
Appendix 1

_______________________________________________________________

An overview of the -calculus is given, showing how this can be used to model 
most mathematical and computational functions and structures.  In particular, a 
technique is presented for modelling objects as records in which the order of 
fields is not significant.  This requires a greater degree of subtlety than simply 
treating objects as tuples.  A problem with Cook's record combination operator 
is discovered and fixed.  Finally, techniques are considered for augmenting the 
-calculus  with types and assignment.

_______________________________________________________________

A.1 -Calculus

The -calculus was developed by Alonzo Church in the 1930s as a pure 
calculus of functions.  Along with Kleene's recursive functions and Turing's 
universal machine, the -calculus is considered one of the three fundamental 
models of computation.

A.1.1 -Abstraction

The -calculus is based on the notion of function abstraction and application.  A 
term in the -calculus is an expression made up of functions applied to values.  
In the pure -calculus, there are no other primitive values apart from functions; 
instead, all values are modelled by simple -expressions.

Each function abstracts over a single argument, introduced by .  The body of a 
function follows the "dot" and is an expression in which the function argument 
may occur free.  Thus:  x.x is the identity function, abstracting over a single 
argument x and whose body is x.  We refer to x as the function's bound
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variable; when considering larger functions of the form:  x.(y (z x)), y and z are 
free variables in this scope.  The name of the bound variable is of no 
consequence, except where substitutions might lead to aliasing (see below).

A.1.2 -Reduction

The principal rule of the -calculus is called -reduction.  This is the process 
whereby expressions are simplified as a result of values being substituted into 
function arguments.  Thus:  (x.x a) reduces to a, as a result of the substitution 
a/x.  This can be thought of as applying the identity function to the value a, 
which returns a.  More formally, we say that the argument expression a is 
substituted into the bound variable x of the function expression x.x, the -
abstraction is discharged, yielding the body of the function expression in which 
all occurrences of the bound variable have been replaced by the argument 
expression.  An important property of the -calculus is that all expressions are 
simplified to a unique irreducible normal form, no matter in which order the -
reduction steps are applied to any sub-expression.  The order of evaluation of 
sub-expressions is of no consequence.

A.1.3 Currying

The -calculus can only represent single-argument functions.  Multi-argument 
functions are transformed into equivalent nested single-argument functions; this 
is known as currying (named after H B Curry).  A function which returns the first 
of two arguments is written: x.y.x and this is understood to have the 
meaning:  x.(y.x), in other words, the body of the outermost function x.(...) is 
the innermost function:  y.x.  The application of this function to two values a
and b is illustrated using parentheses to indicate the natural order of 
application,  to indicate a single -reduction step and the style a/x to indicate 
the substitutions performed:

((x.y.x  a)  b)
a/x  (y.a  b)
b/y  a.

In the first -reduction step, the function binds x to a and returns:  y.a, which is 
applied in the second -reduction step to the value b.  The effect of currying is 
to cause functions to bind arguments sequentially and return functional values 
which are a continuation of the task in hand.  Expressions in the -calculus are 
-reduced an arbitrary number of times until they reach normal form, so the 
above expression reduces finally to the value a.  This behaviour is equivalent to 
the non-curried form of the function which binds its two arguments x and y in 
parallel and returns the first bound value in one evaluation step.

Since the -calculus is left-associative, parentheses are typically dropped, 
except where they are required to alter the precedence of sub-expressions.  
The above expression may be written as:
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(x.y.x  a  b)  a or even: x.y.x  a  b  a

A.1.4 -Conversion

A second, minor rule of the -calculus is called -conversion.  This is where 
syntactic variables are renamed in order to avoid unintended aliasing.  Without 
this rule, the expression:  (x.y.(x y) y b) reduces inadvertently to (b b).  The 
semantic error is introduced by a simple-minded carrying out of syntactic 
substitutions:

(x.y.(x y) y b)
y/x  (y.(y y) b)
b/y  (b b) error! the two occurrences of y are distinct.

The -conversion rule checks before each -reduction step whether the value 
about to be substituted is re-bound inside the function body.  If so, the name of 
the bound variable must be changed throughout the body before substitution 
can take place:

(x.y.(x y) y b)
= (x.z.(x z) y b) -conversion step
y/x  (z.(y z) b)
b/y  (y b).

and this prevents unintended aliasing of variable names.  Technically, -
conversion ensures that the same variable does not occur bound and free in 
the same context.

A.1.5 Partial Application

A function transformed by currying has the property that it may be applied to 
fewer arguments than it expects and still return a meaningful value.  This is 
known as partial application.  A two-argument function may be applied to one or 
two arguments:

(x.y.x  a b)  ...  a complete application

(x.y.x  a)  y.a partial application

Partial application is a technique that is used to delay the release of information 
tied up in the body of a function.  In the second case above, the value y.a
returned by the partial application is a function which, no matter to what value it 
is eventually applied, will always return a.  We say that a is protected by the 
abstraction y; it is clear that y.a delays the release of a.  In general, a may be 
an arbitrarily complex expression.
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A.1.6 Primitive Structures

Functional forms representing primitive data structures may be created using 
partial application.  A 2-tuple constructor for building pairs may be written as:

make-pair = x.y.f.(f x y)

The symbol "=" is used above to introduce symbolic names like make-pair; 
these are merely syntactic abbreviations which may be replaced at any time by 
the -expressions for which they stand.  Make-pair is a three-argument 
function, which is typically applied to two values to create pairs:

pair = (make-pair a b)
= (x.y.f.(f x y) a b)
a/x  (y.f.(f a y) b)
b/y  f.(f a b)

The resulting pair wraps up two values, a and b, which are protected by the 
abstraction f.  The values stored in pair are released when the abstraction f is 
discharged.  By careful choice of the value supplied for f, the first or second 
element of the pair may be selected:

first = x.y.x second = x.y.y

First and second are functions of two arguments which return their first or 
second bound value respectively.  By applying pair to one of these functions, 
the first or second projection from the pair is obtained:

(pair first) = (f.(f a b) first) 
first/f  (first a b) = (x.y.x a b)  ...  a

(pair second)  = (f.(f a b) second) 
second/f  (second a b) = (x.y.y a b)  ...  b

A.2 Models for Mathematics

All logical and mathematical values and operations may be modelled as terms 
in the -calculus.  The choice of construction is essentially arbitrary, provided 
that the operations exhibit the appropriate behaviour.  Values are encoded in 
such a way as to facilitate the simplest designs for operations.

A.2.1 Booleans and Selection

The encoding of choice for Boolean values is determined by the role they play 
in the selection of sub-expressions.  A selection function if expects three 
arguments:  a Boolean-expression, a then-expression and an else-expression:

if = b.t.e.(b t e)
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According to this, Boolean values are ideally represented by the first and 
second projection functions:

true = first = x.y.x false = second = x.y.y

It is clear that supplying one of these values to if will select the appropriate then
or else sub-expression from the body of if:

(if true then else) = (b.t.e.(b t e) true then else)
... (true then else) = (x.y.x then else) 
... then

(if false then else) = (b.t.e.(b t e) false then else)
... (false then else) = (x.y.y then else) 
... else

In fact, it is not even necessary to define a distinct if function where the Boolean 
values alone may be used to select sub-expressions.  Given a representation 
for Boolean values, the standard Boolean operations may be defined:

not = x.(x false true) and = x.y.(x y false)

or = x.y.(x true y) implies = x.y.(x y true)

These functions rely on the ability of Booleans to select the appropriate sub-
expression from their bodies.  A simple example illustrates:

(or false true) = (x.y.(x true y) false true)
... (false true true) = (x.y.y true true)
... true

A.2.2 Natural Numbers

Different encodings for the Natural numbers have been proposed.  The 
standard Church-Turing encoding allows addition to be defined non-recursively, 
but has the disadvantage that numerical representations are not unique, 
making it more difficult to define the notion of equality.  Here, an encoding is 
adopted which reflects the Peano axioms directly.  We assume that a 
distinguished value zero exists and that every other number can be constructed 
by repeated application of a successor function.  Succ is designed such that it 
wraps its argument in another -abstraction:

succ = n.f.(f n)

one = (succ zero) = (n.f.(f n) zero)  f.(f zero)

two = (succ one) = (n.f.(f n) one)  f.(f one) = f.(f f.(f zero))
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three = (succ two) = ... = f.(f f.(f f.(f zero)))

It should be obvious that the magnitude of a number is represented by the 
number of -abstractions surrounding zero.  A predecessor function removes 
one level of abstraction:

pred = n.(n x.x)

(pred one) = (n.(n x.x) one)  (one x.x) 
= (f.(f zero) x.x)  (x.x zero)  zero

It is clear that pred works simply by applying its argument, a number, to the 
identity function.  This releases the predecessor number bound internally inside 
the body of any number encoding.  An encoding for zero itself is now required.  
The choice of encoding is determined by the need to distinguish zero from all 
other numbers.  Let us define a predicate is-zero which returns false for non-
zero numbers:

is-zero = n.(n x.false)

(is-zero one) = (n.(n x.false) one) 
 (one x.false) = (f.(f zero) x.false) 
 (x.false zero)  false

The body:  (n x.false) of is-zero relies on the uniform structure of numbers to 
achieve its result.  For all constructed numbers of the form:  n = f.(f m) it is true 
that (n x.false)  (x.false m), which will always bind the value m and return 
false.  Since the structure of a number directly determines the selection of false, 
this suggests that any encoding for zero should select true in the same context.  
An obvious encoding for zero is therefore:

zero = y.true

since this function will bind the value x.false in the body of is-zero and still 
return true:

(is-zero zero) = (n.(n x.false) zero)  (zero x.false)
= (y.true x.false)  true 

A.2.3 Equality and Recursion

The function is-zero is the only primitive predicate for numbers.  Determining 
numerical equality is handled by removing layers of -abstraction from a pair of 
numbers until zero is detected.  Equal is defined recursively:

equal = x.y.(if (is-zero x)
(if (is-zero y) true false)
(if (is-zero y) false (equal (pred x)(pred y))))
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such that:  (equal n m) is only true if recursive calls eventually terminate in the 
base case:  (equal zero zero).  The occurrence of zero in either argument 
causes the function to terminate.  Testing both arguments is necessary to 
prevent the unwanted invocation of (pred zero) which has no interpretation as a 
Natural number.

We assume the standard fixpoint approach to motivate the existence of well-
defined recursive functions.  Initially, the functional equal is defined to abstract 
over the point of recursion:

equal = f.x.y.(if (is-zero x)
(if (is-zero y) true false)
(if (is-zero y) false (f (pred x)(pred y))))

and then the recursive form of equal is established by application of the fixpoint 
finder , which itself has a non-recursive definition in the -calculus:

equal = ( equal)

where  = f.(s.(f (s s)) s.(f (s s)))

The expansion of ( equal) is left as an exercise for the interested reader, who 
may determine that this yields the recursive function equal.

A.2.4 Natural Arithmetic

The functions succ and pred allow a simple form of arithmetic.  To handle 
general arithmetic, add may be defined in terms of succ and pred:

add = x.y.(if (is-zero x) y (succ (add (pred x) y)))

Add is defined recursively.  It works by repeatedly applying pred to its first 
argument x until this reaches zero.  As the recursion unwinds, the result is 
constructed by as many repeated applications of succ to the second argument 
y.  All the familiar arithmetical operations can eventually be constructed using 
this approach.  For example, the general multiplication case is easily 
constructed as a recursive function that repeatedly applies add:

mult = x.y.(if (equal x one) y (add y (mult (pred x) y)))

which is then protected against degenerate cases by incorporating tests for 
zero in either argument:

multiply = x.y.(if (or (is-zero x)(is-zero y)) zero (mult x y))

Subtract may be defined in the same style as add; quotient in the same style as 
multiply (making appropriate allowances for Natural arithmetic).
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A.2.5 Integer Numbers

It is of greater interest to expand the number system to include Integer values.  
An Integer may be encoded as a pair of Naturals such that the first number in 
the pair represents a negative quantity and the second number a positive 
quantity:

-n = f.(f n zero)   +m = f.(f zero m)   0 = f.(f zero zero)

The advantage of this encoding is that 0 has a unique representation, unlike 
sign-bit representations which construct a pair from a Boolean and a Natural:  
the latter have distinct positive and negative versions of 0.  The sign of an 
Integer may be tested using the predicates:

zero-pos = z.(is-zero (z first)) zero-neg = z.(is-zero (z second))

positive = z.(not (zero-neg z)) negative = z.(not (zero-pos z))

Clearly, a construction of the form:  f.(f n m) only has a legal Integer 
interpretation if at least one out of m or n is zero.  A constructor function for 
Integers may be defined to preserve this as an invariant:

make-int = n.m.(if (or (is-zero n)(is-zero m))
(make-pair n m)
(make-int (pred n)(pred m)))

No matter what Natural values are supplied for n and m, the canonical Integer 
representation is constructed by recursively decrementing n and m until one is 
zero.  

A.2.6 Integer Arithmetic 

This constructor facilitates the development of Integer arithmetic using existing 
functions for Natural arithmetic.  Integer plus and minus may be constructed in 
terms of Natural addition, with simplification:

plus = x.y.(make-int (add (x first)(y first))
(add (x second)(y second)))

minus = x.y.(make-int (add (x first)(y second))
(add (x second)(y first)))

Notice the pleasing symmetry in the two definitions.  Integer times may be 
defined in a similar vein to calculate the cross-product of two pairs:

times = x.y.(make-int (add (multiply (x first)(y second))
(multiply (x second)(y first)))

(add (multiply (x first)(y first))
(multiply (x second)(y second))))
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This definition performs more multiply operations than strictly necessary, 
although the unnecessary calls terminate immediately with zero.  An alternative 
definition, for integers in canonical form (i.e. with one projection equal to zero) 
deals with sign and magnitude independently:

times = x.y.(if (same-sign x y)
(make-pair zero (multiply (add (x first)(x second))

(add (y first)(y second))))
(make-pair (multiply (add (x first)(x second))

(add (y first)(y second))) zero))

which only invokes multiply once, but depends on the further definition:

same-sign = x.y.(or (and (zero-pos x)(zero-pos y))
(and (zero-neg x)(zero-neg y)))

Integer divide may be constructed in a similar fashion, using the Natural 
quotient as its base function.

A.2.7 Further Mathematics

The pair construct may be used to model other numerical types.  For example:

real = f.(f exponent mantissa)
complex = f.(f real imag)
fraction = f.(f numerator denominator)

Each of these representations is amenable to the design of arithmetical 
functions which use more basic functions defined for simpler types.  In Real 
arithmetic, the Integer mantissae of any two Real operands must be scaled 
before they are combined and the result must be scaled again to fit the normal 
range for a mantissa.  Complex functions exhibit a symmetry in the way they 
act on the real and imaginary parts, which are both Reals.  In particular, 
Complex multiplication must use the cross-product strategy illustrated above.  
In Fraction arithmetic, the Integer operands must be scaled to the lowest 
common denominator before combination and the result simplified afterwards.

A.3 Models for Data Structures

All computational data structures, constructor and accessor functions may be 
modelled as terms in the -calculus.  Again, the ideal choice of encoding is 
usually the simplest that exhibits the appropriate behaviour. 

A.3.1 Tuples and Records

A generalisation of the pair construct is the arbitrary n-tuple.  Each n-tuple has 
its own n+1 argument constructor function and n different n-place projection 
functions to select items.  For example, a person record may be modelled as a 
4-tuple whose fields store the surname, forename, sex and age of a person:
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make-person = w.x.y.z.f.(fw x y z)

person = (make-person smith john male 25)
 f.(f smith john male 25)

To access fields of this record, the four projection functions are given:

surname  = w.x.y.z.w
forename = w.x.y.z.x
sex = w.x.y.z.y
age = w.x.y.z.z

(person forename) = (f.(f smith john male 25) forename)
 (forename smith john male 25)
= (w.x.y.z.x smith john male 25)
... john

It should be obvious that the role of projection functions is to bind to the n
values stored in an n-tuple and return the jth value.  Such n-place functions will 
only project from an n-tuple of the same arity.

A.3.2 Linked Lists

A more flexible strategy is to store data in structures of arbitrary length and 
write general functions to seek a particular element.  It should be immediately 
obvious how the pair construction can be used yet again to build linked lists:

cons = h.t.f.(f h t)

(cons item nil)  f.(f item nil)

(cons item2 (cons item1 nil)) ... f.(f item2 f.(f item1 nil))

The constructor cons binds two values and protects them behind a further 
abstraction f.  A list-cell is essentially a 2-tuple whose first projection is the last 
element stored at the head of the list and whose second projection is the tail of 
the list.  The accessor functions head and tail may accordingly be written:

head = m.(m first)
tail =  m.(m second)

All that remains is to find an encoding for nil, the empty list.  A similar strategy 
to that chosen to encode zero may be followed.  First, a test for the empty list is 
desired:

is-empty = m.(m x.y.false)

The body:  (m x.y.false) of is-empty relies on the uniform structure of list cells 
to achieve its result.  For all constructed lists of the form:  m = f.(f h t) it is 



Appendix 230

always true that (m x.y.false)  (x.y.false h t), which will always bind h and 
t, returning false.  This suggests that any encoding for nil should return true in 
the same context.  An obvious encoding for nil is therefore:

nil = z.true

in fact, the same value used to encode zero.  It should be obvious that (is-
empty nil)  (z.true x.y.false)  true.  Further recursive functions may be 
written for lists, such as length, which counts the number of elements, or 
append, which concatenates two lists by deconstructing the first argument and 
adding its elements onto the second argument.  Lists may be used to model 
sets if cons is replaced by a recursive function include which tests if a value is 
present in the list before adding it.

A.3.3 Binary Trees

Other dynamic data structures, such as trees, may be constructed using this 
approach.  Taking a 3-tuple for the basic tree-node, a constructor make-node
for binary trees may be defined:

make-node = v.a.b.f.(f v a b)

tree = (make-node val1 (make-node val2 null null)
(make-node val3 null null))

  f.(f val1  f.(f val2 null null)  f.(f val3 null null))

where v is a value stored at a given node and a and b are left- and right-
subtrees.  The functions to access the stored values and subtrees are defined 
in a manner similar to the head and tail functions for lists:

node-value = m.(m x.y.z.x)
left-subtree = m.(m x.y.z.y)
right-subtree =  m.(m x.y.z.z)

where x binds to the value, y to the left-subtree and z to the right-subtree.  
Similar techniques are used to construct the test for terminal and non-terminal 
nodes (perhaps using a value standing for the null tree).  Further recursive 
functions may be written for trees which insert values in sorted positions, or 
which search for values, or which traverse trees.

A.3.4 Objects as Records

The model used by Cook and others [Cook89a, CCHO89a, CCHO89b, CHC90] 
to represent objects makes the simplifying assumption that the most important 
aspect to capture is the ability of objects to respond to messages.  For this 
reason, objects are modelled as records of methods.  In the model, each object 
encapsulates a copy of all the functions implementing its behaviour.  This would 
be considered wasteful in a programming language, in which objects typically 
only store their private state and a pointer to the table of methods shared by all 
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instances of a class.  However, this theoretical model captures the desired style 
of method invocation in a most intuitive way.

Above, the similarity between method invocation and the use of projection 
functions to access fields in a tuple was noted:

point.x    (point x)

where point is defined as a 2-tuple and x as a projection function:

point = f.(f 3 7)

x = a.b.a -- projection functions for 2-tuple
y = a.b.b

This approach assumes objects will be applied to labels to release values from 
their body.  An object is a function from a finite set of labels to values, which 
may be functions.  In general, the functions encapsulated inside an object refer 
recursively to each other, requiring further abstraction over self:

eq-point = self.f.(f 3 7 p.(and (equal (self x)(p x))
(equal (self y)(p y))))

which must later be bound recursively to the object using eq-point = ( eq-
point).  Here eq-point is a version of point with an eq method that tests for 
equality between two points, using self-reference to access the x and y values.  
Provided that the labels for x, y and eq have the form:

x = a.b.c.a -- projection functions for 3-tuple
y = a.b.c.b
eq = a.b.c.c

then it is clear that:  ((eq-point eq) eq-point) has the form of a binary method 
and will return the value true.  More conventionally: eq-point.eq(eq-point) may 
be written to represent the selection of the eq method from the object eq-point.

A.3.5 Problems with Records

Although it is intuitive in the -calculus to think of an object as a record of 
methods, where a record is modelled as a function from labels to encapsulated 
functions, the simple model presented above is inadequate for several reasons.  
These inadequacies were glossed over in the work of Cook and others.  Here, 
some interesting interactions between method selection, polymorphic 
inheritance and the taking of fixpoints are uncovered; this merits further 
attention.

Above, point and eq-point both use the labels x and y to select fields.  However, 
it is impossible to denote each label by a single, uniform projection function.  
This is because projection functions are tied to the size of the tuple for which 
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they are defined:  x = a.b.a defined for a 2-tuple point may not be used to 
access the x field of a 3-tuple eq-point.  Applying object tuples to projection 
functions of the wrong arity results in meaningless constructions.  Every time an 
object is extended, labels must be rebound to new projection functions, defined 
to suit the size of the tuple.  This is not acceptable, since it prevents the uniform 
invocation of methods:  the same label cannot be used to release an 
appropriate method from objects of different sizes. 

A second more serious problem is the supposition that simple records may be 
combined using an operator .  Traditionally, f = g  h represents function 
overriding, whereby f is defined as a new function based on g, whose domain is 
the union dom(g)  dom(h) and whose range is h(x) for all x  dom(g) 
dom(h) and g(x) otherwise.  Considering f as a map from domain to codomain 
sets, this is equivalent to saying that maplets in h override maplets in g having 
the same domain value.  This style of mathematical construction presupposes 
that we may reason about functions at a high level of abstraction, using meta-
descriptive terms such as domain and range.  In simple -calculus models of 
records, it is impossible to reason about the domain of functions representing 
records.  This is because the set of labels representing the domain is external 
to the record, which is merely an ordered tuple of values.  We may not combine 
such records and this prevents the operation of inheritance.

A.3.6 Associative Maps

It is possible, using the techniques developed for lists above, to provide an 
alternative model for objects as associative maps, a more subtle approach than 
that offered by ordered tuples.  An associative map is a function from labels to 
values in which order is non-significant.  Initially, we must store both label and 
value information in each map.

Using the pair construct introduced above, we model a single maplet as an 
association between a label and a value.  Two inspection functions key and 
value return the association's label and value, respectively:

maplet = f.(f lab val)    lab  val

key = a.(a first)
value = a.(a second)

and associative maps are constructed as lists of maplets, such that each 
maplet has a unique key:

map = m.(m f.(f lab1 val1) m.(m f.(f lab2 val2) nil))
  {lab1  val1, lab2  val2}

A recursive function is defined to search through a map for a given key.  This 
captures the idea of reasoning about the domain of a function:
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has-key = m.k.(if (is-empty m) false
(if (equal (key (head m)) k) true

(has-key (tail m) k)))

Here, equal is used to test one key against another.  Keys may be modelled 
using any values possessing an equality test, such as the Natural numbers.

A recursive function is now defined to combine two associative maps.  The first 
argument is the base map and the second is the extra map, the extension 
whose maplets should override those in the base map:

combine = b.e.(if (is-empty b) e
(if (has-key e (key (head b)))

(combine (tail b) e)
(cons (head b)(combine (tail b) e))))

The function works by deconstructing the base map and only adding its maplets 
to the result if the extra map possesses no maplet with the same key.  All 
maplets from the extra map are present in the result.  This captures the idea of 
record combination, or function overriding.

A recursive function is now defined to look up the value for a given key in a 
map.  This function is required because associative maps are essentially 
unordered and maplets with the same keys may occur in different positions in 
different maps:

lookup = m.k.(if (equal (key (head m)) k) (value (head m))
(lookup (tail m) k))

For simplicity's sake, this function is assumed to be total over maps and keys.  
It is also possible to define a partial function which rejects undefined keys.

A.3.7 Method Invocation

The change in the representation of objects facilitates reasoning about the 
domain of functions and enables Cook-style record combination.  It also opens 
the way to polymorphic method invocation, since the same label may be used 
as a key to methods in different objects and in objects of different sizes.  
However, such objects may not be applied directly to labels to release values, 
as above, because a map has the representation of a list, whose only 
projections are the head and tail fields.  This is a serious disadvantage.

This problem may be circumvented by partially applying the lookup function to a 
map:

active-map = (lookup map)

  k.(if (equal (key (head map)) k) (value (head map))
(lookup (tail map) k))
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  k.(if (equal lab1 k) val1
(if (equal lab2 k) val2

(lookup (tail (tail map)) k))

In so doing, a function from labels to values is created.  This is exactly what is 
required to model objects, whose internal representation now becomes a 
nested set of if-expressions.  However, nested if-expressions may not 
deconstructed and recombined like lists.  There is clearly a trade-off between 
having a simple model for method invocation and retaining the ability to 
combine objects.  This issue was ignored by Cook and others.

The solution given here models object definitions as ordinary associative maps 
until the moment actual instances are required.  This allows object definitions to 
inherit from other object definitions, using the combine function to construct 
new definitions from base and extension maps.  The map is turned into a 
function from keys to values by partial application of lookup at instance-creation 
time.  This process integrates smoothly with Cook's restoration of object-
recursion at instance creation time.  We illustrate this with an object definition 
that is recursive:

map = self.{lab1  val1, lab2  val2, ...}

Here, map is a functional abstracting over self, a generator for an associative 
map with self-reference.  The map is a list of maplets whose values are 
functions which may be mutually recursive by virtue of accessing other 
functions through self.  Given two map generators map1 and map2 in this 
form, these may be combined after distributing a new self-argument to each:

map3 = s.(combine (map1 s)(map2 s))

since it is clear that any (map s) has the form of an ordinary associative map.  
To create an instance from the object definition map3, the recursion of self
must first be fixed:

map3 = ( map3)

and to create an object from this map, the lookup function must be partially 
applied:

obj3 = (lookup map3) = (lookup ( map3))

The extra stage, while complicating Cook's model a little, is necessary to 
describe extensible objects which are applied to labels to release methods.
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A.4 Extending -Calculus

Finally, ways in which the -calculus may be extended to model typed values 
and languages with assignment are explored.  In the simply-typed -calculus, 
the existence of a basic set of types (such as Integer and Boolean) is assumed 
and more complex types are constructed from these.  Here, the preliminaries 
usually involve assuming a set of typed domains satisfying a set of domain 
equations.  Alternatively, the notion of typed values may be constructed from 
first principles in the untyped calculus.

A.4.1 Typed Values

To illustrate the latter, consider that a typed value may be represented by a pair 
constructed from a type tag and an untyped value:

typed-value = f.(f tag val)

type = v.(v first)
value = v.(v second)

Inspection functions type and value access the tag and untyped value fields.  
Type tags may be modelled by any suitable values possessing equality, such 
as the Natural numbers.  Equality is needed for the sake of type checking.  A 
possible set of tags is given by:

Boolean = 0;  Natural = 1;  Integer = 2;  ...

and typed values may be declared using:

declare = t.v.f.(f t v )

int3 = (declare Integer 3)  f.(f Integer 3)
nat3 = (declare Natural 3)  f.(f Natural 3)

Functions may be designed to test the types of their arguments before 
executing their bodies.  The typed function which is usually written as:

int-plus (x : Integer; y : Integer) : Integer
= (plus x y);

is just an abbreviation for the expanded form:

int-plus = x.y.(if (and (equal (type x) Integer)(equal (type y) Integer))
(declare Integer (plus (value x) (value y)))
(declare Integer error))

In this way, we may protect the untyped versions of functions with type checks 
to prevent the unintended mixing of -abstractions and wrap the untyped results 
of functions with the appropriate type.  Note here how the error value is also 
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considered to have the Integer type, for the sake of consistency.  Error values 
are so designed as to suspend computation.

A.4.2 Type Functions

Polymorphism is introduced in the second-order -calculus by allowing 
functions which accept types as arguments, as well as ordinary typed values.  
An example of this is the constructor for a simple typed point.  Here, the upper-
case  is used to distinguish type abstraction from value abstraction:

make-typed-point = t.(a:t).(b:t).{x  a, y  b}

This constructor accepts a type argument t and builds a record of values in the 
type supplied:

int-point = (make-typed-point Integer 3 7)
 {x  3, y  7} : {x : Integer, y : Integer}

The polymorphic constructor may also be applied partially to a type, yielding a 
particular typed point constructor:

make-nat-point = (make-typed-point Natural)
 (a : Natural).(b : Natural).{x  a, y  b}

The function make-nat-point will only accept arguments a and b if they are 
Natural numbers.  The workings of make-typed-point and its derived functions 
may be understood from the following expansion:

make-typed-point = t.a.b.(declare {x : t, y : t}
(if (and (equal (type a) t)(equal (type b) t))

{x  (value a), y  (value b)}
error))

The result is either a well-formed record or an error in the type {x : t, y : t}.  The 
constructor tests that the value-arguments are in the same given type t, then 
constructs an untyped record which is paired with a record type.  Record 
access functions must obtain both the types and values of the fields they select.

A.4.3 Modelling Assignment

Earlier, the -calculus was extended with assignment, in order to model objects 
with mutable states.  Assignment is not strictly part of a pure functional 
language.  However the effect of assignment may be approximated using a 
global set of variable bindings, called the environment, which is passed from 
function to function.  The environment is an associative map from variable 
names to their bound values.
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During program execution, certain statements may update the global 
environment.  Modifications do not literally change the state of the environment, 
since we are working in a pure functional language without side-effects; 
instead, they construct new environments in which appropriate changes have 
been made.  The environment must therefore be passed in and out of each 
function, since assignments may occur at any point and their effect must be 
recorded in the caller.  Every function accepts the environment as an extra first 
argument.  Likewise, every function returns a packaged result, which is a pair of 
the environment and the function's usual return value.  The caller of a function 
must unpack the returned result in order to update its own environment and 
access the ordinary return value.  

Initially, the environment contains maplets representing the bindings of global 
program variables.  The environment may grow or shrink in size, as a 
consequence of functions which add or remove maplets.  Maplets are added 
every time new local variables come into scope; they are removed when local 
variables go out of scope.  The maplets in environments do not have unique 
keys; this allows an add operation to include at the head of an environment a 
maplet which temporarily masks an existing maplet, which has the same key, 
further down in the list.  The assign function replaces the value stored against 
the first occurrence of a given key.  The remove function removes the first 
occurrence of a maplet with a given key.  In this way, assignments affect only 
the most locally scoped version of a variable and the scope of the calling-
context is restored when local variables go out of scope.

On entry to a function, the environment must first be extended with any new 
local variable declarations, suitably initialised, then the body of the function 
executes.  In the function body, access to a variable is modelled by looking up 
the value stored against the first occurrence of a given key in the environment.  
This ensures that the most local binding is used.  Repeated assignment to a 
variable is modelled using override operations which construct new associative 
maps in which the value stored against the first occurrence of the key is 
replaced.  The sequential effect of such assignments must be modelled by 
nesting the operations that update environments in the desired order.  When a 
function terminates, any maplets representing local variable bindings must be 
removed from the environment before this is packaged with the usual return 
value.

Functions typically call sub-functions.  At the call-site, the current environment 
is passed into the sub-function.  During its execution, a sub-function may 
update its copy of the environment, which is different from that held in the 
caller.  When the sub-function returns, the caller unpacks the sub-function's 
result and its copy of the environment.  The caller must now update its own 
copy of the environment to reflect the changes made in the sub-function.  This 
is done using the combine operation for associative maps, which overrides 
maplets in the caller's environment with those in the sub-function's 
environment.  A necessary consequence of this is that all sub-functions must 
be called in an explicit sequence, determined by the nesting of operations to 
update the caller's environment each time a sub-function returns.
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To model operations on environments, our existing lookup function may be 
used to perform env-access.  The new functions env-add, env-remove and env-
assign are defined below:

env-access = lookup

env-add = m.k.v.(cons (make-pair k v) m)

env-remove = m.k.(if (is-empty m) m
(if (equal (key (head m)) k) (tail m)

(cons (head m) (env-remove (tail m) k))))

env-assign = m.k.v.(if (is-empty m) m
(if (equal (key (head m)) k) 

(cons (make-pair k v) (tail m))
(cons (head m) (env-assign (tail m) k v))))

A.4.4 Epilogue

This appendix has presented an overview of constructions in the -calculus.  A 
solution has been developed to certain technical problems preventing the 
simultaneous successful operation of Cook's record combination and the 
application of objects to labels.  For this, techniques were presented for 
modelling list data structures in the -calculus, in particular associative maps.  
The introduction of associative maps also coincided with the notion of 
environments, used to explain how assignment may be handled in a pure 
functional language.


