
Chapter 7

A Language with Objects

This chapter introduces a more concrete syntax for a "language with objects".

Apart from meeting the challenge of describing inherited object behaviour, our
model must incorporate more basic mechanisms for handling the important
properties of object identity and state. Here, object creation is described, using
constructors to initialise object state, which is protected using closure
techniques. The complex issue of constructor encapsulation and inheritance is
discussed. Object identity must also be preserved. The first part of a concrete
programming language is presented. Here, variables and assignment are
introduced, then simple and compound expressions and finally basic memory
management.

7.1 Object State

The theory of classification has been developed so far chiefly to account for the
observable behaviour of objects, described in terms of their evolving type under
polymorphic inheritance. Objects have other important properties, such as
identity and state (see chapter 2). It is possible, though long-winded, to model
an object-oriented program as a set of functions on a global environment which
is passed from function to function. The environment is a map from identifiers
to objects and the mutation of objects is modelled by replacing individual
maplets in the environment. This is described in more detail in Appendix 1.

7.1.1 Mutable State

A more direct approach is taken here that assumes an implicit translation into
the above form. In order to model the notion of object state, the pure functional
calculus is augmented with assignment, to reflect the fact that state can be

A Language with Objects 123

updated. As soon as the evaluation of expressions becomes dependent on
mutable state, the property of referential transparency is lost. Two similar-
looking expressions may yield different results. Equivalence up to isomorphism
under -reduction is therefore lost and expressions acquire a distinct identity.

Chapter 2 described a technique for enclosing state values inside functions. A
closure was introduced as a function defined within the lexical scope of certain
free variables. The effect of this is to give those free variables an indefinite
extent, but a scope local to invocations of the closure function. With the
addition of assignment, updates to state values may be modelled as
modifications to the bindings of hidden variables, whenever the closure is
invoked. For example, a simple point object may be defined:

let xstate = 3 in
 let ystate = 4 in

self.{x xstate, y ystate, identity self,
equal other.(xstate = other.x ystate = other.y),
move nx.ny.(xstate := nx; ystate := ny; self)}

which is closed over the variables xstate and ystate when it is defined. These
variables are not externally visible, since the point has the type:

.{x: INTEGER, y: INTEGER,
identity: , equal: BOOLEAN,
move: INTEGER INTEGER }

Access to the hidden variables xstate and ystate is handled through the public
methods x(), y() and modification is handled through the procedure move()
which uses assignment to update them. Note how, in the body of equal(), it is
possible to access self's xstate directly (since it is in scope) but that the other's
xstate must be obtained through the access method, since other is a separate
closure whose hidden variables are not seen from self. This provides a natural
encapsulation in the style of Smalltalk, in which all access to variables must be
controlled through methods [GR83], and Eiffel, in which access to the Current
object's public attributes has the semantics of read-only functions [Meye88].
The encapsulation rules of C++ presume to reveal other's hidden state at the
same time as self's; this defies any simple analysis.

7.1.2 Operations on Variables

Here, a more concrete syntax for a minimal typed object-oriented language is
gradually introduced. The language provides variables, which are amenable to
assignment and inspection. When making variable declarations, identifiers
precede type labels, which are prefixed by a colon in the Pascal style. Multiple
identifiers of the same type may be separated using a comma, which is just
considered a syntactic shorthand for the repeated longer form:

x, y : INTEGER; x : INTEGER; y : INTEGER;

A Language with Objects 124

All declarations are delimited with a semicolon, which has the force of the "dot"
denoting the start of the body of a -abstraction:

((x : INTEGER).(y : INTEGER).f(x, y)
0 0)

in which variables are bound to default values, here expressed by the
application to zero constants. The types of variables are bound throughout the
block f(x, y) in which they occur; however their values are subject to rebinding
through assignment.

Simple expressions are delimited with a semicolon and compound expressions
are delimited using braces, one to indicate the start of a compound and another
to act as a terminator:

{ x := 3;
y := 4; (a.b.c.c (x := 3) (y := 4) unit)

}

The semicolon is technically an expression-terminator rather than a separator.
This comes from explaining a compound expression as a projection function of
the form: a.b. ... n.n, an n-place expression binder that returns the last
bound value, here represented by the empty element of the trivial UNIT type.
The use of the semicolon is consistent with declaration, in that it introduces
another -abstraction which consumes another value in sequence. All
expressions have a value, including assignment, which returns the value
assigned. Values may be used in nested expressions, or ignored by
terminating with a semicolon. Compound expressions also have a value. This
is either the empty value or the final expression in a sequence that is not
terminated with a semicolon:

{ x := 3;
y := 4 (a.b.b (x := 3) (y := 4))

}

This semantics avoids having to introduce any special syntax for return-values
from method expressions; witness the body of the move() method above which
returns self and has the type of self.

7.1.3 Object Constructors

A rationale for the let ... in sugared syntax used above for binding state
variables inside closures may be provided by observing that it is equivalent to
the following -abstraction:

(xstate.ystate.(self.{x xstate, y ystate, identity self,
equal other.(xstate = other.x ystate = other.y),
move nx.ny.(xstate := nx; ystate := ny; self)}

3 4))

A Language with Objects 125

which is also the form of object construction. To generate a particular point
object, the free variables in the body of a generator must first be bound and
then the fixpoint taken. A natural way to do this is to define object constructor
functions which accept additional initialisation arguments and return the fixpoint
of a generator. The initialisation variables must occur free in the body of the
generator, as xstate and ystate do here. One way to achieve this is to extend a
typed object generator to abstract over its initialisation arguments:

point : (t POINT [t]).INTEGER INTEGER (t POINT [t])

point = (t POINT [t]).
(xstate: INTEGER).(ystate: INTEGER).(self: t).

{x xstate, y ystate, identity self,
equal (other: t).

(xstate = other.x ystate = other.y),
move (nx: INTEGER).(ny: INTEGER).

(xstate := nx; ystate := ny; self)}

because this will allow the derivation of subclasses which also expect
initialisation arguments. The constructor is then formed by taking a fixpoint
internally:

newPoint : INTEGER INTEGER POINT

newPoint = a.b.((point [POINT] (a, b)))

= a.b.self.{x a, y b, identity self,
equal (other: POINT).

(a = other.x b = other.y),
move (nx: INTEGER).(ny: INTEGER).

(a := nx; b := ny; self)}

Many constructors may be defined for each object type, accepting different
numbers of arguments, as is deemed appropriate for initialisation.

7.2 Object Creation

Cook et al. note that object constructors and inheritance do not easily work
together [CHC90, Harr91a]. These authors suppose each class has a single
constructor, a new() method in the spirit of Smalltalk, which is strongly-typed in
a fixed set of initialisation arguments. We might imagine the following types for
constructors for OBJECTs and POINTs:

newObject : OBJECT

newPoint : INTEGER INTEGER POINT

This clearly interferes with the polymorphic operation of new(), for it is illegal to
replace a function defined over one set of initialisation arguments by a function

A Language with Objects 126

defined over different (typically more) arguments. A polymorphic new() method
is nonetheless desirable, since it is especially useful in expressions which clone
objects, or which otherwise generate objects having the same dynamic type as
self, such as functions which map from a collection to a collection.

7.2.1 Initialising Object State

There are two aspects to the problem. The first is to find a style of
homogenous typing for initialisation arguments. [Harr91a] proposes to lump all
initialisation arguments into a single record, whose type is parameterised by the
type of self. If we define a type function describing the initialisation argument of
a 2D point:

POINT = .{x: INTEGER, y: INTEGER}

then the extended point generator now accepts a single record argument
standing for the state to be encapsulated inside a point object:

point : (t POINT [t]).POINT [t] (t POINT [t])

point = (t POINT [t]). (state: POINT [t]).(self: t).
{x state.x, y state.y, identity self,

equal (other: t).
(state.x = other.x state.y = other.y),

move (nx: INTEGER).(ny: INTEGER).
(state.x := nx; state.y := ny; self)}

This state argument is now amenable to adaptation through inheritance, since it
is parameterised by self's type (this approach may be extended to include other
type parameters). We may define a type function describing a selectable hot
point's initialisation argument:

HOTPOINT = .{x: INTEGER, y: INTEGER, s: BOOLEAN}

and derive the extended hotpoint generator from the point generator:

hotpoint : (t HOTPOINT [t]).
HOTPOINT [t] (t HOTPOINT [t])

hotpoint = (t HOTPOINT [t]).(state: HOTPOINT [t]).(self: t).
((super: POINT [t]).

super {selected state.s, select (state.s := true),
deselect (state.s := false),
equal (other: t).

(super.equal(other) state.s = other.selected)}
(point [t] (state, self)))

Here, the super record is constructed by applying the parent's typed generator
to the child's type, state and self. For example, we might apply:

A Language with Objects 127

point [HOTPOINT] ({x 3, y 4, s false}, self)

This is legitimate, since the child's state is a subtype of that expected in the
parent's typed generator:

(t HOTPOINT [t]).HOTPOINT [t] POINT [t]

{x: INTEGER, y: INTEGER, s: BOOLEAN} {x: INTEGER, y: INTEGER}

However, there is one outstanding problem with this approach. The taking of
fixpoints interacts with the rebinding of state in the super-record. The state of a
hot point is a different variable from the state of a point. If we understand a
fixpoint to be equivalent to its infinite expansion:

a_point = self.point [POINT] (state, self)

= ... point [POINT] (state, point [POINT] (state, ...))

then the construction of a super-record inside the recursion of self will lead to
repeated copies of super's state being built [Harr91a, p25-26]. To solve this,
most of the super-record's instantiation may be pulled outside the recursion of
self:

((supergen: t POINT [t]).(self: t).
((super: POINT [t]).super { ... }
supergen (self))

point [t] (state))

at the expense of abstracting over a type function supergen: t POINT [t].
This constructs the state of the super-record once, such that subsequent
unrollings of the inheritance construction only rebind self harmlessly.

This technique solves the problem of translating child initialisation arguments to
the form expected by the parent; and therefore supports the derivation of
subclass generators with initialisation arguments. However, it is also necessary
to translate parent initialisation arguments to the form expected by the child,
when parent constructors are applied polymorphically. [CHC90] supposes the
existence of a translation function which would convert a polymorphic call of the
form: p := newPoint (3, 4) into a call of the form: p := newHotPoint (3, 4, false).
The idea is that a child class will specify what default assumptions to make
when its parent constructors are called. This imposes another layer of
transformations upon the model which seem hard to justify. The possibility of
general transformations would allow the arbitrary inference of missing
arguments under polymorphic applications. For example, we might translate a
move() in 2D space into an arbitrary move() in 3D space. Whereas applying a
2D translation to a 3D point seems reasonable, inferring an arbitrary z-
displacement seems an unreasonably powerful mechanism.

A Language with Objects 128

7.2.2 State Templates

Instead, our model supports polymorphic object creation with default state
templates for each class. It respects two kinds of object generator: one that
accepts initialisation arguments, but may only be used in a monomorphic
context, and one that accepts no initialisation arguments, but may be used
polymorphically.

A generator can be given a state template by providing default initial values for
each state variable; and an init() method may later be used to modify these:

CIRCLE = .{init1: REAL , radius: REAL, diameter: REAL,
circumference: REAL, area: REAL}

circle : (t CIRCLE [t]).t CIRCLE [t]

circle = let pi = 3.1415926 in
(t CIRCLE [t]).(let rad = 0.0 in (self: t).

{init1 (r: REAL).(rad := r; self), radius rad,
diameter (2*r), circumference (2*pi*r),
area (pi*r*r)})

Here, pi is a class variable, visible to all instances of CIRCLE and its
subclasses, because it is bound outside the class (t CIRCLE [t]). When
the type closure (CIRCLE) is formed, an environment containing pi is built.
The state variable rad is an instance variable, since it is bound inside the class
but outside the recursion of self. Each time the closure (circle [CIRCLE]) is
formed, a new state environment is constructed for each object.

We may inherit such descriptions without any need for special treatments of
initialisation arguments:

CYLINDER = .{init1: REAL , init2: REAL REAL ,
radius: REAL, height : REAL, diameter: REAL,
circumference: REAL, area: REAL, volume: REAL}

cylinder : (t CYLINDER [t]).t CYLINDER [t]

cylinder = (t CYLINDER [t]).(let hgt = 0.0 in (self: t).
((super: CIRCLE [t]).
 super {height hgt, volume (super.area*hgt),

area (super.circumference*hgt + super.area*2),
init2 (r: REAL).(h: REAL).(hgt := h; super.init1(r))}

(circle [t] (self))))

because this time, the state of the super-record is only bound once and
subsequent unrollings of the inheritance construction can only rebind self.

This style supports a natural encapsulation of state. Whereas the variable pi is
bound outside the class (t CIRCLE [t]) and is therefore visible to all

A Language with Objects 129

instances of all types in this family, the variable rad is only visible within the
object generator circle and hgt likewise only within cylinder. Note especially
how inherited instance variables are not directly visible to subclasses, modelling
the private declarations of C++ [Stro91]. This is because the super-record is
formed inside the recursion of self in the child class. Inherited instance
variables are only visible indirectly, within the scope of super-methods invoked
in the combined record.

The model allows any number of user-defined initialisation functions, here
simply called init1() and init2(), which operate on different numbers of
parameters. There is no theoretical problem in invoking init1() to initialise the
circle-part of cylinder objects, either from within the init2() method for cylinders,
or simply to reset the radius of the cylinder. It might be more appropriate to
choose standard names for these initialisation functions, such as circle() and
cylinder(), to denote which parts of the object they initialise. We do not call
these constructor functions, like those of C++, since they do not create objects;
instead they re-initialise objects that already exist.

7.2.3 Polymorphic Object Creation

Separating object creation from initialisation effectively removes any difficulty
associated with incompatible parameter lists. The second aspect of the
problem has to do with the extra level of recursion introduced by allowing
objects to contain their own constructors (see the discussion in chapter 3).

Polymorphic object creation is explained in [CHC90] in terms of the flexible use
of fixpoints when constructing object generators. In this model, objects are
deemed to encompass their own creation-functions. As well as abstracting
over self and the self-type, they abstract over the generator as well. The need
for this is made clearer by a flawed attempt to generalise a clone() function:

CLONER = .{clone: }

cloner : (t CLONER [t]).t CLONER [t]

cloner = (t CLONER [t]).(self: t).
{clone newCloner}

In the cloner abstract class, the clone() method is implemented using an
object constructor in the style we have been using elsewhere; but it is
immediately apparent that newCloner() involves unresolved recursion in the
definition of the generator cloner itself:

newCloner = ((cloner [CLONER]))

Furthermore, when the clone() method is inherited, it will always create an
object of exactly the type CLONER, rather than some inheriting type. The latter

A Language with Objects 130

problem could be fixed by parameterising newCloner() over the type t, but this
would not solve the recursive definition of cloner. So, we abstract at the point
of recursion, which happens to be over the object generator itself:

cloner : (t CLONER [t]).(t t) (t CLONER [t])

cloner = (t CLONER [t]).(selfgen: t t).(self: t).
{clone ((selfgen))}

Here, selfgen stands for some generator for a recursive object having the
polymorphic type (t CLONER [t]).t t. In the body of the clone() method,
the fixpoint of selfgen is used without complete knowledge of the final binding of
t. This allows us to abstract over many different generators, whose fixpoints
may be taken when it is known what type of recursive object is desired. The
recursion of selfgen is independent of the recursion of self; and two applications
of are needed to establish the object. (selfgen) fixes the generator-
recursion in cloner and establishes a typed object generator:

((cloner [t])) : t CLONER [t]

= (self: t).{clone ((cloner [t]))}

and ((cloner [CLONER])) fixes the recursion in self, establishing an instance
of precisely the type CLONER. The flexibility of this arrangement is
demonstrated through the inheritance of class definitions which abstract over
their generators (the technique is called constructor inheritance in [Harr91a],
and class inheritance in [CHC90], in which selfgen is known as myclass):

POINT = .{clone: , x: INTEGER, y: INTEGER}

point : (t POINT [t]).(t t) (t POINT [t])

point = (t POINT [t]).(selfgen: t t).(self: t).
(cloner [t] (selfgen) (self))

 {x 0, y 0}

Here, point is a definition for a class of self-cloning points with x and y fields.
The inheritance construction distributes the new generator argument selfgen to
the old class definition, along with self and the self-type, such that the inherited
clone() method is automatically redirected to create instances of the subclass.
This technique can be mixed with the default state template and initialisation
argument ideas by binding a state record outside self. The resulting selfgen
has the type ((t t)) in the latter case, since we abstract over a generator
expecting an initialisation argument of type .

A Language with Objects 131

7.2.4 Sharing Responsibility for Creation

Every variable of type OBJ created by fixing a generator OBJ = (OBJ) has a
default initialisation value obj = ((obj [OBJ])) created by fixing the typed
object generator. It is therefore tempting to think of object creation as an
external activity performed by a compiler having knowledge of the constructors
for objects of different types. Polymorphic functions of the form:

identity: (POINT []). ()
move: (POINT []). (INTEGER INTEGER)

have their concrete result-types resolved by a global process of parameter
instantiation. A compiler which knows how to resolve types may also give
unambiguous initialisation values to variables with static types:

p : POINT; ((p: POINT).f(p)
f(p); point)

where point = (point [POINT])

For this model of creation to work, we must assume a complete global map
from fixpoint types to fixpoint values. In cases of dynamic typing and binding,
the compiler creates a table of initialisation values to use, dependent on the
type tag received at the site at run-time. This is no more difficult or unusual
than selecting a dynamically-bound function.

Whereas in a pure functional model, it is natural to think of objects invoking
their own constructors (recursively), the closer we come to implementation, the
less obvious this appears. Smalltalk supports the new() method, not in
instance-objects, but in class-objects whose protocols are described in
metaclasses [GR83]. So, polymorphic new() is not in the object interface. Eiffel
avoids having to deal with the dynamic semantics of expressions such as
Smalltalk's self class new by having declarations of the form: x : like Current;
which capture the same dynamic intent, but are resolved externally by the type
system. Eiffel's Create() function [Meye88] always was a misnomer, performing
only initialisation after the compiler had allocated space for the object
concerned.

Many operations that would require the creation of a new object in a functional
model simply update and return self, such as the move() method invoked on a
point instance. In other cases, a method will return one or other of its input
arguments, or a sub-object of one of these. Whether a new object is actually
created or not depends on the particular value or reference semantics adopted.
While all instances of a class behave in the same way at a certain level of
abstraction, the general system mechanisms of memory-allocation, assignment
and parameter binding may cause two instances to have quite different
semantics. It is not that allocation, assignment or binding are operations owned
by a particular class; nor is it that every class should have duplicate sets of
operations for value and reference arguments. Rather, these global

A Language with Objects 132

mechanisms are orthogonal to the behavioural model for objects; and they are
pervasive in their effect.

It is impossible to dismiss all object creation, since there are cases when a
method must return a new object. However, we view object creation and
management as a shared responsibility between the system and the object
model. To handle this collaboration, we presume that any implementation will
supply basic system operations. Candidates for these primitives are illustrated
in figure 7.1. Assignment, aliasing and memory-management are dealt with
later. As a first requirement, all variables should be properly initialised. Both
assignment and initialisation copy the contents of one object to another. This
we imagine being handled at a primitive level by the system, using state() to
extract hidden state and init() to install it elsewhere.

init(s : State) initialise hidden state from a supplied record
state() : State reveal hidden state, for copying purposes only
copy(o : Object) copy hidden state from a supplied object
assign(o : Object) assign hidden state from a supplied object
alias(o : Object) make self refer to a supplied object
create() allocate dynamic memory, make self refer to it
destroy() deallocate dynamic memory, make self void
scope() : Scope reveal manner of storage used for self
type() : Type reveal type of self

Figure 7.1: Language Primitives

Primitive initialisation may be given a rationale in the object model.
Henceforward, it is assumed that each object generator obj is created by
fixing a typed object definition that abstracts over its own generator obj. Such
generators may inherit cloning expressions ((selfgen)) in methods which
resolve to expressions ((obj [t])) to create new objects like self. In the
context of simple and polymorphic type declarations:

o : OBJ; p : (OBJ []);

object initialisation may be modelled as creating a new default instance of the
required type, using the state template hidden in the closure obj. In the case
of polymorphic initialisation, taking fixpoints is delayed until the precise object
generator is known and therefore the appropriate default state will be used. It is
further assumed that each extended object generator that expects an
initialisation argument obj is created by fixing a typed object definition obj
that abstracts over its own generator and a state argument. Such generators
inherit cloning expressions ((selfgen (state))) in methods, which resolve to
expressions ((obj [t]) (state)) to create new objects like self, but having a
different state. In the context of simple type declarations:

o : OBJ (a, b); ((o: OBJ).f(o)
f(o); ((obj [OBJ]) {v1 a, v2 b}))

A Language with Objects 133

initialising an object by supplying its state may be modelled as creating a new
object with a record standing for its state. This strategy cannot be used safely
in a polymorphic context, because our model does not allow the inference of
arbitrary missing initialisation arguments.

Primitive state access may be given a rationale in the object model. A primitive
method:

state : OBJ [] state objstate

is inherited by all objects. It is polymorphic in the type of self, allowing
overriding definitions. It returns object state by value, such that copy
initialisation:

o : OBJ (p); ((o: OBJ).f(o)
f(o); ((obj [OBJ]) p.state))

and assignment do not affect the state of the copied object. In practice, this
theoretical model is transformed into the more prosaic: o.init(p.state), since it is
easier to think in terms of system primitives acting on the underlying storage.

7.3 Object Identity

The notion of object identity stems from the unique states of free variables
when a lexical closure is formed. A function f() may be defined in different
binding environments and so behave differently to the extent that its result
depends on the values of free variables. It then becomes a salient concern
which function is being manipulated. Outwardly, the two closures seem
identical, yet they are distinct. This is even more relevant when assignment is
added to the functional model. The same closure may behave differently over
time, as a result of changes in its encapsulated state. Two closures defined in
the same binding environment must now be considered distinct, since their
states may diverge.

Value and Reference Semantics

The concept of object identity complicates the semantics of assignment and
argument passing. In value-oriented languages, it is immaterial whether a
reference to an object, or a copy of the object is taken, since computation does
not depend on identity. However, when computation depends on an interaction
between a group of specific objects, it is important to affect the objects
concerned (and not copies). To achieve this, objects must be passed by
reference. This is typically handled by the copying of pointers. Dereferencing a
copied pointer inside a method accesses the same object as that obtained
through the original pointer outside the method. Basic types, such as integers,
often masquerade as objects for the sake of uniformity; however, they are
usually passed by value, since this is more efficient. The minor deception is

A Language with Objects 134

safe, since it is never the case that you want to update the state of an integer
(in the sense that 2 can never become 3).

The policy on value and reference semantics is neither uniform nor especially
clear in existing object-oriented languages. In Smalltalk and Eiffel version 2.x
[GR83, Meye88], all values are assumed by default to be references to objects
and the separate treatment of simple types is either implicit (Smalltalk) or given
a short semantic gloss (Eiffel). This means that assignment is, in general,
pointer copying with a reference semantics; although pointers are not explicit in
the syntax of these two languages which hide such details. In order to obtain a
true copy of an object, a copy function must be invoked explicitly for all non-
basic types. The function may be external and global, like Eiffel's Clone(), or
internal, relying on metaclass behaviour to request allocation, like Smalltalk's
copy which calls self class new. The resulting copy may be shallow or deep.
Against this, a shallow copy of a basic type may be obtained by simple
assignment, which in this context has a value semantics.

Hiding the semantics of assignment and binding reduces syntactic complexity,
but may lead to unwanted surprises. The result of an Eiffel access function
looks the same whether it is a value or a reference; however manipulating a
returned reference may accidentally break the encapsulation of the object from
which it was accessed. To avoid such unintended confusions, C++ has distinct
syntactic styles for value and reference arguments, supporting copy and
reference assignment [ES90, Stro91]. In addition, explicit pointer manipulation
is available at a lower level. By default, arguments are passed and returned by
value. Ordinary global functions take and yield copies. Methods1 are an
exception, invoked with self2 passed by reference and other arguments passed
by value. This is so that updates to self's state variables are not lost when the
method terminates. To achieve true inter-object communication, other
arguments should also be passed by reference, or else pointers may be used.
By default, the system takes a shallow copy whenever pass-by-value is
mandated. For non-basic types, a user-defined copy function may be supplied,
which may choose to take a deep copy, or alternatively, augment the shallow
copy mechanism with reference counting for a deallocator.

Reference and value semantics also affect the layout of data structures in
memory. The components of a C++ object are either objects or pointers to
objects. An object that is wholly contained by value is always distinct; it may be
the target of copy assignment, but not reference assignment. To implement
object sharing a reference or pointer must be used. Reference assignment is
typically handled by copying pointers; or else a pointer may take the address of
a value allocated elsewhere. Eiffel version 3.x [Meye92] provides optional inline
expansion for non-basic types (ie to override the default reference semantics)
and optional wrapped basic types (ie to override the default value semantics),
to give the fullest possible range of containment options.

1 Methods are called member functions in C++.

2 Self is known as *this in C++; this is a pointer to self.

A Language with Objects 135

7.3.2 Constraints on Binding

Various concerns compete for attention when considering how to design value
and reference semantics into a language. Should an object-oriented language
have exclusively one or the other, or a mixture? Should the distinctions be
explicit or implicit? We would prefer an economical syntax like Smalltalk and
Eiffel, but cannot contemplate unpredictable semantics. The overt style of C++
is initially attractive, but ultimately confusing with both pointers and reference
variables and no constraints on their combination. We should like especially to
eliminate the notion of explicit pointers as first-class values.

It is worth examining boundary conditions on possible designs. First and
foremost, it is essential to preserve the identity of objects in constructions
where identity matters. So, for example, a method should always bind self by
reference, because it may modify that object's internal data. Again, where a
collaboration is set up through mutual message-passing between a group of
specific objects, the secondary participants should normally appear as
reference arguments to the method, which provides the context for the
collaboration.

A less critical situation is where an object temporarily inspects another object's
state, without wishing to retain this information. Here, the second object may
feasibly be passed by value, since the outcome of the inspection does not
depend on its identity, only on its state. In certain circumstances, the semantic
distinction is lost: a large class of basic values are self-identifying, in the sense
that they are uniquely identified by their immutable state. These include the
integers, the reals and we may choose to extend uniqueness to complex
numbers and fractions. Self-identifying objects may only be passed by value
without loss of semantics because they cannot be updated.

A second set of considerations concern computability and efficiency. While it
would be possible (as in Smalltalk) to build all structures using pointers and
bind all arguments by reference, this brings space and time penalties.
Structures consisting of pointers must still allocate their data elsewhere; this
also requires extra dereferencing operations to access the primary data. At the
other extreme, the overhead of frequently copying large objects by value onto
the execution stack during method invocation should also be avoided. An
optimum design for minimising storage and maximising the speed of stack
frame copying might then be to have objects contain their structural
components by value and bind all method arguments by reference, taking the
addresses of offsets into objects. This naïve strategy breaks down in the face
of dynamic data structures and local variables. Flexible data structures defeat
a unilateral policy of containment by value, since they require dynamically
allocated storage. Methods may not return the address of local variables, since
this is tantamount to passing a dangling pointer to storage that has gone out of
scope.

A Language with Objects 136

7.3.3 Alias Types

An acceptable compromise is to allow both values and references in the
language. However, it should seek to restrict the use of each style such that
clarity, integrity and efficiency are preserved, according to the above
considerations.

An explicit alias mechanism is introduced, whereby variables may refer to
storage allocated elsewhere. Our scheme intends to hide some of the
complexity of pointers in conventional languages and at the same time prohibit
unsafe use of aliases. It is also important, from a type-theoretic viewpoint, that
although aliasing affects the language semantics at the level of individual
objects, it should not affect the language semantics at the level of types and
classes; thus ordinary types and alias types are considered behaviourally
equivalent, except in the way their objects are created or assigned.

Syntactically, an alias variable is indicated by prepending @ to its type identifier
in a declaration:

p1, p2 : POINT; ...actual point objects
p3, p4 : @POINT; ...aliases for points

Ordinary variables have := copy assignment and alias variables have @=
reference assignment; otherwise they are both accessed using the same
notation. In addition, alias variables may allocate and deallocate storage on the
heap using the primitive instructions create and destroy. These are styled to
look like methods, although they are really basic system operations. The
following gives a flavour:

p1.move(3, 4);
p2 := p1; ...copy assignment
p3 @= p1; ...reference assignment

p2.move(1, 3); ...p1 unchanged
p3.move(2, 5); ...p1 also changed

p4.create; ...dynamic allocation
p4.move(1, 0);
p4.destroy; ...deallocated

Note how this style avoids explicit pointer manipulation. The reference
assignment operator @= must have an alias variable as its target, but may
otherwise accept alias and ordinary variables at the source:

p3 @= p1; ...address of p1 taken
p4 @= p3; ...pointer p3 copied

No confusing syntax is needed for address extraction or pointer dereferencing.
The latter is also illustrated by the homogenous method invocation style, which
ensures that self is passed by reference:

A Language with Objects 137

p1.move(3, 4); ...self bound to address of p1
p3.move(2, 5); ...pointer p3 copied into self

Other method arguments may be passed by value or reference. Formal alias
arguments may bind to ordinary or alias variables; in the former case an
address is extracted and in the latter case a pointer is copied. Ordinary formal
arguments force copies to be taken, even of alias variables, whose
dereferenced contents are copied, completing the symmetry.

Variables must be initialised to sensible values, since non-initialised variables
are undefined and may contain garbage, leading to unpredictable system
behaviour. The syntax of declaration is extended to include copy and reference
initialisation to the whole state of another object:

p1 : POINT; ...p1 initialised to default point
p2 : POINT (p1); ...p2 initialised to copy of p1

p3 : @POINT; ...p3 initialised to void reference
p4 : @POINT (p1); ...p4 initialised to alias p1

which is deliberately distinct from the syntax of assignment. This style of
declaration has a natural interpretation in the -calculus:

((p1: POINT).
((p2 : POINT).f(p1, p2)
 ((obj [POINT]) p1.state)) ...copy p1's state

 ((obj [POINT]))) ...default state

The rules governing the initialisation of variables are:

 ordinary variables are initialised to the default object template, or to a copy
of another object that is in scope, or to a completely specified state
template;

 alias variables are initialised to the void reference, or to the address of a
static object that is in scope, or to the address of a dynamic object allocated
on the heap.

Once initialised, variables are protected from unauthorised kinds of
modification. It is an error to apply @= to a non-alias variable, since this has no
meaning; likewise it is an error to apply := to an alias variable, since this would
permit the remote copying of objects through aliases. The rules governing
assignment concern only the target:

 only variables, not expressions, are legal targets of assignment;

 ordinary variables have value semantics with copy assignment;

 alias variables have reference semantics with reference assignment.

A Language with Objects 138

Apart from this, it is legal to have an ordinary variable, an alias variable and
even an expression as the source of an assignment. Expressions returning a
value have unnamed storage reserved for them at the call-site by the compiler;
this storage has the same status as a local variable in rules governing scope
and aliasing. The scoping rules for variables are:

 storage for an ordinary variable is reclaimed when it goes out of scope;

 no primary storage is reclaimed when an alias variable goes out of scope;

 no alias variable may be passed outside the scope of any object it aliases.

The second rule is appropriate since an alias variable may refer to an object
which remains in scope when the alias goes out of scope. Dynamically
allocated data must be explicitly deallocated; however, there is a mechanism
for making this semi-automatic, described below.

Assignment, initialisation and memory management are considered primitive
system operations. Here it is even more apparent that creation is controlled as
much by the caller as by the provider of the service, since the client code often
decides how to allocate storage, not the object itself. The system model
described here has nine operations (assign, alias, create, destroy, copy, init,
state, scope, type), but we can conceive of extensions to handle futures for
parallel objects and proxies for distributed or persistent objects. Like reference
and value semantics, these properties are orthogonal to type classification.

7.3.4 Aliasing and Protection

Within the scope of a method, the assignment rules offer a degree of protection
to arguments passed by reference. In particular, it is impossible to change the
state of such a variable using := (but it may be possible to make it alias a
different object using @=). The only thing that can be done with alias method
arguments is to invoke further methods on them.

It is clear that aliased objects cannot be updated remotely by brute force:

modify1(p, q : @POINT) : @POINT
{ p := q ...error: := applied to alias
}

and the reference assignment permitted on alias variables simply results in a
transfer of the alias:

modify2(p, q : @POINT) : @POINT
{ p @= q ...lose handle on p object and
} ...gain extra handle on q object

The rule prohibiting an expression from being on the left-hand side of
assignment ensures that objects may not be updated remotely:

A Language with Objects 139

modify3(p, q : @POINT) : @POINT
{ p.x := q.x; ...error: invalid LHS

p.y := q.y; ...error: invalid LHS
p

}

and attempting to get around this using local alias variables to shadow
components of objects also fails when values are transferred:

modify4(p, q : @POINT) : @POINT
{ x : @INTEGER (p.x); ...x alias for p.x

y : @INTEGER (p.y); ...y alias for p.y
x := q.x; ...error: := applied to alias
y := q.y; ...error: := applied to alias
p

}

In fact, the only way to modify the point p is to invoke one of its own updating
methods:

modify5(p, q : @POINT) : @POINT
{ p.move(q.x, q.y) ...move() returns self
}

In the calling context of a method, our rules also ensure that the result has
adequate protection. Where an access method aims to return a specific object,
rather than a copy, this should be returned by reference. Where a method
creates a new object, this may be returned by value if its allocation is static, or
by reference if its allocation is dynamic.

The simplest way to regulate encapsulation is by a contract between the
participating objects. The supplier object provides access services and the
client object uses these [Meye88]. If the supplier wishes to expose one of its
internal components and the client wishes to create an alias for this component,
then it may be manipulated outside the supplier. Consider a moveable CIRCLE
object whose method centre() exposes its origin-point:

centre : @POINT ...result is an alias for the
{ centre ...centre instance variable
}

This origin-point can either be copied or aliased in any client code:

{ p : POINT; ...new point object
c : CIRCLE;
p := c.centre; ...copy taken using :=
p.move(3, 4); ...old centre unaffected

}

A Language with Objects 140

{ p : @POINT; ...alias for existing point
c : CIRCLE;
p @= c.centre; ...centre aliased using @=
p.move(3, 4); ...old centre also affected

}

This style provides a clear indication of the programmer's intentions in the client
code. It improves on the surprise-factor present in Smalltalk and Eiffel, since it
forces the programmer to think whether the centre point itself or a copy is to be
extracted. It has the possible disadvantage that some decisions about
protection rest with the client code. As an alternative, the supplier could
enforce full protection by offering only copies of its internal components:

centre : POINT ...result is a copy of the
{ centre ...centre instance variable
}

This directs the compiler to create a return buffer for the method centre() at the
call site. When centre() is executed, a copy of the instance variable centre is
placed in the return buffer. In this case, an expression of the form:

p : POINT;
p := c.centre; ...p takes a copy of return buffer

will result in a twofold copy of the centre instance variable - once into the call-
site buffer as the function returns and once into the variable p as a result of
copy assignment. To prevent duplicate copying, it is legal to use an alias
variable in the client code:

p : @POINT;
p @= c.centre; ...p is alias for return buffer

This makes p an alias for the return buffer. A compiler may treat the return
buffer in exactly the same way as a local variable defined in the calling context
of centre(). The restriction imposed by the third scoping rule ensures that
neither p nor any alias for p may be passed beyond the scope in which the
buffer exists. An example which violates this rule is the method:

centre : @POINT ...error: result is an alias for
{ p : POINT; ...local variable p, which

p := centre ...takes a copy of the centre
}

since this eliminates the return buffer and seeks to pass an alias for local
variable storage which has gone out of scope. By the same token, alias
variables which are bound to value-expressions may only be used in the same
scope as the buffers holding the results of the expressions.

It is often the case that both protected and unprotected access to object
components is desired. In this case, it is not appropriate to provide two sets of

A Language with Objects 141

access methods, since exposing components in one set cancels the protection
offered by the second set. Here, it is more economic to define just one set of
access methods and leave the responsibility for protection with the client. This
is no less secure than the C++ policy of offering duplicate sets of functions with
and without const protection [Meys92, 73-78]. Since functions are dispatched
on the types of their arguments, const functions will execute only if the target
object has a const type. This decision rests with the client code.

7.3.5 Memory Management

Object creation and destruction is viewed as a process managed jointly by the
system model and the object model. The collaboration is a two-way affair. So
far, it has been emphasised how a method may generate a new object; yet it is
the calling context that determines how the object is allocated. The allocation
at the call site may be static, dynamic or an alias for storage held elsewhere.
Now, the opposite case is considered. When the system wishes to initialise or
reclaim an object in accordance with the scoping rules defined above, it must
make certain requests of the object model.

It is common for objects to contain references to dynamic data. In such cases,
it is clear that the system must be informed explicitly how to handle creation,
copying and destruction. This is because some objects, such as the LIST cells
that build linked lists, are naturally created with a void reference to the list tail,
whereas other objects, such as a growing and shrinking STACK, require their
dynamic data to be created and initialised at the same time as themselves.
When such objects are copied by assignment, their dynamic data is typically
copied as well; in this case their dynamic data should also be reclaimed when
they go out of scope. To handle these special cases, the system operations
are made available as methods with names like assign(), alias(), create() and
destroy(), which may be redefined appropriately in any class. The system will
use redefined methods in preference to the default operations; however it is
most usual to augment the default operations through method combination.

A simple terminating list made up of LIST cells does not require any special
create() method, since the default system create() will initialise the tail to a void
reference. When a static variable m : LIST goes out of scope, or when an alias
n : @LIST for a dynamically allocated list is explicitly deallocated with n.destroy,
this calls LIST's own deallocation method:

destroy
{ if (tail.scope) ...if tail is not a void reference

{ heap : tail.destroy; ...recursive dynamic deallocation
}
super.destroy; ...system supplied deallocation

}

to clean up the tail of the list. Similarly, the following method will correctly
handle recursive cell copying arising through copy assignment or initialisation:

A Language with Objects 142

copy (other : @LIST) ...alias argument, to avoid recursion
{ super.copy(other); ...system supplied shallow copy

if (other.tail.scope)
{ stack, heap : tail.create.copy(other.tail);
} ...recursive allocate and initialise

}

on the assumption that assign() checks for self-assignment, then calls copy(),
which by default takes a shallow copy. The copy() method should be used
carefully, since it replaces self's state. Our preferred strategy is to define copy()
methods but let the system decide when to use them. Clearly, there are many
possible memory management strategies. Although we tend to favour styles
which preserve the default deep copy semantics of := it is nonetheless possible
to provide a reference counting version of assign() which increments the count
while taking a shallow copy and a variant of destroy() which decrements the
count and deallocates the object when this reaches zero.

7.3.6 In Support of Objects

A large number of theoretical and practical issues have been covered relating
to object creation, identity and state. Initially, the focus was on providing a
theoretical model of object state and state initialisation. Subsequently, the fact
that objects might encapsulate their own constructor functions led to a
discussion of constructor inheritance. Object creation has an impact on the
underlying storage and memory management strategy used by a practical
programming system. Progressively, elements of a concrete language syntax
have been introduced and related to the theoretical model. A key new aspect
supported by the concrete language is the correct handling of object identity
and state through a set of aliasing rules. In the following chapter, the syntax of
our object-oriented language is developed further to include type and class
definitions.

