
Chapter 1

Introduction

_______________________________________________________________

The goal of this work is the design of a "language with class", an object-
oriented programming language supported by a formal theory of classification.

Programming languages as different as Ada, Smalltalk, ML and Eiffel offer 
various attractive, but partial views of type abstraction.  The motivation for the 
current work arises from a dissatisaction with the number of different 
mechanisms used to explain type abstraction, such as "type constructors", 
"generic parameters", "classes", "inheritance", "polymorphism" and 
"overloading".  Accordingly, the focus here is on finding a unifying framework 
within which all the above mechanisms are related.  Central to this is a 
properly-constructed mathematical notion of "class".

_______________________________________________________________

1.1 In Search of Class

Back in 1982, Rentsch correctly predicted:

"My guess is that object-oriented programming will be in the 1980s what 
structured programming was in the 1970s.  Everyone will be in favour of 
it.  Every manufacturer will promote his products as supporting it.  Every 
manager will pay lip-service to it.  Every programmer will practise it 
(differently).  And no-one will know just what it is" [Rent82, p51].

Object-orientation was then, and still is, in its ascendancy.  It is viewed 
variously as a technique for developing better models of computer-human 
interaction [GR83], for specifying robust, interchangeable software 
components [Meye88, IHBK79] or simply offering more flexible and extensible 
styles of programming [BDMN73, Stro86, Keen89].  Many new programming 
languages have appeared, supporting the notions of classification and 
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incremental program development through inheritance.  However, these 
notions are still not well understood; and then only in naïve operational terms.

1.1.1  A Failure of Nerve

Early attempts to formalise classification foundered on certain naïve 
assumptions about type made by exemplar languages, such as Smalltalk
[GR83].  A focus on incremental programming techniques forced an early 
division between the notions of type and class [Snyd87, Amer90], which were 
viewed as dual specification and implementation constructs.  A class was 
regarded merely as an extensible implementation pattern, a concrete data 
type with no intrinsic theoretical importance.  If classification were no more 
than this, object-oriented programming would be just another (slightly different) 
approach to system modularisation.  The inability to characterise class persists 
to this day and is reflected in the Object Management Group's studious 
avoidance of the term, adopting instead the dual notions of interface and type
[OMG91].  

1.1.2 A Manifesto

It seems unfair that the programming paradigm which brought such fascinating 
notions as classification and inheritance out of the semi-formal playground of 
Artificial Intelligence into the more rigorous world of mathematical data types 
should be dismissed as theoretically uninteresting!  No other group of 
programming languages has attempted to generalise over types in quite the 
same way, for though conventional Hope [BMS80], ML [MTH90] and Ada
[IBHK79] introduced type parameters to abstract over parts of generic types, 
only the object-oriented languages tried to link all types in an ordered 
hierarchy.  With these different views of type abstraction came different 
mechanisms for handling polymorphism.  In the classical model, explicit type 
parameters were statically replaced at compile-time, reminiscent of type 
constructors, whereas the object-oriented model seemed to offer a mixture of 
static function inheritance and dynamic selection of one from a group of 
functions overloaded on the same name.

Could all these approaches be describing the same kind of polymorphism?  
Was there more to the object-oriented notion of class than simply an 
extensible data type?  What was the mathematical foundation for inheritance?  
How could Smalltalk reject types and yet espouse an even more challenging 
notion of classification?  How could Eiffel [Meye88] reconcile supporting both 
classical and modern mechanisms for polymorphism?  These and other 
questions prompted our manifesto [SC92] setting out to harmonise notions of 
class, type, inheritance and polymorphism, in much the same spirit as an 
earlier, more famous, discourse [CW85].  In the current work, the notion of 
class turns out to be the single most illuminating and unifying concept behind 
all type abstraction.  Unlike the impoverished view of class accepted widely 
today, this investigation supports an elevated view of class as something 
denoting a polymorphic family of types sharing the same recursive structure.
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1.2 A Guide to the Thesis

Classification lies at the heart of the object-oriented family of programming 
languages.  This notion permeates all other language concepts central to the 
object-oriented paradigm, namely:  objects, encapsulation, inheritance and 
polymorphism.  These key concepts are introduced in chapter 2, along with a 
presentation of the state of the art in object-oriented thinking.

1.2.1 A Practice Lacking a Theory

Chapters 2-4 present the argument that object-oriented languages have 
developed in advance of a formal theory of classification and, as a result, their 
treatment of class is muddled and ill-founded.  The operational behaviour of 
existing object-oriented languages is often described incorrectly using a 
terminology of types which strictly does not apply.  The type systems of 
languages affected by such misunderstandings are typically incorrect and 
inconsistent [Cook89b]; furthermore, they may contain redundant mechanisms 
for handling type polymorphism as a result of the central ambiguity 
surrounding the notion of class [Simo94a, Simo95].  Given the current 
popularity of the object-oriented approach, correcting these faults is a timely 
concern.  Chapters 5-6 provide a sound formal basis for the notion of 
classification as found in object-oriented languages.  Chapters 7-9 elaborate 
on a design for a programming language, which supports classification in a 
clear and consistent way.  

1.2.2 A Theory of Class and Type

The approach taken here is based on properly relating the notions of class and 
type.  Some unhelpful ways in which these notions have been related in the 
past are described in the latter part of chapter 2.  The main theoretical 
treatment begins in chapter 3 by exploring the limits of Cardelli's first-order 
theory of types and subtyping [CW85, Card88a].  This is later supplanted in 
chapter 4 by Cook's second-order theory of F-bounded quantification 
[Cook89a, CCHO89a], which captures the notion of type inheritance and the 
evolution of the self-type in recursive types.  In this approach, a class is shown 
to be a generalisation of the notion of type, standing for a family of different, 
but structurally related,  recursive types.

The F-bounded model of inheritance, presented in full in chapter 5, was 
originally developed by a research team at Hewlett-Packard in the late 1980s, 
who were working on a theoretical base language called Abel, named after 
Abelian groups, which aimed to support all the familiar concepts of object-
oriented programming in a sound mathematical framework.  The Abel team 
succeeded in describing the inheritance of object implementations, type 
interfaces and constructor functions [CP89, CCHO89b, CHC90]; however the 
project was curtailed leaving many important aspects of this work unfinished 
[Harr91].  In particular, though the F-bounded model had been applied to 
inheritance and polymorphism in the type of self, it stopped short of handling 
multiple inheritance and general polymorphism.  This was partly due to self-
imposed restrictions in the adoption of a simply-typed record combination 
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operator [CHC90], used to construct derived classes during inheritance.  As a 
result, the full explanatory power of the F-bounded approach was never 
exploited.

In chapter 5, Cook's theory is extended with dependent second-order types, in 
order to motivate a second-order typing for Cook's record combination 
operator.  Using this approach, a second-order typing is provided for 
freestanding extensions to classes, known as mixins, motivating a combination 
strategy that allows the derivation of classes from collections of typed mixins.  
Later in chapter 6, a similar approach is used to handle multiple inheritance.  
The same chapter investigates the extra complexity introduced by types with 
internal polymorphism, showing how the relationship between a type and a 
class is exactly the same as that between a type constructor and a class with 
polymorphic components.  Whereas a second-order theory is appropriate 
when abstracting over types, a higher-order theory is required to abstract over
type constructors.  General polymorphism fits this pattern; accordingly, two 
higher-order record combination operators are defined to handle inheritance 
with overriding and multiple inheritance with conflict resolution.  

An innovation in this approach is the development of a single parametric 
model for all systematic kinds of polymorphism, which previously have been 
analysed using different mechanisms such as subtyping, inclusion 
polymorphism (also known as conformance) and generic, or parametric 
polymorphism [CW85].  This provides significant insights into the formal 
understanding of type abstraction in programming languages.  F-bounded 
quantification turns out to be as useful for describing the parameterised 
components of type constructors as it is for describing the self-type of 
recursive classes.  Nested F-bounded quantification can be used to model 
classes with internal polymorphic components.  The order of replacement of 
type parameters determines whether a recursive class or a type constructor is 
produced.  Chapter 8 later illustrates how the order of quantification 
determines whether a recursively defined polymorphic sequence contains 
homogeneous or heterogeneous elements.

1.2.3 A Language with Class

Chapter 8 presents a programming language based on the general theory of 
classification, adopting a minimal textual style consistent with the goals of 
clarity, economy and consistency.  All the concrete features of the 
programming language syntax are explained in terms of constructions in the 
mathematical model.  As a principal feature, the language maintains the 
correct mathematical relationships between types, type constructors and 
classes, distinguishing these concepts unambiguously in its syntax.  The 
language supports single and multiple inheritance among classes and the 
definition of fully abstract classes.  The latter fulfil an important role in mapping 
out type spaces.  Apart from generalising over families of types with disjoint 
implementations, they are useful in the resolution of multiple inheritance 
conflicts.  All forms of polymorphism are handled using F-bounded type 
parameters.  In particular, no false syntactic distinction is necessary to force 
the run-time resolution of polymorphism using dynamic binding, as against 
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compile-time resolution using static parameter replacement.  Parameterised 
classes yield type constructors, whose parameters may be replaced either at 
compile-time or run-time, offering both the advantages of early type 
construction with static binding and delayed type instantiation with dynamic 
binding.

Apart from those aspects pertaining to classification, the language also 
supports important properties of objects, such as identity and encapsulated 
state.  In the first part of chapter 7, encapsulation is handled in the formal 
model using functional closures.  Object constructor functions, which abstract 
over the state of any particular instance, are used to generate closures.  
Identity is consequent on admitting assignment to object states, at which point 
it becomes relevant whether a value or reference semantics is intended when 
objects are passed as arguments or assigned to variables.  The second part of 
chapter 7 analyses the costs and benefits of supporting both value and 
reference semantics and provides a novel strategy for handling aliasing that 
respects object identity without violating object state.  Another important 
technical aspect of a programming language is the handling of control-flow.  
Chapter 9 compares the merits of admitting primitive selection and iteration 
constructs (as used in C++ and Eiffel) against dynamic binding and 
encapsulated mapping functions (as used in Smalltalk).

Chapter 10 investigates how the language may be compiled, using a 
translation model that optimises space- and time-costs [SLN94].  A static
analysis of closed programs permits the early binding of some 80% [Booc94] 
of system functions and allows various kinds of automatic inlining [CUL89].  A 
novel strategy is presented for collapsing inheritance graphs during the 
translation from library software into target production code.  This may reduce 
the size of the data segment in the runtime image by some 30% [SLN94].  The 
new parametric type model presented earlier permits a finer-grained static 
analysis of bindings than current production compilers can effectively exploit.  
In order to profit from these kinds of optimisation, new strategies for 
generating and linking object-code modules must be developed.  The latter 
task is a matter for further research and development.

1.2.4 Summary of Themes

The theory of classification presented here provides a coherent framework for 
explaining all kinds of type abstraction found in programming languages as 
diverse as Ada, Smalltalk, ML and Eiffel.  In particular, operational descriptions 
of object-oriented languages [GR83] may be given a formal interpretation in 
this model.  The notion of class is elevated to a higher-order typing construct 
with an associated implementation.  The theory models classes, inheritance 
and polymorphism.  Reflecting the theory, a programming language is 
developed whose major innovation is a single parametric treatment of all forms 
of polymorphism.  An optimising compiler for the language is sketched, 
showing how type information may be exploited in full.


