
Chapter 11

Conclusion

_______________________________________________________________

The goal of this work has been the design of a "language with class", an object-
oriented programming language supported by a formal theory of classification.

A formal account of object-oriented programming has been given, exposing 
several important misconceptions.  The notions of "object", "type" and "class" 
have been defined.  Different mathematical models of classification have been 
explored, including subtyping, bounded and F-bounded polymorphic inclusion.  
A theory of classification has been presented and extended to model families of 
types, type constructors and classes with internal polymorphism.  A 
programming language has been designed to support important properties of 
objects and classes.  Constructs in the language are given unambiguous 
translations in the formal model.  A series of optimisation strategies for a 
compiler for object-oriented languages have also been discussed.

_______________________________________________________________

11.1 Summary of Findings

The work presented here has been an investigation into the nature of object-
oriented programming languages.  Starting with various informal accounts of 
objects, classes and types, a formal model of classification has been developed 
which accounts for the real operational behaviour of object-oriented languages.  
The model developed here has its forbears [Cook89a, CCHO89a, CCHO89b, 
CHC90, Harr91] and has been developed further to account for the whole 
spread of object-oriented concepts, including multiple and higher classification.  
The model is significant in that it departs largely from current popular 
understanding.  In some points, the model contradicts the formal stance taken 
in published language descriptions.  Previously, it had been contended 
[Meye89] that practical considerations must inevitably prevent an object-
oriented language from being formally consistent.  This view has been shown to 
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be over-pessimistic.  A practical programming language has been designed, 
whose constructs have sound interpretations in the theoretical model presented 
here.  The language covers a wide spectrum of object-oriented concepts, such 
as identity, encapsulated state, classification, single and multiple inheritance 
and polymorphism.  In particular, it deals properly with the specialisation of 
recursive types, allowing the kind of flexibility desired by object-oriented 
programmers, but without making theoretical compromises.   

11.1.1  A Survey of Practice and Theory

Object-oriented languages were shown to belong to one of five major 
programming paradigms; along with the functional languages they were shown 
to have a claim to preeminence as languages of choice when designing 
component-based software.  Functional and object-oriented design strategies 
were compared; certain advantages were found for the object-oriented 
approach, which organises its components so as to encapsulate state and 
minimize system couplings.  A representative selection of current analysis and 
design methods were evaluated; few were found to offer a convincing 
development process and only the behavioural approaches offered design 
techniques to minimize couplings between objects.  A historical perspective on 
current popular object-oriented languages was given, highlighting the many 
different areas of computer science and software engineering that they have 
impacted, in both academic and commercial spheres.  The overall impression is 
that object-oriented technology is useful, but still immature.  

In particular, the formal understanding of language mechanisms was shown to 
be inadequate and inconsistent.  Different notions of class were present in the 
literature; and technical terms like polymorphism were used in an incorrect 
sense.  An exploration of types and subtyping [CW85] showed that, while it 
would be possible to construct an object-oriented language in which classes 
had the status of types and subclassing were subtyping, this seriously restricts 
the expressivity of the language [Cook89b].  In any case, few languages were 
found to satisfy the subtyping model and operational descriptions of languages 
tended to contradict this model, suggesting that a different model was required.  
One such model worthy of exploration was F-bounded quantification [Cook89a, 
CCHO89a].

11.1.2  New Comparative Techniques

A series of comparative techniques were developed, based on the -calculus 
model of objects as records of functions used by Wand, Cook and others 
[Wand87, Cook89a].  The subtyping model of Cardelli and Wegner [CW85] was 
first developed to the level of fully axiomatised types.  This allowed the 
semantic aspects of languages with executable axioms, such as Eiffel, Sather, 
OBJ and C++ (from version 4.0) to be analysed in the same framework as their 
syntactic aspects.  The subtyping effects of adding or deleting axioms singly 
from type specifications was explored, in addition to the more conventional 
observations on adding or overriding functions.  A potentially useful finding is 
that supertype axioms must be deliberately underspecified, if disjoint subtypes 
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are to be derived subsequently.  While the effects of axioms were explored in a 
simple subtyping framework, they may legitimately be applied in second- and 
higher-order frameworks, such as those provided by F-bounded quantification.

A -calculus framework was developed, within which a naïve model of 
inheritance as record combination was contrasted with the simple subtyping 
model and finally with the F-bounded model.  The key issue revealed by this 
comparative technique was the importance of self-reference in objects, which 
are in general recursive records of functions.  Whereas the naïve model failed 
to maintain consistent self-reference, the phenomenon of type-loss in the 
subtyping model was shown to be due to the embedding of the supertype's self
inside the subtype object.  Fully consistent self-reference is only exhibited in the 
F-bounded model.  Self-reference in the superclass and in the extension are 
redirected onto the child class.  Formally, this is handled through the distribution 
of parameters standing for the self and self-type.  This framework highlighted 
the importance of parameterising over self and the self-type in order to maintain 
the degree of flexibility required by object-oriented languages.

11.1.3  An Extended Theory of Classification.

This same observation motivated Cook's model of classes, described as 
second-order generalisations over recursive types, with associated 
implementations [Cook89a, CCHO89a].  A class is not a type C, but a family of 
types  sharing similar recursive structure.  The similarity is expressed by an F-
bound:  (  C[])., representing those types possessing a minimum set of 
functions. C is the generator whose fixpoint is the recursive type C.  Cook et 
al. developed the idea of extensible objects [CP89], types [CCHO89b] and 
object-constructors [CHC90] separately, although a unified treatment was 
anticipated in the unfinished Abel final report [Harr91] and is adopted in our 
theory here.  The underlying theme in this work was that inheritance is best 
characterised as a transformation applied to generators, rather than to 
recursive types.  The simple recursive structure of objects and types is 
recovered by taking the fixpoints of generators after these generators have 
been extended through inheritance.  Classification is explained as a pointwise 
inclusion relationship between type generators; this is more satisfying than 
simple subtyping, since recursive types do not in general enter into proper 
subtyping relationships.

A serious restriction of Cook's model was that it relied on a simply-typed record 
combination operator.  The use of inheritance was therefore limited to simple 
extensions to generators whose fixpoints were immediately taken.  Such a 
model could only characterise single inheritance and could only handle 
polymorphism in the type of self.  Here, a more general typing for record 
combination has been devised, based on the notion of dependent second-order
types.  This opens up Cook's model to allow the combination of class 
generators with extension generators, prior to the taking of fixpoints.  The result 
of record combination is only well-typed if the two generators enter into a 
dependent second-order type relationship.  This scheme extends the power of 
Cook's model to capture such notions as multiple inheritance and combination 
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with multiple, free-standing extensions, often known as mixin-based 
inheritance.

This theory was then further extended to support the notion of types with 
internal polymorphic components; and then classes of such types.  Whereas 
the last unpublished work of the Abel project [Harr91] anticipated the use of 
subtype-bounded polymorphism for polymorphic components, in our approach 
the use of F-bounds has been systematically generalised.  The fact that the 
whole type  of self is dependent on the polymorphic type  of a component  is 
expressed using nested quantification:  (  P[]).(  W[, ])., where 
W is a type generator expecting two parameters for the component-type and 
the self-type.  Since this order of quantification makes  dependent on , the 
recursive type W is necessarily homogeneous in whatever type instantiates .  
To create heterogeneous polymorphism requires reversing the order of 
quantification and this in turn requires a higher-order form of quantification:  
( <: W[]).(  P[]).[].  The operator <: stands for pointwise 
inclusion:  ( <: W[])    ( | (  P[]).[]  W[, ]).  In the higher-
order form of quantification,   ranges over type-functions rather than over 
dependent recursive types.  This allows the application of  to types other than 
, permitting the construction of recursive structures with heterogeneous 
component types.

Record combination with internal polymorphism in types other than the self-type 
requires in general a higher-order form of quantification.  Accordingly, higher-
order type rules have been provided for record combination with override  and 
for record merging with conflict-resolution .  To distinguish the notion of 
inheritance, which is understood to mean a shorthand technique for defining an 
extended class with reference to some existing class, from the ordering 
relationships among groups of classes, our theory introduced and defined the 
technical terms:  simple classification, multiple classification and higher 
classification.

11.1.4  A Pure Object-Oriented Language

The theory of classification presented above influenced the design of a practical 
object-oriented programming language.  The aim here was to demonstrate that
practical requirements need not mitigate against theoretical purity.  The 
language supports value and reference semantics for objects, classification, 
single and multiple inheritance and a parametric polymorphism that is resolved 
either at compile-time or run-time.  The language's concrete syntax 
distinguishes systematically between simple recursive types C, type 
constructors C[ ] and type generators, #C[ ].  A recursive type C is understood 
implicitly to be the fixpoint of a type generator #C[ ].  A generator having more 
than one type parameter yields a type constructor, or recursive type function 
C[ ] when its fixpoint is taken.  Definitions are given in a parameterised 
polymorphic style, which may be fixed at the point of usage through the 
propagation of types into parameters, or adapted through the distribution of 
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new type parameters having different bounds.  All this has a well-founded 
semantics in the theory of classification.

A major innovation in our language is in the treatment of all forms of 
polymorphism using a single F-bounded parametric scheme.  The syntactic 
expression of F-bounds is implicit:  #F[C] defines C as a type parameter 
constrained by the type generator #F[ ].  Interpreted in the theory of 
classification, C is understood to range over a class of types satisfying the 
F-bound (C  F[C]).  Our approach simplifies the expression of 
polymorphism in two ways.  Firstly, the polymorphic typing of self and that of 
internal components is expressed in exactly the same way, using F-bounded 
parameters.  In a class declaration, both self and any component may be given 
parameterised types.  Secondly, no distinction is drawn between the syntactic 
expression of polymorphism that is intended for compile-time or run-time 
resolution.  This means that parameterised structures can be used like type 
constructors in one context and run-time polymorphic types in other contexts.  
The difference is determined by the presence or absence of further static type 
information.  It is the task of a compiler to detect the need for static or dynamic 
binding as a result of propagating static type information into parameterised 
structures.  The parametric scheme is recursive, theoretically allowing an 
infinite embedding of polymorphic structures.  To support the replacement of 
embedded type parameters, a nested parametric syntax is adopted, in which 
one polymorphic structure may be matched directly against another, and this is 
understood to propagate the relevant type information.  The formal model 
translates this into the distribution of types and parameters to type functions 
expecting multiple arguments.

A second innovation in our language is the clean way in which it distinguishes 
value and reference semantics when passing objects as arguments.  A special 
syntax marker @ was chosen to identify alias types (those passed by 
reference).  Together with rules governing assignment, alias types provide a 
means of supporting the notion of object identity without violating object 
encapsulation.  Furthermore, the use of alias types largely hides the underlying 
pointer techniques used to implement object references; this is a great 
simplification over languages like C++.  Having both value and reference 
semantics allows the programmer to extend the basic set of simple values in 
addition to the larger constructed object types.  Due concern was given to 
efficiency concerns, such that the consequences of a particular declaration 
style are immediately transparent in the underlying execution model.

A survey of flow-control techniques was also conducted.  The chief finding of 
this investigation was that the acclaimed "pure" object-oriented style of flow-
control using dynamic dispatch techniques [GR83] is in fact theoretically very 
complicated.  In effect, by refusing to adopt a selection primitive that branches 
on simple values, Smalltalk passes the buck on to the type system.  Since 
Smalltalk is not strongly typed, this aspect has not been noticed or considered 
before.  To promote selection by dynamic binding, methods must be written 
using a style that introduces many more unresolved polymorphic parametric 
types than would otherwise be required.  Against this, a simple selection 
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primitive takes the burden of value-based discrimination from the type system 
and allows recursive types to be constructed in a more natural manner.  
Smalltalk's iteration strategy, which maps arbitrary closures over collections, 
was also examined and found to be even more complex.  If all closures are 
properly constituted as methods, writing typed mapping methods proves almost 
intractable for practical purposes.  A simple iteration primitive is to be preferred.

A compiler for the language was discussed.  Several important procedures in 
the analysis and optimisation of a closed set of classes destined for a single 
application were discussed.  These included the efficient processing of required 
source code files, the analysis and reduction of the inheritance graph, the 
construction and analysis of a call-graph to aid in the detection of static and 
dynamic binding and efficient code generation.  The algorithms for collapsing 
the inheritance graph and binding methods were innovations; these were 
reported earlier in [SLN94].  The former reduces the data segment of programs 
by around 30% and the latter binds around 80% of methods statically.  These 
figures are for typical medium-sized applications of around 50-100 classes 
arranged to exploit multiple inheritance.

11.2 In Support of the Thesis

The thesis contends that existing object-oriented languages have developed in 
advance of a formal theory of classification and, as a result, their treatment of 
class is muddled and ill-founded.  The operational behaviour of such languages 
is often described incorrectly using a terminology of types which strictly does 
not apply.  The type systems affected by such languages are incorrect; 
furthermore, they may contain redundant mechanisms for handling type 
polymorphism as a result of the central ambiguity surrounding the notion of 
class.  To counter this confusion, the thesis maintains that a mathematically 
complete and consistent definition of classification is possible, which 
encompasses other approaches to type abstraction, such as "type 
constructors", "generic parameters", "classes", "inheritance" and 
"polymorphism".  To demonstrate that such a theory is indeed tractable, it is 
exemplified in a practical programming language.  

11.2.1  Combating Misconceptions

The popular fascination with objects as convenient computer representations of 
real world concepts diverts attention from the important formal distinction that 
an object is something with identity, state and behaviour.  An object is 
distinguished from a pure functional value by virtue of its mutable state; and 
from a relational tuple by virtue of its identity, which is not dependent on its 
state.  An object has an externally observable behaviour, determined by the 
methods that it supports.  Object state is only accessible through its methods.  
It is these properties that allow objects to be used as components with 
encapsulated state in modular systems.
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If the term object is misunderstood, the object-oriented literature is full of 
contradictions and misconceptions about the notion of class.  In some 
treatments, objects are supposed to have class and type independently 
[Snyd87, Amer90, OMG91], in others the notions of class and type are identical 
[Meye88, SCBK86] or again, either of these views may be chosen at the 
programmer's discretion [Stro86, Stro91].  The notion of class is either 
relegated to an implementation concept or elevated to a specification concept, 
confused with type.  This state of affairs has here been judged unsatisfactory.  
The type of an object is rightly understood as the set of signatures for its
methods.  This is consonant with other treatments of data abstraction.  Since 
the behavioural response of an object is typically fixed once it is created (pace 
Self and languages with dynamic reclassification), it is correct to say that an 
object is an instance of a type, rather than an instance of a class.  Since there 
exist potentially many other objects supporting more behavioural responses, 
these are rightly judged instances of different types.  If it is intuitively considered 
that all these objects, by virtue of having a subset of behavioural responses in 
common, belong in the same class, then the notion of class is found to be 
something over and above the notion of type.

11.2.2  Defining the Meaning of Classification

This view is further supported by models of classification and inheritance.  To 
investigate whether the notions of class and type might be considered identical, 
the Cardelli-Wegner model of types and subtyping [CW85] was explored.  It 
transpires that subtyping imposes severe restrictions on the flexibility of an 
object-oriented type system.  In particular, methods closed over the type of the 
current object cannot be redefined in subclasses without violating subtyping 
rules.  Recursive types have no proper subtypes if they interact via a binary 
method with another object of the same type.  This effectively fixes the types of 
methods at the point of declaration.  In consequence, languages like Trellis, 
Sather and C++, which provide a subtyping approach to classification, are 
subject to type-loss whenever inherited methods are used.  This does not 
promote strong typechecking and severly limits the utility of such an approach.

Operationally, languages like Smalltalk and Eiffel do not lose type information 
when the current object is returned (by reference) from an inherited method.  
Neither does C++ where the return context is the dispatching site for a 
dynamically-bound virtual function.  To capture this formally requires a 
parametric polymorphic model in which the self-type is first abstracted and later 
replaced by specific types.  Cardelli and Wegner's bounded quantification 
[CW85] quantified over simple subtypes:  (  C). and therefore proved too 
weak in the presence of type recursion.  Canning, Cook, Hill, Olthoff and 
Mitchell's F-bounded quantification [CCHO89a] supplies exactly the constraint 
required to recapture the type of self in inherited methods.  The approach works 
by virtue of including the type parameter on both sides of the subtype 
constraint:  (  C[])..  This then defines class membership in terms of 
those recursive types which share a certain minimum number of operations.  
What is important is that none of the simply recursive types (ie those that are 
closed over their own self) in this family enter into proper subtyping 
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relationships with any other.  The only subtyping relationships which exist are 
between recursive types  and truncated versions that are not closed over their 
own self, C[].  The latter appear in F-bounded type expressions and, in 
practice, only in those programming languages having a properly bound super
construct.

Eiffel and Smalltalk are therefore incorrect to treat classes as types and 
subclassing as a kind of informal subtyping [Cook89b], since their language 
definitions follow an operational model which is better explained using F-
bounds.  C++ has a triply ambiguous attitude to class, which in the context of 
public inheritance is treated as a type, in the context of virtual functions as an 
F-bound and in the context of private inheritance as an implementation 
mechanism only.  A class is not a type and subclassing (rather than inheritance 
[CHC90]) is not subtyping.  But neither is a class a mere mechanism for 
implementing extensible software modules.  A class is a typed family of objects 
whose types and implementations exhibit respective similarities in recursive 
structure.  Our theory of typed classes shows how an object's type is related in 
a straightforward way to its implementation.  This view is more satisfying than 
existing dual definitions of object types and object interfaces [OMG91] because 
it links type and implementation in exactly the way that the conventional 
computer science literature links abstract and concrete data types.

Classes provide the necessary framework for comparing other kinds of type 
abstraction.  Whereas a type is a monomorphic entity, a class is a polymorphic 
entity.  Traditionally, polymorphism is indicated in ML, Hope and Ada by the 
presence of type parameters; but whereas in these languages the parameters 
are typically used to abstract over some internal component of a type, in formal 
models of object-oriented languages, the parameter abstracts over the whole 
type.  Even if the concrete syntax of an object-oriented language does not have 
an explicit self-type parameter, one is necessary to explain the modified self-
type in inherited methods.  The universal parametric polymorphism used in 
conventional languages has been  shown to be a special case of F-bounded 
parametric polymorphism.  The latter may be used to explain the constraint on 
the polymorphic type of self in classification and to account for Eiffel's anchored 
types and constrained genericity [Meye92].  Most recently, where clauses
[Lisk95] have been rediscovered, expressing a constraint on a type in terms of 
the operations which it must possess; this is essentially a reworking of the 
earlier style of Russell [DDS78, DD79] and may be considered syntactic sugar 
for an F-bounded constraint.  Type constructors, such as Pascal's Set of and 
Array of, may also be described within the same framework.  These are 
essentially recursive type functions with internal polymorphic components, 
exactly like the parametric-polymorphic lists of ML and Hope.  A higher class
with internal polymorphism is a generalisation over such type constructors in 
exactly the same way that a simple class is a generalisation over types.  Higher 
classes provide a useful unifying concept, in that fixing their self-type yields a 
type constructor, whereas supplying all component-types yields a simple class.  
Higher classes permit the definition of extensible type constructors in the same 
way that simple classes provide for extensible types.  Classification is a way of  
ordering all of these abstractions within the same mathematical framework.



Conclusion 216

11.2.3  Better Language Support for Classification

The language Brunel exemplifies the theory of classification.  It is based on an 
F-bounded interpretation of classes, in which subclassing is not subtyping.  
Subclass compatibility is judged instead in terms of the replacement of type 
parameters.  This allows polymorphic aliasing [Simo95] but correctly rules out 
type-unsafe method invocations as static type errors.  This is a more habitable 
alternative than forcing a language to obey subtyping [Cook89b], since it yields 
a more sensitive analysis of type under inheritance.  There is no need for 
unsafe downcasting techniques to recapture lost type information [Meys92], nor 
for patches to fix unsound type rules [Meye89, Meye95].  Because Brunel is 
based wholly on a different type system than previous object-oriented 
languages (pace the partial, implicit use of F-bounds in [Bruc94, BSG94, 
ESTZ94, EST95]), it is the first language that has succeeded in abolishing the 
false opposition between theoretical and practical concerns  [Cook89b, 
Meye89].  In particular, it captures the intuitive notion held by object-oriented 
programmers that the argument and result types of polymorphic methods are 
subject to uniform specialisation, covarying with their owning class's type,  as 
the class hierarchy is descended.

Brunel supports the open-ended style of programming desired by object-
oriented programmers [Meye88] since definitions may always be given in an 
adaptable, parameterised way and types are only fixed at the point of use.  This 
answers one of the serious criticisms of C++, which is that it forces 
programmers to anticipate which typed functions are going to be subject to 
polymorphic generalisation (using the virtual directive) and which are fixed in
type.  C++ violates Meyer's open/closed principle [Meye88], since it is usually 
the case that programmers must return to completed library classes to change 
forms of declaration which were not originally intended for polymorphic use.  In 
Brunel, a programmer should always anticipate polymorphic use.  A key 
innovation in the design of Brunel is the way in which all remaining polymorphic 
type parameters may be fixed at their least upper bounds.  Fixing is achieved 
implicitly by using the syntax for a simple type, instead of that for a class, at the 
point of use.  This is better than forcing programmers to make early decisions 
about mono- and polymorphic types, something perpetuated in Ada 95's class 
types [ABBD95]. 

It was the practical pressure to allow any typed declaration to be subsequently 
extensible that led Eiffel to blur the distinction between monomorphic and 
polymorphic types in its conformance-based polymorphism [Meye88, Meye89].  
This was initially understood as a form of subtyping, but later proven unsound 
[Cook89b].  Unlike Eiffel, Brunel makes a clear distinction between mono- and 
polymorphic types in its syntax.  Because of conformance, Eiffel's ordinary 
types are all actually polymorphic; this significantly reduces the useful type 
constraints available in the language.  In Brunel, it is possible to determine that 
an object identifier at a particular call-site has a fixed type, at which point all 
methods invoked on it may be bound statically.

To relieve programmers of the burden of redefining the types of inherited, 
recursive routines, Eiffel also provided anchored types, which were viewed 
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simply as a syntactic abbreviation for type redefinition [Meye89].  In fact, 
anchored types, especially in the form:  like Current, are better explained in 
terms of F-bounded polymorphism [Simo95], since they recapture the inherited 
type of self in descendent classes.  Eiffel's generic types were provided as a 
way of expressing the polymorphism of type constructors.  However, the 
addition of constraints in version 3.0 [Meye92] makes this indistinguishable 
from F-bounded polymorphism again.  With conformance, Eiffel therefore has 
three different mechanisms for handling polymorphism where one would 
suffice.  Brunel handles polymorphism in a much more elegant manner, 
providing a single parametric mechanism for both type construction and run-
time polymorphism.

11.3 Further Work

No project is ever completely finished.  Here, theoretical and practical aspects 
are highlighted, which merit further exploration and development.

11.3.1  Proof of Soundness, Completeness and Decidability

The theoretical model of classification and the syntax of Brunel are present in a 
completed form.  While the concrete syntax is now reasonably stable, there is 
one area in which further modifications are anticipated; this is discussed below.  
One of the main outstanding theoretical tasks is to provide a complete set of 
type rules for all forms of expression Brunel, then give a proof of soundness 
and completeness.  Such a task is not undertaken lightly, since the addition or 
subtraction of single rules must be explored for all possible effects.  Languages 
with subtyping were found to have only semi-decidable type checking 
algorithms [Pier92b].  It is hoped that the elimination of subsumption in Brunel's 
type system will enable the design of a completely decidable type checking 
algorithm.

11.3.2  Acceptance Testing for the Language Syntax

Certain aspects of Brunel's syntax have not been presented widely to 
programmers before, in particular the nested parametric scheme.  The model 
syntax given here is the result of several evolutions in the design of the 
language [Simo91, Simo93, Simo94a, SLN94, Simo95], in which the main 
changes have been to the way in which type information is propagated into 
parameters.  It has been difficult to arrive at a scheme which is both succinct 
and intuitively clear to its users.  In a personal communication, Meyer has 
indicated that he doubts whether programmers would adapt to a language 
having a large number of type parameters.  With this in mind, other researchers 
have attempted to eliminate type parameters but obtain some of the same 
benefits by other means.  This is an interesting area to explore; however it does 
not yield as expressive a type system as the fully parametric one adopted by 
Brunel.
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Palsberg and Schwartzbach specify the types of a class's methods as though 
these were fixed types, but then have a type substitution rule in which one type 
is replaced by another throughout a single structure [PS94].  This provides a 
form of polymorphism, but has two drawbacks:  it tends to confuse mono- and 
polymorphic types in the mind of the programmer; and it does not easily allow 
selective substitutions.  A special fixing operator is required to specify that 
certain occurrences of a type are not to be substituted; and it is not possible to 
perform heterogeneous substitutions, as a fully parametric scheme would allow.  
Bruce et al. hide F-bounds behind type matching rules [Bruc94, BSG94].  In the 
parametric form of the matching rule:  ( <# C). x : , type functions are 
avoided by implicitly constructing the generator C from the type C.  The above 
expression may be considered equivalent to the F-bounded form:  
(  C[]). x : ; although Bruce et al. are currently distancing themselves 
from F-bounded interpretations, preferring a pure syntactic approach to 
constructing type soundness and completeness theorems.  In a recent personal 
communication, Bruce has indicated that a non-parametric form is also to be 
allowed:  x : #C, which is interpreted as an abbreviation for ( <# C). x : .  The 
non-parametric form loses the explicit type parameter and gives x the 
equivalent of Brunel's unresolved polymorphic type, or Ada 95's class type. 
This restricts the type system in certain ways; for example, arguments in the 
type #C may not be redefined, since this type is not linked parametrically to any 
other type about which stronger type assumptions may be made.

There is therefore a trade-off between superficial syntactic simplicity on the one 
hand and precision and expressiveness in the type system on the other.  
Bruce's work suggests that a simpler syntax may be possible for expressing 
unresolved, heterogeneous polymorphic types.  Brunel's unresolved 
polymorphic parameters allow for consistent substitution within single methods; 
however this extra degree of sensitivity may not be worth the cost of introducing 
multiple additional parameters for heterogeneous constructions.  Apart from 
this, our current solution of matching one parameterised structure directly 
against another seems to be the simplest approach possible for a parametric 
language.  Only time will tell whether this will win approval from programmers.

11.3.3  A Revised Compiler

At the time of writing, the full compiler for Brunel is out of step with the latest 
language definition.  The last complete versions with code-generation handled 
the collapsing of the inheritance graph and detection of early static binding in a 
simpler type system [Low91, Tse91] and multiple inheritance was added later 
[Ng92].  A theoretical model which took into account the propagation of types 
into parameters was explored in full in [SLN94], but this did not generate 
executable code.  Work on the compiler was suspended while alternative ways 
to express heterogeneous polymorphism were being explored.  As another 
revision is anticipated here, this will delay the first complete parametric version 
of the compiler.
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All versions of the Brunel compiler so far have performed a source translation 
to ANSII C, which is then compiled to object code using a standard C compiler.  
This has the advantage of providing the best possible static analysis of bindings 
for complete delivery systems, but the disadvantage of delaying all compilation 
tasks to the end of a project.  We have indicated the need for a different 
underlying model for code generation and linking that would allow the early 
production of object code for individual Brunel classes.  The key concern here 
is to provide single object code copies of methods which, by default, are bound 
dynamically, but where full static type information is available, may be linked 
statically.  This sophisticated kind of linking is not available with current 
compiler technology; and is a matter for further research.


