
Chapter 6

Multidimensional Classification

_______________________________________________________________

Here, the theory presented earlier is extended to allow classification in more 
than one dimension.

Multiple classification brings an ability to view a type from more than one 
perspective.  It allows classes to be subsumed by more than one superclass, 
which may describe orthogonal or intersecting properties.  Higher classification 
brings an ability to abstract over classes.  It allows the definition of classes 
which describe families of classes.  These two ideas are the principal 
mathematical constructions underlying such operational object-oriented 
concepts as multiple inheritance, classes of type constructors and classes with 
polymorphic components.

_______________________________________________________________

6.1 The Dimensions of Classification

In the simple theory of classification, classes are constructed by abstracting 
over the type of self.  A class is a simple generalisation of a recursive abstract 
type whose fields are function types.  Classes are ordered in a hierarchy, 
structured according to its perceived usefulness.  Multiple classification offers 
the possibility of defining a lattice connecting the space of all recursive types, 
bringing an ability to view a type simultaneously from more than one 
perspective.  Higher classification abstracts over further internal parts of a type, 
describing higher-order classes with polymorphic components.

6.1.1 Simple Classification

Simple classification groups sets of recursive abstract types under a single 
hierarchy of classes satisfying the partial order:  (  G[]).G[]  F[].  
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This order allows us to visualise the notion of a class hierarchy as depicted in 
figure 6.1.  Here, classes are shown to be a stacking series of cones, each 
corresponding to the space of recursive abstract types satisfying the class 
bound.  The point at the apex of each cone is the fixpoint of the class, the least 
type that is also a member of the class.  The volume under each cone 
describes the space of possible types that satisfy the bound.  These include 
recursive types with strictly more functions lying on the conical surface area and 
also many pre-fixpoints occupying the central volume.

The root of this hierarchy is the class (  TOP []) bounded by the vacuous 
generator:  TOP = .{}, which encompasses all possible recursive types.  
This class is the outermost cone in figure 6.1.  Subsequent classes are defined 
by adding functions to TOP to give extended generators Fi which therefore 
describe subclasses:  (  Fi []).Fi []  TOP[].

General

Specific

Least Fixed Point Type

Polymorphic Class

Figure 6.1: Simple Classification

A single hierarchy commits us to introducing functions in a particular order.  
There is no a priori correct hierarchy:  several sensible class orders may  be 
chosen to introduce the same useful set of recursive types.  In general, a given 
class owning m functions can be derived in m! different ways, since the order in 
which its functions are acquired is not significant.  However, having only a 
single dimension of classification usually leads to the repeated introduction of 
identical functions in disjoint parts of the hierarchy; this is an unwanted 
redundancy.

6.1.2 Multiple Classification

The space of all recursive abstract types is "quantal" in single functions1  - this 
is the minimum unit of granularity distinguishing one class from another.  
According to this observation, it would be more accurate to describe the space 
of recursive abstract types as a lattice, or heterarchy.  This space is mapped 
out and defined below.

                                           

1 and axioms - consider the effect of adding the LIFO and FIFO axiom to further qualify an add()
function to discriminate STACKs from QUEUEs [Simo94b].
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Immediately under the class (  TOP []) there exists a flat layer of n
classes, (  Fi []) each bounded by a generator Fi  which introduces a 
single, distinct function from the set of all n functions over ordinary values.  
Each of these classes will trivially satisfy (  Fi []).Fi []  TOP [].  
Directly below this layer, there exists a layer of classes (  Gk []) each 
bounded by a generator Gk having a distinct pair from the set of all n
functions.  For each 2-tuple generator Gk there will be exactly two generators 
Fi from the first layer satisfying (  Gk []).Gk []  Fi [], being those 
1-tuple generators which introduced each function singly; and therefore there 
will be n(n-1)/2 classes in the second layer.  Following the law of combinations, 
the pth layer will have n!/(p!(n-p)!) classes, each p-tuple class having p
immediate parents, being all those (p-1)-tuples that omit one function in turn.   If 
it can be assumed that each function is semantically independent and may 
combine with any other set of functions, the lattice will expand until the layer 
describing (n/2)-tuples, after which it will contract again, terminating in a single 
n-tuple class with n parents, describing the single type having all n functions 
over simple values.

In practice, a class lattice will not converge to a single type, because functions 
gradually acquire a dependent semantics.  The STACK and QUEUE classes 
derived by axiomatising add() and remove() may not subsequently be 
recombined.  Nonetheless, multiple classification is practical for many useful 
types since it avoids the redundancy of introducing identical functions in disjoint 
parts of a single hierarchy.  

Least Common Type

Greatest Lower Bound

Figure 6.2: Multiple Classification

Figure 6.2 illustrates this.  Here, classes are visualised as a stacking series of 
intersecting cones corresponding to overlapping spaces of recursive abstract 
types.  Where two cones intersect, the volume of intersection describes the 
space of types satisfying both bounds.  This is the greatest lower bound, the 
class which is also a subclass of both original classes.  The apex of this 
intersection corresponds to the least type which is a member of both classes; 
this is also the fixpoint of the common subclass, the least type offering exactly 
the functions of both classes.  Types with strictly more functions lie on the 
curved surface area bounding the volume of intersection, which also contains 
many other pre-fixpoints.
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Our sketch uses the three dimensions of solid geometry to represent the many 
more directions in which a class with m functions can be developed.  A planar 
cut through a cone that describes a circle on its conical surface just one 
"quantum" below its apex represents all types with m+1 functions.  Each point 
on the circle represents a type that has extended the apical type by one 
function, a different one in each case.  If there are n distinct functions, a class 
may develop in n-m ways around its boundary.  Where cones intersect, this is 
because they meet other cones which have developed the same functions.

6.1.3 Higher Classification

The theory presented so far describes families of recursive types.  Another 
large and useful group which the theory might usefully be adapted to describe 
are the type constructors.  Programming languages typically provide type 
constructors which generate typed collections, such as LIST, STACK and 
QUEUE.  In contrast to a class generator, which abstracts over its self-type, a 
type constructor is a recursive function which abstracts over an element-type.  
However, it is possible to imagine the family of types generated from a type 
constructor as an F-bounded class:

LIST = (  TOP [])..{add :   , head : , tail : }

This is simply the F-bounded generalisation of universal quantification.  The 
reasonableness of this becomes apparent when seeking to describe 
constructors which depend on their element-type satisfying certain criteria:

SORTED_LIST = (  COMPARABLE []).
.{add :   , head : , tail : }

F-bounded quantification is more useful in this context than bounded 
quantification, since it preserves the recursion of more specialised element-
types (see chapter 4).  The fact that F-bounds are useful to type elements and 
self suggests that they might form the basis for unifying descriptions of classes 
and constructors.

Intuitively, the theory may be extended to support generalisations over type 
constructors.  A class of list constructors includes the LIST and SORTED_LIST 
given above, describing a family of list constructors that have at least the 
behaviour of (  TOP []).LIST [].  Since further lists in this family may 
possess extra functions, such as length() or rank(), we need to consider 
abstracting over the self-type in addition to the element-type.  A suitable order 
of quantification for this class is:  (  TOP []).(  LIST [, ]), where:

LIST = ..{add :   , head : , tail : }

because the self-type  of any list is dependent on its element-type .  LIST is 
a function from types to generators, since it maps  to a generator for a 
recursive list LIST [], whose self-type is not fixed.  For some particular 
element-type e we may visualise the cone of types included in the class given 
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by (  LIST [e, ]).  The fact that we abstract over the element-type as well 
makes it difficult to visualise the class in three dimensions. 

Parameterised Type

Class of Constructors

Figure 6.3: Higher Classification

Figure 6.3 attempts to depict the space of types and type constructors.  Here, 
fourth-dimensional "holes" occur in the sides of the cone, each standing for a 
space of alternate list-type extensions resulting from adding a single function 
parameterised by the element-type.  The holes are elastic and they may be 
mapped onto the cones representing the class of element required.  By taking 
an element-cone and pushing it apex-first through a hole, the ellipse widens to 
accommodate, contacting it around a ring representing increasingly more 
developed element types.  The widening ellipse on the list-cone's surface, 
which touches the element-types on the embedded cone, represents those 
alternative extended list-types resulting from different instantiations of the 
parameterised function.  A hole which contracts to a point represents the list-
type having the function instantiated by the element class's least fixed point.  
The apex of the list-cone represents the least list type instantiated with the least 
element type.  A minimal list having a specific element type is visualised as one 
point on the circumference of a hole opened up exactly at the apex of the list-
cone.

We call this higher classification, because in general it quantifies over type 
constructors as well as types.  In general, we can imagine an infinite regression 
of classes whose parameterised components are other parameterised classes.  
At this point, higher-order quantification seems more appropriate.  Since type 
constructors themselves describe classes of types, higher classification 
describes classes recursively.

6.1.4 Higher-Order Record Combination

So far, the simple theory of classification allows the field-types of objects to be 
overridden by simple subtype fields.  This latitude comes from the override 
constraint  which types polymorphic record combination:

    (a  dom()  dom()). .a  .a
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This says that an extension record type  overrides a base record type  if the 
fields it has in common are in a simple subtype relationship.  Because of 
dynamic binding, subtyping leads to a rudimentary kind of polymorphism, albeit 
not a very useful kind (see chapter 4).  Since F-bounds provide a better 
mechanism for handling general polymorphism, the rudimentary subtyping kind 
is now removed, eliminating an unwanted degree of freedom in the type 
system.  A language is desired in which variables are typed unequivocally either 
with a monomorphic type .F() or a polymorphic type (  F[]).  

Henceforward, we shall allow simply-typed record fields to be replaced only by 
fields having the same type, cf Emerald [RL89, BHJL86].  The base case for 
overriding  says that a monomorphic type overrides itself.

  = 
 TYPE
   

Now, because record combination must be generalised to handle fields with 
arbitrary parameterised polymorphic types, it is necessary to specify an override 
condition between F-bounded type parameters.

Trivially, a parameter may be replaced by any parameter.  This is because 
parameters are not types, but abstractions over types.  However, the effect of 
substituting one F-bounded parameter for another is to change the family of 
types that may legally instantiate the parameter.  If we consider parameter-
substitution as identifying one parameter with the other, then the effect of 
substituting (  F[]). by (  G[]). is to unify [Robi65] the two 
parameters  and .  The only types which may instantiate the result are those 
which obey both F-bounds:  ( |   F[]    G[]), which is expressed as 
a greatest lower bound condition:  (  (F[]  G[])).  Depending on the 
bounds, there may or may not exist any types in this family.

Greatest lower bounds will be considered again later.  For the moment, it is 
important to ensure that where a record-field parameterised by  is replaced by 
a field parameterised by , then a family of types exists for f() that is a subset 
of the family for f().  This may be expressed as an override condition  for 
parameterised methods:

        (  G[]).G[]  F[]
 PARM
 (  G[]).f()  (  F[]).f()

which essentially allows a method that is polymorphically typed over a given 
class to be replaced by a method that is retyped over a subclass.  This rule 
allows specialisation in other polymorphic types in the same way that 
inheritance specialises the self-type.
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To complete the definition of , the general case for records is specified, which 
says that an extension record type may override a base record type if the fields 
which it has in common are subject to the same override criterion:

 (a  dom()  dom()). .a  .a
 RECD

   

The definition of  is now recursive; therefore the override criterion is now 
expressed in a higher-order way.  The extension to handle arbitrarily-nested 
polymorphic parameters allows us to type higher-order record combination.
Higher-order inheritance is different from higher-order subtyping [SP94] in the 
same way that type inheritance is different from subtyping.

6.2 Multiple Classification

Many object-oriented languages express the idea of multiple classification by 
allowing inheritance from more than one parent class [Meye88, Keen89, 
Stro91].  Others provide independent protocols expressing the type-
compatibility of components created in disjoint parts of a simple hierarchy 
[GJ90, NeXT93].  Protocols make up for the lack of expressiveness offered by 
single inheritance.  

Multiple inheritance requires two or more parent classes to be combined in 
some fashion, then possibly augmented by additional methods.  The resulting 
child class is a subclass of each of its parents and describes a subset of the 
objects that may be described by each of its parents.  During multiple 
inheritance, a child class will acquire at least the union of the methods of its 
parents, since it must provide at least the services of each parent.  This may be 
a simple union or a disjoint union, depending on how inheritance conflicts are to 
be handled.  If there is no limit on the number of parents, these are both 
distributed unions.

6.2.1 Inheritance Conflict Resolution

An inheritance conflict arises where a class obtains the same named method 
from more than one parent - the resolution of this conflict decides which of 
these methods (perhaps both) are incorporated in the child.  We distinguish 
accidental and recombinant inheritance conflicts.  An accidental conflict arises 
from inheriting two semantically distinct methods, which accidentally have the 
same name and which were introduced in disjoint parts of the class heterarchy.  
A recombinant conflict arises from inheriting two semantically related methods, 
which are different specialisations of a single method that was originally 
introduced at a single point in the class heterarchy.  

Object-oriented languages which support the disjoint union of methods [Stro91, 
Meye92] usually do so on the grounds that method names were ill-chosen and 
therefore both inherited versions of the method are required in the child.  
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Disjoint unions support the resolution of accidental conflicts.  We consider it 
inappropriate for a language model to have to rectify poor nomenclature.  
Accidental conflicts can be resolved syntactically by renaming one or other 
method throughout.  By removing accidental conflicts, our language model only 
has to provide for the simple union of inherited methods, in a context where any 
conflicts are due solely to method recombination.

Ideally, a child class should be a deterministic synthesis of the most specific 
aspects of its parent classes, without undue prejudice to either parent.  It is 
expected in the majority of cases that multiple inheritance will lead to the 
straightforward concatenation of the parents' fields.  Where a conflict occurs, it 
cannot easily be assumed that one or other method should automatically be 
chosen.  If the method has been retyped in just one branch, it may be possible 
to select the method with the most specific type.  Otherwise, there are no 
simple grounds for selecting one method over another, especially if they have 
the same type.

Automatic conflict-resolution on the basis of class pre-order [Moon86, BS83], or 
using sophisticated algorithms to linearise the heterarchy [BDGK88, Keen89], 
delivers incorrect results for certain lattices [DHHM94].  The way a child class 
inherits from its parents should not depend on unexpected interactions between 
the ordering of its more distant ancestors [Meye88, 246-250].  Since inheritance 
is only a short-hand for full local definition, a class is unaware of the original 
point of introduction of methods, so it is inappropriate to compute a recency-
based class ordering along the lines of Touretzky's inferential distance [Tour86].

6.2.2 Merging and Intersection Types

A compromise is proposed, on the assumption that recombination is for the 
most part a benign merging of identical methods, inherited along two different 
paths.  A new typed record combination operator  will concatenate two 
parents:

result = father  mother

such that the result obtains the union of methods in the parents.  The operator 
 will be typed to rule out combinations where methods in a conflict-pair have 
incompatible types.  For methods with compatible types, those that are identical 
in implementation will be merged and in all other cases the programmer will be 
required to specify an implementation.  What constitutes type compatibility 
between a method pair and, in general, between two parent classes?  Working 
from first principles, it is important to ensure that a child class has a type which 
is a pointwise subtype of each of its parents:

(t  CHILD [t]).
(CHILD [t]  FATHER [t])  (CHILD [t]  MOTHER [t])
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Put another way, the child must have a type which is at most the greatest lower 
bound, or pointwise intersection of the parent-types; and may be a pointwise 
subtype of this intersection type, by virtue of having extra methods:

(t  CHILD [t]).CHILD [t]  (FATHER [t]  MOTHER [t])

To handle this properly, intersection types, or meet types [Pier92a, CP93] must 
be considered in more detail.  A general condition  is sought, expressing 
whether two types meet, analogous to our earlier override condition.

As a first step, arbitrary intersections    of different simple types  and  are 
to be disallowed, since admitting such intersections would entail the automatic 
generation of large numbers of subrange and subset types.  The base case for 
the meet condition is therefore type equality:

  = 
 TYPE
   

which says that a monomorphic type meets itself.  This condition will permit the 
merging of methods that have identical simple types.

The generalisation of this to handle pairs of parameterised method signatures, 
where the parameters in each case are subject to different F-bounds, is derived 
from our earlier discussion on greatest lower bounds:

   (G[]  F[]) 
 PARM
 (  G[]).f()  (  F[]).f()

Two parameterised methods have an intersection type if there exists at least 
one type that satisfies the bounds on each parameter.  This in turn can be 
shown by proving that a class (  H[]).(H[] = G[]  F[]) exists and 
can be computed.  The class (  H[]) is that bounded by the generator H 
obtained from merging the two generators G and F.  The merging function is 
described below.  Essentially, this rule permits the merging of parameterised 
methods on condition that an intersection type exists for the parameters, which 
may be calculated in turn by combining the two F-bounds using a merge 
function.

Finally, the meet condition for two record types says that two record types 
intersect only if their common fields have an intersection type:

 (a  dom()  dom()). .a  .a
 RECD

   

The meet condition  is symmetrical, unlike the override condition  given 
earlier.  It is more appropriate when programming with multiple inheritance, 
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since it allows the types of a child's fields to be equally influenced by its father 
or mother.  Given the condition , the higher-order typed record combination 
function merge may be constructed:

merge : .( |   )     

merge = .(  ).(father: ).(mother: ).
{ label  value | (label  dom(father)  dom(mother))

 (if label  dom(father)  dom(mother) 
then if father.label = mother.label

then value = father.label : .label.label
else value =  : .label.label

else if label  dom(father) 
then value = father.label : .label
else value = mother.label : .label) }

which yields an intersection record type .  Henceforward  will be used as 
an infix abbreviation for merge, and is understood to have the meaning:

 = { ,  |  .( |   ).
, :         , = merge [ ] }

The definition of merge introduces a typed value .  This is a placeholder 
corresponding to the undefined, or empty value.  The empty value is inserted 
into the result of  when it cannot be determined automatically which of two 
implementations to choose.  The empty value is also used later to stand for a 
deferred function implementation.

6.2.3 Multiple Inheritance

A relatively simple modification to the inheritance construction used in chapter 5 
for mixins will now allow the typing of multiple inheritance.  The essential 
difference is in replacing the unilateral override operator  by the symmetrical 
operator .

To illustrate various forms of conflict resolution during multiple inheritance, the 
existence of an object class and a 2D point class are assumed, whose 
definitions are repeated here:

OBJECT = .{identity: , equal:   BOOLEAN}

object : (t  OBJECT [t]).t  OBJECT [t]

object = (t  OBJECT [t]).(self: t).
{identity  self, equal  (other: t).(self = other)}

POINT = .{x: INTEGER, y: INTEGER, 
identity: , equal:   BOOLEAN}

point : (t  POINT [t]).t  POINT [t] 
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point = (t  POINT [t]).(self: t).
(object [t] (self)    {x  0, y  0, 

equal  (other: t).(self.x = other.x  self.y = other.y)})

and a z-coordinate class is introduced, representing the family of all those 
objects having a scalar quantity in the third dimension.  This is different from the 
z-coordinate mixin from chapter 5, which was a class extension function; here 
the z-coordinate is a proper class that inherits all the behaviour of the object
class:

ZCOORD = .{z: INTEGER, identity: , equal:   BOOLEAN}

zcoord : (t  ZCOORD [t]).t  ZCOORD [t]

zcoord = (t  ZCOORD [t]).(self: t).
(object [t] (self)    {z  0, equal  (other: t).(self.z = other.z)})

A 3D point class may now be derived by multiple inheritance from the 2D point
and z-coordinate classes.  Conceptually, these classes describe overlapping 
spaces of objects with at least the services of a 2D point and a z-coordinate, 
respectively.  It is useful to think of a 3D point class as the greatest lower 
bound, or intersection, of the two spaces.

The methods to be inherited are distributed in the following way:  from point
we may obtain x and y uniquely; from zcoord we may obtain z uniquely.  Both 
classes offer versions of identity and equal(), which require resolution.  In the 
case of identity, neither class has redefined this method since it was inherited 
from object; but in the case of equal(), both classes have redefined the 
method; it is impossible to determine which version to inherit.  In fact, it would 
be incorrect to choose either:  the class 3dpoint must determine how to 
combine the inherited methods in this case.

First, the behaviour of the  operator is illustrated.  The point and zcoord
generators must both be specialised to generators having the same self and 
self-type.  As before, this may be achieved by distributing the self and self-type 
of the new class to both generators: 

(t  3DPOINT [t]).(self: t).
point [t] (self)    zcoord [t] (self)

= {x  0, y  0, identity  self, equal  (other: t).
(self.x = other.x  self.y = other.y)}

  {z  0, identity  self, equal  (other: t).(self.z = other.z)}

= {x  0, y  0, z  0, identity  self, equal  }

Where  encounters the two methods identity, they both have the same type:  
identity: t and the same implementation:  identity  self.  When two identical 
methods are encountered,  arbitrarily selects one copy from the left-hand 
record argument, effectively merging the methods.  Where  encounters the 
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two methods equal(), these have the same type:  equal: t  BOOLEAN, but 
have different implementations.  In this case,  refuses to choose an 
implementation, but inserts an undefined value  having the type equal: t 
BOOLEAN.

The inheriting class must specify how the two conflicting implementations are to 
be combined.  This requires a construction similar to that for resolving super
references.  We abstract over each parent class internally in the multiple 
inheritance construction for 3D points.  The names of the parents can be 
anything - here, father and mother are the names chosen:

3DPOINT = .{x: INTEGER, y: INTEGER, z: INTEGER, 
identity: , equal:   BOOLEAN}

3dpoint : (t  3DPOINT [t]).t  3DPOINT [t] 

3dpoint = (t  3DPOINT [t]).(self: t).
((father: POINT [t]).(mother: ZCOORD [t]).
     (father  mother) 

{equal  (other: t).
(father.equal(other)  mother.equal(other))}

(point [t] (self)) (zcoord [t] (self)))

An extension record for 3D points determines how the inherited equal()
methods are to be combined - obviously, the desired combination is the logical 
and of the two.  Inside the extension record, free reference is made to the 
recursion variables father and mother, which are bound in the result to objects 
of appropriate types.

This example shows the resolution of a difficult case for multiple inheritance; 
the solution is most elegant, making maximum reuse of inherited methods.  
Clearly, other kinds of resolution are possible, depending on the semantics of 
the methods to be combined - a child class could simply invoke one or other 
parent method.  It is a strength of this approach that the child may determine 
how resolution is performed at the join-point in the inheritance heterarchy.  For 
comparison, C++ forces this decision at the fork-point [Stro91], sometimes only 
retrospectively, entailing the revision of previously finished code.

6.2.4 Multiple Mixin Inheritance

The most difficult case for multiple inheritance is where two parent methods 
themselves invoke super methods.  Since recombination only arises where two 
methods redefine a common original method, there is always the possibility that 
both the father and mother implementations are wrappers specialising a 
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common ancestor method; and the danger then exists that this method may be 
invoked twice if the father and mother methods are subsequently recombined.  
In our scheme, there is no way to prevent this directly.  This is because we 
insist that the super mechanism is equivalent to its inline expansion.  An 
important property of inheritance is that all shorthand constructions should be 
internally reducible.

Certain languages like Flavors and CLOS [Moon86, Keen89] adopt a finer-
grained labelling:  primary, before and after, for methods which have the same 
basic name.  This allows a further semantic categorisation of methods into 
main, pre- and post-processing parts.  To solve the above problem, the 
common ancestor method would be labelled primary and the mother and father 
extensions would be after methods.  The method combination rule would 
ensure that, in the child class, the primary method was invoked once, followed 
by all after methods.  We could simulate this approach by expanding the 
method name-space (essentially, this is what the finer-grained labelling 
achieves).  The main method m could invoke m-pre and m-post, which have 
empty definitions.  The father and mother classes could redefine m-post and 
the child class could happily recombine these two using the normal scheme.  
This means that m inherited from the common ancestor would invoke self.m-
post in the child, performing all post-processing parts.

However, admitting that a method can be split into main and post-processing 
parts indicates a weakness in the posing of the problem.  If father and mother
only add post-processing, they should be defined as mixins rather than as full 
classes.  To illustrate this, a load class is defined which has a basic equal()
method which should always be invoked (once) in all eventual subclasses 
which specialise the method:

LOAD = .{kg: INTEGER, identity: , equal:   BOOLEAN}

load : (t  LOAD [t]).t  LOAD [t] 

load = (t  LOAD [t]).(self: t).
{kg  0, identity  self, equal  (other: t).(self.kg = other.kg)}

Let us assume that various specialised classes are required to move in one-, 
two- and three-dimensional space.  For this, an xy-coordinate bound mixin may 
be used in combination with a z-coordinate bound mixin:

xycoord : (  XYCOORD []).( |     EQUAL []).
    

xycoord = (  XYCOORD []).( |     EQUAL []).
(self: ).(super: ).

super  {x  0, y  0, 
equal  (other: ).(super.equal(other) 

 self.x = other.x  self.y = other.y)}



Multidimensional Classification 112

zcoord : (  ZCOORD []).( |     EQUAL []).
    

zcoord = (  ZCOORD []).( |     EQUAL []).
(self: ).(super: ).

super  {z  0, equal  (other: ).
(super.equal(other)  self.z = other.z)}

The salient fact about these mixins is that they both specialise equal()
independently.  Now, any combination of load and these mixins may be 
provided.  For example, a 2D load is given by applying the xycoord mixin 
function:

2dload : (t  2DLOAD [t]).t  2DLOAD [t] 

2dload = (t  2DLOAD [t]).(self: t).
xycoord [t, LOAD [t]] (self, load [t] (self))

and a 1D load is given by a similar application of the zcoord mixin function.  
The more interesting 3D load is given by stacking up the two mixins.  The 
zcoord mixin is applied to the result generated by applying the xycoord mixin:

3dload : (t  3DLOAD [t]).t  3DLOAD [t] 

3dload = (t  3DLOAD [t]).(self: t).
zcoord [t, 2DLOAD [t]] (self, 2dload [t] (self))

Arguably, this expresses in a more natural way that equal() in the 3D load class 
is a combination of a main method and postprocessing.  The order of mixins is 
in general significant, although in this example logical and commutes.  In any 
case, the 3dload class is nonetheless a subclass of both 2dload and 
1dload, no matter in which order mixins are combined.  By expanding inline all 
super method invocations, it may be demonstrated that each equal() method 
provided in the classes 1dload, 2dload and 3dload incorporates load's 
basic equal() method only once.

6.3 Higher Classification

A higher class is defined as one whose member objects have the types of type 
constructors, in addition to various simple types.  The hallmark of a type 
constructor is that it abstracts over some internal component type.  An object 
with the type of a type constructor is therefore one whose field-types are not all 
fixed; in other words, the members of a higher class are those objects with 
polymorphic components.

Polymorphism appears in many guises in object-oriented languages; yet the 
theoretical treatment of polymorphism is often incorrect and unsatisfying.  We 
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see in the notion of higher classification the possibility of uniting all treatments 
of polymorphism under a single scheme.

6.3.1 Polymorphism and Overloading

Polymorphism is sometimes confused with dynamic binding, the invocation of 
an object-specific response to a generic message, enabled through the multiple 
overloading of method names.  Here the issues of redefinition, typing and 
binding are distinguished.  A polymorphic type is technically a family of types 
and a polymorphic function is one which may apply to objects of different types 
(see chapter 2).  Mathematically, polymorphism is always indicated by the 
presence of one or more type parameters.

A class is an inherently polymorphic construction.  Since , the type of self, is 
not fixed, it may range over a whole family of types (  F[]).  The identity
method above is therefore considered polymorphic, since even though it has a 
single implementation, its type changes when it is inherited.  For OBJECTs and 
POINTs, identity has the types:

identity : (  OBJECT []).  ()
identity : (  POINT []).  ()

This is similar in spirit to Strachey's parametric polymorphism, since it can be 
shown that the method identity works uniformly over all types in the family 
bounded by (  OBJECT []).  In contrast, many different equal() methods 
have been defined and introduced at many points in the heterarchy.  
Superficially, this is similar to Strachey's ad hoc polymorphism.  However, in a 
regime with multiple classification, it is always possible to relate variants of the 
equal() function back to a common ancestor, perhaps that defined in an 
abstract class (  EQUAL []), which has the type:

equal : (  EQUAL []).  (  BOOLEAN)

Even though there are many different implementations of equal(), it can be 
argued that they all behave in a semantically uniform way over the whole family 
of types (  EQUAL []).  In practice, functions like equal() are not 
introduced singly, but in general, useful classes like (  OBJECT []), 
which introduce groups of functions, like equal() and identity, in one place.  
Semantic uniformity may then be enforced by insisting that all other classes 
with these methods are subclasses of (  OBJECT []).  

Separating the binding and typing issues allows the treatment of quite diverse 
kinds of polymorphism under the same scheme.  Redefinition that is subject to 
F-bounded inclusion is the special kind of overloading that occurs in object-
oriented languages.  We consider it inappropriate for our language model to 
handle other kinds of overloading, such as arbitrarily-extensible global functions 
whose variants are selected by the types of their arguments [Stro91].  This is a 
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purely syntactic mechanism for increasing the size of the name-space; and 
could be simulated using longer names.  Overloading the function name-space 
within a class also interferes with the polymorphic selection mechanism for 
binding [Meys92, p183, 192-3; TW95, p352].

6.3.2 Polymorphism and Genericity

Here, we seek to understand the issues surrounding polymorphism in some 
other component type  than the self-type .  The obvious differences between 
classical universal polymorphism [Gira72, Reyn74, Reyn83] and class-based F-
bounded polymorphism are in the scope and bounds of the parameters:

  abstracts over part of a type, whereas  abstracts over the whole type;

  is unconstrained, whereas  is constrained by an F-bound.

Some object-oriented languages offer a parametric polymorphism similar to the 
classical kind.  Eiffel introduced a generic parameter mechanism based on 
Ada's generic packages [IBHK79, Meye88], which influenced the C++ template
mechanism [Stro91], allowing abstraction over internal parts of a type.  It was 
demonstrated above how the universal polymorphism in languages like ML
[Miln78, MTH90] and Ada is just a special case of F-bounded polymorphism, 
which may be shown using the translation:

.f()    (  TOP[]).f()

Eiffel has subsequently introduced constrained generic parameters [Meye92], 
which are explained completely by the F-bounded generalisation.  In Eiffel, a 
generic parameter T constrained using syntax of the form [T -> OBJECT] may 
only be replaced by some type inheriting from OBJECT, which is exactly the 
constraint:  (  OBJECT[]).  F-bounds are therefore sufficient to describe 
polymorphism both in component types  and the self-type .

6.3.3 Polymorphism and Conformance

Unfortunately, the mixing of classes and parametric polymorphism is not well-
achieved in current languages.  Explicit type parameters are most appropriate if 
all other types are strictly monomorphic.  However, many object-oriented 
languages are traditionally lax in their treatment of monomorphic types.  The 
notion of conformance allows monomorphic variables to behave in quasi-
polymorphic ways:  child class objects may be substituted where parent class 
objects were expected.  This is often misunderstood as a kind of subtyping, 
when in fact it is a subclassing constraint, which requires the full machinery of 
F-bounds to explain completely.

The difference between conformance and genuine polymorphism is illustrated 
in figure 6.4 with an Eiffel class POINT which abstracts over the precise 
numerical type to be given to its coordinates:
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class POINT class POINT [T -> NUMERIC]
creation make creation make
feature {ANY} feature {ANY}
     x, y : NUMERIC;      x, y : T;
     make (nx, ny : NUMERIC) is      make (nx, ny : T) is
     do x := nx; y := ny end      do x := nx; y := ny end
end -- POINT end -- POINT

Figure 6.4: Variations on a Polymorphic Theme

The left-hand POINT class is not parameterised; polymorphism of a 
rudimentary kind is based on conformance.  Some p : POINT may be initialised 
using p.make(3,4); or else using p.make(3.2, 4.1).  Any type of object that 
conforms to NUMERIC may be assigned to x and y, even one each of 
INTEGER and REAL!  Whatever exact coordinate types x and y contain, we 
may only infer that they have the quasi-polymorphic type NUMERIC.  The right-
hand POINT class is parameterised.  Some p : POINT [INTEGER] can be 
initialised using p.make(3,4); and some p : POINT [REAL] using  p.make(3.2, 
4.1).  In principle, parameterisation forces the objects assigned to x and y to 
have the same type, which must be some T conforming to NUMERIC.  In 
principle, we may always infer the exact types of x and y as a result of 
parameter instantiation.

For reasons given before (see chapter 4), the conformance approach to
polymorphism is suspect.  Conformance is not type-sound where it pretends to 
be subtyping; furthermore, as the example above suggests, it also leads to 
type-loss.  The only really indispensible use for conformance-based 
polymorphism is to type a dynamically-bound call site, something that may be 
preserved by other means.  Perhaps the most damning indictment against 
conformance is that it subverts entirely the strong typing constraint offered by 
parametric polymorphism.  The Eiffel variable p : POINT [INTEGER] is not 
monomorphic as one would hope, but may still receive objects that are more 
specific than POINT (eg HOT_POINT) and which contain coordinates with more 
specific types than INTEGER (eg SMALL_INTEGER).  Finally, the redundancy 
of having both kinds of polymorphism is illustrated by comparing the left-hand 
POINT and the right-hand instantiation POINT [NUMERIC], which is exactly the 
same type.

6.3.4 A Single Polymorphic Mechanism

Our goal is a single mechanism to describe polymorphism in object-oriented
languages.  Ordinary simple types are to be strictly monomorphic.  Polymorphic 
types will be expressed everywhere using F-bounded parameters.  Mechanisms 
will eventually allow type parameters to be replaced either at compile-time or 
run-time, to obtain maximum static type information on the one hand while 
retaining the possibility of dynamic binding on the other.

A class containing polymorphic parts must be constructed carefully to reflect the 
dependency of one type on another.  This is illustrated with a generalisation of 
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our earlier point class, over whose coordinate type we now abstract.  The type 
function POINT binds the coordinate-type  and the self-type :

POINT = ..{x: , y: , identity: , equal:   BOOLEAN}

To make points contain homogenous coordinates, x and y must both be given 
the same type .  To close point's self-type over the coordinate type,  must be 
bound before , expressing the dependency of  upon .  The constructor for 
typed points puts F-bounds on valid types for  and :

point : (t  NUMERIC [t]).(s  POINT [t, s]).s  POINT [t, s]

point = (t  NUMERIC [t]).(s  POINT [t, s]).(self: s).
{x  , y  , identity  self, 

equal  (other: s).(self.x = other.x  self.y = other.y)}

This function accepts a type t  NUMERIC [t] and produces a typed generator 
for point objects.  This may be demonstrated by applying point to some 
suitable type, such as INTEGER, and inspecting the type of the resulting 
generator:

point [INTEGER] : (s  POINT [INTEGER, s]).
s  POINT [INTEGER, s]

As a consequence of abstracting over their type, the x and y fields may only be 
given an undefined value , which initially has the type (t  NUMERIC [t]).  
By considering the application point [INTEGER], it should be obvious that this 
distributes the type INTEGER internally to the type function POINT, resulting 
in an adapted type generator for integer points:

POINT [INTEGER] = .{x: INTEGER, y: INTEGER, 
identity: , equal:   BOOLEAN}

in which the x and y fields are retyped as we would expect.  The result of 
applying point [INTEGER] therefore has the form of a point generator: 

point [INTEGER] = (s  POINT [INTEGER, s]).(self: s).
{x  , y  , identity  self, 

equal  (other: s).(self.x = other.x  self.y = other.y)}

in which x and y, though their values are still undefined, have acquired the type 
INTEGER.  It is pleasing that the quantification for this integer point class is 
now:  (s  POINT [INTEGER, s]).  Essentially this restricts the class to those 
point types whose coordinates are INTEGERs.  There may of course be types 
in this class with strictly more functions, such as a 3D integer point.

Binding type parameters in the order ,  yields first the class of integer points
and then by taking the fixpoint we obtain the exact type INTEGER_POINT:

INTEGER_POINT = ( (POINT [INTEGER]))
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integer_point = ( (point [INTEGER, INTEGER_POINT]))

and this more or less reflects the generic parameter style of binding, in which 
complete type information is supplied at compile time.  However, object-
oriented languages are also characterised by their ability to handle unresolved 
polymorphic types at run-time.  To obtain a polymorphic point whose coordinate 
type is unfixed requires a simple trick of parameter redistribution in the -
calculus, in order to fix the type of self, while leaving the coordinate type open:   

POLY_POINT = (u  NUMERIC [u]).( (POINT [u]))

poly_point = (v  NUMERIC [v]).( (point [v, POLY_POINT [v]]))

POLY_POINT is a type constructor in the Girard-Reynolds style, generalised to 
accept F-bounded type arguments.  The instance poly_point is a point whose 
coordinates are of some unresolved type (v  NUMERIC [v]).  Clearly, this 
last example demonstrates that it is possible to capture late type binding in the 
style of conformance, but in a sounder mathematical framework.

6.3.5 Higher-Order Inheritance

Generalising inheritance to handle classes with polymorphic components 
requires a higher-order override constraint  to type the record combination 
operator .  This is because  must compare fields having simple and 
polymorphic types; and type parameters may range over classes with further 
embedded polymorphic components.

A suitably complicated example of higher-order inheritance is constructed by 
inheriting from our parameterised class of 2D points in order to define a more 
extended parameterised class of 3D points, while at the same time restricting 
the bound on the polymorphic coordinate type:

3DPOINT = ..{x: , y: , z: , identity: , equal:   BOOLEAN}

3dpoint : (t  INTEGER [t]).(s  3DPOINT [t, s]).
s  3DPOINT [t, s]

3dpoint = (t  INTEGER [t]).(s  3DPOINT [t, s]).(self: s).
((super: POINT [t, s]).

super  {x   0, y   0, z   0, 
equal  (other: s).(super.equal(other) 

 self.z = other.z)}
(point [t, s] (self)))
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The resulting 3D point class will admit of further extensions, but will only allow 
its coordinates to be filled with objects whose type satisfies the bound 
(t  INTEGER [t]), such as SMALL_INTEGER or INTEGER.  The technique 
for method-combination is used again here.  The modified parent record is 
obtained by point [t, s] (self).  The type-application point [t] is correct, since 
any integer type t satisfying the new bound will satisfy the old bound:

(t  INTEGER [t]).INTEGER [t]  NUMERIC [t]

The dependent type application point [t, s] is therefore also correct, since all 
3D integer points are also members of the wider integer point class:

(t  INTEGER [t]).(s  3DPOINT [t, s]).
3DPOINT [t, s]  POINT [t, s]

Finally, point [t, s] (self) produces a value in this type, which is bound 
internally to super.  Consider now the operation of , the higher-order record 
combination operator.  It is given two records to combine:

{x  , y  , identity  self, equal  (other: s).
(self.x = other.x  self.y = other.y)}

  {x   0, y   0, z   0, equal  (other: s).
(super.equal(other)  self.z = other.z)}

whose fields now have the types:

(t  INTEGER [t]).(s  3DPOINT [t, s]).
{x: t, y: t, identity: s, equal: s  BOOLEAN}    

  {x: t, y: t, z: t, equal: s  BOOLEAN}

The rule RECD requires common fields to satisfy  in turn.  Common fields 
are x, y and equal().  These trivially satisfy the rule PARM since all pairwise 
comparable signatures have the same bounded parameter.

This example also overrides the undefined values  for x, y, which were 
polymorphically typed (t  NUMERIC [t]), with defined values 0 in the more 
specific type (t  INTEGER [t]).  This captures exactly the deferred feature
mechanism in Eiffel [Meye88, Meye92] and pure virtual mechanism in C++ 
[Stro91].  Signatures may be given for methods whose implementation is only 
supplied later in descendants.
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6.3.6 Inheritance with Construction and Abstraction

The extended model will permit a slightly different style of inheritance with 
higher classes, in which we choose partially to construct and then to inherit, in 
the style:

3DINT_POINT = .{x: INTEGER, y: INTEGER, z: INTEGER, 
identity: , equal:   BOOLEAN}

3dint_point : (s  3DINT_POINT [s]).s  3DINT_POINT [s]

3dint_point = (s  3DINT_POINT [s]).(self: s).
((super: POINT [INTEGER, s]).

super  {x   0, y   0, z   0, 
equal  (other: s).(super.equal(other) 

 self.z = other.z)}
(point [INTEGER, s] (self)))

Here, the parameterised class of 2D points is applied to an argument for the 
coordinate type, INTEGER.  From the earlier discussion on binding, it is clear 
that this constructs an integer point generator which can be extended in the 
normal way.  The example creates a class of 3D integer points to illustrate full 
use of the super mechanism.

It seems clear that higher-order inheritance can be used if the child class has 
the same number, or fewer type parameters than its parent.  It is more difficult 
to see how a child class can introduce additional type parameters.  It turns out 
that this is not too difficult.  Further internal type abstraction may be introduced 
when deriving the parameterised class of 2D points from our basic object class:

POINT = ..{x: , y: , identity: , equal:   BOOLEAN}

point : (t  NUMERIC [t]).(s  POINT [t, s]).s  POINT [t, s]

point = (t  NUMERIC [t]).(s  POINT [t, s]).(self: s).
(object [s] (self)    {x  , y  ,

equal  (other: s).(self.x = other.x  self.y = other.y)})

Here, even though object [s] only accepts one type parameter, this is the self-
type of points, which is bound over the coordinate type t.  This may be thought 
of as an implicit type dependency in the object class which is made explicit later 
in the parameterised 2D point class.  Our formulation of inheritance allows type 
abstraction to be introduced in an intuitive way.
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6.3.7 Higher-Order Multiple Inheritance

Finally, it is important to observe the behaviour of the higher-order merge
constraint  during multiple inheritance.  We repeat our earlier example of 
inheriting multiply from a 2D point and a z-coordinate class, over whose 
coordinate types we abstract here, in order to derive the greatest lower bound 
parameterised 3D point class.  The example assumes the existence of a 
parameterised 2D point class, as described in the previous section, whose x
and y fields are constrained by the bound (t  NUMERIC [t]).  Another 
parameterised z-coordinate class is given, which also inherits from object, but 
which introduces a different bound (t  REAL [t]) on its z field:

ZCOORD = ..{z: , identity: , equal:   BOOLEAN}

zcoord : (t  REAL [t]).(s  ZCOORD [t, s]).
s  ZCOORD [t, s]

zcoord = (t  REAL [t]).(s  ZCOORD [t, s]).(self: s).
(object [s] (self)    {z  0.0, equal  (other: s).

(self.z = other.z)})

Inheriting multiply from these classes is complicated by the fact that they have 
different bounds on their polymorphic parameters.  To establish whether the 
parent classes meet, PARM tells us to compute their intersection type:

(t  NUMERIC [t]).(s  POINT [t, s]).
(  REAL []).(  ZCOORD [, ]). s  

The recursive definition of RECD will dig through any parameterised types on 
which the two self-types eventually depend, computing intersections until simple 
types are reached.  Here, common fields are only in the self-type.  To compute 
s   this must be transformed into a greatest lower bounds condition:

(t  (NUMERIC [t]  REAL [t])).
(s  (POINT [t, s]  ZCOORD [t, s]))

Assuming (t  REAL [t]).REAL [t]  NUMERIC [t], this simplifies to:

(t  REAL [t]).(s  (POINT [t, s]  ZCOORD [t, s]))

Now, with all other type intersections determined, the final one may be 
calculated by merging the two generators.  Calling this 3DPOINT:

3DPOINT = ..{x: , y: , z: , identity: , equal:   BOOLEAN}

a well-typed inheritance expression may be defined, yielding a parameterised 
3D point class with a more restricted bound (t  REAL [t]) on its coordinate:
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3dpoint : (t  REAL [t]).(s  3DPOINT [t, s]).
s  3DPOINT [t, s]

3dpoint = (t  REAL [t]).(s  3DPOINT [t, s]).(self: s).
((father: POINT [t, s]).(mother: ZCOORD [t, s]).
     (father  mother) 

{x   0.0, y   0.0, equal  (other: s).
(father.equal(other)  mother.equal(other))}

(point [t, s] (self)) (zcoord [t, s] (self)))

Again, the method combination technique is used to resolve the conflicting 
equal() methods; and the opportunity is taken to supply effective values for the 
2D poly-point's deferred x and y values.  As before, the distribution of multiple 
new type parameters satisfies old bounds.  In particular, this is due to the 
operation of  which will not combine two records unless their types intersect.  
Here, a strategy was adopted of seeking an intersection type for the result 
according to  that will allow  to operate without error.

This chapter has developed a general theory of classification, which gives a 
fairly full understanding of the types and behaviours of objects in object-
oriented programming.  In passing, intuitive explanations have been found in 
the -calculus for many of the popular features found in object-oriented 
languages; and occasionally good grounds have been determined for rejecting 
certain others.  A noteworthy achievement of our model is to unite all desirable 
forms of polymorphism under a single F-bounded scheme.  Although much 
ground has been covered here, there are many loose ends to tidy up.  The 
focus here was on explaining object behaviour.  The following chapter turns to 
address the issues in the modelling of object state and identity.


