
Chapter 9

A Language with Flow

_______________________________________________________________

Here, explicit and implicit models of flow control are contrasted. 

The former uses primitive selection and iteration constructs, in the manner of 
C++, whereas the latter relies on dynamic binding alone, in the manner of 
Smalltalk.  Primitive if() and while() constructs are introduced, for which models 
and types may be found in our basic calculus.  It is then shown how selection 
can be replaced by dynamic binding and iteration by mapping operations, at the 
cost of an increase in type complexity.  Selection plays a role in storage and 
type recovery.  Due consideration is given to implementation support issues.

_______________________________________________________________

9.1 Selection and Iteration

No language is complete without a set of conditional and branching statements.  
Control flow is handled in widely different ways in current object-oriented 
languages.  Whereas C++ provides three branching constructs:  if, switch and 
?: and three looping constructs:  for, while and do [ES90, Stro91], partly to 
maintain back-compatibility with C and partly because its whole philosophy is to 
offer the programmer a wide range of stylistic options, Eiffel strives after 
minimalism with binary if, multibranch inspect and a single general loop
[Meye92].  Meyer argues strongly against multibranch selection in [Meye88, 
p24, 35], recognising that this is often used in situations where dynamic binding 
is more appropriate.  A case-like statement fixes the number of branches and 
prevents code extension, whereas dynamic binding allows unforeseen types of 
behaviour to be added.
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9.1.1 Primitive Selection

In chapter 7, an n-place compound expression was translated into a binder 
applied to n expressions.  It is possible to model an n-place selection using a 
similar technique.  Here, the lazy evaluation of -calculus expressions is 
assumed.  Using an (n+1)-place expression binder, it is possible to delay the 
evaluation of n sub-expressions, subject to their selection from the closure 
using a projection function.  An example with boolean logic and binary selection 
will show this:

if (x > y) then x else y   (a.b.f.(f a b)  x y (x > y))  
  (f.(f x y) (x > y))

Boolean switching involves 2-place selection, so the sub-expressions x and y of 
the selection are bound with a 3-place binder.  The last abstraction f delays 
the release and evaluation of any sub-expression.  This is exactly the same as 
the tuple-building strategy we used in chapter 3.  There, values were released 
from tuples by applying the tuple to a projection function.  The release of x or y 
depends on the outcome of the test (x > y).  Assuming this test returns a 
boolean value, true and false should then be encoded as the first and second 
2-place projections:

true = a.b.a false = a.b.b

This approach can be generalised to handle ternary and quaternary logics.  For 
example, a 3-place selection is given by:

(a.b.c.f.(f a b c)  p q r)    f.(f p q r)

where p, q and r are sub-expressions.  To release the second sub-expression, 
this closure must be applied to the second 3-place projection:

(f.(f p q r)  a.b.c.b)    (a.b.c.b  p q r)    q

In this model, the select function is implicit, since values are released according 
to the structure of the projections.  The n different n-place projections form the 
elements of an n-valued logic.

9.1.2 Binary Valued Logic

Our primitive branching construct is based on this idea.  Branching of a general 
nature is handled using if(), where the tested expression in parentheses is 
followed by a tagged block.  A tagged block is a compound expression, made 
up of sub-expressions, each of which is tagged with a symbolic value from a 
logic.  The tag identifier is separated from the rest of the sub-expression by a 
colon:
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if (x > y)
{ true  :  out.put( "x is greater", \endline);

false  :  out.put( "x is lesser or equal", \endline);
}

The tag represents a guard, or entry condition to the sub-expression.  Only one 
of the sub-expressions (at most) will be executed.  If none of the guards is 
satisfied, if() terminates and control passes to the next expression.  For 
convenience's sake, we do not require all branches to be present, nor to appear 
in any particular order.  Single-branch tests are therefore possible using a 
single guard.  Where branches are absent, an implicit translation into the form 
of an ordered n-place selection is assumed, in which the missing branches are 
restored as tagged sub-expressions returning the trivial value.

if (x = 0)
{ true  :  if (y = 0)

{ true  :  out.put( "both x and y are zero", \endline); 
false  :  out.put( "x only is zero", \endline); 

}
false  :  if (y = 0)
{ true  :  out.put( "y only is zero", \endline); 

false  :  out.put( "neither x nor y are zero", \endline); 
}

}

Figure 9.1 Binary Decision Tree

A tagged block differs from a normal compound expression in that it represents 
a selection rather than a sequence.  Whereas all expressions in a sequence 
are evaluated, only one is evaluated in a selection.  The idea of tagged blocks 
is appealing, since this avoids the accretion of reserved words in the style:  if ... 
then ... else; and yet marks out each sub-expression according to the 
dispatching value.  Decision trees like that in figure 9.1 produce clearly nested 
structures in which the combinations of true and false outcomes are more 
clearly flagged for each terminal branch than in some languages.  This layout is 
only inconvenient in the case of repeated else ... if style conditions.  Nested 
decision trees can sometimes be avoided by dispatching on a different logic 
having more than the binary true and false values of boolean logic.

9.1.3 Multivalued Logics

The use of if() may be extended to ternary and quaternary logics, since it is not 
restricted to binary selection.  Richer multivalued logics are theoretically 
interesting in their own right, but also hide behind some common programming 
idioms.  Consider the three-valued strcmp() from C which returns +1, 0 or -1 
depending on the total lexical ordering of two strings.  This is striving after a 
ternary logic.  Figure 9.2 illustrates an intuitionistic logic having a third value fail
meaning that truth or falsity is not proven.  This is more flexible than the 
negation-as-failure strategy adopted in most languages.  
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if (accused.guilty)
{ true  : { accused.jail(sentence);

accused.pay(legalFees); 
}

  false  : { accused.free;
plaintiff.pay(legalFees);

}
  fail  : { accused.free;

accused.pay(legalFees / 2);
plaintiff.pay(legalFees / 2);

}
}

Figure 9.2: Ternary Decision Tree

In figure 9.3, it is probably more useful to think of the general comparison 
operator <?> as mapping into a four-valued space since this encompasses all 
the relationships between elements of partial and total orders.  Dispatching on 
multi-valued logics often eliminates the need for nested decision-trees and this 
makes the flow of control easier to follow.

if (setX <?> setY)
{ lesser  :  out.put( "setX is included in setY", \endline); 

greater  :  out.put( "setX includes setY", \endline); 
equal  :  out.put( "setX and setY are isomorphic", \endline); 
unlike  :  out.put( "setX and setY are incommensurable", \endline);

}

Figure 9.3:  Quaternary Decision Tree

9.1.4 General Selection

It should be clear from these examples that if() is exactly like a multi-branch 
selection function, such as case() in Pascal.  To give an extra degree of 
flexibility in those rare cases where arbitrary multi-branching is desired, multiply-
tagged sub-expressions are provided and also a default tag else for marking a 
sub-expression to execute if no other guard is satisfied:

isVowel : BOOLEAN ...in class CHARACTER
{ if (self)

{ 'a', 'e', 'i', 'o', 'u'  :  true 
else  :  false 

}
}

Figure 9.4:  Selection with Default

In terms of the primitive model, multiply-tagged sub-expressions with p tags are 
considered shorthand for an expansion into p branches containing identical 
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sub-expressions.  The default expression with the else tag is likewise 
considered a shorthand for a multiply-tagged expression having all the 
remaining n - p tags not present in any other tagged sub-expression, where n
is the arity of the logic.

Techniques exist for optimising binary branching and multi-branch selection 
where all branches are ordered according to their dispatching value.  Any type 
which has a finite, enumerable set of values may be used as the dispatching 
logic of if().  This allows boolean, ternary, quaternary, character and other 
subrange types to be used.  It is anticipated that enumerations will often be 
used for the logics given to if(); compilers will therefore be able to exploit the 
ordering of such values to re-arrange the branches into a logical dispatching 
order.

9.1.5 Selection and Type

Since all expressions have a value in our language, the type of a selection must 
also be considered.  The most important principle to observe is that all 
branches of an if() must return the same type or class.  In most of the examples 
given above, branches of if() returned no value, which is interpreted in our 
semantics as the element of the trivial type UNIT.  However, the example of the 
isVowel() method illustrates a quite common case where different values from 
the same type are returned in different branches.  An important consequence of 
our rules for interpreting selections with missing branches is that they are only 
correctly typed if they return no value.  This is because automatic completion 
would restore other branches having the UNIT type.  The else guard is 
therefore often useful in covering the remaining cases of a selection which must
return a typed value.  

9.1.6 Primitive Iteration

Primitive iteration is modelled in the -calculus by recursive functions with a 
selection that tests for continuation:

while (x > 0)  (  f.x.if (x > 0) 
{ g(x); then (y.z.z g(x) f(x-1))

x := x-1; } else unit)

Here, a while() loop tests the value of x and performs some computation g(x) as 
long as x > 0.  We transform the loop into a recursive function f(x) using the 
technique of abstracting over the point of recursion f and fixing with .  

The function takes as its argument the iteration value x and the body of f() is a 
selection testing x > 0, which is assumed to be modelled in the style presented 
above.  The selection has two cases:  the then branch is the recursive 
continuation of f(); the else branch terminates with the trivial value.  The 
continuation is a sequence, modelled using a 2-place binder, the first sub-
expression of which is g(x) and the second calls f() recursively with the new 
value for x.  Since lazy evaluation is assumed elsewhere for selection, we must
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insist on eager evaluation for sequences, otherwise g(x) is not forced to be 
evaluated.  In a fully lazy -calculus, the body of the while() would have to be 
constructed as a single expression g(x) returning the next value for x.

A simple binary selection is used to return control to the entry-point of the body 
of the iteration, or to signal termination.  There is no theoretical reason why 
multi-branch selection should not be used.  This gives rise to the curious 
possibility of loops that have more than one continuation condition.

9.1.7 General Iteration

General iteration is handled in our language using while().  The tested 
expression appears in parentheses, followed by a tagged block.  Continuation 
of the loop can be made contingent on any single condition, expressed by a 
logical tag:

while (in.atEnd)
{ false  :  { in.get(word, \separator);

out.put( "Word read from input was:", \space);
out.put(word, \endline);
}

}

Figure 9.5:  Single Continuation Condition

Figure 9.5 illustrates how testing for false is sometimes clearer than inverting 
the truth condition of the test.  Alternatively, continuation can be made 
contingent on a number of conditions, illustrated in figure 9.6:

while (table.at(index) <?> word)
{ lesser  :  index := index + 1;

equal  :  { out.put( "Entry found at:", \space);
out.put(index.asString, \endline);
index := index + 1;
}

}

Figure 9.6:  Multiple Continuation Conditions

Since any logic may be used, not just binary boolean logic, it is possible to 
specify more than one guard in the tagged block.  In this case, testing for 
continuation is combined with branching within the body of the loop.  The above 
example will continue to iterate so long as the entry found in the table is 
lexically lesser or equal to the tested word string; and will terminate if the 
comparison <?> returns greater or unlike.  The index is incremented in each of 
the tagged sub-expressions, to ensure that a different table position is searched 
on each iteration, no matter which sub-expression was executed last.  Care 
should be taken to ensure that loops terminate.  If all possible outcomes 
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of a selection are covered in the guards, then a loop will not terminate.  A 
while() that contains an else guard will loop forever.  Complementary, or
symmetrical updates to the iteration variables will sometimes result in non-
termination:

while (table.at(index) <?> word)
{ lesser  :  index := index + 1;

greater  :  index := index -1;
}
out.put( "Entry found at:", \space);
out.put(index.asString, \endline);

Figure 9.7:  Semi-terminating Iteration

Here, if no entry for word is found in the table, the index will oscillate forever 
about the position where the word was expected.   This is simply bad 
algorithmic design, equivalent to the while not (state = found) style of 
programming in Pascal, and not a fault of our approach.  To combat unintended 
infinite loops, a compiler may issue warnings in two cases:  where all the values 
of the tested logic are found in the guards such that no exit-case is possible; 
and where no change is made to any of the objects participating in the test, for 
some guarded sub-expression.

9.1.8 Iteration and Type

The type of a while() expression is always UNIT; in other words, while() returns 
no value.  This is because the semantic interpretation of a missing guard is a 
tagged expression whose value is unit.  Since loops terminate when no guard is 
satisfied, the trivial value will always be returned.  Other guarded expressions 
catching the continuation cases are interpreted as sequences containing a 
recursive call to while(), which eventually will yield the trivial case upon 
termination.  To inculcate a sense of syntactic uniformity, good programming 
style will insist that the branches of a while() are written with the semicolon ";" 
terminating the final expression in each sequence.

9.2 Dynamic Dispatch and Mapping

Smalltalk provides no built-in primitives for control, replacing static branching 
instructions by dynamic dispatch [GR83].  Its Boolean subclasses True and 
False define opposite method responses for the single-branch ifTrue: and 
ifFalse: messages and the for the binary branching ifTrue:ifFalse: message.  
This behaviour is generalised through recursion with the whileTrue: and 
whileFalse: messages supporting loops.  The approach is based on a higher-
order treatment of code blocks as first-class objects, which are passed as 
arguments to the flow switching methods.  A block wraps up a compiled 
sequence of instructions whose evaluation is delayed until it receives a value
message.  Classes True and False simply evaluate alternate blocks in their flow 
switching methods.  Afficionados of this style admire it for its apparent object-
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oriented purity, since it needs no other primitive selection constructs to support 
it.  However, this claim to object-oriented purity can be challenged on the 
grounds that blocks hide other non-object-oriented mechanisms.

9.2.1 Selection and the Object Model

By seeking to take selection into the object model, Smalltalk inadvertently 
creates another concept which does not fit the object model.  For though both 
blocks and objects can be explained as closures, there are no constraints on 
the form of a block, whereas objects follow the pattern of a generator.  Blocks 
are instances of the class Context [Digi92]; however, they may be bound over 
any number of free variables and contain any number of sub-expressions.  The 
class Context could effectively model any other class, making blocks the most 
powerful and least disciplined concept in the language.  The first example in 
figure 9.8 illustrates the general pattern for selection in Smalltalk.  The blocks 
are the expressions in brackets [ ], which we can treat formally as closures 
whose evaluation is delayed by abstraction over a unit value:

| a b max |
a := 4 factorial. "selection blocks closed over a, b, max"
b := 5 squared.
a > b ifTrue: [max := a] ifFalse: [max := b].

"iteration block with leading block argument"

'Here we go again' select: [:char | char isVowel].

Figure 9.8: Selection and Mapping in Smalltalk

Furthermore, iterating methods require blocks to have one or two block 
arguments, iteration variables which bind to elements of collections when the 
block is evaluated.  The second example in figure 9.8 illustrates a block whose 
argument char is mapped over character elements of the leading character 
string.  Such a block is more like a free-standing function with a bound 
argument.  Free-standing functions conflict with the notion of methods.  Further 
problems arise in Smalltalk through blocks having dynamic extent (they are 
allocated on heap memory) and dynamic scope, due to their sharing of non-
local variables [Wolc88]: consider the consequences of substituting object 
references for the local variables a, b and max above and then returning a 
block for later evaluation out of its defining context.  Our language insists on 
static scope and extent, for the sake of safety and memory management. 

Smalltalk iterates by mapping closures over elements of collections.  We have 
suggested techniques for restricting mapped functions to existing methods in an 
earlier project [Blac92].  Here, objects may only access the surrounding context 
through an activation record passed to the method, or through call-back to the 
object driving the iteration.  This works well, but is strictly less expressive than 
allowing arbitrary closures.  A further drawback is the need to return to library 
classes to add new mapped methods destined for use in a particular 
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application; this breaks the principle of closed modules.  In any case, the 
particular mapping or filtering operation required by the application does not 
depend in general on the class of element, but on some higher design.  
Recognising this, many advocate the design of special-purpose iterator classes 
[GHJV95] which control access to collections.

9.2.2 Integrating with Primitive Selection

Figure 9.9 illustrates a simple #BOOLEAN[ ] class, shadowing the enumerated 
values {false, true} and designed using our primitive if().  It follows the normal 
pattern of a recursive type, which is contrasted later with figure 9.10.

class #BOOLEAN [B]  values {false, true}
(self : @B) is (super : #OBJECT [B]) with
{  private

value : B (false);
   public

not : B
{ if(self) { true : false  false : true }
}
and (other : B) : B
{ if(self) { true : other  false : false }
}
or (other : B) : B
{ if(self) { true : true  false : other }
}
implies (other : B) : B
{ if(self) { true : other  false : true }
}

}

Figure 9.9: A Boolean Class using Primitives

The values keyword notifies the compiler that the special symbols false and 
true are to be treated as self-identifying instances of the #BOOLEAN[ ] class.  A 
compiler may choose any appropriate physical representation for enumerated 
values, such as a short bit-pattern, or an integer.  Formally, an enumeration is 
considered to list the set of constructors for a class; in this view false and true
are functions creating instances of the class.  The keyword private introduces 
the single state variable storing the whole state of the class; by default this is 
initialised to false.  The keyword public introduces the exported methods of the 
#BOOLEAN[ ] class, which inherits further basic methods from #OBJECT[ ], 
since we wish to be able to assign, alias and copy BOOLEAN objects.  For 
simplicity's sake, our language maps boolean methods onto the primitive 
control flow function if() described above; this is as much for the sake of 
efficiency, since the current compilation model translates expressions in our 
language into a portable pseudo-assembler having primitive branching and 
iteration (see chapter 9).  Our compiler inlines all occurrences of these boolean 
methods, since they are never redefined; in turn the primitive if() is compiled to 
basic jump instructions in machine code.  
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This approach is to be commended for its efficiency.  Nonetheless, since our 
language's type system can handle methods passed as arguments, it would be 
possible to implement the Smalltalk method mapping approach in a statically 
scoped and bound way.  This is explored below.

9.2.3 Removing Primitive Selection

In order to support selection by dynamic binding, the #BOOLEAN[ ] class must 
be specialised into disjoint child classes #FALSE[ ] and #TRUE[ ].  The aim of 
this is to provide alternative versions of selection methods, such as 
ifTrueFalse(), in the child classes, which dispatch on the dynamic type of 
objects found in variables with the type (  BOOLEAN []).  This means 
that the parent #BOOLEAN[ ] class must provide deferred signatures for 
selection methods.  The typing of their signatures is complicated further by the 
need to preserve nondeterministic polymorphism:

class #BOOLEAN [B] uses #BOOLEAN [O], #BOOLEAN [R]
(self : @B) is (super : #OBJECT [B]) with
{  public

not : R {}
and (other : O) : R {}
or (other : O) : R {}
implies (other : O) : R {}

}

Figure 9.10: A Boolean Class for Dynamic Dispatch

Figure 9.10 illustrates the changes from the class presented in figure 9.9.  The 
class deliberately omits introducing values since the type system must now 
identify false and true with disjoint types.  Here, different unresolved 
polymorphic types O and R are given to the argument and result of each 
method.  Neither of these types may be linked to the type B of self, since in 
general the objects instantiating self, other and result have unconnected types.  

The strangeness of this indicates that perhaps Smalltalk's treatment of False
and True as subclasses of a Boolean class is somewhat forced.  The class 
design does not follow the normal pattern of recursion in the self-type, in the 
way that an integer subrange type is structurally homomorphic with the base 
integer type.  It would be more straightforward to assert that False and True
were plain subtypes of Boolean, since they partition a value set {false, true}.  In 
this case Smalltalk would have to admit dispatching on individual values as well 
as on types, since the inherited methods would all be in the monomorphic type 
Boolean.  This gives another reason why a primitive if() construction should be 
preferred for testing the values of a type, seeing this as distinct from the kind of 
dynamic dispatch obtained through polymorphism.  
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Nonetheless, the polymorphic model will be developed here to its conclusion.  
Figure 9.11 illustrates the alternative implementations of methods in the 
#FALSE[ ] and #TRUE[ ] classes.  Each class introduces a single values
element, which is identified with its most specific class.  Again, this style relies 
on unresolved polymorphic type variables to preserve a nondeterminism in the 
methods' argument and result types.  

class #FALSE [F]  values {false} uses #BOOLEAN [O], #BOOLEAN [R]
(self : @F) is (super : #BOOLEAN [F]) with
{  private

value : F (false);
   public

not : R { true }
and (other : O) : R { self }
or (other : O) : R { other }
implies (other : O) : R { true }

}

class #TRUE [T]  values {true} uses #BOOLEAN [O], #BOOLEAN [R]
(self : T) is (super : #BOOLEAN [T]) with
{  private

value : T (true);
   public

not : R { false }
and (other : O) : R { other }
or (other : O) : R { self }
implies (other : O) : R { other }

}

Figure 9.11: True and False Classes

At first, the reader may think it legitimate to narrow the types of redefined 
methods down to a single class, or type.  For example, the #FALSE[ ] method 
for not() returns a value whose type is apparently (t  TRUE [t]), or even the 
simple type TRUE.  This would allow the static propagation of type information 
leading to static binding and the possible compile-time evaluation of certain 
boolean expressions.  This may not easily be done, however, since the effect 
would be to make the formal translations of the redefined signatures type 
incompatible with the methods they replace.  Methods with unresolved return-
values are formally protected by an extra type abstraction.  This is incompatible 
with a method whose return-value has a simple type, since the argument list of 
one method is longer than the other.   

Example translations of the #BOOLEAN[ ] method signatures for and() and or()
show how the uses declaration is really a shorthand for the introduction of 
multiple type parameters inside the scope of the self recursion variable:
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uses #BOOLEAN [O], #BOOLEAN [R]
{... and (other : O) : R {}

or (other : O) : R {}
...} 

{... and  (o  BOOLEAN [o]).(r  BOOLEAN [r]).
(other : o). :r,

or  (o  BOOLEAN [o]).(r  BOOLEAN [r]).
(other : o). :r,

...}

in which it is clearer how unresolved polymorphic type variables have a scope 
restricted to individual methods.  The uses keyword introduces as many 
variables as is necessary to preserve the distinct types required within a single 
method.  In the formal translation, these become type arguments to the 
methods concerned.  

The signatures of the redefined and() and or() methods in the #FALSE[ ] and 
#TRUE[ ] classes must respect the two inserted type arguments to remain type 
compatible with those of the parent class #BOOLEAN[ ].  The translation of the 
class #TRUE's and() and or() methods is given by:

uses #BOOLEAN [O], #BOOLEAN [R]
{... and (other : O) : R { other }

or (other : O) : R { self }
...} 

{... and  (o  BOOLEAN [o]).(r  BOOLEAN [r]).
(other : o). other:r,

or  (o  BOOLEAN [o]).(r  BOOLEAN [r]).
(other : o). self:r,

...}

in which it is clearer how the method signatures are compatible.  As it stands, 
this appears to lose type information, since in and(), other and the result should 
have the same type; likewise in or(), the result should have the type of self.  For 
the sake of dynamic binding, the same argument pattern as #BOOLEAN[ ]'s 
methods must be retained in both child classes.  In cases of static binding, the 
system may optimise by distributing known types to type-arguments before run-
time.  This achieves the benefit that was desired above:  some boolean 
expressions may be precomputed.  In the remaining cases, the system must 
distribute the unknown type  and then check the type of the result at run-time.

9.2.4 Selection Methods

Further methods may now be supplied for the #BOOLEAN[ ] class to perform 
selection by dynamic binding.  The following examples seek to preserve a pure 
object-oriented style and at the same time disallow the passing of arbitrary 
closures as arguments.  In consequence, any selection method must accept an 
object and two further arguments which are methods owned by that object.  The 
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idea is for one method to be invoked in the true-case and the other in the false-
case.  These will be called the then and else methods.  On the assumption that 
these methods both return a result, the ifTrueFalse() selection method may be 
written with the type signature shown in figure 9.12:  

class #BOOLEAN [B] uses #OBJECT [O], #OBJECT [R], ...
{...

ifTrueFalse (object : O; then : @(O : R); else : @(O : R)) : R {}
....}

class #FALSE [F] uses #OBJECT [O], #OBJECT [R], ...
{...

ifTrueFalse (object : O; then : @(O : R); else : @(O : R)) : R
{ object.else }

....}

class #TRUE [T] uses #OBJECT [O], #OBJECT [R], ...
{...

ifTrueFalse (object : O; then : @(O : R); else : @(O : R)) : R
{ object.then }

....}

Figure 9.12: A Selection Method

The method ifTrueFalse() accepts any kind of object, so long as the following 
then and else arguments are methods having the signature O  R, and it 
returns a result in the same type R.  The types of arguments that are methods 
are represented using the conventions:

@(T, P, Q : R) - method of class T accepting P and Q, returning R

in which the first argument must be the class owning the method.  The method 
ifTrueFalse() is applied in the following way:

... (3 < 4).ifTrueFalse(3, isLesser, isGreater);

This has the advantage of a strong type constraint on the methods isLesser()
and isGreater(), which must both have the type:  INTEGER  UNIT.  However, 
it has the disadvantage of requiring anecdotal methods for printing messages in 
the class #INTEGER[ ], or one of its ancestors (figure 9.13).

isLesser : J ...method of  #INTEGER[J]
{ out.put(self.asString, \space);

out.put( "is smaller", \endline);
self

}

Figure 9.13:  Trivial Dispatched Method
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An alternative approach would be to provide a hierarchy of #CONTEXT[ ] 
classes, whose instances were passed as arguments to ifTrueFalse() and 
which supplied varieties of alternate method pairs to be used in response to 
boolean selection.  An instance of some #CONTEXT[ ] subclass would behave 
like an activation record, encapsulating a number of values.  This would be 
similar to binding values in a closure, but with the advantage that the record of 
values followed some explicit class pattern.

The necessary constraints on the type returned by primitive if() were described 
above.  Identical conditions must apply to any type returned by the ifTrueFalse()
method and similar selection methods.  Either all branches must return the 
same static type, or the result of ifTrueFalse() must be typed in the least upper 
F-bound of all types returned in each branch.

9.2.5 Mapping Methods

Mapping and filtering methods may be provided for the collection classes in a 
similar vein.  Mapping transforms iteration into recursion, using methods with 
names like collect() and select() in the Smalltalk idiom.  Figure 9.14 illustrates 
the pattern for a homogeneous #LIST[ ] class with a mapping method collect().  

class #LIST [L[O]] uses #OBJECT [O], #OBJECT [R]
(self : @L[O]) is (super : #SEQUENCE [L[O]]) with
{  private

head : O;
tail : @L[O];

   public
head : O { head }
tail : @L[O] { tail }
add (elem : O) : @L[O]
{ cell : @L[O];

cell.create(elem, self)
}
collect : (fun : @(O : R)) : @L[R]
{ ... ...pattern of a mapping method
}

...}

Figure 9.14: A Homogeneous List with Mapping

The higher-order semantic translation is used, in which L stands for a type 
function.  The list is homogeneous, since all type applications in self are of the 
form L[O].  However, mapping over a list typically generates a list like self, but 
having a different parameterisation.  The unpredetermined nature of the 
resulting element type is indicated by introducing an unresolved polymorphic 
type R which is bound by type application when the mapping method is 
invoked.  

Again, to preserve object-oriented purity, the functions mapped over collections 
must be methods owned by the particular type of element against which they 
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are invoked.  A mapping method collect() for homogeneous lists typed L[O] 
should accept a transformer method typed O  R owned by elements of type O 
and return a list of type L[R] collecting the results typed R of applying the 
transformer to each element of self.  The type of collect() is therefore:

collect : (s <: LIST [s]).(t  OBJECT [t]).
(r  OBJECT [r]).s[t]  ((t  r)  s[r])

The body of the method collect() has two cases:  it should halt if the list is 
empty and continue mapping otherwise.  The only way to do this in a purist 
dynamic dispatching manner is to have auxiliary functions that are passed to a 
method like ifTrueFalse().  The collect() method breaks down into two auxiliary 
methods to handle the trivial and recursive cases of mapping, illustrated in 
figure 9.15:

collect : (fun : @(O : R)) : @L[R]
{ self.isEmpty.ifHalt(self, fun, collectEnd, collectMore)
}

collectEnd : (fun : @(O : R)) : @L[R] ...trivial version
{ link : @L[R] ...returns void alias
}

collectMore : (fun : @(O : R)) : @L[R] ...recursive version
{ self.tail.collect(fun).add(self.head.fun) ...adds one element
}

Figure 9.15:  Trivial and Recursive Mapping Cases

The main collect() method tests for the emptiness of a list and dispatches one 
out of collectEnd() or collectMore() on the boolean result.  Here, the internal 
dispatching method is given the name ifHalt(), since it decides whether to 
terminate the mapping, or continue.  It is different from ifTrueFalse() in that it 
accepts the list object, the element transformer method and two alternative list 
mapping methods to dispatch.  The type signature for ifHalt() is involved, since 
it accepts as arguments methods which themselves accept method arguments.  
Essentially, the alternative #FALSE[ ] and #TRUE[ ] versions of ifHalt() simply 
invoke collectMore() and collectEnd() respectively, as illustrated in figure 9.16.

Mapping methods should really be defined for a more general class of 
collections than the #LIST[ ] class shown here, since this would allow iteration 
over other types of object to be handled in the same way.  In this case, the 
#BOOLEAN[ ] classes would depend on a polymorphic #COLLECTION[C[O]], 
whose type would be resolved every time mapping were invoked.
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class #FALSE [F] uses #OBJECT [O], #OBJECT [R], #LIST [L[O]]...
{... ifHalt (list : L[O];  fun : @(O : R);  

then : @(L[O], @(O : R) : L[R]);
else : @(L[O], @(O : R) : L[R]))  :  L[R]

{ list.else(fun) }
....}

class #TRUE [T] uses #OBJECT [O], #OBJECT [R], #LIST [L[O]]...
{...

ifHalt (list : L[O];  fun : @(O : R);  
then : @(L[O], @(O : R) : L[R]);
else : @(L[O], @(O : R) : L[R]))  :  L[R]

{ list.then(fun) }
....}

Figure 9.16:  Testing for Termination

The solution given above respects the role played by boolean classes in 
determining whether mapping should continue or halt.  Yet another way of 
achieving the dynamic dispatching effect would be to partition a #LIST[ ] class 
into #EMPTY_LIST[ ] and #NONEMPTY_LIST[ ] variants, adopting an 
approach similar to dynamic reclassification (see chapter 3).  The base #LIST[ ] 
class would defer the collect() method; the empty child would define the trivial 
terminating version and the nonempty child would define the recursive version.  
This bypasses the boolean classes at the expense of introducing dynamic 
typing for all #LIST[ ] variables, which must be considered a serious loss.

Although this approach succeeds in providing iteration through pure dynamic 
dispatching, the increased levels of type complexity, class dependency and 
numbers of auxiliary methods make it obvious why selection and iteration 
primitives are much to be preferred.  The development of the dynamic 
dispatching and mapping model has been fruitful, since it has helped to reveal 
the true underlying complexity of the model used by Smalltalk.

9.3 Scope and Type Nondeterminism

Finally, some areas of program nondeterminism are addressed in which 
selection plays a role.  Apart from the general introduction of polymorphism 
through parameterised structures, choice-points in algorithms often give rise to 
the creation of objects having different types, leading to dynamic binding later.  
In a slightly different vein, the freedom to allocate objects in different ways 
requires careful managment of storage.  On various occasions, the system 
needs to recover the formal type and the kind of storage used for objects.

9.3.1 Scope Nondeterminism

Two special logics are used by the system model:  one describes the created 
states of variables, the other describes the closed set of types at a dynamic 
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dispatching site.  For example, the system destroy() method ensures that an 
alias variable was allocated on the heap before attempting to deallocate it:

destroy
{ if (self.scope)

{ heap  :  self.deallocate; } ...primitive system instruction
}

Figure 9.17:  Testing Storage Allocation

The method scope() is part of the system model and shadows a primitive 
operation for inspecting flag bits set in pointers.  The set of created states is the 
type ALLOCATION = {static, void, stack, heap, store}.  All ordinary variables are 
static, whereas alias variables may be void references, or refer to data 
allocated on the stack or on the heap.  The store value represents a forward-
looking extension to handle objects allocated on remote or persistent storage 
devices.  

The alias mechanism is designed to be as flexible as possible, yet secure.  
Alias variables with heap or stack allocation must be treated carefully.  Clearly,
the system cannot decide for itself when to deallocate heap data - it has an 
unpredetermined extent and may legally be passed back outside the scope in 
which it was created.  Instead, the primitive destroy() instruction is made 
available as a method for the sake of those classes whose instances need to 
clean up internal dynamic data storage.  As described in chapter 7, create() and 
destroy() are called automatically when static data comes into scope and goes 
out of scope, in order to handle the allocation and deallocation of internal 
dynamic data storage, in the manner of C++ constructors and destructors.

The reasons for marking stack aliases apart is so that the system can keep 
track of the scope of the aliased data.  It is reasonable to expect a compile-time 
checker to rule out attempts to return aliases to locally-declared data storage, 
but perhaps unreasonable to expect it to trace all alias assignments and 
argument passing with a view to determining when the aliased data goes out of 
scope.  This would require some kind of global flow analysis.  Instead, an 
integer counter is attached to alias variables, whose value is initially zero, 
representing the number of nested levels of scope in which the alias is being 
used relative to the scope in which it was bound to the static data.  Passing 
data by reference to a method increments the counter in the method's alias 
argument and decrements the counter in the method's alias return value.  Alias 
assignment copies the scope counter.  In this way, accessing aliased stack
data is made contingent on having a non-negative scope counter.  To avoid 
inefficiency, this check is made once when methods return alias values to their 
callers.



A Language with Flow 182

9.3.2 Type Nondeterminism

Subject to certain conditions, objects of different types may be created or 
selected within different branches of if() and returned to the caller.  Such an 
expression is only correctly typed if there exists a least upper bound on all the 
types returned.  This means a polymorphic F-bound which all the types 
returned in each branch must satisfy.  Fortunately, the class denoting the least 
upper bound is typically indicated in the calling expression:

... uses #GRAPHIC [G] ...

newGraphic (sel : CHARACTER) : @G
{ c : @CIRCLE;

s : @SQUARE;
if (sel)
{ 'c'  :  c.create ...return a CIRCLE

's'  :  s.create ...return a SQUARE
... }

}

Figure 9.18:  Returning Multiple Types

Here, the type of if() is also the type of the function newGraphic().  It creates an 
instance of either a CIRCLE or a SQUARE, depending on the selection-value 
supplied.  The function's designer indicates the return type to be G, a 
parameter which stands for the polymorphic class (  GRAPHIC []) by 
virtue of some introductory declaration:  uses #GRAPHIC [G].  Provided each 
branch returns a type satisfying the bound, the compiler will accept this as the 
return type of if().  As it stands, the function is not yet type-correct, since there 
are missing branches for 254 other CHARACTER values than 'c' and 's', 
indicated by the ellipsis.  To avoid rejection, a default selection case must be 
supplied.  It is more usual to design this kind of function using g : @G, a 
polymorphic local alias variable parameterised by the same type as the result:

... uses #GRAPHIC [G] ...

newGraphic (sel : CHARACTER) : @G
{ g : @G;

if (sel)
{ 'c'  :  g[CIRCLE].create ...return a CIRCLE

's'  :  g[SQUARE].create ...return a SQUARE
else : g ...void object

}
}

Figure 9.19:  Instantiating Returned Types

and to create objects of specific types in different branches by type-application, 
indicated by the brackets g[ ].  Each local alias variable in the old design would 



A Language with Flow 183

be implemented as one smart pointer1 on a stack frame.  Clearly, the new 
design reduces this to a single smart pointer, wasting no space.  The default 
selection case here returns a void alias, to be tested by the caller.

9.3.3 Run-Time Type Recovery

The caller of newGraphic() cannot statically determine the exact type of object it 
receives.  This is one case where polymorphism remains unresolved until run-
time and gives rise appropriately to situations where dynamic binding is used to 
select methods.  Programs sometimes need to recover the exact type of an 
object at run-time, usually in situations where the result of a polymorphic 
function is assigned to a variable with a monomorphic type.  

... uses #GRAPHIC [G] ...

addGraphic (g : @G) ...polymorphic #GRAPHIC[ ]
{ if (g.type)

{ CIRCLE  :  circles.add(g); ...recovered as CIRCLE
SQUARE :  squares.add(g); ...recovered as SQUARE

... }
}

Figure 9.20:  Run-Time Type Recovery

Consider a #DRAWING[ ] class, which allows the addition of polymorphic 
#GRAPHIC[ ] picture elements using the exported function addGraphic(), 
illustrated in figure 9.20.  For efficiency's sake, it stores picture elements in 
homogeneously-typed collections of elements.  To do this, it must recover the 
type of each picture element added.  Our language provides run-time type 
identification through the system function type() which returns the type of a 
variable.  This may be tested in selection expressions.  In figure 9.20, the 
guards on sub-expressions are the names of types.  The addGraphic() method 
uses this information to dispatch one or other branch appropriately.

It is generally difficult to think of situations where type recovery is preferable to 
dynamic binding.  Meyer has rightly campaigned against typecase()-like 
statements in object-oriented languages [Meye88, p24], since this fixes the 
number of types on which dispatching is performed, whereas dynamic binding 
leaves this open.  Nonetheless, languages without explicit run-time type 
identification offer type recovery by more devious means.  Type recovery is 
performed in C++ using the dangerous technique of downcasting in the 
inheritance hierarchy [Meys92, p135-142]; elsewhere programmers use shared 
strings as run-time type tags.  In Eiffel, type recovery is handled through the 
reverse assignment attempt, in which the target of assignment has a more 
restricted static type than the source [TW95, p355-356]; however, if the 

                                           

1 This is a primitive pointer with the flag bits and scope counter described above. 
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dynamic types do not conform at run-time, then the result of a reverse 
assignment is a void reference.  The reference must be tested before further 
operations can be carried out on the variable, making this a clumsy way to 
perform type recovery.  In our language, the system model already has the 
facility to inspect types (this is needed for dynamic dispatch), so there is no 
reason not to offer this to the programmer, with appropriate health warnings.  A 
technique for modelling values with type tags in the -calculus is given in 
Appendix 1.  

This chapter has considered two alternative mechanisms for handling flow-
control.  One of the main determining factors in preferring the primitive selection 
model over the dynamic dispatching model was in order to simplify the typing 
and binding issues.  Our type model reveals how using dynamic dispatch to 
handle flow control requires designing functions deliberately with large amounts 
of unresolved polymorphism.  This eventually proves less habitable than having 
functions with simple or resolveable polymorphic types and admitting selection 
primitives.  A technique for recovering type was also presented.  Type 
propagation is an important concern in our language, since polymorphic 
expressions may be used in a context where static type information is available.  
The resolution of polymorphism is considered in more detail in the following 
chapter, as part of a general optimisation process.


