
Chapter 9

A Language with Flow

Here, explicit and implicit models of flow control are contrasted.

The former uses primitive selection and iteration constructs, in the manner of
C++, whereas the latter relies on dynamic binding alone, in the manner of
Smalltalk. Primitive if() and while() constructs are introduced, for which models
and types may be found in our basic calculus. It is then shown how selection
can be replaced by dynamic binding and iteration by mapping operations, at the
cost of an increase in type complexity. Selection plays a role in storage and
type recovery. Due consideration is given to implementation support issues.

9.1 Selection and Iteration

No language is complete without a set of conditional and branching statements.
Control flow is handled in widely different ways in current object-oriented
languages. Whereas C++ provides three branching constructs: if, switch and
?: and three looping constructs: for, while and do [ES90, Stro91], partly to
maintain back-compatibility with C and partly because its whole philosophy is to
offer the programmer a wide range of stylistic options, Eiffel strives after
minimalism with binary if, multibranch inspect and a single general loop
[Meye92]. Meyer argues strongly against multibranch selection in [Meye88,
p24, 35], recognising that this is often used in situations where dynamic binding
is more appropriate. A case-like statement fixes the number of branches and
prevents code extension, whereas dynamic binding allows unforeseen types of
behaviour to be added.

A Language with Flow 166

9.1.1 Primitive Selection

In chapter 7, an n-place compound expression was translated into a binder
applied to n expressions. It is possible to model an n-place selection using a
similar technique. Here, the lazy evaluation of -calculus expressions is
assumed. Using an (n+1)-place expression binder, it is possible to delay the
evaluation of n sub-expressions, subject to their selection from the closure
using a projection function. An example with boolean logic and binary selection
will show this:

if (x > y) then x else y  (a.b.f.(f a b) x y (x > y))
 (f.(f x y) (x > y))

Boolean switching involves 2-place selection, so the sub-expressions x and y of
the selection are bound with a 3-place binder. The last abstraction f delays
the release and evaluation of any sub-expression. This is exactly the same as
the tuple-building strategy we used in chapter 3. There, values were released
from tuples by applying the tuple to a projection function. The release of x or y
depends on the outcome of the test (x > y). Assuming this test returns a
boolean value, true and false should then be encoded as the first and second
2-place projections:

true = a.b.a false = a.b.b

This approach can be generalised to handle ternary and quaternary logics. For
example, a 3-place selection is given by:

(a.b.c.f.(f a b c) p q r)  f.(f p q r)

where p, q and r are sub-expressions. To release the second sub-expression,
this closure must be applied to the second 3-place projection:

(f.(f p q r) a.b.c.b)  (a.b.c.b p q r)  q

In this model, the select function is implicit, since values are released according
to the structure of the projections. The n different n-place projections form the
elements of an n-valued logic.

9.1.2 Binary Valued Logic

Our primitive branching construct is based on this idea. Branching of a general
nature is handled using if(), where the tested expression in parentheses is
followed by a tagged block. A tagged block is a compound expression, made
up of sub-expressions, each of which is tagged with a symbolic value from a
logic. The tag identifier is separated from the rest of the sub-expression by a
colon:

A Language with Flow 167

if (x > y)
{ true : out.put("x is greater", \endline);

false : out.put("x is lesser or equal", \endline);
}

The tag represents a guard, or entry condition to the sub-expression. Only one
of the sub-expressions (at most) will be executed. If none of the guards is
satisfied, if() terminates and control passes to the next expression. For
convenience's sake, we do not require all branches to be present, nor to appear
in any particular order. Single-branch tests are therefore possible using a
single guard. Where branches are absent, an implicit translation into the form
of an ordered n-place selection is assumed, in which the missing branches are
restored as tagged sub-expressions returning the trivial value.

if (x = 0)
{ true : if (y = 0)

{ true : out.put("both x and y are zero", \endline);
false : out.put("x only is zero", \endline);

}
false : if (y = 0)
{ true : out.put("y only is zero", \endline);

false : out.put("neither x nor y are zero", \endline);
}

}

Figure 9.1 Binary Decision Tree

A tagged block differs from a normal compound expression in that it represents
a selection rather than a sequence. Whereas all expressions in a sequence
are evaluated, only one is evaluated in a selection. The idea of tagged blocks
is appealing, since this avoids the accretion of reserved words in the style: if ...
then ... else; and yet marks out each sub-expression according to the
dispatching value. Decision trees like that in figure 9.1 produce clearly nested
structures in which the combinations of true and false outcomes are more
clearly flagged for each terminal branch than in some languages. This layout is
only inconvenient in the case of repeated else ... if style conditions. Nested
decision trees can sometimes be avoided by dispatching on a different logic
having more than the binary true and false values of boolean logic.

9.1.3 Multivalued Logics

The use of if() may be extended to ternary and quaternary logics, since it is not
restricted to binary selection. Richer multivalued logics are theoretically
interesting in their own right, but also hide behind some common programming
idioms. Consider the three-valued strcmp() from C which returns +1, 0 or -1
depending on the total lexical ordering of two strings. This is striving after a
ternary logic. Figure 9.2 illustrates an intuitionistic logic having a third value fail
meaning that truth or falsity is not proven. This is more flexible than the
negation-as-failure strategy adopted in most languages.

A Language with Flow 168

if (accused.guilty)
{ true : { accused.jail(sentence);

accused.pay(legalFees);
}

 false : { accused.free;
plaintiff.pay(legalFees);

}
 fail : { accused.free;

accused.pay(legalFees / 2);
plaintiff.pay(legalFees / 2);

}
}

Figure 9.2: Ternary Decision Tree

In figure 9.3, it is probably more useful to think of the general comparison
operator <?> as mapping into a four-valued space since this encompasses all
the relationships between elements of partial and total orders. Dispatching on
multi-valued logics often eliminates the need for nested decision-trees and this
makes the flow of control easier to follow.

if (setX <?> setY)
{ lesser : out.put("setX is included in setY", \endline);

greater : out.put("setX includes setY", \endline);
equal : out.put("setX and setY are isomorphic", \endline);
unlike : out.put("setX and setY are incommensurable", \endline);

}

Figure 9.3: Quaternary Decision Tree

9.1.4 General Selection

It should be clear from these examples that if() is exactly like a multi-branch
selection function, such as case() in Pascal. To give an extra degree of
flexibility in those rare cases where arbitrary multi-branching is desired, multiply-
tagged sub-expressions are provided and also a default tag else for marking a
sub-expression to execute if no other guard is satisfied:

isVowel : BOOLEAN ...in class CHARACTER
{ if (self)

{ 'a', 'e', 'i', 'o', 'u' : true
else : false

}
}

Figure 9.4: Selection with Default

In terms of the primitive model, multiply-tagged sub-expressions with p tags are
considered shorthand for an expansion into p branches containing identical

A Language with Flow 169

sub-expressions. The default expression with the else tag is likewise
considered a shorthand for a multiply-tagged expression having all the
remaining n - p tags not present in any other tagged sub-expression, where n
is the arity of the logic.

Techniques exist for optimising binary branching and multi-branch selection
where all branches are ordered according to their dispatching value. Any type
which has a finite, enumerable set of values may be used as the dispatching
logic of if(). This allows boolean, ternary, quaternary, character and other
subrange types to be used. It is anticipated that enumerations will often be
used for the logics given to if(); compilers will therefore be able to exploit the
ordering of such values to re-arrange the branches into a logical dispatching
order.

9.1.5 Selection and Type

Since all expressions have a value in our language, the type of a selection must
also be considered. The most important principle to observe is that all
branches of an if() must return the same type or class. In most of the examples
given above, branches of if() returned no value, which is interpreted in our
semantics as the element of the trivial type UNIT. However, the example of the
isVowel() method illustrates a quite common case where different values from
the same type are returned in different branches. An important consequence of
our rules for interpreting selections with missing branches is that they are only
correctly typed if they return no value. This is because automatic completion
would restore other branches having the UNIT type. The else guard is
therefore often useful in covering the remaining cases of a selection which must
return a typed value.

9.1.6 Primitive Iteration

Primitive iteration is modelled in the -calculus by recursive functions with a
selection that tests for continuation:

while (x > 0)  ( f.x.if (x > 0)
{ g(x); then (y.z.z g(x) f(x-1))

x := x-1; } else unit)

Here, a while() loop tests the value of x and performs some computation g(x) as
long as x > 0. We transform the loop into a recursive function f(x) using the
technique of abstracting over the point of recursion f and fixing with .

The function takes as its argument the iteration value x and the body of f() is a
selection testing x > 0, which is assumed to be modelled in the style presented
above. The selection has two cases: the then branch is the recursive
continuation of f(); the else branch terminates with the trivial value. The
continuation is a sequence, modelled using a 2-place binder, the first sub-
expression of which is g(x) and the second calls f() recursively with the new
value for x. Since lazy evaluation is assumed elsewhere for selection, we must

A Language with Flow 170

insist on eager evaluation for sequences, otherwise g(x) is not forced to be
evaluated. In a fully lazy -calculus, the body of the while() would have to be
constructed as a single expression g(x) returning the next value for x.

A simple binary selection is used to return control to the entry-point of the body
of the iteration, or to signal termination. There is no theoretical reason why
multi-branch selection should not be used. This gives rise to the curious
possibility of loops that have more than one continuation condition.

9.1.7 General Iteration

General iteration is handled in our language using while(). The tested
expression appears in parentheses, followed by a tagged block. Continuation
of the loop can be made contingent on any single condition, expressed by a
logical tag:

while (in.atEnd)
{ false : { in.get(word, \separator);

out.put("Word read from input was:", \space);
out.put(word, \endline);
}

}

Figure 9.5: Single Continuation Condition

Figure 9.5 illustrates how testing for false is sometimes clearer than inverting
the truth condition of the test. Alternatively, continuation can be made
contingent on a number of conditions, illustrated in figure 9.6:

while (table.at(index) <?> word)
{ lesser : index := index + 1;

equal : { out.put("Entry found at:", \space);
out.put(index.asString, \endline);
index := index + 1;
}

}

Figure 9.6: Multiple Continuation Conditions

Since any logic may be used, not just binary boolean logic, it is possible to
specify more than one guard in the tagged block. In this case, testing for
continuation is combined with branching within the body of the loop. The above
example will continue to iterate so long as the entry found in the table is
lexically lesser or equal to the tested word string; and will terminate if the
comparison <?> returns greater or unlike. The index is incremented in each of
the tagged sub-expressions, to ensure that a different table position is searched
on each iteration, no matter which sub-expression was executed last. Care
should be taken to ensure that loops terminate. If all possible outcomes

A Language with Flow 171

of a selection are covered in the guards, then a loop will not terminate. A
while() that contains an else guard will loop forever. Complementary, or
symmetrical updates to the iteration variables will sometimes result in non-
termination:

while (table.at(index) <?> word)
{ lesser : index := index + 1;

greater : index := index -1;
}
out.put("Entry found at:", \space);
out.put(index.asString, \endline);

Figure 9.7: Semi-terminating Iteration

Here, if no entry for word is found in the table, the index will oscillate forever
about the position where the word was expected. This is simply bad
algorithmic design, equivalent to the while not (state = found) style of
programming in Pascal, and not a fault of our approach. To combat unintended
infinite loops, a compiler may issue warnings in two cases: where all the values
of the tested logic are found in the guards such that no exit-case is possible;
and where no change is made to any of the objects participating in the test, for
some guarded sub-expression.

9.1.8 Iteration and Type

The type of a while() expression is always UNIT; in other words, while() returns
no value. This is because the semantic interpretation of a missing guard is a
tagged expression whose value is unit. Since loops terminate when no guard is
satisfied, the trivial value will always be returned. Other guarded expressions
catching the continuation cases are interpreted as sequences containing a
recursive call to while(), which eventually will yield the trivial case upon
termination. To inculcate a sense of syntactic uniformity, good programming
style will insist that the branches of a while() are written with the semicolon ";"
terminating the final expression in each sequence.

9.2 Dynamic Dispatch and Mapping

Smalltalk provides no built-in primitives for control, replacing static branching
instructions by dynamic dispatch [GR83]. Its Boolean subclasses True and
False define opposite method responses for the single-branch ifTrue: and
ifFalse: messages and the for the binary branching ifTrue:ifFalse: message.
This behaviour is generalised through recursion with the whileTrue: and
whileFalse: messages supporting loops. The approach is based on a higher-
order treatment of code blocks as first-class objects, which are passed as
arguments to the flow switching methods. A block wraps up a compiled
sequence of instructions whose evaluation is delayed until it receives a value
message. Classes True and False simply evaluate alternate blocks in their flow
switching methods. Afficionados of this style admire it for its apparent object-

A Language with Flow 172

oriented purity, since it needs no other primitive selection constructs to support
it. However, this claim to object-oriented purity can be challenged on the
grounds that blocks hide other non-object-oriented mechanisms.

9.2.1 Selection and the Object Model

By seeking to take selection into the object model, Smalltalk inadvertently
creates another concept which does not fit the object model. For though both
blocks and objects can be explained as closures, there are no constraints on
the form of a block, whereas objects follow the pattern of a generator. Blocks
are instances of the class Context [Digi92]; however, they may be bound over
any number of free variables and contain any number of sub-expressions. The
class Context could effectively model any other class, making blocks the most
powerful and least disciplined concept in the language. The first example in
figure 9.8 illustrates the general pattern for selection in Smalltalk. The blocks
are the expressions in brackets [], which we can treat formally as closures
whose evaluation is delayed by abstraction over a unit value:

| a b max |
a := 4 factorial. "selection blocks closed over a, b, max"
b := 5 squared.
a > b ifTrue: [max := a] ifFalse: [max := b].

"iteration block with leading block argument"

'Here we go again' select: [:char | char isVowel].

Figure 9.8: Selection and Mapping in Smalltalk

Furthermore, iterating methods require blocks to have one or two block
arguments, iteration variables which bind to elements of collections when the
block is evaluated. The second example in figure 9.8 illustrates a block whose
argument char is mapped over character elements of the leading character
string. Such a block is more like a free-standing function with a bound
argument. Free-standing functions conflict with the notion of methods. Further
problems arise in Smalltalk through blocks having dynamic extent (they are
allocated on heap memory) and dynamic scope, due to their sharing of non-
local variables [Wolc88]: consider the consequences of substituting object
references for the local variables a, b and max above and then returning a
block for later evaluation out of its defining context. Our language insists on
static scope and extent, for the sake of safety and memory management.

Smalltalk iterates by mapping closures over elements of collections. We have
suggested techniques for restricting mapped functions to existing methods in an
earlier project [Blac92]. Here, objects may only access the surrounding context
through an activation record passed to the method, or through call-back to the
object driving the iteration. This works well, but is strictly less expressive than
allowing arbitrary closures. A further drawback is the need to return to library
classes to add new mapped methods destined for use in a particular

A Language with Flow 173

application; this breaks the principle of closed modules. In any case, the
particular mapping or filtering operation required by the application does not
depend in general on the class of element, but on some higher design.
Recognising this, many advocate the design of special-purpose iterator classes
[GHJV95] which control access to collections.

9.2.2 Integrating with Primitive Selection

Figure 9.9 illustrates a simple #BOOLEAN[] class, shadowing the enumerated
values {false, true} and designed using our primitive if(). It follows the normal
pattern of a recursive type, which is contrasted later with figure 9.10.

class #BOOLEAN [B] values {false, true}
(self : @B) is (super : #OBJECT [B]) with
{ private

value : B (false);
 public

not : B
{ if(self) { true : false false : true }
}
and (other : B) : B
{ if(self) { true : other false : false }
}
or (other : B) : B
{ if(self) { true : true false : other }
}
implies (other : B) : B
{ if(self) { true : other false : true }
}

}

Figure 9.9: A Boolean Class using Primitives

The values keyword notifies the compiler that the special symbols false and
true are to be treated as self-identifying instances of the #BOOLEAN[] class. A
compiler may choose any appropriate physical representation for enumerated
values, such as a short bit-pattern, or an integer. Formally, an enumeration is
considered to list the set of constructors for a class; in this view false and true
are functions creating instances of the class. The keyword private introduces
the single state variable storing the whole state of the class; by default this is
initialised to false. The keyword public introduces the exported methods of the
#BOOLEAN[] class, which inherits further basic methods from #OBJECT[],
since we wish to be able to assign, alias and copy BOOLEAN objects. For
simplicity's sake, our language maps boolean methods onto the primitive
control flow function if() described above; this is as much for the sake of
efficiency, since the current compilation model translates expressions in our
language into a portable pseudo-assembler having primitive branching and
iteration (see chapter 9). Our compiler inlines all occurrences of these boolean
methods, since they are never redefined; in turn the primitive if() is compiled to
basic jump instructions in machine code.

A Language with Flow 174

This approach is to be commended for its efficiency. Nonetheless, since our
language's type system can handle methods passed as arguments, it would be
possible to implement the Smalltalk method mapping approach in a statically
scoped and bound way. This is explored below.

9.2.3 Removing Primitive Selection

In order to support selection by dynamic binding, the #BOOLEAN[] class must
be specialised into disjoint child classes #FALSE[] and #TRUE[]. The aim of
this is to provide alternative versions of selection methods, such as
ifTrueFalse(), in the child classes, which dispatch on the dynamic type of
objects found in variables with the type (  BOOLEAN []). This means
that the parent #BOOLEAN[] class must provide deferred signatures for
selection methods. The typing of their signatures is complicated further by the
need to preserve nondeterministic polymorphism:

class #BOOLEAN [B] uses #BOOLEAN [O], #BOOLEAN [R]
(self : @B) is (super : #OBJECT [B]) with
{ public

not : R {}
and (other : O) : R {}
or (other : O) : R {}
implies (other : O) : R {}

}

Figure 9.10: A Boolean Class for Dynamic Dispatch

Figure 9.10 illustrates the changes from the class presented in figure 9.9. The
class deliberately omits introducing values since the type system must now
identify false and true with disjoint types. Here, different unresolved
polymorphic types O and R are given to the argument and result of each
method. Neither of these types may be linked to the type B of self, since in
general the objects instantiating self, other and result have unconnected types.

The strangeness of this indicates that perhaps Smalltalk's treatment of False
and True as subclasses of a Boolean class is somewhat forced. The class
design does not follow the normal pattern of recursion in the self-type, in the
way that an integer subrange type is structurally homomorphic with the base
integer type. It would be more straightforward to assert that False and True
were plain subtypes of Boolean, since they partition a value set {false, true}. In
this case Smalltalk would have to admit dispatching on individual values as well
as on types, since the inherited methods would all be in the monomorphic type
Boolean. This gives another reason why a primitive if() construction should be
preferred for testing the values of a type, seeing this as distinct from the kind of
dynamic dispatch obtained through polymorphism.

A Language with Flow 175

Nonetheless, the polymorphic model will be developed here to its conclusion.
Figure 9.11 illustrates the alternative implementations of methods in the
#FALSE[] and #TRUE[] classes. Each class introduces a single values
element, which is identified with its most specific class. Again, this style relies
on unresolved polymorphic type variables to preserve a nondeterminism in the
methods' argument and result types.

class #FALSE [F] values {false} uses #BOOLEAN [O], #BOOLEAN [R]
(self : @F) is (super : #BOOLEAN [F]) with
{ private

value : F (false);
 public

not : R { true }
and (other : O) : R { self }
or (other : O) : R { other }
implies (other : O) : R { true }

}

class #TRUE [T] values {true} uses #BOOLEAN [O], #BOOLEAN [R]
(self : T) is (super : #BOOLEAN [T]) with
{ private

value : T (true);
 public

not : R { false }
and (other : O) : R { other }
or (other : O) : R { self }
implies (other : O) : R { other }

}

Figure 9.11: True and False Classes

At first, the reader may think it legitimate to narrow the types of redefined
methods down to a single class, or type. For example, the #FALSE[] method
for not() returns a value whose type is apparently (t  TRUE [t]), or even the
simple type TRUE. This would allow the static propagation of type information
leading to static binding and the possible compile-time evaluation of certain
boolean expressions. This may not easily be done, however, since the effect
would be to make the formal translations of the redefined signatures type
incompatible with the methods they replace. Methods with unresolved return-
values are formally protected by an extra type abstraction. This is incompatible
with a method whose return-value has a simple type, since the argument list of
one method is longer than the other.

Example translations of the #BOOLEAN[] method signatures for and() and or()
show how the uses declaration is really a shorthand for the introduction of
multiple type parameters inside the scope of the self recursion variable:

A Language with Flow 176

uses #BOOLEAN [O], #BOOLEAN [R]
{... and (other : O) : R {}

or (other : O) : R {}
...} 

{... and  (o  BOOLEAN [o]).(r  BOOLEAN [r]).
(other : o). :r,

or  (o  BOOLEAN [o]).(r  BOOLEAN [r]).
(other : o). :r,

...}

in which it is clearer how unresolved polymorphic type variables have a scope
restricted to individual methods. The uses keyword introduces as many
variables as is necessary to preserve the distinct types required within a single
method. In the formal translation, these become type arguments to the
methods concerned.

The signatures of the redefined and() and or() methods in the #FALSE[] and
#TRUE[] classes must respect the two inserted type arguments to remain type
compatible with those of the parent class #BOOLEAN[]. The translation of the
class #TRUE's and() and or() methods is given by:

uses #BOOLEAN [O], #BOOLEAN [R]
{... and (other : O) : R { other }

or (other : O) : R { self }
...} 

{... and  (o  BOOLEAN [o]).(r  BOOLEAN [r]).
(other : o). other:r,

or  (o  BOOLEAN [o]).(r  BOOLEAN [r]).
(other : o). self:r,

...}

in which it is clearer how the method signatures are compatible. As it stands,
this appears to lose type information, since in and(), other and the result should
have the same type; likewise in or(), the result should have the type of self. For
the sake of dynamic binding, the same argument pattern as #BOOLEAN[]'s
methods must be retained in both child classes. In cases of static binding, the
system may optimise by distributing known types to type-arguments before run-
time. This achieves the benefit that was desired above: some boolean
expressions may be precomputed. In the remaining cases, the system must
distribute the unknown type  and then check the type of the result at run-time.

9.2.4 Selection Methods

Further methods may now be supplied for the #BOOLEAN[] class to perform
selection by dynamic binding. The following examples seek to preserve a pure
object-oriented style and at the same time disallow the passing of arbitrary
closures as arguments. In consequence, any selection method must accept an
object and two further arguments which are methods owned by that object. The

A Language with Flow 177

idea is for one method to be invoked in the true-case and the other in the false-
case. These will be called the then and else methods. On the assumption that
these methods both return a result, the ifTrueFalse() selection method may be
written with the type signature shown in figure 9.12:

class #BOOLEAN [B] uses #OBJECT [O], #OBJECT [R], ...
{...

ifTrueFalse (object : O; then : @(O : R); else : @(O : R)) : R {}
....}

class #FALSE [F] uses #OBJECT [O], #OBJECT [R], ...
{...

ifTrueFalse (object : O; then : @(O : R); else : @(O : R)) : R
{ object.else }

....}

class #TRUE [T] uses #OBJECT [O], #OBJECT [R], ...
{...

ifTrueFalse (object : O; then : @(O : R); else : @(O : R)) : R
{ object.then }

....}

Figure 9.12: A Selection Method

The method ifTrueFalse() accepts any kind of object, so long as the following
then and else arguments are methods having the signature O  R, and it
returns a result in the same type R. The types of arguments that are methods
are represented using the conventions:

@(T, P, Q : R) - method of class T accepting P and Q, returning R

in which the first argument must be the class owning the method. The method
ifTrueFalse() is applied in the following way:

... (3 < 4).ifTrueFalse(3, isLesser, isGreater);

This has the advantage of a strong type constraint on the methods isLesser()
and isGreater(), which must both have the type: INTEGER  UNIT. However,
it has the disadvantage of requiring anecdotal methods for printing messages in
the class #INTEGER[], or one of its ancestors (figure 9.13).

isLesser : J ...method of #INTEGER[J]
{ out.put(self.asString, \space);

out.put("is smaller", \endline);
self

}

Figure 9.13: Trivial Dispatched Method

A Language with Flow 178

An alternative approach would be to provide a hierarchy of #CONTEXT[]
classes, whose instances were passed as arguments to ifTrueFalse() and
which supplied varieties of alternate method pairs to be used in response to
boolean selection. An instance of some #CONTEXT[] subclass would behave
like an activation record, encapsulating a number of values. This would be
similar to binding values in a closure, but with the advantage that the record of
values followed some explicit class pattern.

The necessary constraints on the type returned by primitive if() were described
above. Identical conditions must apply to any type returned by the ifTrueFalse()
method and similar selection methods. Either all branches must return the
same static type, or the result of ifTrueFalse() must be typed in the least upper
F-bound of all types returned in each branch.

9.2.5 Mapping Methods

Mapping and filtering methods may be provided for the collection classes in a
similar vein. Mapping transforms iteration into recursion, using methods with
names like collect() and select() in the Smalltalk idiom. Figure 9.14 illustrates
the pattern for a homogeneous #LIST[] class with a mapping method collect().

class #LIST [L[O]] uses #OBJECT [O], #OBJECT [R]
(self : @L[O]) is (super : #SEQUENCE [L[O]]) with
{ private

head : O;
tail : @L[O];

 public
head : O { head }
tail : @L[O] { tail }
add (elem : O) : @L[O]
{ cell : @L[O];

cell.create(elem, self)
}
collect : (fun : @(O : R)) : @L[R]
{pattern of a mapping method
}

...}

Figure 9.14: A Homogeneous List with Mapping

The higher-order semantic translation is used, in which L stands for a type
function. The list is homogeneous, since all type applications in self are of the
form L[O]. However, mapping over a list typically generates a list like self, but
having a different parameterisation. The unpredetermined nature of the
resulting element type is indicated by introducing an unresolved polymorphic
type R which is bound by type application when the mapping method is
invoked.

Again, to preserve object-oriented purity, the functions mapped over collections
must be methods owned by the particular type of element against which they

A Language with Flow 179

are invoked. A mapping method collect() for homogeneous lists typed L[O]
should accept a transformer method typed O  R owned by elements of type O
and return a list of type L[R] collecting the results typed R of applying the
transformer to each element of self. The type of collect() is therefore:

collect : (s <: LIST [s]).(t  OBJECT [t]).
(r  OBJECT [r]).s[t]  ((t  r)  s[r])

The body of the method collect() has two cases: it should halt if the list is
empty and continue mapping otherwise. The only way to do this in a purist
dynamic dispatching manner is to have auxiliary functions that are passed to a
method like ifTrueFalse(). The collect() method breaks down into two auxiliary
methods to handle the trivial and recursive cases of mapping, illustrated in
figure 9.15:

collect : (fun : @(O : R)) : @L[R]
{ self.isEmpty.ifHalt(self, fun, collectEnd, collectMore)
}

collectEnd : (fun : @(O : R)) : @L[R] ...trivial version
{ link : @L[R] ...returns void alias
}

collectMore : (fun : @(O : R)) : @L[R] ...recursive version
{ self.tail.collect(fun).add(self.head.fun) ...adds one element
}

Figure 9.15: Trivial and Recursive Mapping Cases

The main collect() method tests for the emptiness of a list and dispatches one
out of collectEnd() or collectMore() on the boolean result. Here, the internal
dispatching method is given the name ifHalt(), since it decides whether to
terminate the mapping, or continue. It is different from ifTrueFalse() in that it
accepts the list object, the element transformer method and two alternative list
mapping methods to dispatch. The type signature for ifHalt() is involved, since
it accepts as arguments methods which themselves accept method arguments.
Essentially, the alternative #FALSE[] and #TRUE[] versions of ifHalt() simply
invoke collectMore() and collectEnd() respectively, as illustrated in figure 9.16.

Mapping methods should really be defined for a more general class of
collections than the #LIST[] class shown here, since this would allow iteration
over other types of object to be handled in the same way. In this case, the
#BOOLEAN[] classes would depend on a polymorphic #COLLECTION[C[O]],
whose type would be resolved every time mapping were invoked.

A Language with Flow 180

class #FALSE [F] uses #OBJECT [O], #OBJECT [R], #LIST [L[O]]...
{... ifHalt (list : L[O]; fun : @(O : R);

then : @(L[O], @(O : R) : L[R]);
else : @(L[O], @(O : R) : L[R])) : L[R]

{ list.else(fun) }
....}

class #TRUE [T] uses #OBJECT [O], #OBJECT [R], #LIST [L[O]]...
{...

ifHalt (list : L[O]; fun : @(O : R);
then : @(L[O], @(O : R) : L[R]);
else : @(L[O], @(O : R) : L[R])) : L[R]

{ list.then(fun) }
....}

Figure 9.16: Testing for Termination

The solution given above respects the role played by boolean classes in
determining whether mapping should continue or halt. Yet another way of
achieving the dynamic dispatching effect would be to partition a #LIST[] class
into #EMPTY_LIST[] and #NONEMPTY_LIST[] variants, adopting an
approach similar to dynamic reclassification (see chapter 3). The base #LIST[]
class would defer the collect() method; the empty child would define the trivial
terminating version and the nonempty child would define the recursive version.
This bypasses the boolean classes at the expense of introducing dynamic
typing for all #LIST[] variables, which must be considered a serious loss.

Although this approach succeeds in providing iteration through pure dynamic
dispatching, the increased levels of type complexity, class dependency and
numbers of auxiliary methods make it obvious why selection and iteration
primitives are much to be preferred. The development of the dynamic
dispatching and mapping model has been fruitful, since it has helped to reveal
the true underlying complexity of the model used by Smalltalk.

9.3 Scope and Type Nondeterminism

Finally, some areas of program nondeterminism are addressed in which
selection plays a role. Apart from the general introduction of polymorphism
through parameterised structures, choice-points in algorithms often give rise to
the creation of objects having different types, leading to dynamic binding later.
In a slightly different vein, the freedom to allocate objects in different ways
requires careful managment of storage. On various occasions, the system
needs to recover the formal type and the kind of storage used for objects.

9.3.1 Scope Nondeterminism

Two special logics are used by the system model: one describes the created
states of variables, the other describes the closed set of types at a dynamic

A Language with Flow 181

dispatching site. For example, the system destroy() method ensures that an
alias variable was allocated on the heap before attempting to deallocate it:

destroy
{ if (self.scope)

{ heap : self.deallocate; } ...primitive system instruction
}

Figure 9.17: Testing Storage Allocation

The method scope() is part of the system model and shadows a primitive
operation for inspecting flag bits set in pointers. The set of created states is the
type ALLOCATION = {static, void, stack, heap, store}. All ordinary variables are
static, whereas alias variables may be void references, or refer to data
allocated on the stack or on the heap. The store value represents a forward-
looking extension to handle objects allocated on remote or persistent storage
devices.

The alias mechanism is designed to be as flexible as possible, yet secure.
Alias variables with heap or stack allocation must be treated carefully. Clearly,
the system cannot decide for itself when to deallocate heap data - it has an
unpredetermined extent and may legally be passed back outside the scope in
which it was created. Instead, the primitive destroy() instruction is made
available as a method for the sake of those classes whose instances need to
clean up internal dynamic data storage. As described in chapter 7, create() and
destroy() are called automatically when static data comes into scope and goes
out of scope, in order to handle the allocation and deallocation of internal
dynamic data storage, in the manner of C++ constructors and destructors.

The reasons for marking stack aliases apart is so that the system can keep
track of the scope of the aliased data. It is reasonable to expect a compile-time
checker to rule out attempts to return aliases to locally-declared data storage,
but perhaps unreasonable to expect it to trace all alias assignments and
argument passing with a view to determining when the aliased data goes out of
scope. This would require some kind of global flow analysis. Instead, an
integer counter is attached to alias variables, whose value is initially zero,
representing the number of nested levels of scope in which the alias is being
used relative to the scope in which it was bound to the static data. Passing
data by reference to a method increments the counter in the method's alias
argument and decrements the counter in the method's alias return value. Alias
assignment copies the scope counter. In this way, accessing aliased stack
data is made contingent on having a non-negative scope counter. To avoid
inefficiency, this check is made once when methods return alias values to their
callers.

A Language with Flow 182

9.3.2 Type Nondeterminism

Subject to certain conditions, objects of different types may be created or
selected within different branches of if() and returned to the caller. Such an
expression is only correctly typed if there exists a least upper bound on all the
types returned. This means a polymorphic F-bound which all the types
returned in each branch must satisfy. Fortunately, the class denoting the least
upper bound is typically indicated in the calling expression:

... uses #GRAPHIC [G] ...

newGraphic (sel : CHARACTER) : @G
{ c : @CIRCLE;

s : @SQUARE;
if (sel)
{ 'c' : c.create ...return a CIRCLE

's' : s.create ...return a SQUARE
... }

}

Figure 9.18: Returning Multiple Types

Here, the type of if() is also the type of the function newGraphic(). It creates an
instance of either a CIRCLE or a SQUARE, depending on the selection-value
supplied. The function's designer indicates the return type to be G, a
parameter which stands for the polymorphic class (  GRAPHIC []) by
virtue of some introductory declaration: uses #GRAPHIC [G]. Provided each
branch returns a type satisfying the bound, the compiler will accept this as the
return type of if(). As it stands, the function is not yet type-correct, since there
are missing branches for 254 other CHARACTER values than 'c' and 's',
indicated by the ellipsis. To avoid rejection, a default selection case must be
supplied. It is more usual to design this kind of function using g : @G, a
polymorphic local alias variable parameterised by the same type as the result:

... uses #GRAPHIC [G] ...

newGraphic (sel : CHARACTER) : @G
{ g : @G;

if (sel)
{ 'c' : g[CIRCLE].create ...return a CIRCLE

's' : g[SQUARE].create ...return a SQUARE
else : g ...void object

}
}

Figure 9.19: Instantiating Returned Types

and to create objects of specific types in different branches by type-application,
indicated by the brackets g[]. Each local alias variable in the old design would

A Language with Flow 183

be implemented as one smart pointer1 on a stack frame. Clearly, the new
design reduces this to a single smart pointer, wasting no space. The default
selection case here returns a void alias, to be tested by the caller.

9.3.3 Run-Time Type Recovery

The caller of newGraphic() cannot statically determine the exact type of object it
receives. This is one case where polymorphism remains unresolved until run-
time and gives rise appropriately to situations where dynamic binding is used to
select methods. Programs sometimes need to recover the exact type of an
object at run-time, usually in situations where the result of a polymorphic
function is assigned to a variable with a monomorphic type.

... uses #GRAPHIC [G] ...

addGraphic (g : @G) ...polymorphic #GRAPHIC[]
{ if (g.type)

{ CIRCLE : circles.add(g); ...recovered as CIRCLE
SQUARE : squares.add(g); ...recovered as SQUARE

... }
}

Figure 9.20: Run-Time Type Recovery

Consider a #DRAWING[] class, which allows the addition of polymorphic
#GRAPHIC[] picture elements using the exported function addGraphic(),
illustrated in figure 9.20. For efficiency's sake, it stores picture elements in
homogeneously-typed collections of elements. To do this, it must recover the
type of each picture element added. Our language provides run-time type
identification through the system function type() which returns the type of a
variable. This may be tested in selection expressions. In figure 9.20, the
guards on sub-expressions are the names of types. The addGraphic() method
uses this information to dispatch one or other branch appropriately.

It is generally difficult to think of situations where type recovery is preferable to
dynamic binding. Meyer has rightly campaigned against typecase()-like
statements in object-oriented languages [Meye88, p24], since this fixes the
number of types on which dispatching is performed, whereas dynamic binding
leaves this open. Nonetheless, languages without explicit run-time type
identification offer type recovery by more devious means. Type recovery is
performed in C++ using the dangerous technique of downcasting in the
inheritance hierarchy [Meys92, p135-142]; elsewhere programmers use shared
strings as run-time type tags. In Eiffel, type recovery is handled through the
reverse assignment attempt, in which the target of assignment has a more
restricted static type than the source [TW95, p355-356]; however, if the

1 This is a primitive pointer with the flag bits and scope counter described above.

A Language with Flow 184

dynamic types do not conform at run-time, then the result of a reverse
assignment is a void reference. The reference must be tested before further
operations can be carried out on the variable, making this a clumsy way to
perform type recovery. In our language, the system model already has the
facility to inspect types (this is needed for dynamic dispatch), so there is no
reason not to offer this to the programmer, with appropriate health warnings. A
technique for modelling values with type tags in the -calculus is given in
Appendix 1.

This chapter has considered two alternative mechanisms for handling flow-
control. One of the main determining factors in preferring the primitive selection
model over the dynamic dispatching model was in order to simplify the typing
and binding issues. Our type model reveals how using dynamic dispatch to
handle flow control requires designing functions deliberately with large amounts
of unresolved polymorphism. This eventually proves less habitable than having
functions with simple or resolveable polymorphic types and admitting selection
primitives. A technique for recovering type was also presented. Type
propagation is an important concern in our language, since polymorphic
expressions may be used in a context where static type information is available.
The resolution of polymorphism is considered in more detail in the following
chapter, as part of a general optimisation process.

