'   { TokenDot } 
 '='   { TokenNewTask } 
 
%right ';' '+' '||'   
%% 
 
Model : Activity   { $1 } 
 | CompoundTask Model { Model $1 $2 } 
    
CompoundTask :  

'let' taskName '=' Encapsulation { CompoundTask $2 $4 } 
 
Encapsulation:  

'{' Activity '}'  { Task (Encapsulation $2) } 
    
Activity :  

Activity ';' Activity { Sequence $1 $3 } 
 | Activity '+' Activity { Selection $1 $3 } 
 | Activity '||' Activity { Parallel $1 $3 } 
 --  Until-loop 
 | 'Mu' '.' simple '(' Activity ';'  
 'Epsilon' '+' simple ')' { UntilLoop $5 (Simple $3) 
(Simple $9) } 
 -- While-loop 
 |'Mu' '.' simple '(' 'Epsilon' '+' Activity';' simple ')' 
   { WhileLoop $7 (Simple $3) (Simple $9) } 
 | '(' Activity ')' { Task (Brackets $2) } 
 | Encapsulation  { $1 } 
 | 'Epsilon'  { Epsilon } 
 | 'Phi'   { Fail } 
 | 'Sigma'   { Succeed } 
 | simple   { Task (Simple $1) } 
 | taskName   { Task (Compound $1) } 
 
{ 
happyError :: [Token] -> a 
happyError _ = error "Parse error" 
 
-- Token definition 
data Token 
      = TokenSimple String 
      | TokenTaskName String 
      | TokenSelection 
      | TokenSequence 
      | TokenParallel 
      | TokenEpsilon 
      | TokenMu 
      | TokenFail 
      | TokenSucceed 
      | TokenOEnc 
      | TokenCEnc 
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      | TokenOB 
      | TokenCB 
      | TokenDot 
      | TokenNewTask 
      | TokenLet 
 deriving Show 
 
-- a simple lexer that returns this data structure. 
 
lexer :: String -> [Token] 
lexer [] = [] 
lexer (c:cs)  
 | isSpace  c = lexer cs 
 | isUpper  c = lexTask (c:cs) 
 | isLower  c = lexTaskAt (c:cs) 
lexer (';':cs) = TokenSequence : lexer cs 
lexer ('+':cs) = TokenSelection : lexer cs 
lexer ('{':cs) = TokenOEnc : lexer cs 
lexer ('}':cs) = TokenCEnc : lexer cs 
lexer ('(':cs) = TokenOB : lexer cs 
lexer (')':cs) = TokenCB : lexer cs 
lexer ('.':cs) = TokenDot : lexer cs 
lexer ('=':cs) = TokenNewTask : lexer cs 
lexer ('|':cs) = lexCon cs 
 
lexCon ('|':cs) = TokenParallel : lexer cs 
 
-- Compound Tasks, Epsilon, Exit and Mu begin with uppercase 
lexTask cs = 
 case span isAlphaNum cs of 
  ("Epsilon",rest) ->  TokenEpsilon : lexer rest 
  ("Phi",rest) ->  TokenFail : lexer rest 
  ("Sigma",rest) ->  TokenSucceed : lexer rest 
  ("Mu",rest) -> TokenMu : lexer rest 
  (taskName,rest) ->  TokenTaskName taskName : lexer 
rest 
 
-- the name of a simple task begins with a lowercase 
lexTaskAt cs =  
 case span isAlphaNum cs of 
  ("let",rest) ->  TokenLet : lexer rest 
     (simple,rest)   ->  TokenSimple simple : lexer 
rest   
 
-- general trace function 
tr :: String -> SetOfTraces 
tr [] = empty 
tr s = trace (taskAlgebraParser (lexer s)) [] 
 
} 
-- end of happy code :(  
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-- task semantics version 1: Traces module 
module Traces where 
 
import Data.Set as Set 
 
------------------------------------------------------------ 
 
-- Activity 
data Activity  
 = Epsilon  
 | Fail 
 | Succeed 
 | Task Task 
 | Sequence Activity Activity 
 | Selection Activity Activity 
 | Parallel Activity Activity 
 | UntilLoop Activity Task Task 
 | WhileLoop Activity Task Task 
 | CompoundTask String Activity 
 | Model Activity Activity  
   deriving (Eq, Ord) 
 
instance Show Activity where 
 show Epsilon   = show (trace Epsilon []) 
 show Fail    = show (trace Fail []) 
 show Succeed   = show (trace Succeed []) 
 show (Task t)   = show t 
 show (Sequence a1 a2) = show (trace (Sequence a1 a2) []) 
 show (Selection a1 a2)= show (trace (Selection a1 a2) []) 
 show (Parallel a1 a2) = show (trace (Parallel a1 a2) []) 
 show (UntilLoop act at1 at2)  

= show (trace (UntilLoop act at1 at2) []) 
 show (WhileLoop act at1 at2) 

 = show (trace (WhileLoop act at1 at2) []) 
 show (CompoundTask s act) 

 = show (addToDictio (CompoundTask s act) []) 
 show (Model ct act) = show (trace (Model ct act) []) 
 
-- Task 
data Task  
 = Simple String 
 | Brackets Activity 
 | Encapsulation Activity  
 | Compound String  
   deriving (Eq, Ord) 
 
instance Show Task where 
 show (Simple s) = show (trace (Task (Simple s)) []) 
 show (Brackets a)= show (trace (Task (Brackets a)) []) 
 show (Encapsulation a)  

= show (trace (Task (Encapsulation a)) []) 
 show (Compound a)= show (trace (Task (Compound a)) []) 
    
-- trace functions  
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trace :: Activity -> DataDictionary -> SetOfTraces  
-- Simple Traces 
trace Epsilon _    = singleton epsilon 
trace Fail _    = singleton [Phi] 
trace Succeed _    = singleton [Sigma] 
trace (Task (Simple s)) _ = singleton [Ident s] 
 
-- Sequence composition 
trace (Sequence a b) dict = trace a dict #* trace b dict  
 
-- Selection 
trace (Selection a b) dict  = if (trace a dict)== (trace b 
dict) then trace a dict 
        else singleton 
[Commit] #* union (trace a dict) (trace b dict) 
 
-- Parallel composition 
trace (Parallel a b) dict  = trace a dict // trace b dict 
 
-- Brackets (parenthesis) 
trace (Task (Brackets a)) dict  = trace a dict 
 
-- Encapsulation 
trace (Task (Encapsulation a)) dict = unpack (trace a dict) 
 
-- Until-loop repetition 
trace (UntilLoop act atom1 atom2) dict = if atom1==atom2  
          {- 
generating just the first two traces of the until-loop we can 
derive 
         
 Mu.x(act;E+x) as  act;(E+(act;E+E)) => act;E+act   
 -} 
          then 
trace (finiteU (UntilLoop act atom1 atom2) 2) dict 
          else 
error ("Until-loop structure error. "++  
          
 show (findMin (trace (Task atom1) dict)) ++" and " 
          
 ++show (findMin (trace (Task atom2) dict))++" have to use 
an unique name.") 
 
-- While-loop repetition 
trace (WhileLoop act atom1 atom2) dict = if atom1==atom2  
          {- 
generating just the first two traces of the while-loop we can 
derive 
         
 Mu.x(E+act;x) as E+(act;(E+(act;E))) => E+(act;E+act)  
  -} 
          then 
trace (finiteW (WhileLoop act atom1 atom2) 2) dict 
          else 
error ("While-loop structure error. "++  
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 show (findMin (trace (Task atom1) dict)) ++" and " 
          
 ++show (findMin (trace (Task atom2) dict))++" have to use 
an unique name.") 
 
 
-- traceModel myTaskDict encap = trace encap 
trace (Model ct act) dict  =  trace act (addToDictio ct dict) 
 
-- When found a compound task, it have to trace its relationed  
"code" 
trace (Task (Compound a)) dict = trace (findCTask a dict) dict 
 
 
------------------------------------------------------------ 
-- trace low level definitions 
 
-- elements of the traces, as subclasses of Eq 
data Event = Ident String | Phi | Sigma | Commit  
  deriving (Eq, Ord) 
 
-- defining specific instances of Show  
instance Show Event where 
  show (Ident c) = c 
  show Phi = "Phi" 
  show Sigma = "Sigma" 
  show Commit = "!" 
  
-- a trace is a list of events  
type Trace    = [Event] 
type SetOfTraces = Set Trace 
 
epsilon :: Trace 
epsilon = [] 
 
-- Trace Concatenation 
(#) :: Trace -> Trace -> Trace 
[Sigma] # (item:rest)   = [Sigma] # rest 
[Phi] # (item:rest)    = [Phi] # rest 
[Commit] # trace@(item:rest) 
 | item == Commit   = trace 
 | otherwise    = Commit : trace 
(item:rest) # trace   = item : (rest # trace) 
epsilon#trace    = trace 
 
-- concatenated product 
(#*) :: SetOfTraces -> SetOfTraces -> SetOfTraces 
setA #* setB 
 | setA == empty = empty 
 | setB == empty = empty 
 | otherwise  = union (insert (findMin setA # 
findMin setB)  
  (singleton (findMin setA) #* (difference setB 
(singleton (findMin setB)))))  
  ((difference setA (singleton (findMin setA))) #* 
setB )  
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-- Trace interleaving 
(~~) :: Trace -> Trace -> SetOfTraces 
[] ~~ trace    = singleton trace 
trace ~~ []    = singleton trace 
traceA@(a:as) ~~ traceB@(b:bs) 
 | traceA == [Sigma] = singleton [Sigma] 
 | traceB == [Sigma] = singleton [Sigma] 
 | traceA == [Phi] = singleton [Phi] 
 | traceB == [Phi] = singleton [Phi] 
 | a == Commit  = (singleton [Commit]) #* (as ~~ 
traceB) 
 | b == Commit  = (singleton [Commit]) #* (bs ~~ 
traceA) 
 | otherwise   = union (singleton [a] #* (as 
~~ traceB))  
  (singleton [b] #* (bs ~~ (traceA))) 
 
-- distributed union 
(//) :: SetOfTraces -> SetOfTraces -> SetOfTraces 
setA // setB 
 | setA == empty = empty 
 | setB == empty = empty 
 | otherwise  = union (union (findMin setA ~~ 
findMin setB) (singleton (findMin setA) // (difference setB 
(singleton (findMin setB)))))  
  ((difference setA (singleton (findMin setA))) // 
setB )   
 
-- unpacking 
unpack :: SetOfTraces -> SetOfTraces 
unpack set 
 | set == empty  = empty 
 | otherwise  = union (singleton (lift (findMin 
set))) (unpack (difference set (singleton (findMin set))))  
 
-- lift  
lift :: Trace -> Trace 
lift [] = [] 
lift [Sigma]= [] 
lift (a:as) = a: (lift as) 
 
 
-- Additional functions 
 
-- dealing compound Tasks and the data dictionary 
type DataDictionary = [(String, Activity)] 
 
-- return the Activity of a particular compound task 
findCTask :: String -> DataDictionary -> Activity 
findCTask [] _ = Epsilon 
findCTask _ [] = Epsilon 
findCTask a (ele:rest) 
 | a == fst ele = snd ele 
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 | a < fst ele = Epsilon 
 | otherwise  = findCTask a rest 
 
-- add a compound task to the data dictionary 
addToDictio :: Activity -> DataDictionary -> DataDictionary 
addToDictio (CompoundTask s act) [] = [(s,act)] 
addToDictio (CompoundTask s act) dict@(ele:rest)  
      = if s<fst ele then 
(s,act):dict 
       else  ele: addToDictio 
(CompoundTask s act) rest 
 
-- return a finite expression for a Until-loop (till n).  
finiteU :: Activity -> Int -> Activity 
finiteU (UntilLoop act atom1 atom2) 0 = Epsilon 
finiteU (UntilLoop act atom1 atom2) n = Sequence act 
(Selection Epsilon (finiteU (UntilLoop act atom1 atom2) (n-
1))) 
finiteU act n = act     
 
-- return a finite expression for a While-loop (till n).  
-- E+(act;E+act) 
finiteW :: Activity -> Int -> Activity 
finiteW (WhileLoop act atom1 atom2) 0 = Epsilon 
finiteW (WhileLoop act atom1 atom2) n = Selection Epsilon 
(Sequence act (finiteW (WhileLoop act atom1 atom2) (n-1))) 
finiteW act n = act     

 

C.2 LTL 
 
-- Linear temporal logic functions 
module Main where 
import System (getArgs) 
 
import MainTaskAlgebra  -- task algebra parser 
import Data.Set as Set 
import Traces 
 
-- LTL syntax 
data Phi 
    = Bool Bool 
    | Pr String 
    | Not Phi 
    | And Phi Phi 
    | Or Phi Phi 
    | Impl Phi Phi 
    | X Phi                -- Next phi 
    | G Phi                -- All future states (Globally) 
    | F Phi                -- Eventually (some Future state) 
    | U Phi Phi            -- Until (U p q  -- p holds until 
q, (when q holds p doesn't hold anymore) 
    | W Phi Phi            -- Weak-until 
    | R Phi Phi            -- Release 
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 deriving (Eq, Ord, Show) 
 
 
-- returns true if the atomic proposition is true for the 
first state  
-- of the trace 
-- expr - expression defining the traces (or set of paths) 
check :: String -> Phi -> (Bool, Trace) 
check expr phi = evalAllTraces (toList (tr expr)) phi  
      
-- evaluates every trace 
evalAllTraces :: [Trace] -> Phi  -> (Bool, Trace) 
evalAllTraces []  _    = (True, []) 
evalAllTraces traces@(t:ts) phi = if eval t phi  

then evalAllTraces ts phi -- (i+1) 
  else (False, t) 
 
-- returning boolean result  
eval :: Trace -> Phi -> Bool 
eval trace (Bool b)  = b 
eval trace (Pr p)  = pr trace p  
eval trace (Not p)   = not (eval trace p) 
eval trace (And p q)  = if eval trace p then  
     if eval trace q then True 
       else False 
           else False 
 
eval trace (Or p q)  = if eval trace p then True 
     else if eval trace q then True 
        else False 
eval trace (Impl p q)  =   

if eval trace p && not (eval trace q) then False 
        else True 
eval trace (X p)  = x trace p  
eval trace (G p)  = g trace p  
eval trace (F p)  = f trace p     
eval trace (U p q) = u trace p q  
eval trace (W p q) = w trace p q  
eval trace (R p q) = r trace p q  
 
 
-- resolves p using the set of traces 
pr :: Trace -> String  -> Bool 
pr [] _   = False   -- error "invalid state"  
pr (t:ts) atm  
   | t == Commit  = pr ts atm  
   | Ident atm == t = True 
   | otherwise   = False 
 
-- X phi - neXt phi states that the formula phi should hold 
for the rest  
-- of the execution without the first state  
x :: Trace -> Phi -> Bool 
x []  _ = False 
x trace phi = eval (dropHead trace) phi  
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-- G (Globally) phi holds for all the future states 
g :: Trace -> Phi -> Bool 
g [] _   = True 
g trace phi = if eval trace phi then g (dropHead trace) phi  
  
     else False 
 
-- F Phi -- Eventually (some Future state) 
-- evaluate the tression for every atom in each trace if there 
is no null trace 
f :: Trace -> Phi -> Bool 
f [] _   = False 
f trace phi = if eval trace phi then True  
    else f (dropHead trace) phi  
 
        
-- U p q -- p until q (for p != q) 
-- p has to be true at least the first state and after q has 
to be true  
-- but p is not required to hold 
-- u function verifies if p is true and if it is then pass the 
control to u2  
u :: Trace -> Phi -> Phi -> Bool 
u []  _ _ = False 
u trace p q  
   | eval trace q  = True      
   | eval trace p  = u2 (dropHead trace) p q  
   | otherwise  = False 
 
-- u2 verifies if p is true and when it's false verifies if q 
is true     
u2 :: Trace -> Phi -> Phi -> Bool 
u2 trace p q  
   | trace == [] = False 
   | eval trace q  = True   -- if q then 
try the next trace 
   | eval trace p  = u2 (dropHead trace) p q  
   | otherwise = False 
 
-- W p q -- p until q but q is not required to be satisfied 
w :: Trace -> Phi -> Phi -> Bool 
w []  _ _ = False 
w trace p q   
   | eval trace q  = True  -- if q then try the 
next trace 
   | eval trace p  = w2 (dropHead trace) p q  
   | otherwise  = False 
 
-- w2 verifies if p still holds or if q holds   
w2 :: Trace -> Phi -> Phi -> Bool 
w2 trace p q  
   | trace == [] = True -- try next trace  
   | eval trace q  = True -- if q then try the 
next trace 
   | eval trace p  = w2 (dropHead trace) p q 
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   | otherwise  = True -- try next trace 
 
-- p R q. p releases q if q is true until the first position 
in which p is true  
-- (or forever if such a position does not exist).  
-- p R q = Not (Not p U Not q) 
r :: Trace -> Phi -> Phi -> Bool 
r trace p q = eval trace (Not (U (Not p) (Not q) ))  
 
-- drops the first element of the list 
dropHead :: Trace -> Trace 
dropHead [] = [] 
dropHead (t:ts)  
 -- drops the commit element before droping the next 
relevant element 
    | t == Commit  = dropHead ts 
    | otherwise  = ts  
     

        

C.3 CTL 
 
-- Computation Tree Logic (CTL)  functions 
module Main where 
 
import Traces 
import MainTaskAlgebra 
import Data.List 
import qualified Data.Set as Set      
 
-- CTL syntax 
data Phi    -- Path and State Operators 
 -- operands and logical operators  
 = Pr String  
 | Bool Bool 
 | Not Phi 
 | And Phi Phi 
 | Or Phi Phi 
 | Impl Phi Phi 
-- A ? - All: ? has to hold on all paths starting from the 
current state. 
 | AX Phi    -- Next phi 
 | AG Phi    -- All future states 
(Globally) 
 | AF Phi    -- Eventually (some Future 
state) 
 | AU Phi Phi   -- Until (U p q  -- p holds 
until q, (when q holds p doesn't hold anymore) 
-- E ? - Exists: there exists at least one path starting from 
the current state where ? holds. 
 | EX Phi    -- Next phi 
 | EG Phi    -- All future states 
(Globally) 
 | EF Phi    -- Eventually (some Future 
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state) 
 | EU Phi Phi   -- Until (U p q  -- p holds 
until q, (when q holds p doesn't hold anymore) 
   deriving (Eq, Ord, Show) 
 
 
-- create tree from list of traces    
-- Trace == [Event] (defined in Traces.hs) 
type ListOfTraces = [Trace] 
 
-- Returns true if the atomic proposition is true for the 
first state  
-- of the trace 
-- expr - expression defining the traces (or set of paths) 
-- phi  - CTL expression 
check :: String -> Phi ->  ([ [Integer] ], Node) 
check expr phi = (sort (sat (tree (Set.toList(tr expr))) phi), 
tree (Set.toList(tr expr)) )  
 
 
-- SAT function. It takes a CTL formula s input and returns 
the set of states  
-- satisfying the formula. 
-- It calls the functions satEx, SatEu and SatAf, 
respectively, if EX, EU, or AF  
sat :: Node -> Phi -> [ [Integer] ]  
sat tr (Bool True)    = s tr   
sat _ (Bool False)    =  []  -- phi is False  
sat tr (Pr str)     -- phi is atomic     
 | tr == Empty   =  []  
 | atomic tr str == [] =  []     
 | otherwise    = atomic tr str   
sat tr (Not p)    = (getAllStateNumbers 
(getAllStates [tr])) \\ (sat tr p)      
sat tr (And p q)   = (sat tr p) `intersect` (sat tr q)   
sat tr (Or p q)    = (sat tr p) `union` (sat tr 
q)   
sat tr (Impl p q)   = sat tr (Not p `Or` q)  
sat tr (AX p)    = satAx tr p    
sat tr (EX p)    = satEx tr p    
sat tr (AU p q)    = if snd (satAu tr p q) == 
True then fst (satAu tr p q) 
  else  []  
sat tr (EU p q)    = satEu tr p q    
sat tr (EF p)    = sat tr (EU (Bool True) (p))  
sat tr (EG p)    = if snd (satEg tr p) == True 
then fst (satEg tr p) 
  else  [] 
sat tr (AF p)    = if snd (satAf tr p) == True 
then fst (satAf tr p) 
  else  []  
 
sat tr (AG p)    = if snd (satAg tr p) == True 
then fst (satAg tr p) 
  else  [] 
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-- S  here represents the set of states that each element of 
the diagram can have 
s :: Node -> [ [Integer] ] 
s tr@( Node (nodeNumber, evt) (subnodes) )  
 | tr == Empty   =  []  
 | otherwise    =  [nodeNumber]  
 
  
satAx :: Node -> Phi -> [[Integer]] 
satAx Empty _ = [] 
satAx tr p = if length (sat tr (Not (EX (Not p)))) < length 
(getSubNodes tr)  
    then [] else  [getNodeNumber tr] `union` 
sat tr (Not (EX (Not p))) 
  
-- satEx finds the states satisfying EX phi, looking FORWARD 
-- along the subnodes 
satEx :: Node -> Phi -> [[Integer]] 
satEx Empty _ = []  
satEx (Node (nodeNumber, evt) (sn:snds) ) p 
 | sn == Empty = []  
 | otherwise  = if ((sat sn p)  `union` (if snds/=[] 
then (satEx (Node (nodeNumber, evt) (snds) ) p) else [])) /= 
[] 
      then [nodeNumber] `union` 
((sat sn p)  `union` (if snds/=[] then (satEx (Node 
(nodeNumber, evt) (snds) ) p) else [])) 
      else [] 
 
-- satAg tr p  
-- It determines the set of states satisfying AG p 
satAg:: Node -> Phi -> ([[Integer]], Bool) 
satAg (Node (_, _) [] ) _ = ([], True)   
satAg Empty  _    = ([], True)    
satAg nd@(Node (nodeNumber, evt) (sn:snds) ) p 
 -- if it is found, add to the list and continue with the 
next branch 
 | sat nd p /= []  =  ( [nodeNumber] `union`((sat nd 
p) ++ (concat  [fst (satAg x p) | x<-(sn:snds)] )  ), 
      (and  [snd (satAg x p) | x<-
(sn:snds)] )   ) 
 | otherwise    = ([], False) 
 
 
          
 
-- satEg tr p  
-- It determines the set of states satisfying EG p 
satEg:: Node -> Phi -> ([[Integer]], Bool) 
satEg (Node (_, _) [] ) _ = ([], True)   
satEg Empty  _    = ([], True)   
satEg nd@(Node (nodeNumber, evt) (sn:snds) ) p 
 -- if it is found, add to the list and continue with the 
next branch 
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 | sat nd p /= []  =  ( [nodeNumber] `union`((sat nd 
p) ++ (concat  [fst (satEg x p) | x<-(sn:snds)] )  ), 
      (or  [snd (satEg x p) | x<-
(sn:snds)] )   ) 
 | otherwise    = ([], False) 
  
 
-- satAf tr p  
-- It determines the set of states satisfying AF p 
satAf:: Node -> Phi -> ([[Integer]], Bool) 
satAf (Node (_, _) [] ) _ = ([], True)  
satAf (Node (nodeNumber, evt) (sn:snds) ) p 
 -- if it is found it, add to the list and continue with 
the next branch 
 | sat sn p /= []  =  ( [nodeNumber] `union`((sat sn 
p) ++ fst ( satAf (Node (nodeNumber, evt) (snds) ) p) ), 
         {-True &&-} snd ( 
satAf (Node (nodeNumber, evt) (snds) ) p) ) 
 -- otherwise if there are not subnodes then false 
 | getSubNodes sn == [Empty] = ([], False) 
 -- otherwise try the branch till you find it or till the 
end 
 | fst (satAf (Node (nodeNumber, evt) (getSubNodes sn) ) 
p) /= [] 
       = ( [nodeNumber] `union` 
( ((getNodeNumber sn):fst (satAf (Node (nodeNumber, evt) 
(getSubNodes sn) ) p)  ) 
        ++ fst ( satAf 
(Node (nodeNumber, evt) (snds) ) p) ), 
        snd (satAf (Node 
(nodeNumber, evt) (getSubNodes sn) ) p) && 
        snd ( satAf (Node 
(nodeNumber, evt) (snds) ) p) ) 
 | otherwise    = ([], False) 
 
 
-- satAu determines the set of states satisfying A [ p U q] 
-- It computes the states satisfying p by calling sat. Then, 
it accumulates states  
-- satisfying A [ p U q] in the manner described in the 
labelling algorithm 
satAu:: Node -> Phi -> Phi -> ([[Integer]], Bool) 
satAu Empty _ _  = ([], True) 
satAu tr@(Node (nodeNumber, evt) snds ) p q 
 | sat tr q /= []  = (sat tr q, True) 
 | sat tr p /= [] = exploreAu tr p q 
 | otherwise   = ([], False) 
 
-- explore to see if p es true and then q 
exploreAu :: Node -> Phi -> Phi -> ([[Integer]], Bool) 
exploreAu tr@(Node (nodeNumber, evt) snds ) p q 
 | snds == [Empty]       = 
([], False) 
 | snd (applyToSnAu snds p q) == True = ((sat tr p) 
`union` (fst (applyToSnAu snds p q)), True)   
 | otherwise        
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 = ([], False) 
 
-- look into subnodes for p and q 
applyToSnAu:: SubTree -> Phi -> Phi -> ([[Integer]], Bool) 
applyToSnAu []   _ _  = ([], True) 
applyToSnAu  (sn:snds) p  q 
 | sn == Empty  = ([], False) 
 | sat sn q /= []  = ((sat sn q) `union` (fst 
(applyToSnAu snds p q)), snd (applyToSnAu snds p q)) -- True) 
 | sat sn p /= [] = ( concatMap fst ( (exploreAu sn p 
q):[applyToSnAu snds p q] ) , (and (map snd ( (exploreAu sn p 
q):[applyToSnAu snds p q] ) )) ) 
 | otherwise   = ([], False)  
 
 
-- satEu determines the set of states satisfying E [ p U q] 
-- It computes the states satisfying p by calling sat. Then, 
it accumulates states  
-- satisfying E [ p U q] in the manner described in the 
labelling algorithm 
satEu:: Node -> Phi -> Phi -> [[Integer]] 
satEu Empty _ _  = [] 
satEu tr@(Node (nodeNumber, evt) snds ) p q 
 | sat tr q /= []  = sat tr q 
 | sat tr p /= [] = explore tr p q 
 | otherwise   = [] 
 
-- explore to see if p es true and then q 
explore :: Node -> Phi -> Phi -> [[Integer]] 
explore tr@(Node (nodeNumber, evt) snds ) p q 
 | snds == [Empty]    = [] 
 | (applyToSn snds p q) /= [] = (sat tr p) `union` 
(applyToSn snds p q) 
 | otherwise      = [] 
 
-- look into subnodes for p and q 
applyToSn:: SubTree -> Phi -> Phi -> [[Integer]] 
applyToSn []   _ _  = [] 
applyToSn  (sn:snds) p  q 
 | sn == Empty  = [] 
 | sat sn q /= []  = (sat sn q) `union` (applyToSn 
snds p q) 
 | sat sn p /= [] = (explore sn p q) `union` (applyToSn 
snds p q) 
 | otherwise   = []  
 
 
-- atomic function 
--  Phi is atomic. Returns {s in S | phi in L(s) } 
atomic :: Node -> String -> [[ Integer]] 
atomic Empty _ = [] 
atomic (Node (nodeNumber, evt) (subnodes) ) str   
 | evt == Ident str = [nodeNumber] 
 | otherwise   = [] 
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-- getAllStateNumbers scans the tree and return a list with 
the number of the states 
getAllStateNumbers :: [Node] -> [ [Integer] ] 
getAllStateNumbers [] = [] 
getAllStateNumbers (nd@(Node (n, evt) (_)):nds) 
 | nd==Empty  = [] 
 | otherwise  = n:getAllStateNumbers nds 
  
 
-- getAllStates return all the nodes as a single list 
getAllStates :: SubTree -> [Node] 
getAllStates []  = [] 
getAllStates [Empty]  = [] 
getAllStates (nd@(Node (n, evt) (subnodes)) : sbns)  
 | nd == Empty = [] 
 | otherwise  = ((Node (n, evt) []):getAllStates 
(subnodes)) ++ getAllStates sbns 
 
 
 
--------------------------------------------------------------
--------- 
data Node = Empty 
 |  Node ([Integer], Event) (SubTree) 
   deriving (Eq, Ord, Show) 
type Empty =[] 
type SubTree = [Node] 
 
 
--getSubNodes gets the list of sub-nodes from a current node 
getSubNodes :: Node -> SubTree 
getSubNodes Empty   = [Empty]  
getSubNodes (Node (s, evt) st) = st 
 
-- return tree from traces  
tree :: ListOfTraces  -> Node 
tree []  = Empty 
tree traces  =  Node ([0], Ident "null") (subNodes traces [0] 
[])  
 
-- creates the subnodes from the list of traces for a tree 
{- Parameters: 
   ListOfTraces : Traces to introduce to the 
nodes 
   Integer: node number 
   SubTree: subnodes to be passed to the function 
   SubTree: final result of the nodes  -}     
subNodes :: ListOfTraces -> [Integer] -> SubTree-> SubTree 
subNodes [] _ sbnds = sbnds 
subNodes (t:ts) n sbnds 
  | t == [] = subNodes ts n sbnds 
  | sbnds == [] = subNodes ts (n) ((setFirstTrace t 
n):sbnds) 
  | otherwise = subNodes ts (n) (setNTrace t sbnds n) 
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-- setFirstTrace creates a branch based  on the first trace 
setFirstTrace :: Trace -> [Integer] -> Node 
setFirstTrace [] _    = Empty 
setFirstTrace (evt:tr) n    
  | evt == Commit  = setFirstTrace tr n 
  | otherwise = Node  ((n++[1]), evt) ([setFirstTrace 
tr (n++[1])]) 
 
-- setNTrace adds a trace to the tree without repeating states 
already created 
-- Parameters:  Trace - Trace to add to the tree,  
--    SubTree - subnodes  
--    Integer - number of last node added 
--    SubTree - modified subnodes 
setNTrace :: Trace -> SubTree -> [Integer] -> SubTree 
setNTrace [] _ _   = [Empty] 
setNTrace (evt:tr) subnodes n   
  | evt == Commit  = setNTrace tr subnodes n 
  -- the event is in a subnode. Go to the next 
sublevel 
  | (cmpEvtInSubNodes evt subnodes) /= Empty  
     =  addToSubNodes (cmpEvtInSubNodes evt 
subnodes)  
        (setNTrace tr (getSubNodes 
(cmpEvtInSubNodes evt subnodes)) ( getNodeNumber 
(cmpEvtInSubNodes evt subnodes) )) 
         subnodes  
  -- the event is not in a subnode. Add the node with 
the event 
  | otherwise  = (Node (getNextNumber 
subnodes n, evt) ([setFirstTrace tr (getNextNumber subnodes 
n)])):subnodes  -- newNode evt n 
 
-- It gets the number of a node 
getNodeNumber :: Node -> [Integer] 
-- getNodeNumber [] = Empty 
getNodeNumber (Node (n, _) _) =  n 
 
--It gets the next number on a list of nodes for a particula 
level 
getNextNumber :: SubTree -> [Integer] -> [Integer] 
getNextNumber subnodes n = n ++ [(fromIntegral (length 
subnodes))+1] 
 
-- addToSubNodes adds the result of setNTrace to the subnodes 
of the existent node 
--  Parameters:  Node - The existent node. To its subnodes the 
result of setNTrace will be added 
--     SubTree - set of subnodes resulted 
from setNTrace 
--     SubTree - original subnodes where 
Node is part of. 
--     SubTree - subnodes at the level of 
the node parameter 
addToSubNodes :: Node -> SubTree -> SubTree -> SubTree 
addToSubNodes Empty _ _ = [] 
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addToSubNodes _ [] _ = [] 
addToSubNodes (Node (n, evt) subnodes)  moreSubnodes  osbnds=  
replaceNode (Node (n, evt) (moreSubnodes)) osbnds  
 
 
-- replaceNode  replaces Node in the list of nodes 
-- Parameters: Node - The node to replace in the list 
--    SubTree - The list of nodes where the 
node is being replaced 
--    SubTree - new list with the node replaced 
replaceNode :: Node -> SubTree -> SubTree 
replaceNode Empty _ = [] 
replaceNode (Node (n, evt) sbnds) ( (Node (n2, evt2) 
sbnds2):ms) 
 | n == n2  = (Node (n, evt) sbnds) : ms 
 | otherwise  = (Node (n2, evt2) sbnds2) : (replaceNode 
(Node (n, evt) (sbnds)) ms) 
 
 
-- cmpEvtInSubNodes returns the node if this has the same 
event   
-- to compare or empty in other case 
--  Event - Event to compare with the nodes 
--  SubTree  -  the node with the subnodes to compare  
cmpEvtInSubNodes :: Event -> SubTree ->Node 
cmpEvtInSubNodes _ [] = Empty 
cmpEvtInSubNodes _ [Empty] = Empty 
cmpEvtInSubNodes evt (Node (n, evn) stn:nds) 
  | evt==evn = Node (n, evn) stn 
  | otherwise = cmpEvtInSubNodes evt  nds 
 
--------------------------------------------------------------
--------- 
-- Displays a branch of the trace list 
displayBranch :: ListOfTraces -> ListOfTraces 
displayBranch [] = [] 
displayBranch (trc:restOfTraces) 
 | restOfTraces == [] = [trc] 
 | head trc == head (head restOfTraces) = trc: 
displayBranch(restOfTraces) 
 | otherwise =  [trc]   
 
-- find the next trace list 
nextTraceList :: Trace -> ListOfTraces ->ListOfTraces 
nextTraceList [] listTrc = listTrc 
nextTraceList trc []  = [] 
nextTraceList trc (t:ts)  
 | head trc == head t = nextTraceList trc ts 
 |otherwise     = t:ts   
 
-- Displays initial branchs from a trace list  
displayBranchs :: ListOfTraces -> [ListOfTraces] 
displayBranchs [] = [] 
displayBranchs (trc:restOfTraces) 
 | restOfTraces == []  = [trc]:[] 
 | head trc == head (head restOfTraces)   
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  = (displayBranch (trc:restOfTraces)):(displayBranchs 
(nextTraceList trc (tail restOfTraces))) 
 | otherwise = [trc]:displayBranchs (restOfTraces)     
   
--------------------------------------------------------------
--------- 
 
-- main function 
main = do 
        args<- getArgs 
       if length args ==2 then print ( check (head args)   
( ctlCompiler (args!!1)) ) else print "Sintax: 
ctlModelChecking <Task-Algebra-Expr> <CTL-Expr>"  
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