
Chapter 10

Compiling a Language with Class

_______________________________________________________________

Here, issues of representation, binding and optimisation are examined with a 
view to compiling a "language with class".

Earlier chapters have introduced, in stages, the main features of a programming 
language that properly supports the notion of classification.  All these ideas 
come together in an object-oriented programming language called "Brunel", 
named after the famous Victorian engineer.  The "Brunel" project encompasses 
work in type theory, interface design and compilation.

Our exposition of classification concludes by examining how an object-oriented 
compiler generates structures to support run-time objects.  Original techniques 
for optimising closed systems are highlighted, such as the filtering and 
collapsing of inheritance hierarchies and the automatic detection of safe early 
binding.

_______________________________________________________________

10.1 Introducing the Brunel Project

Much of the work presented here grew out of various designs for a new-
generation object-oriented language coupled with a programming support 
environment, aimed at the software engineering industry [Simo91].  The 
language is named Brunel, after one of Britain's most famous and far-sighted 
engineers1,2, many of whose engineering accomplishments from the Victorian 
era still fulfil their function today3.

                                           

1 Isambard Kingdom Brunel, more influential though sometimes less celebrated than Gustav 
Eiffel, invented more powerful screw-driven ships than contemporary paddle steamers; and a 
more stable wide-gauge rail network than that eventually adopted in Britain.
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To answer the obvious question:  'Why yet another language?', the arguments 
of earlier chapters have already exposed sufficient problems and 
inconsistencies in the type systems of existing languages to warrant a better 
one.  Brunel aims not only to improve the correctness and lucidity of object-
oriented programming, but also to increase the level of run-time efficiency in 
object-oriented systems, all without sacrificing the open-ended flexibility that 
characterises the paradigm.  This is a major undertaking, since it requires 
advances in language design, type checking algorithms, optimisation strategies 
and user-interfaces.

10.1.1 The Three Pillars

Brunel is designed to overcome perceived limitations in the correctness, 
efficiency and transparency of current object-oriented languages and 
development systems.  The Brunel concept rests on three pillars:

 The type model for Brunel is elaborate, based on a higher-order typed -
calculus in the tradition of [Cook89a, CCHO89b, CHC90, Harr91a], whose 
semantics ultimately derives from Category Theory [BW94, SG82, 
BCGS89].  In this model, classes are considered to be polymorphic types, 
expressed as the family of types satisfying an F-bound [CCHO89a], a 
generator which is a generalisation of a recursive type.  Polymorphic types 
are represented using parameterised sets of function signatures and 
axioms, which may be replaced either at compile-time, in which case 
classes resemble conventional type-constructors [SC92, Simo93], or at run-
time.  The language is strongly and statically typed, having a polymorphic 
type checker which ensures signature and assignment conformity at 
compile-time and a future version aims to incorporate axiom verification at 
run-time.

 The compilation model for Brunel rests on the principle that a specific 
delivery system, meaning any given application, will typically require many 
fewer classes and so involve fewer inter-class dependencies than those
expressed in the developer's class libraries.  It requires a very high standard 
of system support for monitoring inter-class dependencies, incorporating an 
automatic loading and configuration tool [Low91, Tse91], an inheritance 
graph structure optimiser [SLN94], an automatic procedure for determining 
static or dynamic binding and an optimisation process for replacing 
unnecessary nested method calls by inline expressions [CUL89, CU90].  
One advantage of having a single parametric treatment of polymorphism is 
that type information is propagated into structures and therefore Brunel

                                                                                                                               

2 We have studiously avoided other tower-related acronyms, such as "Blackpool", despite the 
obvious appeal of -OOL and a certain tradition started by Eiffel and Sather.

3 Such as the breathtakingly beautiful Saltash Bridge over the River Tamar, linking the counties 
of Devon and Cornwall by rail.
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supports a much finer analysis of bindings than is possible with current 
languages.  An important ancilliary requirement is that compilers for different 
platforms should generate semantically equivalent code:  we desire 
equivalent representations of basic types such as floating-point and integer 
numbers, supporting an agreed standard of precision across platforms.

 The development environment for Brunel provides a graphical interface to 
class systems and subsystems in the tradition of the best object-oriented 
browsing environments [Gold85, BS83].  The graphical user interface will 
conform to industry standards of the day for presentation and portability.  An 
early version [Ong91, Tam92] was implemented in OpenWindows, following 
the then recent trend in standardising different proprietary X-Windows based 
interfaces.  Unlike many CASE tools which are restricted to the generation 
of design documents and code stubs, the Brunel environment aims to have 
a full reverse-engineering capability, generating abstract views and 
interactive diagrams from source [Will95].  At the time of writing, our strategy 
for storing, parsing and visualising Brunel source code is evolving.  There is 
a move away from a form-filling approach [SLN94] with a text preprocessor, 
towards full syntax-directed editing [MBDF90, Mads93] which saves parse-
trees to disk and therefore has to reconstruct the appearance of source 
code for the programmer.

Earlier chapters have described the progress achieved so far mainly in the first 
pillar, on which many other aspects of the Brunel project will depend.  In the 
rest of this chapter, aspects of the second pillar are described.  The storage 
and binding optimisations described here were previously reported in [SLN94].  
The emphasis of the current presentation is to highlight the interactions 
between types, binding and optimisation.

10.1.2 Development History4

The earliest version of Brunel was designed mainly as a test-bed to investigate 
certain compiling and optimisation strategies [Simo91, Low91, Tse91].  This 
version supported a simple interpretation of classes-as-types and enforced 
strict subtyping.   It offered only single inheritance and had conventional control 
structures.  Two subsequent implementations experimented with the addition of 
multiple inheritance using an adapted C++ approach [Ng92, Stro87]; and 
higher-order functions, to support Smalltalk-like control and branching as 
dynamic dispatching on boolean objects [Blac92, GR83].  The earliest 
development environment [Ong91] was extended to support the automatic 
layout of multiple inheritance graphs [Tam92].  

Meanwhile, the differences between type and class described in chapter 4 were 
first appreciated [SC92] then developed into different forms of concrete syntax 
supporting a single F-bounded parametric approach to polymorphism [Simo93, 

                                           

4 I am grateful to the following students who have worked under my supervision on the Brunel
project:  Low Eng-Kwang, Tse Hau-Pui, Ong Pang-Siong, David Black, Ng Yee-Mei, Rex Tam 
and Mark Williams.
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Simo94a].  Type parameters were later added to the Brunel compilation model 
[SLN94], at which point Brunel's finer-grained type analysis started to bring 
significant gains over the Eiffel and C++ compilation models.  A rationale for 
incorporating axioms into the type model was proposed later [Simo94b].  

While the syntax of Brunel was evolving, a more advanced environment 
supporting the layout of lattice structures in both the inheritance and client-
supplier dimensions was developed for Eiffel [Will95].  This has a full reverse-
engineering capability, offering graphical interaction with third-party software 
libraries, thanks to a parser that builds a dependency model from source files.  
It offers layered views of a project under development, to control complexity.   
The analysis of object-oriented polymorphism described in chapters 5, 6 and 8 
has also been applied to Eiffel and used to suggest several modifications to 
Eiffel syntax [Simo95].  

The optimising techniques reported in [SLN94] will be of a wider interest to 
designers of development systems and compilers for other strongly-typed 
object-oriented languages, such as Eiffel, Trellis and C++.  In many cases, 
similar advantages may be obtained for these languages.  However, the design 
of the Brunel language, particularly its type system, and its close coupling with 
the development environment bring certain benefits which may not be realised 
fully in other languages.

10.2 Compiling Object-Oriented Languages

Object-oriented languages present significantly greater challenges to compiler-
writers than other structured languages.  Developing a compiler which will 
generate a run-time system with precisely the same semantics as that 
expressed in the design of the class hierarchy may take up to four or five times 
the effort invested in developing a standard one-pass compiler for a block-
structured language like Pascal [Howa93].  Indeed, the designers of Eiffel
developed their first compiler from a solution to what they had initially supposed 
were an insoluble set of constraint equations [Meye88].

10.2.1 Building from Source Modules

A conventional compiler for Pascal performs the familiar four phases of 
tokenisation, syntactic parsing, semantic analysis and code generation.  Since 
the syntax rules of Pascal ensure that simple declarations are always ordered 
before more complex, dependent declarations in a file, Pascal programs can be 
processed efficiently in a single pass.  Object-oriented languages defeat this 
simple model of compilation.

Because of the highly modular nature of object-oriented software, the classes 
required for any one application may be obtained from different source files 
(and directories).  Units of compilation vary widely in current languages.  Some, 
like C++, CLOS or Object Pascal, practise a style whereby small groups of 



Compiling a Language with Class 189

related classes are usually placed in a single file.  Other languages, like 
Smalltalk or Eiffel, insist that each class be maintained separately.  Clearly, the 
latter approach is more flexible since it allows classes to be added or deleted 
singly in applications.  Either way, this presents a practical problem in tracing 
inter-class dependencies at compile time:  firstly, can a logical order be found 
for processing files and secondly, can an optimal order be found for opening 
files?

The first problem concerns whether it is in fact possible to provide well-defined 
object-oriented programs.  A class declaration depends both on ancestor 
declarations, from which it may inherit state attributes and methods; and on 
supplier-classes whose methods it calls.  Logically, a class is not well-defined 
unless all those classes on which it depends are well-defined.  However, there 
exists the possibility of circular dependencies, which must be resolved before 
the class can be considered defined.  Formally, such cycles may be broken by 
identifying points of recursion and mutual recursion, abstracting over these in 
order to provide well-founded definitions, then restoring the recursion using the 
fixpoint finder.

The second problem concerns the fact that, due to the complex nature of inter-
class dependencies, it is unlikely that source files can be processed in a single 
pass.  When compiling a complete object-oriented program from source, the 
aim should be to open each source file as few times as possible, while 
constructing the dependency information needed for syntactic and semantic 
checking.  Language environments which support the automatic detection of 
inter-class dependencies, such as Eiffel's, require up to four passes of each 
source file [Meye88, Meye92], in which the local syntax is checked, inherited 
material is incorporated, routine calls dependent on other classes are checked 
and code is finally generated.  This can lead to a significant time overhead on 
some filing systems.  Simons et al. [SLN94] described a practical procedure for 
breaking cycles of dependency at optimal points, automatically generating a 
minimum of forward declarations to ensure processing of files in linear time.  A 
source code editor builds a dependency graph incrementally from the class 
source files touched during an edit session, bringing forward some of the tasks 
normally performed at compile-time.  The graph is weighted according to 
degrees of dependency between nodes and cycles are then broken, marking 
certain nodes for forward consultation.  These correspond to files whose data 
declarations are to be read before the main pass through source.  A minimum 
of one pass and a maximum of two are needed to build systems from source.

10.2.2 Building from Object Code

It is customary to assemble large applications from collections of source- and 
object-code files.  Individual classes (or program modules containing a small 
group of related classes) are compiled to object-code, supplemented by a 
header file containing data declarations and method type signatures.  When the 
application is assembled, only the remaining new code elements need be 
analysed in full; previously compiled code elements are simply linked in the final 
assembly stage, using the header files to guide syntactic and semantic 
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checking.  This mode of working reduces locally the turnaround-time for 
recompilation, since only those header files on which a class (or program) is 
immediately dependent need be consulted.  

However, incremental compilation of this kind tends to fix the state of program 
modules too early in the development of applications.  It introduces the need for 
a monitoring system, whereby all dependent object-code modules invalidated 
by a late modification to a source file are re-compiled.  Eiffel manages this 
process automatically (with the attendant multiple passes through source), 
whereas C++ usually leaves this task to the programmer - either on the 
command line, or through maintenance of a "makefile" in which dependencies 
are recorded (with the attendant scope for human errors). 

Standard object-code generators and linkers do not perform in an ideal way for 
object-oriented programs, because of the way in which they fix binding 
decisions too early.  A method which contains a degree of internal dynamic 
dispatching may sometimes be invoked in contexts where more static type 
information is made available.  In these contexts, a smart compiler should be 
able to remove the need for dynamic dispatch.  Standard compilers will allow 
either the generation of a single object-code version of such a method, in which 
full dynamic dispatch is obligatory, or else the generation of multiple object-
code versions, optimised for static dispatch over certain types.  This can greatly 
increase the size of executable systems.  Instead, a smart compiler should 
generate a single object-code block for each method, which may be optimised 
at a late stage during linkage at call-sites.  This technology is not currently 
available, mainly because most compilers are designed around statically bound 
and linked conventional languages, like C.  Progress in this area to 
accommodate object-oriented languages would require a general agreement on 
a new layout for object-code files.

A smart linker is in any case crucial to minimising the size of executable 
systems.  Unfortunately, many compilers, upon encountering an #include
directive, will link the entire object-code module for each class supplying 
services.  Instead, a smart linker should link only those methods which are 
actually used by the client class (or program).  Smart linkers capable of this 
task5 have been around for some time; however they are not universally 
adopted.  This is largely a matter of laziness in a culture where it is easier to 
provide more resources than it is to consider redesigning standard compilers to 
optimise the use of fewer resources.

10.2.3 Inheritance and Structural Templates

During inheritance, all object-code modules for ancestor classes are often 
#included indiscriminately in the final program, complete with their structural 
templates.  However, these extra structural templates are only required if, at 
some point in the program, an instance of a class is treated as though it were 

                                           

5 Borland introduced smart linkage in products as early as Turbo Pascal 4.0.
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an instance of one of its ancestors.  If not, a compiler may simply construct a 
single structural template for a terminal class in the inheritance graph (ie one 
which will be instantiated in the application) from information obtained from 
many places in the inheritance graph.  Although it is desirable to maintain 
classes at all points in the graph where significant abstraction may be captured, 
it is not clear, until the application is linked and built, how many of the 
intermediate classes require a separate representation in the application.  A 
compiler should attempt to minimise the inclusion of such intermediate 
structures.

When compiling a method defined on a particular structural template, a 
compiler uses this information to calculate the offsets of attributes in objects of 
that structural type.  Descendent classes will have a different structural 
template, due to the addition of attributes, which means that applying an 
inherited method to an object could result in the wrong offsets being accessed 
and updated - the object's data could become corrupted.  Fortunately, in single 
inheritance schemes the structural template of a child class simply appends 
data storage blocks monotonically to the parent's template.  Methods accessing 
the parent's attributes will automatically access the same, correct offsets in the 
child.  On the other hand, multiple inheritance schemes present a difficult 
problem, whereby the offsets of attributes in a child class may be displaced with 
respect to their declared positions in the parent class.  Assuming that the 
inherited instance variable templates of multiple parents are concatenated in 
order, any class inherited out of direct line (ie a second, third, ... parent) will 
suffer from displacement (see also figure 10.1).  Many schemes for overcoming 
this difficulty have been proposed:  these include recompiling methods inherited 
out of direct line, using extra levels of indirection to access sub-parts of classes 
and pointer arithmetic.  The main approaches are reviewed in [Ng92].  A 
scheme similar to [Stro87, Stro91], which uses pointer arithmetic and instance 
variable templates, was eventually chosen for Brunel.  This approach was 
preferred mainly because it reduces dramatically the number of recompiled 
versions of the same method in target applications, without significantly 
compromising access times into structures.  The interested reader should 
consult these sources for further details.

10.2.4 Static and Dynamic Binding

Message polymorphism gives rise to dynamic binding, whereby one or other 
variant of a method is selected at run-time by discriminating on the type of the 
object.  To do this, a compiler has to construct a dispatch table for some 
methods in an application.  Instead of placing a direct call to the compiled 
method in the object-code, the compiler places an indirect call to a method 
obtained from the dispatch table, accessed by some index computed from the 
run-time type of the object and the name of the message.  The size of the 
dispatch table grows in proportion to the product of classes and methods that 
use dynamic binding.  An indirect call also adds an overhead to system 
execution time.  It is therefore important to tailor the amount of dynamic binding 
used to the needs of the application.
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Languages like Smalltalk and Objective C have a high commitment to dynamic 
dispatch, so minimising the time and space costs is a paramount concern (see 
chapter 1).  Smalltalk builds linked dispatch vectors for each class, hashing on 
the method selector (message name) and searching up the inheritance 
hierarchy if no hit is found [GR83].  This is space-efficient, but has a variable 
time penalty that is on average linear in the depth of the hierarchy.  Deutsch's 
optimisations build local caches for inherited methods as they are found; the 
average cost is still 1.3 lookups for a cache that is 2/3 full.  Objective C builds a 
single dispatch table for the entire system, indexed by class and selector, 
typically yielding a sparsely-filled two-dimensional matrix of function pointers.  
This has constant-time access, but is space-inefficient.  The sparse property 
can be exploited by selector index colouring [DMSV89].  Each method selector 
is assigned a colour, such that no colour is used twice by the same class.  This 
reduces the number of table columns, by minimising the total number of 
method indices.  An alternative technique packs several dispatch table rows 
into one vector by giving each class a unique starting offset into a vector 
indexed by method selectors [Dries93].  Rotating this technique through 90
packs several columns by giving each method a unique starting offset into a 
vector indexed by class [DH95].  For other languages, such as C++, the size of 
the table is kept small and the indexing system correspondingly simple due to 
the fact that the programmer has to flag dynamically bound methods explicitly in 
the source code.  This compromises flexibility and the freedom to extend class 
hierarchies.  Instead, an automatic approach to the detection of static and 
dynamic binding is adopted here.  Although every method should be written as 
though it could be selected dynamically at run-time, a compiler should be able 
to determine, at the time of building the application, a large set of calls for which 
only one method can be invoked and replace the dynamic lookup by a static 
method call, or even by an inline expression.  Our algorithm, described below, 
performs a global optimisation for a given application and relies to a certain 
extent on Brunel's novel type system.

The policy of encapsulation protects the internal state of objects.  This gives 
rise to a proliferation of methods whose sole purpose is to provide controlled 
access to state variables.  In certain circumstances, chains of access methods 
may be required to pass requests for data on to deeply nested objects, 
reducing the speed and time efficiency of programs.  A natural solution is to 
request inline expansion for these, and other, short methods.  This brings an 
immediate speed advantage.  However, inlining is not always without hazards -
it prevents redefinition of the inlined method and, without peephole 
optimisation, may give rise to the multiple evaluation of sub-expressions.  
Furthermore, an aggressive inlining strategy stands to increase the size of the 
application code.  A scheme is suggested in [SLN94] for detecting automatically 
safe cases when access methods can be inlined, with a guaranteed reduction 
in code size.

Our inlining strategies are inspired by Self's automatic message inlining  
[CUL89, CU90].  As in Self, the emphasis is on the automatic detection of safe 
cases for inlining and does not depend on a special inline directive in the 
language, as found in C++.  A compiler may choose to replace reader/writer 
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methods by direct access into object structures.  Chains of method calls, which 
essentially pass external requests on to the most deeply nested object, are also 
detected.  A compiler may recognise the syntactic similarity in delegated 
messages and replace the outer call by its inlined body [SLN94].

10.3 Global Optimisation of Inheritance

Inheritance is expressive as a means of sharing type and implementation.  In 
languages like POOL-I and CommonObjects [Amer90, Snyd87], much was
made of the independence of class and type.  Here, classes were viewed 
simply as units of convenience for bequeathing implementation details to their 
descendants.  A subtyping hierarchy was maintained separately from the 
"class" hierarchy (sometimes linking nodes in completely different orders; see 
chapter 2).  In contrast to this fragmentary and sometimes flawed6 approach, 
Brunel supports an F-bounded type inheritance and, dependent on this, the 
inheritance of implementations. 

10.3.1 Type and Implementation Inheritance

Brunel has a single syntactic class construct, which has three related semantic 
interpretations:  class, type and template:

 A class in Brunel is a higher-order type, described using F-bounds.  It 
describes the common pattern of type and implementation for a polymorphic 
family of objects, using type parameters that are recursively instantiated in 
descendent classes to derive new type-bounds for inherited methods.

 A type in Brunel is generated by replacing all remaining parameters in a 
polymorphic structure; in particular by taking fixpoints.  It describes a family 
of objects having the same fixed interface and implementation.  Method 
implementations may be shared with other types, but are implicitly retyped.

 A template in Brunel is the concrete implementation schema for objects 
belonging to a type, namely the collection of hidden state variables for that 
type.  A template is partitioned into state variable records, which may be 
recombined in different orders under multiple inheritance.

A syntactic class definition in Brunel may provide anything from a completely 
abstract specification (cf a fully deferred class in Eiffel) in terms of method 
stubs, to a concrete specification detailing attribute storage and complete 
implementations of methods.  Descending an inheritance graph in Brunel
typically describes a process of type restriction, whereby inherited methods are 
progressively retyped, and eventually reification7.  Concrete attributes 

                                           

6 Type hierarchies were supposed to conform to subtyping, but often did not stand up to detailed 
inspection, especially where recursive types were concerned.

7 Introducing a particular concrete representation is just one kind of restriction.
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introduced at points in this graph must always be pertinent to the class and all 
its descendants.

10.3.2 Type Factorisation and Templates

Inheritance rightly encourages the creation of a great number of classes, many 
of which are only incrementally different from their ancestors.  A multiple 
inheritance graph may be seen as mapping out focal points in a space of 
overlapping type descriptions [SC92].  However, generating a type and a 
template for each node in the hierarchy presents a problem from the space-
efficiency viewpoint.  Application programs will, in general, only need to 
generate types and templates from specific terminal class descriptions in the 
network.  These classes will have inherited most of their specification and 
implementation from intermediate classes in the network.  Many of these 
intermediate classes will not require a separate representation in the target 
code, since their only purpose is to bequeath inherited material.

A survey examining the impact of different versions of C++ and Eiffel in an 
industrial context [Quin90] reported how programmers, having been trained to 
factor out the functionality of a system over some set of classes in an 
inheritance graph, were then surprised to find that applications were too large to 
load onto standard processors.  A particular set of bad experiences was 
obtained when converting from the older single-inheritance version of C++ to 
the multiple-inheritance version [Stro91] and finding that compiled applications 
would no longer fit on 80386 processors, despite the apparent reduction in 
source text.  The problem was eventually traced to the overhead in maintaining 
many finely-factored object templates in the runtime system [Quin90].  

One imperfect solution is to try to increase the grain size of objects.  This leads 
to a style where there are fewer objects, which are more multi-functional.  The 
pressure is on the programmer to produce, every time, a class which maximises 
operational code at the expense of conforming to proper notions of type 
abstraction and factorisation.  One example of the undesirable effect of this 
pressure is Eiffel's POLYGON class in [Meye88] which, in addition to being the 
abstract ancestor of all SQUARE, RECTANGLE, ... classes, is also used as the 
concrete class to create N-vertex polygons.  A discussion of how this also 
invalidated the type-status of the class was presented in chapter 2.

10.3.3 Collapsing the Inheritance Graph

Brunel's type system supports and requires8 the exploitation of overlapping type 
spaces; therefore we should expect to see more classes and more finely 
factored classes in Brunel than in some other languages.  Accordingly, a smart 
compiler must be able to reduce automatically the number of types and 
templates generated in the target language to the essential minimum for 

                                           

8 As a consequence of the rule for introducing methods with a distinct semantic functionality at 
single points in the inheritance graph.
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particular applications.  In [SLN94], an algorithm was published for pruning and 
collapsing the class graph for closed application systems.  The algorithm is 
based on the idea that source code extracted from class libraries can be 
translated into a more compact form before object code is generated for the 
application.  The process is described as an ordered sequence of 
transformations:

a) The compiler is invoked on the class which encapsulates the whole 
application.  Dependencies are traced recursively from this to all other 
classes in the application.  A dependency is either an inherits from or client 
of relation.  The former produces a transitive closure of ancestor classes, 
whereas the latter produces a transitive closure of supplier classes.

b) A subgraph of the application system is then constructed.  This graph 
contains the application class and all its (recursive) ancestors and 
suppliers.

c) Abstract classes (ie fully deferred classes), whose sole purpose is to 
provide specifications, are eliminated after static type checking.  However, 
partially deferred classes which are the branch-points for dynamic 
dispatching are treated in (e) below.

d) Intermediate classes, which are not instantiated in the application, but 
which share physical structure among terminal classes in more than one 
descendent branch, generate a single global data structure, or table.  
References to shared9 attributes, once their scope has been checked, are 
compiled out to offsets into this table.

e) Intermediate classes, which are not instantiated in the application, but 
which share private attribute declarations and methods among terminal 
classes in more than one descendent branch, generate a single state 
record, used to describe state variable offsets in all descendants, a method 
type schema and one set of methods.  The templates for terminal classes 
are constructed later from collections of state records.  Brunel employs a 
multiple inheritance scheme similar to C++ v2.0 [Stro87, Stro91] in which 
such records are applied to different offsets in objects prior to accessing 
attributes.  Method type schemas are used during the automatic detection 
of static and dynamic binding (see below).

f) Terminal classes and any intermediate classes which are instantiated in 
the application must be fully represented in the target language.  In 
addition to providing a state record for any new private attributes, a method 
type schema and a set of methods, these generate an object template, 
used to create instances.  Object templates are partitioned into state 
records, which are retained separately for the sake of multiple inheritance.  

                                           

9 The keyword shared declares a state variable that is allocated once for all instances of a class, 
like Smalltalk's class variables.  A semantics for this was given in chapter 6.



Compiling a Language with Class 196

g) The inheritance graph is now collapsed.  All other declarations in 
intermediate classes are brought down to the nearest class represented in 
the application.  We describe this process as "flattening", whereby a chain 
of classes inheriting from each other is collapsed down to a single datatype 
which declares in one place all the inherited features.
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Figure 10.1:  Collapsing the Inheritance Graph

Figure 10.1 illustrates the transformation of an example class graph.  Each 
class A - H in the class library is assumed to provide a set of methods f(a) - f(h)
and a block of attribute declarations a - h.  Only classes A, F, G and H are 
instantiated in the application, so these must appear in the collapsed graph and 
object templates are generated for these classes.  Class D collects inherited 
material from B and C which have been "flattened"; however D must generate a 
state record so that the single copies of methods in f(b), f(c) may access the 
correct offsets in instances of F, G and H.  The importance of this record is 
seen especially in G where the attributes collected in D are inherited out of 
direct line, due to E inheriting multiply from A and D.  D's state record template, 
incorporating the block of attributes b, c and d, is applied to an offset in G 
before any method in f(b), f(c) is called on an instance of G.  Classes B, C and 
E are eliminated altogether in the collapsed graph.

From the small-scale modelling tests [Low91] conducted so far on simulated 
run-time systems having 10 - 100 classes, it appears that a reduction may be 
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obtained of between 32% and 50% on the number of object templates and 
state records generated at compile time.  Counting each instance variable 
declaration as a uniform cost, this represents a total reduction of between 20% 
and 38% in data declarations for the application system.  All the test examples 
were systems of finely-factored classes using multiple inheritance.  The classes 
instantiated in the application were situated between depth 3 and 5 in the 
inheritance graph.  The improvement was calculated with respect to the 
application subgraph extracted from the class library prior to collapsing.  There 
is not yet enough data to give a statistical indication of how effective this 
technique is over large, actual production systems.

10.3.4 Optimising Inheritance in Other Languages

This algorithm can be viewed as a way of automatically extracting larger, more 
multi-functional classes from a finely-factored class library.  It gives the 
developer the freedom to engage in abstract design, without the burden of 
implementation considerations.  The best results are obtained where the 
developer's class library is quite large, with many intermediate nodes 
corresponding to branch points for other class variants not used in the current 
application.  These nodes would have a separate representation in Eiffel and 
C++ systems, but are collapsed into their descendants in our system.  

Our technique could be incorporated into a C++ to C translator, but not into 
current C++ native code compilers.  This is due to the early fixing of classes in 
object-code.  Methods compiled over a C++ base class automatically need that 
class's template, even if the application only uses direct-line descendants of 
that class.  Our technique might be incorporated into Eiffel in the following way.  
The Eiffel source for a class is typically translated to C and compiled to one or 
more object-code files.  These, and other files which record dependency 
information, are hidden in a <name>.E directory, corresponding to the 
<name>.e source file.  Eiffel is able to check whether dependent files need 
recompilation.  This approach could be adapted to generate alternative 
collapsed C sources and object-code files for classes used in particular 
applications projects.  The idea is that Eiffel could check for changes in different 
subsystems of classes being developed for a particular application.  If the 
inheritance structure of the subsystem changed, then a different set of 
intermediate C sources would be generated.  While developing a given 
application, this would limit the number of re-generations of C sources and 
compilations to object-code.  When switching to a new project, system-wide 
recompilation would occur.

10.4 Global Optimisation of Bindings

Conceptually, whenever an object receives a message to perform some action, 
it responds by finding the nearest appropriate method in the inheritance graph.  
The task of selecting which method to use in response to a given call is known 
as binding (a function to a symbolic name).  If binding happens at compile-time, 
this is known as static binding.  If method lookup is delayed until run-time, this 
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is known as dynamic binding.  If a compiler can determine that only one type of 
object will ever be present at a given call-site, then it will bind that method 
statically.  Otherwise, if it detects that some small set of object types will be 
present, then it will bind that method dynamically.  Dynamic binding typically 
arises as a result of a method being deferred, ie specified in an abstract class 
and implemented multiple times in the concrete descendants of that class; or 
else when a method is redefined multiple times in descendent classes for other 
reasons, such as for efficiency's sake, or in order to add functionality to the 
inherited version.

10.4.1 Exploring Static and Dynamic Binding

In a strongly-typed language, the great majority of methods to call can be 
determined statically at compile-time.  This is because the actual type of the 
objects to be encountered at the call-site is known and therefore the compiler 
may replace call expressions by function pointers.  It has been estimated 
[Booc91, Simo92] that around 80% of object-oriented code can be bound 
statically.  The time and space savings of static over dynamic binding are 
considerable.  Looking up a method may have a constant, or linear time penalty 
and requires at least one extra pointer dereference, compared with placing a 
direct call to the method.  Any methods which are never invoked dynamically 
can be removed from run-time dispatch tables (see above).  For some 20% of 
object-oriented code, it is essential to have dynamic binding.  This is because 
the most specific type of the objects encountered at the call-site is not known.

Untyped languages like Smalltalk [GR83] adopt dynamic binding universally.  
This is not appropriate for Brunel, from either the security or efficiency
viewpoints.  Objective C [CN91] has a type-free style of messaging with 
dynamic binding (such objects are of the type id) and an alternative typed style 
with static binding.  C++ and Eiffel have strongly-typed static and dynamic 
binding, which we adopt as an appropriate starting point.  

The approach taken in C++ [Stro91] is not as flexible or open-ended as it 
should be.  The language forces the programmer to determine in advance 
whether a method is to be invoked statically or dynamically (dynamic methods 
are declared as virtual functions).  This is wrong because it breaks Meyer's 
open/closed principle:  if you later wanted to extend the class hierarchy and re-
implement a static method for dynamic invocation, you would have to return to 
the original class and change the declaration style of the original method.  The 
modification now provides the wrong solution for the majority of existing 
applications that do not use the additional redefined method and which 
therefore do not need dynamic binding.  

It is insufficient to rely on some labelling scheme (such as virtual or deferred) to 
trigger the appropriate choice of dynamic over static binding, since merely re-
implementing a method in a descendant may entail a need for dynamic binding.  
Eiffel [Meye92] provides full dynamic binding by default, with a compiler switch 
to optimise bindings for a given assembly of classes in a post-processing stage.  
In this strategy, the set of classes required for an application is extracted from 
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libraries and scanned for the presence of redefined methods.  Unique methods 
are linked statically and methods that are subject to redefinition are linked 
dynamically [Towe94].  The post-process takes time, since it must regenerate 
the object-code for all methods used in the system, in case they make calls that 
can be rebound statically.

A different approach relies on a tighter analysis of polymorphism.  Brunel's type 
system removes ambiguities present in other strongly-typed object-oriented 
languages.  In Eiffel, a compiler encountering a variable with the type 
annotation GRAPHIC cannot tell whether this refers to the precise type of 
object to be stored there, or a polymorphic class of object-types to be stored 
there.  This is immediately apparent in Brunel, which makes the distinction 
between GRAPHIC, an albeit rather general type, and #GRAPHIC[G], a 
polymorphic class.  Annotations that resolve to types can be bound statically 
without further consideration.  Polymorphic annotations like #GRAPHIC[G] may 
or may not result in dynamic binding.  This is because type constraints can be 
propagated through the call graph, especially where function results become 
targets for further calls.  An expression containing a polymorphic call to draw
might already have replaced a parameter tied to G by an actual type, say 
CIRCLE, for that invocation of the function.  As a result, that call could be 
bound statically, although in general draw was designed for polymorphic 
invocation.

10.4.2 Global Binding Analysis

In [SLN94], an algorithm was published for analysing global bindings for closed 
systems.  Like the algorithm for collapsing inheritance structures, this approach 
assumes a complete analysis of source code and late generation of object 
code.  Our binding optimiser performs the following steps:

a) A complete subgraph representing the portion of the developer's class 
graph used in the application is constructed and collapsed using the 
optimisations outlined above.  This eliminates spurious sibling and cousin 
classes which are not used in the application, flattens chains of 
intermediate ancestors down to shared branch-points, retaining these and 
all classes which are eventually instantiated in the application.  Each class 
in the collapsed graph obtains a type signature for every method that it 
understands, including inherited methods with re-bound type parameters.

b) The method which initiates the application becomes the root of a call-graph 
which is constructed by tracing all nested invocations of methods in the 
application program.  Each call is a node in this graph, labelled with a most 
specific type, obtained by consulting the type schema of the receiver object 
(the target variable of the call).  Two invocations of the same method may 
therefore have different types, depending on the type of the receiver at the 
call-site.  Any two such distinct invocations become separate nodes in the 
graph.  On the other hand, nodes generated at different places, but which 
are labelled with identical method names and types, become merged.  
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Recursive methods therefore generate self-transitions and mutually 
recursive methods generate closed loops.

c) For each type-distinct method invocation, the inheritance graph is 
searched upwards from the type of the target object until an 
implementation or a declaration for the method is found.  The most specific 
implementation (if any) is logged and marked for inclusion.  If only a 
declaration is found, the method is considered deferred and the branch is 
marked as unsafe (see (d) below).  If no declaration or implementation is 
found, a method invocation error is reported.

d) For each polymorphic method invocation, the inheritance graph is now 
searched from the class of the target object downwards towards its leaves 
(ie in the reverse direction), in order to determine if there are any re-
implementations of the method in any of the application classes.  The 
number of re-definitions (if any) is logged and the methods are marked for 
inclusion.  While descending the graph, the algorithm marks each branch 
as safe when an implementation is detected.  If any application class is 
touched in an unsafe branch, a deferred method error is reported.

e) Each type-distinct method invocation is now marked for static or dynamic 
binding.  All static calls and those polymorphic calls having a single 
implementation are bound statically.  Any polymorphic call having more 
than one associated implementation is bound dynamically.  All these are 
included in a dispatch table and a lookup instruction is generated at the 
call-site.  Dynamic binding results either from a method being deferred with 
multiple definitions, or implemented but having at least one re-definition.

f) Any methods which are not marked in the class hierarchy during the 
traversal of the call graph are never used in the application; they can be 
eliminated from the target program.  This task should really be delegated 
to a smart linker (see above); in the absence of such, and since the 
algorithm effectively performs a source code cross-translation, unused 
methods are eliminated here.

This algorithm can be applied as part of a global binding optimisation strategy in 
any strongly-typed object-oriented language.  Figure 10.2, adapted from 
[SLN94], illustrates the distinct cases in determining static and dynamic binding.  
The first example illustrates the case where only one static method f(a) can be 
found for a call.  The second illustrates the case where a deferred method f()
has two implementations f(b), f(c) in different branches and therefore is bound 
dynamically.  The third illustrates the case where an implemented method f(a) 
is redefined as f(c) in a descendent class, requiring dynamic binding again.  
Brunel offers the advantage of discriminating monomorphic and polymorphic 
call-sites.  In other languages, all call sites would have to be processed in step 
(d) above to search for possible method redefinitions, whereas in Brunel, only 
the polymorphic call-sites have to be processed.  
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Figure 10.2:  Static and Dynamic Binding

Because our algorithm is expressed in terms of traversing a call-graph, this 
ensures that different invocations of the same method are not lumped together 
in the analysis of binding.  A more approximate local analysis [Towe94] would 
only consider each method once for possible re-definitions in the class 
hierarchy, whereas our approach takes into account each call and the most 
specific type of the target variable at the call-site.  In consequence, this scheme 
allows the same method to be statically bound over some variables but 
dynamically bound over others, where it is subject to re-implementation.  It all 
depends on the branch of the inheritance graph in which the target of the 
invocation is typed.  Note also how our scheme allows binding to depend on 
which classes are needed for an application, such that incremental extensions 
to the developer's class library which would require dynamic binding do not 
force this upon existing applications.

10.4.3 Optimising Bindings in Other Languages

It is clear that this optimisation is a global post-process for specific applications.  
Like the inheritance optimisations described earlier, it could not easily be 
applied in an incrementally compiled regime.  For the moment, the language 
definition of C++ rules out the automatic determination of binding anyway.  It is 
possible to improve on the late post-processing performed by Eiffel, using a 
scheme similar to the one described above for the early detection of stable 
inheritance subsystems.  If the dependency information recorded for a class 
under its <name>.E directory were to include counts of method redefinitions 
and were to log the types that were the targets of creation instructions below it 
in the inheritance hierarchy, then stable binding subsystems could be 
established during the development of an application.  This would allow the 
early generation of object-code in which bindings were optimised.  Local 
changes to classes would be propagated upwards through the dependency files 
of ancestor classes.  A sensitive change would result in the recompilation of 
any client invoking a method whose binding status had altered, the next time 
the system was built.
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Curiously, hardly any reported research seems to have adopted our emphasis 
of detecting the need for dynamic binding in a statically-typed regime.  By 
contrast, a lot of recent work has focussed on opportunities for detecting early 
static binding in a dynamically-typed regime.  TS (standing for Typed Smalltalk) 
[JGZ88, GJ90] is geared towards retrofitting a full static type system for 
Smalltalk, with optimisation in mind.  The type system for TS is different from 
Brunel, being independent of the class hierarchy and based on discriminated 
unions and signature types.  Like the separate protocols of Objective C
[NeXT93], this is necessary to capture the common type of features introduced 
at disjoint parts of the (single) inheritance hierarchy.  Type annotations are 
provided and some type inference is performed, permitting the early binding of 
many methods.

10.5 Code Generation Strategies

Perhaps the most interesting sequence of work on binding optimisation 
however has been carried out by the designers of Self [CUL89, CU90].  Self
has no classes (it is prototype-based) and no type annotations;  furthermore it 
has user definable control structures and dynamic inheritance, making the 
optimisation task even more challenging.  To compensate for the lack of class 
types, the Self compiler builds implementation-level maps to group objects 
cloned from the same prototype.  Then, methods are dynamically compiled as 
they are first invoked.  Through the techniques of type prediction and message 
splitting, multiple versions of a method are compiled, some versions optimised 
for particular common types (eg integer, boolean objects).  Within each version, 
the type of the receiver is fixed and this enables the static analysis of further 
nested calls.  The effect of this is to reduce dynamic dispatching considerably;  
many nested calls are simply inlined.

10.5.1 An Explosion of Object Code

Our approach shares the goals of these examples, in that nowhere in the 
language syntax should the full potential for dynamic use be compromised.  
However, it is also important to control the size of the object-code.  An 
unbridled use of Self's message-splitting technique stands to increase the 
number of recompilations of methods, and this is exacerbated in a finely-
factored multiple inheritance regime.  The trade-off in Self is between losing 
dispatching code and gaining multiple copies of other operational code.  In 
Brunel, a much tighter static analysis of type may be performed than in other 
languages, since actual type information is propagated into polymorphic type 
parameters.  This often delivers full monomorphic type information at call-sites 
for methods that were designed to be used in a polymorphic way.  Without 
imposing some restrictions, we might obtain geometric increases in object-code 
size, as a result of recompiling methods at each type-distinct call-site.

To see how this might happen, consider Smalltalk's deferred class Collection, 
whose methods collect: and select: capture the general notions of mapping and 
filtering over all collections; or addAll: which appends all the elements of one 
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collection to another.  These methods are implemented in terms of the more 
primitive iteration method, do:, and the method to add single elements, add:, 
which are deferred and implemented multiple times, once for each kind of 
collection.  Calls to do: and add: are dynamically bound and dispatched inside 
these methods.  Now, if there were five significantly different subclasses of 
Collection and it was desired to optimise the bindings of do: and add: such that 
all calls to these methods were bound statically, this would yield a five-fold 
increase in Collection's methods, in terms of recompiled versions of collect:, 
select: and addAll:.  Because of the code size trade-off, the Brunel compiler 
currently chooses to ignore some of the opportunities for early static binding.  
Instead, it monitors the number of redefined versions of methods at 
polymorphic call-sites and sets a threshold on the number of recompilations, 
reverting to dynamic binding if this is exceeded.

10.5.2 Conventional Code Generation

Object-oriented languages need a different strategy for code generation and 
linkage from that currently available.  Current techniques either force the late 
compilation of systems by requiring a global analysis of system bindings, in 
which case they generate multiple object-code versions of each method used in 
a different context; or else they allow incremental compilation at the expense of 
forcing early decisions on binding.  The chief difficulty with the latter lies in not 
knowing how a given piece of code should be bound at the time of compiling 
the source, so usually the most flexible (and inefficient) solution is chosen.

class #DRAWING [D[G]] uses #GRAPHIC [G]
(self : @D[G]) is (#OBJECT [D[G]]) with
{  private

pen : PEN;
element : G;

   public
element : G { element }
setElement (g : G) { element := g; }
setStyle(line, colour : INTEGER) { pen.setStyle(line, colour); }
draw { element.drawUsing(pen); }

...}

square_drawing : DRAWING [SQUARE];
square_drawing.draw; ...static binding

... uses #GRAPHIC [T] ... ...unresolved in this scope
general_drawing : DRAWING [T];
general_drawing.draw; ...dynamic binding

Figure 10.3: Binding Type Variables

Figure 10.3 illustrates a #DRAWING[D[G]] class which contains a polymorphic 
#GRAPHIC[G] picture element.  Since the parameter G is present in the 
external type interface of #DRAWING[ ], it is clear that this class is intended to 
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be used like a type constructor.  The variable square_drawing is declared in the 
parametric-polymorphc style; it has the type: DRAWING[SQUARE].  This 
provides full type information for the internal binding of draw()'s call to the 
method drawUsing(), whose target object type is now fixed at SQUARE.  The 
draw() method may invoke #SQUARE[ ]'s drawUsing() method statically.  
However, the variable general_drawing is declared to have the type: 
DRAWING[T], where T is an unresolved polymorphic type.  Assuming that 
different #GRAPHIC[ ] objects have different drawUsing() methods, the draw()
method must here dispatch the internal call to drawUsing() dynamically.

Global static analysis and late compilation techniques may be used to obtain 
two object-code versions of draw() in this scenario.  This may be tolerable; 
however in the general case many copies of near-identical object code will be 
generated, whose internal bindings are optimised over different types in the 
#GRAPHIC[ ] class.  By contrast, in an incrementally compiled regime, draw()
must be compiled without foreknowledge of how it will be used.  This means 
that early static binding cannot be assumed for internal calls bound over 
polymorphic components such as element : G above.  The compiler is forced to 
generate object-code for draw() with internal dynamic dispatch by default.  No 
further advantage may be taken in a situation where the actual type of G is 
known at call-sites invoking draw().  However, only a single object-code copy of 
the method is generated.

10.5.3 Smart Code Generation

A compilation technique is required that supports the early generation of object-
code, but late linkage to take into account the inheritance- and call-graph 
optimisations described above.  A prime requirement is for the compiler to 
generate single copies of object-code for each equivalent source-code block, 
but to provide flexible linkage of code at each call-site.  Dynamic binds should 
be generated in a special way, to allow automatic bypassing of the dispatch-
table lookup in cases where type analysis permits early static binding.

A new approach to code generation is proposed in outline.  Every method like 
draw() above can be considered parameterised over those of its internal 
method invocations that are polymorphic at the time the class #DRAWING[ ] is 
compiled.  This is equivalent to extending the argument list of draw() to accept 
pointers to functions at run-time.  By default, the values supplied for these 
arguments are expressions corresponding to the dispatch table lookup, which 
deliver a pointer to the intended method at run-time.  However, in cases where 
type analysis permits early binding, the lookup expression is replaced inline at 
the call-site by a static pointer to the method that is dispatched inside draw().  

Figure 10.4 illustrates the way in which object-code could be laid out to 
accommodate this idea.  In this scheme, code blocks reserve a special area, 
apart from the main body of the method, for handling dynamic dispatch calls.  
Instead of embedding the dispatch call in the method body, a local pointer is 
used at the dynamically bound call-site in the method body to redirect control to 
the dispatching area.  In the non-optimised default case, the dispatching area 
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contains the addresses of lookup routines, which are compiled separately from 
the body of the method and linked when it is known that the method is invoked 
at least once in a context requiring dynamic binding.  In the optimised case, the 
dispatching area contains the addresses of statically bound methods as a result 
of the linker overwriting the pointer to the lookup routine with a direct method 
pointer.  In other words, the dispatching area is a read/writeable space for 
function pointers, which contains pointers to lookup routines by default.  A linker 
must be capable of substituting the addresses of statically bound methods into 
the dispatching area at system assembly time.  This should be no more difficult 
than binding functions to arguments in a conventional execution model.

body

lookup ?

dispatch
area

body

lookup ?

method

Figure 10.4: Object Code Layout

The cost of this approach is reasonable.  Each method is compiled to one 
object-code, instead of many.  The execution stack reserves additional space 
for each call, corresponding to the size of the dispatch area required for that 
method.  Static binding information is passed, rather like existing value 
parameters, at each call-site, so a small increase in the storage required to hold 
method invocation expressions is to be expected.  This overhead may be 
calculated as a fixed number of function pointers, one for each internally 
dispatched method whose binding may be optimised on some invocations.  
There is a time penalty of one extra local pointer dereference for internally 
dispatched methods; this is incurred when the code body redirects control to 
the dispatching area.  Dynamic method lookup instructions are always included 
for each internally dispatched method in the caller's object code, but are not 
used in cases where the method can be bound statically.

10.6 Summary of Optimisation Techniques

We have presented several strategies for analysing and optimising object-
oriented software in Brunel.  Such strategies may be useful in any object-
oriented language with strong static typing, but yield their fullest benefits in a 
language like Brunel.  Brunel offers a more accurate type analysis than other 
languages, by distinguishing monomorphic types from polymorphic classes; this 
permits a tighter analysis of bindings, through the static propagation of type 
information into type parameters.  An optimising compiler for Brunel may detect 
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more opportunities for early static binding than can be expected in other 
languages.  The optimisations are specific to given delivery systems and are 
aimed at reducing the size of the object-code module, while achieving all speed 
performance advantages which do not mitigate against this.  

10.6.1 Compiler Optimiser Architecture

Figure 10.5 illustrates the current  overall architecture of the Brunel
compiler/optimiser.  From the diagram, it is clear that the optimisations 
presented here constitute a linear sequence of transformations on the global 
structure of some chosen target system of classes and methods.  The 
optimisation processes are time-ordered and generate intermediate memory 
structures used by subsequent processes.
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Figure 10.5:  Compiler/Optimiser Architecture

The collapsing of the inheritance graph is an innovation in object-oriented 
optimisers and contributes to a reduction in the size of the object-code data 
segment of up to 30%.  Programmers may freely exploit finely-factored multiple 
inheritance without penalty.  The technique transforms a graph of classes 
extracted from the class library into a semantically equivalent collection of 
encapsulated data types.  It achieves its effect by chunking data descriptions 
and pulling inherited method definitions down to the lowest shared point.  The 
automatic detection of static and dynamic binding removes the need for virtual
directives and allows methods which are bound statically in one application to 
be bound dynamically in another, according to need.  Furthermore, the same 
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method may be bound statically or dynamically at different call-sites in a single 
application.  While these binding techniques are based on previous work 
[CUL89, CU90] they are more sophisticated than currently used commercial 
techniques [Towe94] because each call-site is analysed separately; and in 
Brunel a more efficient type analysis is performed, as a result of the 
propagation of simple types into type parameters.  All the techniques described 
here require a global analysis of source code for closed systems.  The 
prototype optimiser consults files in a dependency directed linear order and 
performs a translation from Brunel source to ANSII C [Low91, Ong91, Tse91, 
Black92, Ng92].  Different techniques are necessary to support incremental 
compilation.

10.6.2 Future Directions

A direction has been indicated for the developers of future object-oriented 
compilers.  In particular, it is desirable to modify the way in which object code is 
generated, to allow for late static binding during the linking phase.  This would 
remove the need to compile multiple copies of object-code, which is the current 
strategy used when eliminating dynamic dispatch calls.  The development of a 
new layout for object code was discussed, introducing the concept of a 
dispatching area.


