
Chapter 8

A Language with Class

_______________________________________________________________

This chapter introduces a more concrete syntax for a "language with class".

The higher-order parametric mechanisms required by our theory are translated 
into a more user-friendly syntax, in which much of the formal model is hidden, 
but important aspects of polymorphism are revealed.  Our language captures 
both the recursive type and recursive implementation of extensible classes.  
Formal equivalences are given for the concrete syntax.  Finally, the treatment of 
polymorphism is extended to support objects with the same polymorphic type 
as self but having a different parameterisation.  The language is illustrated with 
examples of single and multiple inheritance, homogeneous and heterogeneous 
polymorphism.

_______________________________________________________________

8.1 Class Designs

This chapter describes how to implement our theory of classification in a 
concrete language syntax.  The main improvement over existing object-oriented 
languages is in distinguishing simple types from type functions, wherever they 
occur.  The difference is indicated in our syntax by the presence or absence of 
brackets [ ] denoting type application wherever this occurs.  Explicit F-bounded 
type parameters are provided for all polymorphic types, including the self-type.

In our language, new data types are typically introduced by defining classes.  
This is because a class is always amenable to extension through inheritance 
and this is expected to be the preferred design option, in accordance with 
Meyer's open/closed principle [Meye88, 23-25].  Furthermore, nothing is lost by 
introducing classes rather than types, since a monomorphic type may always 
be inferred from the generator bounding a class.  



A Language with Class 144

8.1.1 A Syntax for Classes

Figure 8.1 sketches a standard #OBJECT[ ] class, useful as the root of any 
inheritance hierarchy.  One could imagine providing many more methods 
shadowing all basic system operations in this class.

The keyword class introduces a type function used to restrict a type parameter 
in the manner of an F-bound.  As a textual convention, we write type functions 
in upper case, followed by brackets [ ] to distinguish them from simple types; 
and distinguish class generators with a preceding #.  Thus, #OBJECT[ ] is the 
concrete syntax for a generator OBJECT; and OBJECT is the corresponding 
simple type, understood to be the fixpoint ( OBJECT) of the generator.  The 
shape of the type function #OBJECT[ ] is established by compiling the type 
signature of the class body.

class #OBJECT [O] uses BOOLEAN 
(self : @O) is
{  public

identity : @O { self }
equal (other : @O) : BOOLEAN { self = other }
identical (other : @O) : BOOLEAN { self == other }
...

}

Figure 8.1: Definition of an Object Class

The class clause also serves the dual purpose of introducing the F-bound 
quantifying over all types in the class.  It should be immediately obvious how 
this concrete syntax translates into the theoretical model of chapter 5:

class #OBJECT [O] ... (self : @O) is {...}

 (  OBJECT []).(self: ).{...}

The brackets introduce a parameter O, which is understood to range over the 
type family (  OBJECT []).  The type parameter O is used to type the 
explicit class recursion variable (self : @O); and occurs freely in the class body 
to type other arguments in the self-type, such as other in the equal() method.  
The parametric typing expresses exactly the polymorphism allowed by these 
methods:  O must always be instantiated uniformly, ensuring that equal()
compares objects having the same type.  As a textual convention, we write type 
parameters as single upper-case letters.  As a matter of style, the initial letter of 
the class is often chosen to refer to the self-type.

The uses keyword introduces further types and classes on which the class 
definition #OBJECT[ ] depends.  This information is useful to a compiler, which 
may then process information in a suitable order.



A Language with Class 145

The keyword is introduces the body of the class definition, which is delimited 
using braces {}.  The keyword public introduces a set of exported methods.  
Formally, public indicates that the rest of the class body is to be treated as a 
record of public functions, the body of a typed object generator.  The types and 
implementations of methods are introduced together, though they may be 
considered apart for formal purposes.  The type signature of a method is given 
in the Eiffel style [Meye92], with names and types of additional arguments (if 
any) in parentheses and the result type (if any) following a colon.  The use of 
empty parentheses is not required for unary methods, nor is the UNIT type 
notated explicitly either as an argument or result.  It is assumed that formal 
treatments can infer these.  The body of each method is considered a 
compound expression and therefore delimited using braces {}.

The typing semantics offered by types and parameters mixes freely with the 
object semantics offered by value and reference variables.  The methods 
accept alias arguments having the same type @O as self.  This is partly for the 
sake of semantics - identity() should return the object itself, not a copy; 
identical() should compare references to objects, not copies - and partly for 
efficiency - equal() should take a reference to self and other before comparing 
their states, not wastefully copying other first.  The existence of primitive state 
and reference comparison operations is assumed, denoted here by  "=" and 
"==".  The language could require a set of primitives to be supplied by each 
implementation [GR83], or else provide an open-ended external calling syntax 
[Meye92]. 

8.1.2 A Syntax for Inheritance

Class inheritance requires a little more subtlety in interpreting the concrete style 
of declaration.  The main concern is to ensure that all type-elements of the 
definition are properly introduced; and then that all object-elements are 
appropriately typed and bound.  Figure 8.2 illustrates a simple #POINT[ ] class.

class #POINT [P] uses INTEGER, BOOLEAN 
(self : @P) is (super : #OBJECT [P]) with
{  private

x, y : INTEGER;
   public

x : INTEGER { x }
y : INTEGER { y }
equal (other : @P) : BOOLEAN 
{ x = other.x & y = other.y 
}
move (nx, ny : INTEGER)
{ x := nx;  y := ny;
}

}

Figure 8.2: Definition of a Point Class



A Language with Class 146

Again, the keyword class declares a type generator #POINT[ ] which is used to 
constrain a type parameter P; and again #POINT [P] is understood to introduce 
an F-bound (  POINT []) quantifying over all types in the class.  In the 
context of the class ... uses type introduction clause, concrete syntax like 
#POINT [P] is always interpreted as introducing a new polymorphic type P.  
Elsewhere in the object definition, concrete syntax like #POINT [P] is 
interpreted differently as a type application.  This is an important distinction.

The syntax:  (self : @P) is (super : #OBJECT [P]) with {...} indicates that the 
new class is an extension of an existing class.  The keyword is may be followed 
either by a complete record, or by an argument representing a super record to 
be combined with an extension record following the with keyword, which 
functions exactly like the record combination operator  defined in chapters 4 
and 5.  Although this concrete syntax bears a resemblance to the -calculus 
model, much of the explicit redistribution of parameters and recursion variables 
present in the formal model has in fact been removed, since this can be 
reconstructed automatically.  The following expansion is assumed:

(self : @P) is (super : #OBJECT [P]) with {...} 

(self : ).( (super : OBJECT [] ).super  {...}
(object [] (self)) )

in which super is automatically bound to the result of distributing P and self to 
the parent's typed object generator.  The scope of identifiers such as self and P 
is of course local to a declaration; it is assumed that suitable -conversion rules 
will avoid the unexpected aliasing of parameter names in type-function 
applications.  A compiler might count repeated introductions of the same type 
parameter, automatically appending an integer index to distinguish the new 
occurrence.

Again, the uses keyword lists several types, separated by commas, on which 
the class depends.  Technically, uses is only required to list the types on which 
the extension record depends, rather than the whole class.  It is assumed that 
the full set of component types can be recovered by unrolling inheritance.  
Likewise, the eventual shape of the type function #POINT[ ] is only known after 
the compiler has assembled it from the interface of all ancestor classes.

8.1.3 A Syntax for Encapsulation

In the body of the #POINT[ ] class definition, there are private and public
sections.  The keyword private has the semantics of the let ... in construction 
that was used in chapter 7 to bind closures over state variables.  The keyword 
public has the force of introducing the record of functions characterising the 
behaviour of the class.  Although the concrete syntax includes state variables 
along with methods in the class body, for formal purposes we always assume 
the automatic lifting of private state declarations to outside of the scope of the 
recursion variable, self.  This presumes the following automatic translation:



A Language with Class 147

(self : @P) is (super : #OBJECT [P]) with
{  private

x, y : INTEGER;
   public

x : INTEGER { x }
y : INTEGER { y }

... } 

let (state : {x : INTEGER, y : INTEGER}) = {x  0, y  0} in
(self : ).( (super : OBJECT [] ).

super  {x  state.x, y  state.y, ...}
(object [] (self)) )

Public access to the state variables:  x and y is provided through methods 
having the same names:  x() and y().  The two are not confused in normal 
usage, since methods are always invoked against an object:  self.x, whereas 
state variables are accessed by name:  x, as in Smalltalk [GR83].  The 
psychological advantage of identifying named storage with its access function 
outweighs the burden of supplying a public access function for each visible 
value.  We model state variables as fields of a state-record, whose type is 
parameterised by the self-type.  Occurrences of state variable names:  x are 
formally interpreted as private record access:  state.x and therefore not 
confused with methods.

The state variables:  x and y may only be modified by invoking the move()
method.  Formally, any object state declared using private is not visible 
externally.  In any case, our assignment rules prohibit assignment to an 
expression:  for some p : POINT, p.x := 3 is always illegal.  It therefore serves 
no purpose to declare state variables in the public part of a class declaration.  
Methods like move() are always necessary to update the state of an object.  
This has certain efficiency considerations which are discussed in [SLN94] and 
touched on in chapter 10.  A compiler should be permitted to inline calls of the 
form:  p.move(3,4) automatically in all situations where safe inlining is possible.  

8.1.4 Supporting Objects and Values

A bone of contention in existing languages is the mismatch between "object 
types" and "value types" (see chapter 7).  Our language provides a cleaner 
integration between simple values and objects, since both value and reference 
semantics are supported for all kinds of object.  An object may retain value-
status by not supplying any update methods. 

Figure 8.3 illustrates a #COMPLEX[ ] class whose methods have been 
designed carefully to preserve the state of self; yet still operate efficiently.  State 
variables real and imag translate into aliases for storage in self.  However, the 
signatures of the access methods real() and imag() specify a return-by-value 
semantics, causing the content of a state variable to be copied once at the call-
site.  Arguments to #COMPLEX[ ]'s other methods are passed in by reference, 



A Language with Class 148

since it is more efficient to copy one pointer than storage for two REALs for 
each #COMPLEX[ ] instance.  However, the state of these arguments may not 
be modified remotely by brute force as a consequence of our aliasing rules.

class #COMPLEX [C] uses REAL
(self : @C)  is (super : #NUMBER [C]) with
{  private

real, imag : REAL; ...both initialised to default 0.0
   public

real : REAL { real }
imag : REAL { imag }
conjugate : C
{ result : C (real, -imag)
}
plus (other : @C) : C
{ result : C (real + other.real, imag + other.imag)
}
minus (other : @C) : C
{ result : C (real - other.real, imag - other.imag)
}
times (other : @C) : C
{ result : C (real * other.real - imag * other.imag,

imag * other.real + real * other.imag)
}
divide (other : @C) : C
{ self.reciprocal.times(other)
}
reciprocal : C
{ normal : REAL (real * real + imag * imag);

result : C (real / normal, -imag / normal)
}

}

Figure 8.3: Definition of a COMPLEX Class

In order to preserve the value-semantics of #COMPLEX[ ] numbers, this class 
design deliberately avoids providing any public update methods1.  This means 
that the results of #COMPLEX[ ]'s computed methods must be initialised into 
the local storage reserved on the stack frame for the return value.  For 
example, the result of conjugate() is initialised with its whole state:

result : C (real, -imag) ...declaration with initialisation

which is preferred over the style which declares, then modifies:

result : C; ...default initialisation
result.complex(real, -imag) ...public initialisation function

                                           

1 The system method copy() is of course available to initialise new objects with a shallow copy of 
the state of another object.  Here, the system method init() works fine.



A Language with Class 149

The latter is possible, but less efficient, since result is initialised twice; and 
breaks with value-semantics, because of complex().  The formal model for 
declaration with whole-state initialisation is as described in chapter 6.  In most 
cases, explicit local variable storage is reserved for the return value; divide() is 
an exception, reserving implicit storage to hold the results of two nested calls:  
self.reciprocal copies its result to the first return buffer, and this self-argument is 
passed by reference to times(other), which copies its result to the second return 
buffer.  All functions copy their results to the call-site, since they represent new 
numbers; in any case a function may not return an alias to a local buffer.

8.2 Inheritance Designs

Our language supports the full breadth of inheritance techniques.  In contrast to 
the false divisions created in some languages between implementation 
inheritance and subtyping (see chapter 2), a parametric model for type 
inheritance is provided which is consistent with incremental additions to 
implementation.  Multiple inheritance is supported by the type semantics of 
intersection types, characterised by the merge operator.  In other ways, 
difficulties with the mixing of implementations  is resolved through method 
combination techniques.

In chapter 6, the benefits of introducing common functionality at single points in 
the hierarchy were established.  Deferred classes support this by declaring 
deferred methods, which generalise over families of methods which have 
different implementations in descendent classes.  Deferred classes are not just 
convenient theoretical abstractions, they are practically necessary as base 
types in parametric polymorphic constructions.  

8.2.1 Supporting Abstraction and Reification

Figure 8.4 illustrates the deferred class #NUMBER[ ], the ancestor of all 
numeric types with arithmetical operations.  A deferred class is partially 
abstract, in the sense that it provides no implementation for some of its 
methods.  

class #NUMBER [N]
(self : @N) is (super : #TOTAL_ORDER [N]) with
{  public

plus (other : @N) : N {}
minus (other : @N) : N {}
times (other : @N) : N {}
divide (other : @N) : N {}
...

}

Figure 8.4: Definition of a Number Class



A Language with Class 150

Here, because each eventual numerical type has a different physical 
representation, implementations cannot be provided for plus(), minus() ... at this 
level of generality, but signatures may be declared for these methods, for the 
sake of their later polymorphic use in structured classes parameterised over all 
numerical types.  The main reason for deferring a method is to provide common 
type information about a forthcoming family of descendent methods which 
necessarily have different implementations.

Method deferment is indicated by a type signature followed by the empty 
method body {}, corresponding to an undefined method.  It is therefore an error 
to invoke a deferred method directly, which has the semantics of accessing an 
undefined value .  Descendent classes are expected to override all deferred 
methods with suitable implementations.  A compiler may check this statically 
where the propagation of type information allows.  This may be accomplished 
by collecting the closed set of types which are known to be instantiated 
anywhere in an application and report if any of these attempt to invoke 
undefined methods.

class #INTEGER [J] values {minint .. maxint}
(self : @J) is (super : #NUMBER [J]) with
{  private

value : J (0);
   public

plus (other : @J) : J { self + other }
minus (other : @J) : J { self - other }
times (other : @J) : J { self * other }
divide (other : @J) : J { self / other }
...

}

Figure 8.5: Definition of an Integer Class

Figure 8.5 illustrates a concrete #INTEGER[ ] class, inheriting from the deferred 
#NUMBER[ ] class.  Defining #INTEGER[ ] as a class situates the primitive 
INTEGER type in its proper place in the class hierarchy.  This opens up the 
possibility of constructing further classes parameterised by #NUMBER [N] at a 
later stage, which may have legal INTEGER instantiations.  It is intended that all 
basic built-in numerical types such as REAL and CARDINAL will be provided in 
this way, with the expectation that further numerical types such as COMPLEX 
and FRACTION will be made available in class libraries.

In the type introduction section, the keyword values introduces an ordered set  
{minint .. maxint} representing the literal values of the class.  The practical 
effect of the keyword is to notify the compiler that special symbols ..., -1, 0, 1, ... 
are to be treated as self-identifying objects of this class.  This has the effect of 
fixing the concrete representation of the class, which must store a single 
primitive value-element as its whole state.  In this way, a clean interface is 
provided with the underlying simple storage types supported by the hardware.



A Language with Class 151

A simple-valued class, such as BOOLEAN, INTEGER or REAL, may only have 
one state variable in its private part, typically called value.  The reason for this 
is to define the storage occupied by self to be equivalent to that necessary to 
store the primitive values of the type; and also to provide a default initialisation 
value for instances, here 0.  The values declaration ensures that requests to 
access self are implicitly translated into value and functions returning primitive 
values ..., -1, 0, 1, ... are implicitly translated back into INTEGER instances.  
That self-identification is possible owes as much to the fact that value is never 
modified by any method.

A class introducing values may not inherit any storage from its ancestors.  Note 
how #NUMBER[ ] and #OBJECT[ ] provided no concrete storage.  It would be 
inappropriate to inherit storage, since this would interfere with the underlying 
physical representation of integers.  The #INTEGER[ ] class provides primitive 
implementations for all methods that were deferred in #NUMBER[ ].  The 
operators "+" and "-" used in the bodies of these methods denote basic 
machine operations defined over the concrete integer representation.

A values set is understood to be the union of all values of all the types in the 
class family.  It is possible to define subclasses of #INTEGER[ ], provided that 
the physical representation is unchanged.  When defining a value subclass, the 
values set must be partitioned.  It is not legal to extend a set to include more 
values.  Although value has the physical representation of an integer, it is given 
the polymorphic type J.  Polymorphism is retained for the sake of defining 
integer subranges, which may then be closed over their own types.   

8.2.2 A Syntax for Method Combination

The availability of recursion variables standing for the inherited part of an object 
is more obviously useful in cases where method combination is desired.  In 
figure 8.6, a #HOT_POINT[ ] class extends the state of the #POINT[ ] class by 
adding a selected variable; and so must redefine the equal() method.  

class #HOT_POINT [H] uses BOOLEAN 
(self : @H) is (super : #POINT [H]) with
{  private

selected : BOOLEAN (false);
   public

selected : BOOLEAN { selected }
select { selected := true; }
deselect { selected := false; }
equal (other : @H) : BOOLEAN 
{ super.equal(other) & selected = other.selected 
}

}

Figure 8.6: Selectable Point using Method Combination



A Language with Class 152

The naming of super in the is-clause gives a handle on #POINT[ ]'s original 
methods, so that the inherited equal() may be used inside the redefinition.  The 
typing of super in the is-clause also propagates type information into the 
original methods of #POINT[ ], which evolve in type when they are inherited by 
the #HOT_POINT[ ] class.  A compiler would be expected to inline many short 
super-method invocations, making this a common mode of expression.

An alternative approach is to make mouse-sensitive selection a mixin facility 
that may be inherited by many classes.  Figure 8.7 illustrates a possibly 
contentious language design for a #SELECTION[ ] mixin class, and shows the 
style in which mixins are combined:

class #SELECTION [S] uses BOOLEAN, #EQUAL [E]
(self : @S; super : #E [S]) is ...defined as an extension generator
{  private

selected : BOOLEAN (false);
   public

selected : BOOLEAN { selected }
select { selected := true; }
deselect { selected := false; }
equal (other : @S) : BOOLEAN ...expects to use method combination
{ super.equal(other) & selected = other.selected 
}

}

class #HOT_POINT [H]
(self : @H) is (super : #POINT [H]) with (mixin : #SELECTION [H])

Figure 8.7: Selectable Point using Mixin Inheritance

The appearance of two recursion variables:  (self : @S; super : #E [S]) indicate 
that #SELECTION[ ] is an extension generator that expects to be combined 
with some class possessing an equal() method.  The typing of super is not 
especially attractive in this proposed concrete syntax, since it uses an implicit 
higher-order quantification #E[ ] over subclasses of (  EQUAL []).  The 
problem is that E ranges over types and in order to type super, the generator 
#E[ ] for that type must be inferred retrospectively (with the attendant problems 
exposed by [AC95]).  While this concrete syntax could always be given a 
dependent, second-order translation:

class #SELECTION [S] uses ... #EQUAL [E]
(self : @S; super : #E [S]) is ... 

(  SELECTION []).(  EQUAL []).(self: ).(super: ).  ...

there is no mechanism for expressing subtyping constraints directly in the 
concrete syntax, which hides this in the way it expresses F-bounds.  
Furthermore, the obvious translation of the higher-order typing apparently does 
not force super explicitly to have a supertype of self.  This constraint could be 
handled by prohibiting circular inheritance in the underlying language 



A Language with Class 153

mechanism.  Nonetheless, the subtlety of typing required for mixins may elude 
most programmers, making this a contentious area.  Mixin inheritance (see 
chapter 5) is obtained by supplying a basic object after is and an extension 
object after with, in which case no class body should be supplied.  The mixin 
inheritance construction has the translation:

class #HOT_POINT [H]
(self : @H) is (super : #POINT [H]) with (mixin : #SELECTION [H]) 

(  HOT_POINT []).(self: ).
selection [, POINT []] (self, point [] (self))

in which super is bound to a parent record and mixin to an extension record 
inside the class extension function selection, which combines them internally.  
The override semantics of  makes sure that methods in mixin replace those in 
super, after appropriate method combination has taken place.

8.2.3 A Syntax for Multiple Inheritance

Perhaps a more straightforward approach is to use multiple inheritance (see 
chapter 6). Figure 8.8 illustrates an alternative design for #SELECTION[ ], 
which here is a normal class, rather than a freestanding mixin.  The figure also 
shows a selectable #HOT_POINT[ ] class defined using multiple inheritance:  

class #SELECTION [S] uses BOOLEAN 
(self : @S) is (super : #OBJECT [S]) with ...defined normally
{  private

selected : BOOLEAN (false);
   public

selected : BOOLEAN { selected }
select { selected := true; }
deselect { selected := false; }
equal (other : @S) : BOOLEAN  ...simple version
{ selected = other.selected
}

}

class #HOT_POINT [H] uses BOOLEAN 
(self : @H) is (father : #POINT [H]; mother : #SELECTION [H]) with
{  public

equal (other : @H) : BOOLEAN 
{ father.equal(other) & mother.equal(other) 
}

}

Figure 8.8: Selectable Point using Multiple Inheritance

Multiple inheritance is obtained by supplying a list of parents after is and then 
resolving any outstanding inheritance conflicts in a record supplied after with.  
The best advantage offered by the explicit naming of superclass recursion 



A Language with Class 154

variables comes when using multiple inheritance, since this enables a 
resolution to the inheritance conflict over the equal() method, by allowing the 
invocation of an explicit combination of the parents' methods.  The use of 
parentheses to collect superclass recursion variables deliberately mimics the 
syntax of an argument list, since there is an obvious translation of the above 
into our formal model:

(self : @H) is (father : #POINT [H]; mother : #SELECTION [H]) 
with {...} 

(self : ).( (father : POINT []).(mother : SELECTION []).
(father  mother)  {...}

(point [] (self))(selection [] (self)) )

in which the objects bound to these internal arguments are made explicit.  This 
translation also illustrates the semantic interpretation of multiple inheritance.  
The parent object records are understood to be combined using , the merge
operator defined in chapter 6, before the record combination operator  adds 
or replaces methods.  The implementation of merge builds the union of the 
parents' methods, merging duplicate methods that are identical in 
implementation.  If duplicate methods have different implementations, then the 
compiler checks that they were declared in a single common ancestor.  If not, 
an error is immediately reported, since this constitutes an accidental name-
clash that must be resolved; otherwise the compiler inserts the undefined 
method {} and expects the method combination to be resolved in the child 
class.

It is also possible to define a new class simply by combining multiple parents.  
The class declaration would then have an is-clause and no with-clause:

(self : @T) is (father : #FATHER [T]; mother : #MOTHER [T])

In this case, the father and mother objects should not leave any method 
combination unresolved, since this would lead to the merged child inheriting an 
undefined method (see chapter 6).  A compiler should provide warnings in the 
case that a child class inherits an undefined method and fails to provide an 
effective resolution.  The notation {} for the undefined method is deliberately 
identical to the syntax for a deferred method, since the semantic consequences 
are the same.

8.4 Polymorphic Designs

Our language shows its strengths when defining more complex polymorphic 
structures, such as classes with internal polymorphic components.  The main 
practical improvement over existing object-oriented languages is that all forms 
of polymorphism are notated in essentially the same way.  The programmer is 
not burdened with separate mechanisms for run-time dynamic binding and 
statically-resolved generic parameterisation.  To a large extent, the compiler 



A Language with Class 155

may be relied upon to sort this out (see chapter 10).  An intuitive nested 
parametric scheme:  S[T] is adopted, suggesting the idea of "type parameters 
with holes in", to reflect the fact that the self-type S may become dependent on 
a further type parameter T.  The language supports both homogeneous and 
heterogeneous polymorphism by two different formal translations of this syntax, 
which are automatically determined from the context.  Below, the nature of 
these two translations, and why they are necessary, is explained.

8.4.1 Extending Polymorphism

A polymorphic list is described as homogeneous if it contains elements all of 
the same type.  Such lists may be generalised as classes, amenable to later 
extension through inheritance, by abstracting over the type of self:

LIST = ..{add :   , head : , tail : }

list : (t  TOP [t]).(s  LIST [t, s]).s  LIST [t, s]

LIST is a type function of two arguments,  and , which are bound in that 
order.  The type  of the tail describes a recursion which is closed over the 
element type .  Applying LIST to a particular elment type  yields a type 
generator (  ) whose fixpoint  is a recursive type closed over : 

 ( (LIST [])) = .{add :   , head : , tail : }

Note how a list of this type may only add() new elements of type ; its head()
has type ; and its tail() has the same type  as itself, so will be bound 
recursively to have elements all of the same type.  For this reason, such lists 
are called homogeneous.  It is not possible to provide heterogeneous lists, 
containing different types of element, using this form of quantification.

The only way to break the recursive pattern of dependency is to move the 
element type parameter inside the scope of the recursion variable, binding the 
arguments  and  in the reverse order.  This has two consequences.  

Firstly, occurrences of  in the body of the type function LIST do not stand for 
a self-type that is closed over some fixed element type, but rather for a type 
function that must be applied to an element type in order to generate a simple 
list type.  This was the reason why the order of dependency was reversed, for it 
suggests types with alternative parameterisations:  [p], [q] embedded within a 
given type:  [].  

Secondly, a higher-order quantification for s must be provided in the typed 
object generator list.  This is because we do not have complete information 
about the element type t when we bind the parameter s to a constructor for lists.  
We can only say that we want all possible s[t] to be pointwise subtypes of 
LIST [s, t].  This suggests a higher-order subtyping constraint <: having the 
particular form: 



A Language with Class 156

s.(s <: LIST [s])    s.(u  TOP [u]).(s[u]  LIST [s, u])

The translation includes the F-bound on the element type, since in general it is 
not correct to test for pointwise subtyping across the full range t.  Restrictions 
on the element type, if ignored, lead to invalid comparisons which may fail 
unfairly.  We assume that static type information about the list type function and 
the element type generator are available.  This produces functions of the form:

LIST = ..{add :   [], head : , tail : []}

list : (s <: LIST [s]).(t  TOP [t]).s[t]  LIST [s, t]

which are quite different from those given above.  LIST is no longer a type 
function from an element type  to a generator (  ) for a recursive type, but 
rather a functional whose fixpoint is a recursive type function.   It accepts a type 
constructor  = (t  s[t]) and yields another type constructor (  []).  Taking 
the fixpoint makes these constructors identical.  The significant change is that 
the first parameter to LIST expects a type function, rather than a simple type, 
as its argument.

Higher-order polymorphism complicates type checking somewhat.  Whereas 
before, parameters were bound in an order that provided full information on the 
constraints affecting each type before that type was checked, now parameters 
are bound to type constructors in advance of full knowledge about the particular 
types to which they will be applied.  In practice, this problem may be solved by 
considering that the higher-order constraint:

(s <: LIST [s])

is a way of quantifying over all subclasses of a given class.  It is possible to 
cache full information about classes and their descendants, or classes and their 
type instantiations, in a graph structure.  Higher-order type checking is a lazy, 
dependent scheme with delayed proof obligations.  Provided that s is consistent 
with LIST [s], verified by checking in the graph, then it is safe to assume the 
correctness of any s[t], on the grounds that this can be discharged later.  

8.4.2 A Syntax for Polymorphism

Polymorphism demands more subtlety in interpreting the concrete style of 
declaration.  It is important not to overload the syntax, and yet ensure that all 
type-elements of the definition have well-founded translations.  Figure 8.9 
illustrates a parameterised #POINT[ ] class.  The keyword class introduces a 
type function #POINT[ ] used to restrict a parametric structure P[N].  This 
indicates that the class has internal polymorphic components and describes the 
external parametric-polymorphic type interface to the class.  The following uses
clause introduces the bound #NUMBER[ ] for the parameter N, on which P 
depends.  The uses clause therefore serves both a practical purpose in listing 
dependencies and a formal purpose in quantifying over component types.



A Language with Class 157

class #POINT [P[N]] uses #NUMBER [N], BOOLEAN 
(self : @P[N]) is (super : #OBJECT [P[N]]) with
{  private

x, y : N;
   public

x : N { x }
y : N { y }
equal (other : @P[N]) : BOOLEAN 
{ x = other.x & y = other.y 
}
move (nx, ny : N)
{ x := nx;  y := ny;
}

}

Figure 8.9: Definition of a Polymorphic Point Class

The first semantic translation, introduced in chapter 6, binds N outside P, such 
that P[N] is understood to have the meaning:   N  (P  P):

class #POINT [P[N]] uses #NUMBER [N], ...
(self : @P[N]) is (super : #OBJECT [P[N]]) with ...

(n  NUMBER [n]).(p  POINT [n, p]).(self : p).
((super : OBJECT [p]).super  {...}

(object [p] (self)) )

This second-order translation may only be performed if all the component type 
parameters introduced by the uses clause, here just N, are also present in the 
structure P[N] introduced by the class clause.  The parameters present inside 
P[...] have the status of generic type parameters, which may be replaced in full 
at the site of some type declaration, or partly during inheritance, using the 
partial instantiation approach described in chapter 6.

The second semantic translation, introduced above, binds N inside P, such that 
P[N] is understood to have the meaning:  (N  P[N])  (N  P[N]):  

class #POINT [P[N]] uses #NUMBER [N], ...
(self : @P[N]) is (super : #OBJECT [P[N]]) with ...

(p <: POINT [p]).(n  NUMBER [n]).(self : p[n]).
((super : OBJECT [p[n]]).super  {...}

(object [p[n]] (self)) )

This higher-order translation is generally more useful, because it allows us to 
think about the type of self as a function P expecting a further parameter N.  
This means that #POINT[ ] is a generator whose fixpoint POINT[ ] is a recursive 
type function over N, in the manner of a Girard-Reynolds type constructor.  This 
translation must be used if there are component type parameters introduced by 
uses which are not present in the structure introduced by class.  Such 



A Language with Class 158

parameters have the status of unresolved polymorphic types which are not 
present in the interface of the class and may not be statically bound. 

In both translations, the concrete syntax takes a small liberty by introducing 
type parameters in the style #POINT [P[N]] with the component parameter 
embedded, rather than use #POINT [N, P] or #POINT [P, N] to indicate that the 
class is a two-parameter type function.  This is for reasons of style consistency 
and aims to foster a feeling in our programmers for the notion of "type 
parameters with holes in".  In the concrete syntax, the type of self is always 
represented P[N], since P now stands in general for a type function, rather than 
for a recursive type.  The whole of the self-type P[N] is passed to the parent 
class generator #OBJECT[ ] to type the super-record.  Whenever a class like 
#POINT[ ] declares a new component type parameter, this introduces extra 
structure into the way the self-type is expressed that was implicit in the parent 
class.

The concrete syntax conventions are now reviewed.  Our language now has a 
way of expressing class generators, recursive type constructors and recursive 
types:

 #POINT[ ]  is the style of a class generator.  Its purpose is always to 
describe an F-bound on some self-type.  It introduces parameters in class
... uses type introductions and is applied in the is-clause of inheritance 
constructions, to give super recursion variables their adapted types.

 POINT[ ]   is the style of a type constructor.  Its purpose is to permit 
parameterised type declarations, in which it is applied to component types, 
in the style:  p : POINT [INTEGER].  The recursive type function POINT[ ] is 
implicitly understood to be the fixpoint of the class generator #POINT[ ].

 POINT   is the style of a monomorphic type.  Its purpose is to permit 
simple type declarations.  Simple type identifiers do not have the brackets [ ] 
used to indicate a type function.  The type POINT is implicitly understood to 
be the result of fixing both the self-type and component-type, such that:  p : 
POINT means the same as:  p : POINT [NUMBER].

8.4.3 A Syntax for Higher-Order Inheritance

The concrete syntax readily adapts to inheritance of polymorphic components.  
Figure 8.9 showed the introduction of a component parameter that was not 
present in the parent class; figure 8.10 illustrates the rebinding and 
transmission of component parameters to a child class.  The declaration class
#HOT_POINT [H[J]] introduces a new structured self-type H[J] which matches 
the structure of the self-type P[N] in the parent #POINT[ ] class.  Whereas P 
ranged over all POINT[ ] constructors, the new bound on H restricts this to 
range over HOT_POINT[ ] constructors; likewise this example chooses (for 
demonstration's sake) to restrict J to the #INTEGER[ ] family.  This is to 
illustrate the adaptation of both the self-type and coordinate-type of #POINT[ ] 
when it is inherited.  



A Language with Class 159

class #HOT_POINT [H[J]] uses #INTEGER [J], BOOLEAN 
(self : @H[J]) is (super : #POINT [H[J]]]) with
{  private

selected : BOOLEAN (false);
   public

selected : BOOLEAN { selected }
select { selected := true; }
deselect { selected := false; }
equal (other : @H[J]) : BOOLEAN 
{ super.equal(other) & selected = other.selected 
}

}

Figure 8.10: A Polymorphic Selectable Point Class

The inheritance construction:  is (super : #POINT [H[J]]]) distributes H to P and 
J to N in a way that can be thought of as matching one structure directly to 
another.  The following kind of translation is  intended:

class #HOT_POINT [H[J]] uses #INTEGER [J], ...
(self : @H[J]) is (super : #POINT [H[J]]) with ... 

(h <: HOT_POINT [h]).(j  NUMBER [j]).(self : h[j]).
((super : POINT [h, j]).super  {...}

(point [h, j] (self)) )

in which it is more apparent how our concrete syntax preserves the nested 
structuring of parameters, while the formal model tends confusingly to string 
them out in linear fashion.

Another important aspect to introducing class #HOT_POINT [H[J]] as a 
structure containing J is that this preserves the component type interface of 
#POINT[ ] in the new class:  J matches the structural position of N.  The reason 
that J appears in the uses #INTEGER [J] clause is so that it may be 
constrained with a more restricted F-bound.  The reason J appears in the 
inheritance construction is (super : #POINT [H[J]]]) is in order to distribute it to 
N and so restrict the inherited coordinate type to #INTEGER[ ].  There is no 
other reason for J to exist, since no new component is typed in J.  This sheds 
light on the distinct roles played by the different clauses:

 the class clause defines which type parameters appear in the interface, 
expressing the dependency of the self-type on component types by 
appropriately nesting parameters;

 the uses clause defines F-bounds on component type parameters and also 
defines those component types on which the self-type depends;

 the is clause defines how parameters with more restricted F-bounds are to 
be distributed to superclass generators, when inheriting their methods.



A Language with Class 160

Our syntax is well adapted to the introduction and transmission of type 
parameters.  The syntax takes a small liberty in order to eliminate type 
parameters in one step during inheritance.  The sketch below illustrates why: 

class #INT_POINT [K]
(self : @K) is (super : #POINT [K [INTEGER]]) 

(k  INT_POINT [k]).(self: k).
((super: POINT [INTEGER, k]).super
  (point [INTEGER, k] (self)) )

Whereas this second-order translation may always be adopted to replace the 
component parameter N, the concrete syntax appears to use K both as a self-
type and a type function.  It is to be hoped that programmers will nonetheless 
find this style intuitive, since it pattern-matches the whole structure of the child 
class #INT_POINT[ ] with the structure of the parent #POINT[ ].

8.4.4 A Syntax for Unresolved Polymorphic Type

In chapter 5, a technique involving parameter substitution was used to create a 
simple POLY_POINT type and poly_point object having an unresolved 
polymorphic coordinate type:

POINT = ..{x: , y: , identity: , equal:   BOOLEAN}

point : (t  NUMBER [t]).(s  POINT [t, s]).s  POINT [t, s]

point = (t  NUMBER [t]).(s  POINT [t, s]).(self: s).
{x  , y  , identity  self, 

equal  (other: s).(self.x = other.x  self.y = other.y)}

POLY_POINT = (u  NUMBER [u]).( (POINT [u]))

poly_point = (v  NUMBER [v]).( (point [v, POLY_POINT [v]]))

This makes POLY_POINT a recursive type function over its type argument u, in 
the manner of a type constructor:

POLY_POINT = u..{x: u, y: u, identity: , equal:   BOOLEAN}

likewise the instance poly_point is a function from a type to a recursive object:

poly_point : (v  NUMBER [v]).POLY_POINT [v]

poly_point = (v  NUMBER [v]).(self: POLY_POINT [v]).
{x  , y  , identity  self, 

equal  (other: s).(self.x = other.x  self.y = other.y)}

What does this mean?  The fields of poly_point cannot be accessed directly, 
without first supplying a type for v.  Whereas it is reasonable to think of 



A Language with Class 161

supplying a simple type INTEGER to a type function POLY_POINT in a static 
context, it is strange to think of propagating a type into a runtime object 
poly_point, when there are no grounds for assuming this type.  However, it is 
legitimate to distribute new type parameters having exactly the same bounds, in 
order to release methods from objects protected by F-bounded type 
abstraction:

(  NUMBER []).poly_point [].x     : 

An object containing k unresolved polymorphic components is therefore 
represented as a type function from k arguments to a recursive object; and this 
would require the distribution of k new parameters each time one of its methods
were accessed.  If instead the binding of component types is moved inside the 
recursion of self, new type parameters may then be introduced inside the object 
itself, which may be used to type unresolved polymorphic components.

The syntax is now extended to allow the declaration of variables having an 
unresolved polymorphic type.  The uses clause may introduce further types:

uses ... #NUMBER [N]
{ ...
var : N;  (  NUMBER []).var : 
... }

The dynamic type checking that results from such a declaration can be 
motivated in the following way.  To access var, the system would have to 
distribute a type or a parameter satisfying (  NUMBER []) to the type 
abstraction protecting var.  If it can determine a unique type from the 
surrounding context, the system may distribute this to  and assume var has 
this type.  If it cannot determine a unique type, then it must distribute the 
undefined type  to  and mark var as needing a dynamic type check when its 
value is accessed.  From the context, the bound on the type of var is always 
available, which may also be useful.

8.4.5 A Syntax for Heterogeneous Polymorphism

A list is described as heterogeneous if it contains elements of different types.  
Heterogenous lists often contain elements of different, but related types which 
all satisfy the same F-bound, describing the least upper bound on 
heterogeneity.  To provide such a list, a chain of LIST cells must be 
constructed, each of which has the same polymorphic type, but a different 
parameterisation.  This may be expressed as:

LIST = ..{add : .  [], head : , tail : .[]}



A Language with Class 162

Here, LIST is a functional whose fixpoint is a recursive type function in the 
element type .  However, applying ( LIST) to some element type  results in 
an unusual recursive type:

 ( LIST) [] = .{add : .  [], head : , tail : .[]}

which contains further polymorphic components.  In particular, complete 
information is only known about the simple type of the head().  

Looking at the other fields of this type, it is clear that the add() method, which 
extends the list, is also a type function.  It accepts a type  and an element in 
this type, returning a new list in the type [].  Because the binding  =  is lost 
when [] is formed, we may only determine that an extended list has the type:

.{add : .  [], head : , tail : .[]}

in other words, we may infer that the head() of the extended list has the type 
and no other simple type information.  This is exactly how a heterogenous LIST 
should behave.  It is reasonable that we should only know about the simple 
type of the head() in a context where that LIST link was created.  

Looking now at the tail() of a heterogeneous list, it is clear that this must 
describe a list with the same overall shape as self, the current LIST cell, but no 
information is available about what type of element it contains.  This is 
represented as .[], an application of the recursive type function [ ] to an 
unknown element type , which may or may not be available in the current 
context.  This offers more information than simply saying the result has an 
unknown list type, since it insists that the recursive structure follows [ ], the 
shape of self.  Again, this is quite reasonable for a heterogeneous list.

Our final example in figure 8.11 is a #LIST[ ] class, which inherits certain 
properties common to all sequences from a deferred #SEQUENCE[ ] class.  
This class design is used to illustrate the suggested style for heterogenous 
polymorphism.  Here, the type parameter structure introduced by class takes 
on a particular significance in its role as the external polymorphic type interface.  
The keyword class introduces a type function #LIST[ ] constraining a self-type 
parameter L that is dependent on three element-type parameters O, P and Q, 
constrained by #OBJECT[ ] in the uses clause.  Whereas the parameter O is 
bound in the type interface, indicated by its presence in L[O], the remaining 
parameters are considered bound inside the scope of self.  A list-cell created 
from this class has a statically-determined head() type O, and unresolved 
polymorphic types for add() : Q  L[Q] and tail() : L[P].  It is reasonable to 
suppose that add() may bind a type to Q and this static information may be 
retained as the head() type of the resulting list, but tail() cannot presume to 
guess its type.  Instead, elements are retrieved from the tail of the list by 
distributing  to the parameter P and then dynamically checking their type later.



A Language with Class 163

class #LIST [L[O]] uses #OBJECT [O], 
#OBJECT [P], #OBJECT [Q] ...distinct parameters

(self : @L[O]) is (super : #SEQUENCE [L[O]]) with
{  private

head : O;
tail : @L[P];

   public
head : O { head }
tail : @L[P] { tail }
add (elem : Q) : @L[Q]
{ cell : @L[Q];

cell.create(elem, self) ...allocate and initialise
}

}

Figure 8.11: A Heterogeneous List Class

The translation of this concrete syntax is a showcase for many of the formal 
techniques introduced so far.  The aim is to provide a heterogeneous version of 
list, the extended typed object generator expecting a state initialisation 
argument.  The initialisation record may be given the parameterised type:

LIST = ..{hd: , tl: []}

reflecting the change of  from a type to a type function and marking the type of 
the tail as partially unknown.  The typed definition of a heterogeneous list may 
be considered to have the following structure.  

LIST = ..{add : .  [], head : , tail : .[]}

rec list : (s <: LIST [s]).(t  OBJECT [t]).
LIST [s, t]  (s[t]  LIST [s, t])

since it accepts an initialisation argument and returns a generator for a list, a 
function from the self-type s[t] to the list type itself.  Notice how only t is present 
in the external type interface of the typed object generator, list, whose 
definition is given by:

rec list = (s <: LIST [s]).(t  OBJECT [t]).
(state : LIST [s, t]).(self: s[t]).

{ head  state.hd, tail  (u  OBJECT [u]).state.tl, 
  add  (v  OBJECT [v]).(elem: v).

( (list [s, v]) {hd  elem, tl  self}) }

This function is recursive, which is marked using rec.  A recursive occurrence of 
the object generator list [s, v] appears in the body of add().  The body of the 
generator has two further type abstractions, one for typing the argument of 
add() and one protecting access to the tail(), effectively hiding the exact type of 
all elements in the rest of the list. 



A Language with Class 164

To solve the recursion, a typed object definition list may be provided that 
abstracts over its own object generator and accepts an initialisation argument.  
The type signature for this function is wonderfully complicated:

list : (s <: LIST [s]).(t  OBJECT [t]).
(LIST [s, t]  (s[t]  s[t]))  (LIST [s, t]  (s[t]  LIST [s, t]))

list = (s <: LIST [s]).(t  OBJECT [t]).
(selfgen : LIST [s, t]  (s[t]  s[t])).

(state : LIST [s, t]).(self: s[t]).
{ head  state.hd, tail  (u  OBJECT [u]).state.tl, 
  add  (v  TOP [v]).(elem: v).

(( selfgen {hd  elem, tl  self})) }

but makes sense when you consider that selfgen must have a type similar to 
the object generator list [s, v] over which it abstracts, apart from the fact that 
it maps its result to an as-yet unfixed self-type s[t].  This mode of definition is 
used here merely to show that ( selfgen) = list [s, v] is well-formed -
henceforward, rec may be used to indicate recursively-defined functions.  It 
would be wrong to use generator-abstraction to adapt selfgen through 
inheritance, because functions with initialisation arguments require modification 
to the initialisation argument in non-deterministic ways.

8.4.6 In Support of Classes

A set of concrete language features supporting the object-oriented notion of 
classification and inheritance has been presented.  The language distinguishes 
the notions of class and type.  Classes are polymorphic entities, typed using F-
bounded parameters.  The language encourages the declaration of open-ended 
classes, since the least fixed point types may be inferred automatically.  Both 
reference and value semantics are supported, allowing the programmer to 
extend the universe of basic types.  Encapsulation is supported.  Single and 
multiple inheritance are both supported, with clear translations in the -calculus 
model.  Inheritance conflict resolution is handled by naming the inherited parts 
of objects and invoking combinations of methods explicitly.  Abstract classes 
are supported through the declaration of deferred methods.  Classes with 
internal polymorphic components are supported using a nested parametric 
syntax, which has two alternative translations in the -calculus model.  The 
choice of translation is determined by the context of use.  Finally, both 
homogeneous and heterogeneous polymorphism are supported, with distinct 
translations in the -calculus model.

This completes the tour of language facilities supporting objects, classes, 
inheritance and polymorphism.  It remains now to describe in some detail how 
control flow is handled and how type information is propagated.  This will lead 
finally to a discussion of implementation issues.


