
Chapter 4

Polymorphic Inheritance

_______________________________________________________________

This chapter explores what it means for a type to inherit functions.

After successive attempts to describe classes as types and inheritance as the 
incremental creation of subtypes, the focus moves to a different model of 
classification.  In the new approach, classes are not types; rather they are 
polymorphic type families.  The most widely-known treatment of polymorphism 
is Girard-Reynolds Universal Quantification.  Two variants on this have been 
proposed for handling polymorphic inheritance in object-oriented languages, 
these being Bounded Quantification and F-Bounded Quantification.

_______________________________________________________________

4.1 Covariance and Contravariance

When Cook reported, in his Proposal for Making Eiffel Type-safe [Cook89b], 
that there were loopholes in Eiffel's type system, this came as a surprise to 
those who look to Eiffel as a model for the strongly-typed object-oriented 
languages.  The so-called "Eiffel type failure" problem created a stir at the time.  
The crux of the problem stems from Eiffel's intention to support subtyping, while 
not managing to obey all the rules necessary to achieve this.  The mathematical 
arguments in favour of subtyping are weighed against the practical objections to 
implementing them in Eiffel.

4.1.1 On the Impact of Contravariance

In Eiffel, a class conforms to another if it inherits from it [Meye92, p219], 
whether directly or transitively.  Eiffel's conformance1 deviates from subtyping 

                                           

1  A  term of pure franglais, since the noun from "to conform" is "conformity" .
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by allowing the uniform specialisation of function arguments and results in 
descendent classes.  This is in violation of contravariance, which insists on the 
generalisation of argument-types in replacement functions.  Programs may 
therefore be passed as type-correct, but hide run-time type failure [Cook89b].  
This may be illustrated with a simple example involving the covariant 
redefinition of a function argument type in figures 4.1 and 4.2.

In figure 4.1, a simple Cartesian POINT class possessing x and y cooordinates 
and a procedure to move() points is extended in the inheriting class 
HOT_POINT by adding the selected attribute and procedures to select and 
deselect the point.  HOT_POINT represents the class of interactively-selectable 
points in some display environment.  If we disregard the typing of equal(), 
HOT_POINT is in all other respects a subtype of POINT and objects of type 
HOT_POINT may safely be passed to variables of type POINT.

class POINT -- simple Cartesian point
feature { ANY }

-- data declarations
x, y : INTEGER;

-- functions and procedures
move (nx, ny : INTEGER) is

do x := nx;  y := ny end;
equal (other : POINT) : BOOLEAN is

do Result := (x = other.x and y = other.y) end
end -- POINT

class HOT_POINT -- selectable Cartesian point
inherit POINT

redefine equal -- to test extra selected attribute
feature { ANY }

-- additional data declarations
selected : BOOLEAN;

-- additional procedures
select is

do selected := true end;
deselect is

do selected := false end;
-- redefined equal accepts HOT_POINT argument

equal (other : HOT_POINT) : BOOLEAN is
do Result := (x = other.x and y = other.y and

selected = other.selected) end
end -- HOT_POINT

Figure 4.1: Covariant Argument Redefinition

The salient fact here is that the function equal() defined in POINT, which 
accepts an argument in the same type POINT, has been replaced in 
HOT_POINT by a function expecting a subtype argument HOT_POINT, in 
violation of contravariance.  This seems reasonable at first, since objects 
should be compared with other objects of the same type.  The apparent wisdom 
of this is further indicated in the redefined body of equal(), in which the 
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additional attribute selected is compared with that of the argument, which must 
therefore be a HOT_POINT.

However, figure 4.2 illustrates what happens when a variable of type POINT is 
passed an object of type HOT_POINT.  In the program fragment, a variable p is 
passed both a POINT instance and a HOT_POINT instance on different 
occasions.  Initially, the general application of the move() procedure works 
successfully as one might expect; however the general application of equal()
has disastrous results.  Here, since p now legally contains an instance of 
HOT_POINT, p.equal(point) invokes the replaced function defined in 
HOT_POINT.  This call was checked statically with respect to POINT, yet the 
replacement function seeks to access the selected attribute of a POINT, which 
it clearly does not possess.  The combination of covariant argument 
redefinition, aliasing and dynamic binding lead to the point of type failure.

-- Simple program fragment

p, point : POINT;
hotpt : HOT_POINT;

!! point; -- default initialisation to (0, 0)
!! hotpt; -- default initialisation to (0, 0, false)
p := point;
p.move(3, 4);
p := hotpt; -- ok since HOT_POINT conforms to POINT
p.move(3, 4);
... p.equal(point); -- run-time type failure!

Figure 4.2: Type Failure due to Aliasing

While insisting that Eiffel should obey the contravariant rule for argument 
redefinition, Cook ruefully admits that:

"[Contravariance] has the unfortunate effect of making argument type 
redefinition almost useless, since it is usually not very useful to allow a 
redefined method to accept a larger class of arguments" [Cook89b, p62].

Contravariance is a counter-intuitive finding because it prevents the uniform 
specialisation of function arguments and results.  It forbids the replacement of a 
function f :    closed over a type  by a function g :    closed over a 
subtype    [Card86].

4.1.2 On the Avoidance of Contravariance

Cook's many suggested amendments to Eiffel's type rules [Cook89b] were 
intended to enforce strict subtyping.  These included linking exports with 
inheritance, forbidding the redefinition of attribute types, inverting the function 
argument redefinition rule to observe contravariance, judging type compatibility 
between parameterised types after replacing the type parameters and 
introducing an explicit type attribute scheme to handle Eiffel's anchored types.
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In his reply to Cook [Meye89], Meyer objected to the linking of exports with 
inheritance, which he called impractical, and especially to the adoption of 
contravariance.  Rather than change Eiffel's type rules to obey strict subtyping, 
Meyer introduced a patch, called the "global system validity check", to catch 
type errors retrospectively in situations where polymorphic aliasing would lead 
to run-time type failure.  Meyer's patch [Meye89, p14-17] monitors aliasing of 
the kind p := hotpt;  and in this context retypes the features of POINT with the 
most restricted types of any object it aliases, anywhere in the system.  For this 
reason it is called a "global" check.  Here, equal() would be retyped with the 
signature POINT  (HOT_POINT  BOOLEAN).   At system assembly time, 
p.equal(point) would therefore raise a type error, where the retyped equal() is 
passed too general an argument.  The published patch relies on a pessimistic, 
global flow analysis and errors are detected at a late stage.  Recently, Meyer 
has proposed a different patch [Meye95], which is based on the idea of flagging 
covariant argument-type redefinitions, such that unsafe combinations of 
aliasing and polymorphic invocation are detected immediately.  The same 
technique is used to trap the polymorphic invocation of routines which have 
been removed from the interface of descendent classes.  Technically, Meyer's 
solution works, although from a mathematical standpoint it is unsatisfying, since 
it fails to address the basic soundness issue.

Meyer's refusal to adopt contravariance arose initially from observing the 
regularity captured by Eiffel's anchored types:

"Examples such as the above, of which there are thousands in practical 
Eiffel applications, make it very hard to imagine how significant object-
oriented software can be written in a typed language without a covariant
policy.  Many of these examples use declaration by association, which is 
only a syntactical abbreviation, but in practice an essential one;  its very 
availability for routine arguments is only possible because of the 
covariant rule" [Meye89, p12].

Anchored types are those declared "by association".  The most common case 
is where an argument is said to have the type like Current (ie it is anchored to 
the type of Current, Eiffel's name for self).  Anchored types express something 
intuitive about classification which one would want to preserve in an object-
oriented language, namely that a function f :    closed over the class  can 
be inherited by a class , in which it is automatically retyped f :    and 
closed over the new class.  



Polymorphic Inheritance 56

class POINT -- simple Cartesian point
feature { ANY }

-- data declarations
x, y : INTEGER;

-- functions and procedures
move (nx, ny : INTEGER) is

do x := nx;  y := ny end;
equal (other : like Current) : BOOLEAN is

do Result := (x = other.x and y = other.y) end
end -- POINT

Figure 4.3: Anchored Type Definition

In figure 4.1 fixed types were deliberately given to equal() and its redefinition to 
illustrate the problems contingent on adopting a covariant retyping policy.  
Figure 4.3 illustrates an alternative flexible typing in Eiffel, using an anchored 
type declaration.  Here, the argument to POINT's equal() has the type like 
Current, standing for the same type POINT.  When inherited by HOT_POINT, 
this type would adapt implicitly to HOT_POINT without the need for explicit 
redefinition.  Meyer assumed that this mechanism was merely a "syntactic 
abbreviation" for type redefinition, subject to an interpretation in a simple 
subtyping model of inheritance [cf SOM93].  As a result, he was forced to 
conclude that a covariant policy should be observed elsewhere for argument 
redefinition.  This conclusion is wrong, not least because it is based on a false 
assumption:  anchored types are not syntactic abbreviations, they are better 
explained using a different mechanism.

Ironically, Cook discovered the Eiffel type failure problem while researching an 
alternative mathematical model of class inheritance, F-bounded quantification 
[Cook89a, CCHO89a, CCHO89b] which is different from subtyping [CHC90].  
F-bounds were devised chiefly to explain the evolution of the self-type under 
inheritance.  The F-bounded model is discussed more fully in the latter part of
this chapter.

4.2 Inheritance as Subtyping

For those languages which support subtyping in full [SCBK86, RW92] or in part 
[Omoh94, SOM93, Stro91], a properly developed mathematical model of 
subtype-based inheritance is no mere academic matter.  To facilitate this, a 
naïve model of inheritance is first explored, in order to examine the effects of 
adding incrementally to a type.  From this, a pure subtyping model of 
inheritance is constructed, in which certain limitations are observed.  Subtyping 
restricts the useful type information available, both in languages with subtype-
inheritance and in those with independent type hierarchies [Amer90, BHJL86].

Both inheritance models presented in this section are based on the simply-
typed -calculus [Chur40].  For convenience and brevity, only the types are 
considered, rather than values with their types.  To model the extension of 
types, the existence of a simply-typed record combination operator  is 
assumed, which extends a record by appending to it a partial record of 
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additional fields.  For the moment, this operator is only required to have an 
additive effect.  Cook et al. [Cook89a, CP89, CHC90] have a combination 
operator with override; later we shall define our own version of this.  A full -
calculus derivation of record combination from first principles is given in 
Appendix 1.

4.2.1 A Naïve Typing of Inheritance

The existence of a universal type TOP is assumed, having the empty signature:

TOP = {}

It is vacuous, since it offers no information about how its instances should 
behave.  All values are members of this type, since it is the logical supertype of 
all other types.  We now wish to define the subtype OBJECT  TOP, being the 
type of all objects, those values having a testable identity2:

OBJECT = {identity : OBJECT, equal : OBJECT  BOOLEAN}

OBJECT is clearly a recursive type.  The existence of such a type is motivated 
by appealing to the standard approach to solving recursive equations [Read89, 
CP89].  By abstracting over the point of recursion, a construction is obtained, 
which is generally known in the -calculus as a functional.  Functionals have the 
advantage that their definitions are not self-referential:

OBJECT = .{identity : , equal :   BOOLEAN}

In the context of types, OBJECT is also known as a generator [CHC90] for 
the type OBJECT.  OBJECT is a function from types to types - it is designed 
for application to a single type argument, which will replace the formal argument 
.  It so happens that the type we would like to replace  is in fact OBJECT, the 
very type we are trying to define.  This leads to the observation that:

OBJECT = OBJECT [OBJECT]

or, OBJECT is unchanged by the application of the generator OBJECT.  
Types which exhibit this property are called fixed points, or fixpoints of their 
generator.  Under certain conditions, it is possible to define a unique fixpoint, 
called the least fixed point, as the convergent limit of a sequence of self-
applications of a generator:

OBJECT = OBJECT [OBJECT [OBJECT [...]]]

                                           

2 where identity :  is of course a short-hand for the function identity : UNIT  .  We assume 
the technique described in chapter 2 using the UNIT type to avoid semantic problems with non-
convergence when taking fixpoints.
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Starting with the trivial application OBJECT [], where  is the undefined 
value, a series of approximations to OBJECT may be constructed which, at the 
limit of convergence, is equal to the desired recursive type.  A function called 
the fixpoint finder, , is used to establish the fixpoints of generators.   has the 
property:

OBJECT = ( OBJECT)    OBJECT = OBJECT [OBJECT]

in other words, applying the fixpoint finder to a generator yields the recursive 
type which is that generator's fixpoint.  One definition of  is given by:

 = f.(s.(f (s s)) s.(f (s s)))

in which the trick of embedded self-application is used to produce the sequence 
of calls of the generator.  Note that  is not itself recursive, but establishes 
recursion from first principles.  Semantic models supporting the existence of 
unique fixpoints depend on the construction of domains in which convergence 
can be proven [Scot76, Stoy77, MS82, MPS84, BM92].

The standard notation for the recursive type OBJECT, obtained by taking the 
fixpoint of the generator OBJECT, is more usually given as:

OBJECT = .{identity : , equal :   BOOLEAN}

in which  is used to bind the recursion variable .  This economical notation is 
deemed equivalent to the infinite unrolling of the recursion in the type:

OBJECT = {identity : OBJECT, equal : OBJECT  BOOLEAN}

A POINT type is now defined to inherit from OBJECT.  In the naïve 
interpretation of inheritance, the POINT record type is a straightforward 
extension of OBJECT, using  to compose OBJECT with the extra field types 
desired for a POINT.  Let us suppose that it is reasonable to define free-
standing extension record types, representing the additional fields to be 
incorporated in a base type.  If the extension record type for a MOVEABLE 
object is defined as:

MOVEABLE = .{x : INTEGER, y : INTEGER, 
move : INTEGER  INTEGER  }

a naïve attempt to derive a POINT from an OBJECT may be given by:

POINT = OBJECT   MOVEABLE

This derivation is not especially useful, because the resulting POINT type is 
schizophrenic in its self-reference.  For some p : POINT, the result type of 
p.identity is OBJECT, whereas the result type of p.move(3,4) is MOVEABLE.  
On inspection of the unrolled POINT type, it is clear why this is the case:
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POINT = {identity : OBJECT, equal : OBJECT  BOOLEAN,
x : INTEGER, y : INTEGER, 
move : INTEGER  INTEGER  MOVEABLE}

In this naïve scheme, objects have "aggregate types" constructed from the set 
of extension record types inherited from their ancestors.  Type correctness is 
judged in terms of whether a given function call can be typed in a member 
record of the aggregate.  The disadvantage of this scheme is that any function 
returning self only has the type of a single member record from the aggregate.  
Further expressions involving this result will in all likelihood be impossible to 
check statically, since they will almost certainly involve functions declared in a 
different member record.  All the self-types of the extension records are 
incomparable, since they own mutually exclusive functions.

4.2.2 A Subtyping Model of Inheritance

Trellis [SCBK86], Sather [Ohmo94, SOM93] and Oberon [RW92] respect 
subtyping in their inheritance rules.  C++ also has a variant of inheritance which 
corresponds to deriving a subtype incrementally [Stro91].  The naïve -calculus 
model of inheritance introduced above is now modified to capture this kind of 
pure subtyping (cf Cardelli's alternative object calculus model [Card92]).  

The chief problem with the naïve model is that it aggregates object types from 
the unrelated types of "difference objects", the extension record types.  To 
construct a model with subtypes, the type of the parent must be embedded 
inside the child type.  Stroustrup means something like this when he says:

"An object of a derived class has an object of its base class as a 
subobject"  [Stro91, p183].

To achieve this in the -calculus model, we must avoid fixing the type of the 
extension record until we are ready to close the POINT type.  One way of doing 
this is to define a generator POINT which binds the self-type of the extension 
record only in the result of record combination:

POINT = .(OBJECT    {x : INTEGER, y : INTEGER, 
move : INTEGER  INTEGER  })

Here, the simply-typed record combination operator  may still be used, since it 
combines records whose types are constant.  The type POINT is created by 
fixing the generator POINT:

POINT = ( POINT)

 = .{identity : OBJECT, equal : OBJECT  BOOLEAN, 
x : INTEGER, y : INTEGER,
move : INTEGER  INTEGER  }

which, by unrolling the recursion, is equivalent to:
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POINT = {identity : OBJECT, equal : OBJECT  BOOLEAN, 
x : INTEGER, y : INTEGER,
move : INTEGER  INTEGER  POINT}

The type checking scheme offered by this approach is more useful than the 
fragmentary scheme above, since the child POINT's self-type now includes the
parent OBJECT's self-type.  Inherited functions returning self still only have the 
type of the parent:  for some p : POINT, the call p.identity has the type 
OBJECT;  however similar functions defined locally in the extension record 
have the type of the child, encompassing the parent:  p.move(3,4) has the type 
POINT.  This means that expressions having the child type POINT are also 
legitimate arguments to inherited functions:  the call p.move(3,4).identity can be 
type-checked statically and has the type OBJECT.  However, we still cannot 
check p.identity.move(3,4) statically, since move() is not a legal field of the 
OBJECT type.

4.2.3 Subtyping and Type Checking

It turns out that a calculus of inheritance based on pure subtyping is strictly less 
expressive than one would like.  As a consequence of the least fixed point
solution for the recursive type OBJECT, any type  inheriting from OBJECT will 
obtain functions in the types:

identity :    (OBJECT)
equal :   (OBJECT  BOOLEAN)

While the POOL family [Amer87, Amer90] and Emerald [BHJL86, RL89] do not 
have inheritance in the same sense, they do support a type-compatibility 
between components based on subtyping.  In these languages, it is impossible 
to propose any more specific types for equal() without violating contravariance.  
For example, assuming that the type relationship POINT  OBJECT is 
desirable, it would be impossible to give POINT an equal() function with a 
covariant argument type:

equal : POINT  (POINT  BOOLEAN)

and still legally substitute POINT objects into program variables expecting an 
OBJECT.  In order to ensure full behavioural subtyping [Amer90], it is only safe 
to assume that POINT equality has the type:

equal : POINT  (OBJECT  BOOLEAN)

This is a useful, but liberal typing scheme that strictly fails to capture the 
essence of strong typing.  Such an equal() function could be used to compare 
POINTs with objects of any type   OBJECT.  Elsewhere in Emerald and the 
POOL family, it is possible to provide more specific types for functions like 
identity(), since specialisation of the result is allowed by the covariant rule:

identity : POINT  (POINT)
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In languages like C++ [Stro91] and Oberon [RW92], one is not allowed to 
redefine the type of an inherited function.  In any case, it would seem wasteful 
to have to reimplement identity() for each inheriting type.  In these languages, 
functions are inherited with their result types unchanged:

identity : POINT  (OBJECT)

This again is rather too liberal:  such an identity function could be used to map 
POINTs to objects of any type   OBJECT.  

In a subtyping scheme, functions are only typechecked over their least upper 
bounds, so type information is lost when applying them to subtypes.  This is a 
significant disadvantage.  Type loss may occur even quite locally, leading to a 
need for dynamic type checks.  For some p : POINT, an expression of the form:

p.identity.move(3, 4)

would require a dynamic type check on the result of identity to ensure that it 
was some type   OBJECT owning a function move().  The problem of type-
loss is something endlessly debated in C++ and leads to unsafe programming 
tricks to recover type, such as downcasting in the type hierarchy [Meys92, 
p135-142].

4.3 Bounded Universal Quantification

A better typing model would assert that, when applied to INTEGERs, identity()
maps to INTEGERs;  and when applied to BOOLEANs it maps to BOOLEANs 
[DT88].  This suggests some kind of polymorphic typing model, rather than a 
simple subtyping model.  It is clear that a form of quantification over all types 
owning an identity and equality function is desired, so it is quite natural to 
consider typing the identity() and equal() functions using a bounded form of 
universal quantification:

identity : (  OBJECT).  ()
equal : (  OBJECT).  (  BOOLEAN)

The notion of bounded quantification was introduced by Cardelli and Wegner 
[CW85] in their experimental language Fun, as an extension to ordinary 
universal quantification.  Universal quantification is used to define parametric 
polymorphic functions in the Girard-Reynolds style [Gira72, Reyn74].

4.3.1 Universal Quantification

Whereas the simply-typed -calculus [Chur40] is a first-order calculus with 
term-abstraction, the second-order -calculus [Gira72, Reyn74] also includes 
type-abstraction, to capture the intuitive concept of a function that takes a type 
as a parameter.  Universal quantification is used to quantify over all types.  For 
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instance, the identity and equality functions, which we defined over an OBJECT 
type above, can be given the alternative universally quantified types:

identity : .  
equal : .    BOOLEAN

in which  may range over any type whatsoever.  A universal polymorphic 
equal() function accepts as its first argument any type  and returns the 
monomorphic equal() function that tests for equality among objects that are all 
of type . 

In the ideal model [MS82, MPS84] it is possible to give meanings to functions 
with universal quantification .   based on a theory of infinite intersections 
in the domain V.  In the following summary, the set of all types (ie set of all 
ideals in V) is known as TYPE, a lattice ordered by  whose greatest element is 
TOP, a type containing exactly all the elements of V.

"Let D  E be the set of total functions in V that map elements of the 
ideal D to elements of the ideal E.  Stated more precisely:

D  E  { f  TOP  TOP | x  D  f(x)  E }.

For any D and E that are ideals, this set is also an ideal and is therefore 
a valid type in the ideal model.  There is an ideal (a type) in V that 
contains all total functions that map BOOLEANs to BOOLEANs, 
represented as BOOLEAN  BOOLEAN. ... Identity is in this ideal, 
so we write identity  BOOLEAN  BOOLEAN; but we could also write 
identity  INTEGER  INTEGER.  In fact, for any type , identity 
  .  Because identity is in all of these ideals, it is in their 
intersection, so we can write identity  TYPE    "  [DT88, p54].

This is taken as the meaning of the expression .  .

The Girard-Reynolds style of parametric polymorphism is readily adapted for 
use in an object-oriented context.  For example, a list containing homogenous 
elements may be given the polymorphic type:

LIST = ..{cons :   ,  head : ,  tail : }

in other words, LIST is the recursive type with a cons(), head() and tail()
function that are valid for all element types .  In this construction, it is important 
to bind the universal variable  before the recursion variable .  This is so that 
LIST's recursion variable  is bound with the element type  in scope, ensuring 
that the tail of the LIST also contains further elements of type .

To say "LIST is a type" is rather loose.  LIST is in fact a function from types to 
types, expecting as its first argument a type to replace the parameter .  
Applying LIST to the type INTEGER yields an INTEGER_LIST:
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INTEGER_LIST = LIST [INTEGER]
= .{cons : INTEGER  ,  head : INTEGER,  tail : }

In recognition of this, LIST is more correctly called a type constructor, since it 
maps elements of type  into lists of type LIST [].  To obtain the more usual 
Girard-Reynolds style polymorphic types for LIST's functions, the universal 
quantifier is brought back outside the method selection function:

cons : .LIST []  (  LIST [])
head : .LIST []  ()
tail : .LIST []  (LIST [])

It should be obvious that this translation merely introduces externally a new 
universal type variable and then partially applies LIST to it.

Object-oriented languages have adopted this style of parametric polymorphism 
to abstract over internal components of a type.  Parameterised class definitions 
are known in Eiffel as generic classes [Meye88] and in C++ (from version 3.0) 
as template classes [Stro91].  A similar polymorphic mechanism existed earlier 
for the functional languages ML [Miln78], Hope [BMS80] and the generic 
packages of Ada [IBHK79], although the machinery necessary to describe ML
is strictly simpler than the second order -calculus [CW85].  

4.3.2 Bounded Quantification

Cardelli and Wegner introduced bounded quantification as a conservative 
extension  to universal quantification [CW85].  Bounded quantification allows 
the definition of polymorphic functions over all types that are subtypes of a 
given type.  Intuitively, one wants the functions identity() and equal() to be 
applicable polymorphically to the type OBJECT, or to some subtype:

identity : (  OBJECT).  ()
equal : (  OBJECT).  (  BOOLEAN)

The subtype constraint   OBJECT is the bound, or condition, restricting the 
actual type that may instantiate the parameter  to a subtype of OBJECT.  This 
is essentially all that distinguishes bounded quantification from universal 
quantification, in which no constraint is placed on parameters.

Bounded quantification finds an equally intuitive interpretation in the ideal 
model.  Before, a denotation for the type of identity was given as:  identity 
TYPE   , meaning that for all types , identity is in the intersection of 
the ideals   .  As a consequence of the lattice structure of TYPE, an 
equivalent denotation for the type of identity is:  identity  TOP   .  By 
generalising over the syntax for universal quantification, we have 

identity :  .         identity : (  TOP) .   
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and it is this more general syntax that suggests bounded quantification in which 
the type TOP may be replaced by some other type in the lattice [DT88, p54], as 
in:

identity : (  OBJECT).  

Universal quantification is a special case of bounded quantification, where the 
trivial bound   TOP is placed on the type that may instantiate the parameter.

Bounded quantification allows types to be given to many more parametric 
polymorphic functions than universal quantification, since constructed types 
may now depend on their constituents' possessing certain operations, 
something strictly prohibited in the Girard-Reynolds system3.  It is possible to 
define a SORTED_LIST:

SORTED_LIST = (  COMPARABLE). 
.{insert :   ,  head : ,  tail : }

such that the insertion function:

insert : (  COMPARABLE). 
SORTED_LIST []  (  SORTED_LIST [])

depends on the list element type having at least the comparison function < 
defined for COMPARABLE and all its subtypes.  This is similar to the type 
system sketched in the experimental language Russell [DDS78, DD79] and 
also to the constrained generic classes offered in Eiffel (from version 3.0) 
[Meye92], in which an inheritance constraint (conformance, rather than 
subtyping) is placed on a type parameter:

class SORTED_LIST [T -> COMPARABLE]
feature ... end

These forms of polymorphism, though not central, are also of considerable 
interest in object-oriented programming.  For reasons given later, the 
construction of types around bounded polymorphic variables is not as 
expressive as this first appears.  Fortunately, this may be replaced by a slightly 
different construction.

Bounded quantification was originally intended to provide polymorphic types for 
inherited methods in object-oriented programming.  Although it is explained 
below why this only partly succeeded, one useful insight gained from this work 
was that class types seemed to involve type families constrained by a bound.  
Cardelli called these powertypes, by analogy with powersets [Card88b] - a class 
has a polymorphic type which is the set of all subtypes of a given type, the least 

                                           

3 The claim that Girard-Reynolds polymorphic functions can be written "in ignorance" of the type 
instantiating the parameter starts to crumble the closer you get to the implementation [SC92].



Polymorphic Inheritance 65

upper bound.  Other type treatments which only consider sets of identifiers 
adopt this approach [PS94].

4.3.3 System F ("F sub")

Cardelli-Wegner bounded polymorphism has influenced the development of 
other type systems [Pier92a, SP94, Comp94].  The language Fun integrated 
ideas from Girard-Reynolds polymorphism [Gira72, Reyn74], a formulation of 
the second-order lambda calculus later to become known as "System F", with 
Cardelli's first order calculus of subtyping [Card84, Card88a] using formal 
techniques developed by Mitchell [Mitc88].  Fun was simplified and slightly 
generalised by Bruce and Longo, then by Curien and Ghelli [BL88, CG92].  
Curien and Ghelli's latter formulation became known as "minimal bounded Fun" 
or F ("F sub"), accepted as a standard for the bounded second-order -
calculus.  The first examples of bounded quantification were given in [CW85] 
and more were developed in Cardelli's study of power kinds [Card88b].  F has 
been extended to include record types [CM92, Card92] and forms the basis for 
the programming language Quest [CL91].  A survey of F and some related 
approaches is given in [Ghel90b].

Ghelli [Ghel90a] implemented a type checker for F which he initially claimed 
was both sound and complete, although the algorithm presented in [CG92] was 
later found to be only semi-decidable.  The approach taken was to compute the 
minimum type of a term and determine whether one type was a subtype of 
another.  The algorithm converged only in cases where subtyping was provable, 
otherwise it could diverge.  Pierce [Pier92b] eventually proved that the problem 
of determining whether one type was a subtype of another in F is undecidable.  
Notwithstanding, Bruce et al. [BCMG93] developed a typechecker for a 
restricted language based on F in which all terms could be guaranteed to have 
a minimum type, as a result of adding extra type information to class terms.  
Further decidable variants of F include [CW85, KS92, CP94], all of which are 
subject to restrictions.

4.3.4 A Bounded Model of Inheritance

The original exposition of bounded quantification in [CW85] depended on 
motivating examples which, by chance, did not include any recursive types.  
Canning, Cook et al. [CCHO89a] later discovered that polymorphic functions 
quantified over recursive types could not be adequately described in the 
Cardelli-Wegner system.  Some of their counter-examples are developed here.  
Bounded quantification does not provide the same degree of flexibility in the 
presence of type recursion as it does for non-recursive types.  The process of 
taking fixpoints drives a wedge between the bounded quantified variable and 
the type's recursion variable.  The effect is that functions lose their polymorphic 
types and can only be typed in their least upper bounds, making bounded 
quantification no more expressive than pure subtyping.
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Consider a recursive type MOVEABLE, the common ancestor of several 
relocatable shapes such as SQUARE and CIRCLE.  We would like a move()
function:

MOVEABLE =  mv.{ move : INTEGER  INTEGER  mv, ... }

to apply polymorphically to all descendants of MOVEABLE, such as SQUARE 
and CIRCLE.  However move() does not have the type:

move : (  MOVEABLE).  (INTEGER  INTEGER  )

but rather the type:

move : (  MOVEABLE).  (INTEGER  INTEGER  MOVEABLE) 

because the quantified variable  and recursion variable mv are in fact 
independent.  In the quantification (  MOVEABLE), the recursion variable 
mv is already out of scope.  Inside the recursive definition, mv is bound by 
and therefore has been fixed at mv = MOVEABLE by the fixed point finder 
before  ranges over this type.  As a result, whenever we move SQUAREs or 
CIRCLEs we always obtain an object of exactly the type MOVEABLE (type 
information is lost).  The algebra does not force the function's result type to 
mirror its polymorphic target.

Consider again that we would like COMPARABLE's comparison < function

COMPARABLE =  cp.{ < : cp  BOOLEAN, ... }

to apply polymorphically to all descendants of COMPARABLE such as 
INTEGER and CHARACTER, which inherit the < operation.  Now, the function 
< does not have the type:

< : (  COMPARABLE).  (  BOOLEAN)

but rather the type:

< : (  COMPARABLE).  (COMPARABLE  BOOLEAN)

because  fixes the type of cp = COMPARABLE before  ranges over this type.  
As a result, whenever we compare INTEGERs, the < function always expects 
an argument of exactly the type COMPARABLE.  The algebra does not force < 
to compare operands of the same type.

Looking at this case another way, we would like to consider CHARACTER or 
INTEGER as types possessing their own versions of <.  Unrolling the inherited 
type definitions for CHARACTER or INTEGER, it is possible to redefine the 
function <, forcing it to accept an argument in the desired type:

CHARACTER =  ch.{ ...;  print : ch ; < : ch  BOOLEAN; ... }
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By explicit redefinition, < now has the type

< : (  CHARACTER).  (CHARACTER  BOOLEAN)

To ensure CHARACTER  COMPARABLE, subtyping must obtain between the 
two < functions in the pair of records:

{ ...; print : ch ; < : CHARACTER  BOOLEAN; ... } 
 { < : COMPARABLE  BOOLEAN }

requiring COMPARABLE  CHARACTER in turn by contravariance!  The 
condition on which success depends is precisely the opposite of what this 
example intended to show.  CHARACTER  COMPARABLE cannot be derived 
using the rules of subtyping unless in fact CHARACTER = COMPARABLE.  A 
recursive type only has proper subtypes if the recursion variable occurs on the 
result-side of functions.  If the recursion variable occurs on the argument-side, 
this effectively prevents the derivation of a proper subtype.

Object-oriented class designs typically define recursive objects with binary 
methods, or functions expecting another argument of the same type, such as 
equal() or < above.  Bounded quantification is strictly too weak a model to 
explain the polymorphic inheritance of such functions in object-oriented 
languages.  To obtain polymorphism in the Cardelli-Wegner model would 
necessitate the elimination of recursive types;  to retain recursive types would 
require sacrificing polymorphism [Simo94a].

4.4 Function-Bounded Quantification

In object-oriented languages, there is a difficulty in constructing a quantification 
for type parameters which binds the type variable(s) both in the body of the type 
definition and in the expression denoting the type bound itself [SC92].  Cardelli-
Wegner bounded quantification does not have this property, being of the form:

(  .F[]).e()

in which the type of the recursive variable is fixed before bounded 
quantification.  Instead, we desire a form of quantification which permits full 
type recursion in the body of the type definition and in the expression denoting 
the type bound:

(  F[]).e()

and this is called function-bounded quantification by Canning, Cook, Hill, Olthoff 
and Mitchell in their seminal paper [CCHO89a], or more commonly F-bounded 
quantification.  An F-bound is a special kind of constraint which can be made to 
apply successfully to recursive types.  Instead of insisting that a type is a 
straightforward subtype of another established type   .F[], an F-bound 
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insists that a type is a subtype of an adapted recursive type, obtained by 
applying a generator to itself   F[].

4.4.1 Deriving a Function-Bound

An F-bound describes family of types (a kind) which all have to satisfy the 
property (  F[]), for some generator F.  The derivation of this condition is 
the result of considering the intuitive types that we should wish polymorphic 
functions to have when they are inherited [CCHO89a, Simo94a]:

Consider again the polymorphic move() function.  Working backwards, we seek 
the condition on a type t so that for any variable x : t we can derive " " that 
x.move(1, 1) is also of type t.

x : t  x.move(1, 1) : t { by assumption }

Using two type rules for function application and record selection, eg [CW85, 
Card88b], this condition may be established.  Below,  is the current set of type 
assumptions.  For the purpose of the example,  can be ignored.  Chaining 
backwards through the function application rule:

  f :    ,  v : 
APP 

           (f v) : 

yields the type which we would like to show x.move() to have:

x : t  x.move : (INTEGER  INTEGER  t)

Chaining backwards through the record selection rule:

  r : { 1:1, ..., n:n }
SEL  i  1..n

  r.i : i

yields an upper bound on the record type that we would like to show x to have:

x : t  x : { move : INTEGER  INTEGER  t }

This is only the minimal condition on the record type of x.  Using the record 
subtyping rule, we can introduce many more record types  with additional 
fields, such that x.move(1,1) delivers a result in the same type t:

  { move : INTEGER  INTEGER  t }


x : t    x : 

Essentially, we may legitimately derive that x has any of the types  based on 
our original assumption.  Since the type  does not occur in any other 
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assumption, this may be simplified using the substitution { t/ }, discharging our 
original assumption, yielding the requirement:

t  { move : INTEGER  INTEGER  t }

which cannot be proved without additional assumptions.  Expressing this 
condition as t  MOVEABLE [t], where MOVEABLE4 is a generator, or type 
function for a recursive type:

MOVEABLE = .{move : INTEGER  INTEGER  }

it is clear that this condition fits the format for the kind of quantification desired.

Generators of the kind MOVEABLE are central to F-bounded polymorphism.  
If the type MOVEABLE is understood to be the result of fixing the generator:

MOVEABLE = ( MOVEABLE)

the F-bound (t  MOVEABLE [t]) expresses a constraint on the parameter t 
which insists that all types in the family have the same recursive structure as 
the type MOVEABLE and offer at least the functional interface of MOVEABLE.  
This captures exactly the notion of a class [CHC90]. 

4.4.2 Inheritance as Mutual Recursion

Inheritance is an incremental modification mechanism for recursive types.  The 
recursive type POINT:

POINT = .{identity : , equal :   BOOLEAN, 
x : INTEGER, y : INTEGER,
move : INTEGER  INTEGER  }

defines an move() function which returns a POINT.  When inheriting from 
POINT, the recursive type HOT_POINT must modify self-reference in POINT's 
functions, such that move() returns a HOT_POINT instead.  This suggests a 
map from a POINT to a HOT_POINT.  Now, a HOT_POINT needs a modified 
equal() function to compare the additional selected attribute.  However, to 
compare the x and y attributes, it might as well use the original equal() function 
defined in POINT.  This suggests a map from a HOT_POINT to a POINT.

Cook and Palsberg  [CP89] describe the "aha!" experience of discovering a 
denotational model for object-oriented inheritance which suddenly corresponds 
exactly to one's intuitions.  The insight which grounds polymorphic inheritance 
in a sounder mathematics is an analogy with mutual recursion.  Consider a 

                                           

4 The notation used in [CCHO89a] is "F-Moveable".  Here and elsewhere we systematically use 
 to identify generators for recursive types.
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function F and a derived (modified) version M which depends on F.  In the 
direct derivation of M, the encapsulation of F is preserved:

client M F

Figure 4.4: Direct derivation [CP89]

If F is now a simply recursive  function, and M is derived from F such that 
recursive calls to F are not affected by M, the encapsulation of F is still 
preserved:

client M F

Figure 4.5: Naive recursive derivation [CP89]

because the modification only affects external clients, not recursive calls.  Now, 
a derivation of M which is analogous to polymorphic inheritance is the following:

client M F

Figure 4.6: Derivation analogous to inheritance [CP89]

in which F is a mutually recursive function with M.  Recursive calls to F are 
affected by the modification M, in exactly the same way that, under polymorphic 
inheritance, self-reference in the original type must be changed to refer to the 
modification.  The dependency of M upon F reflects the way in which an 
inheriting type modifies the behaviour of the original type.

Inheritance seems to involve a map from types to types, in which recursion is 
preserved.  There is a Category-theoretic machinery for solving recursive type 
equations [BW94, SG82] which can be extended to account for transformations 
in recursive structure, now that inheritance can be explained in terms of mutual 
recursion.  F-bounded polymorphism seems to involve quantification over a 
family of functor-coalgebras [CCHO89a].  The map from subclass to superclass 
has also been described in terms of the operation of "forgetful" functors 
[Simo93].
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4.4.3 A Function-Bounded Model of Inheritance

The authors in [CCHO89b] were the first to build "class wrapper" functions 
which have the property of modifying and extending type interfaces.  The later 
article [CHC90] provides independent translation functions to extend objects, 
types and object-constructors separately, with mappings between levels.  
Chapters 5 and 6 will develop a combined typed model of inheritance which 
extends this work.  Mitchell [Mitc90] has a slightly different calculus of linked 
record and type extensions.

Inheritance is a translation function that operates upon classes, rather than 
upon types individually.  F-bounded quantification suggests that a class is a 
family of types associated with a type generator:  (t  OBJECT [t]), where

OBJECT = .{identity : , equal :   BOOLEAN}

If this is the case, then a class is a true "generalisation" of the notion of type.  
Given a recursive type .F(), the corresponding generator F is found by 
abstracting over the point of recursion in the type.  The class is then 
constructed by quantifying over all types that are subtypes of the type schema 
created by applying the generator to themselves:  (  F[]).  In the reverse 
process, a type may be constructed from a class generator by taking the
fixpoint:  .F() = ( F).

The F-bounded model of inheritance may be described as an adaptation to the 
subtyping model of inheritance introduced above.  Just as the subtyping model 
refused to fix the self-type of extension records, F-bounded inheritance also 
keeps the type of self in the parent class open, until it is ready to close the new 
type.  This is achieved by extending a generator, rather than extending a type.  
For example, the generator for a point class POINT is derived by modifying 
the generator OBJECT:

POINT = .(OBJECT []    {x : INTEGER, y : INTEGER, 
move : INTEGER  INTEGER  })

= .{identity : , equal :   BOOLEAN, x : INTEGER, y : INTEGER,
move : INTEGER  INTEGER  }

Here, the self-type of OBJECTs is redirected onto the new self-type  of 
POINTs by applying the parent generator to :  OBJECT [].  The result is a 
straightforward record type in which the old self-type has been replaced by .  
The simply-typed record combination operator  then combines two records in 
which  refers uniformly to the self-type of POINTs in the result of record 
combination.

The recursive type POINT may be created by fixing the generator POINT:

POINT = ( POINT)
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= .{identity : , equal :   BOOLEAN, x : INTEGER, y : INTEGER,
move : INTEGER  INTEGER  }

which, by unrolling the recursion, is equivalent to:

POINT = {identity : POINT, equal : POINT  BOOLEAN,  
x : INTEGER, y : INTEGER, 
move : INTEGER  INTEGER  POINT}

yielding exactly the result that we have been seeking:  OBJECT's functions are 
retyped when they are inherited by POINT.  Modifying generators for self-
referential types captures precisely the notion of the anchored type like Current
in Eiffel [Meye88], something previously recognised as an innovation in typing 
mechanisms [Cook89a, Cook89b].  From a formal point of view, inheritance 
allows a more flexible use of fixed points in the derivation of recursive types. 

4.4.4 Type Checking using F-Bounds

Object-oriented programs can be type-checked using this approach.  Inheritable 
functions are now polymorphically typed using F-bounded parameters standing 
for the self-type.  Consider a class of relocatable objects,  (  MOVEABLE [
]), whose associated generator MOVEABLE is defined as:

MOVEABLE = .{move : INTEGER  INTEGER  }

We consider MOVEABLE to be an F-bounded function from types to types.  
When applied to some legal type   MOVEABLE [], it will generate a 
truncated record type MOVEABLE [], a schema bearing a similarity to the 
proper recursive type MOVEABLE.  Bringing the quantifier back outside the 
method selection function, we obtain the polymorphic type of move():

move : (  MOVEABLE []).  (INTEGER  INTEGER  )

If we apply this polymorphic move() to a type, say SQUARE or CIRCLE, we 
generate monomorphic functions for moving SQUAREs or CIRCLEs:

move [SQUARE] : SQUARE  (INTEGER  INTEGER  SQUARE)

move [CIRCLE] : CIRCLE  (INTEGER  INTEGER  CIRCLE)

which is exactly the result we seek.  A move() function will acquire progressively 
more constrained polymorphic types in inheriting classes, and will acquire an 
exact monomorphic type when used in a static type context.

In fact, move() is properly typed only for the type family (t  MOVEABLE [t]), 
emphasising the fact that it "belongs" to the class.  We may verify this by 
applying MOVEABLE to any of these types, say SQUARE and CIRCLE:
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MOVEABLE [SQUARE] 
= { move : INTEGER  INTEGER  SQUARE }

MOVEABLE [CIRCLE]
= { move : INTEGER  INTEGER  CIRCLE }

and then comparing the resulting instantiations of the MOVEABLE schema 
with the unrolled recursive types we would like to give to SQUARE and 
CIRCLE:

SQUARE =  sqr.{ ...; move : INTEGER  INTEGER  sqr; ... }
= { ...; move : INTEGER  INTEGER  SQUARE; ... }

CIRCLE =  cir.{ ...; move : INTEGER  INTEGER  cir; ... }
= { ...; move : INTEGER  INTEGER  CIRCLE; ... }

in order to see from the subtyping calculus that the F-bound holds in each case, 
since the recursive types SQUARE and CIRCLE have strictly more fields:

SQUARE  MOVEABLE [SQUARE]

CIRCLE  MOVEABLE [CIRCLE]

As we would expect, move() is not universally polymorphic.  An example of a 
type to which move() may not apply is OBJECT.  By unrolling the type of 
OBJECT we see that it does not possess a move() field and therefore the 
required subtyping relationship with the MOVEABLE schema does not obtain:

OBJECT  MOVEABLE [OBJECT],

because:

{identity : OBJECT, equal : OBJECT  BOOLEAN}  
  {move : INTEGER  INTEGER  OBJECT}

In fact, the most general type satisfying the F-bound is the type over whose 
body we abstracted:

MOVEABLE  MOVEABLE [MOVEABLE], 

because:

MOVEABLE = MOVEABLE [MOVEABLE], 

by the fixed point theorem.  In contrast with the Cardelli-Wegner model, we do 
not have any other simple subtyping relationships:

SQUARE  MOVEABLE

CIRCLE  MOVEABLE
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since subclassing is not subtyping [CHC90].  Type inheritance is nonetheless a 
well-formed mathematical relation, whose properties can be induced from 
simple subtyping.  The kinds of type checking algorithms that must be used are 
different from those used in subtyping schemes.  The first examples of 
experimental languages with F-bounded type parameters standing for the self-
type include Abel [Harr91] and Bruce's series [Bruc94, BCMG93, BSG94].  
Type-checking schemes for these are still appearing.  Bruce's matching rule 
[Bruc94] expressing the type-compatibility under inheritance, is discussed by 
Abadi and Cardelli in [AC95].  The Johns-Hopkins group perform a series of 
explicit translations [ESTZ94, EST95] to convert programs into a form where 
soundness and completeness are obtained.

4.4.5 System F ("F omega sub")

Explaining the behaviour of F-bounds requires at least a second-order -
calculus;  modelling the translation-functions from F-bound to F-bound would 
seem to require a higher-order kinded calculus, mapping from type-constructors 
to type-constructors and types.  Whereas Bruce [Bruc94] treats an F-bound as 
just a "funny kind of bound", quantifying over types in the usual way, Abadi and 
Cardelli [AC95] suggest that this may entail weaknesses and recommend a 
higher-order approach.

Higher-order models follow the work of Girard [Gira72], whose System F is a 
typed lambda calculus with higher-order polymorphism.  F ("F-omega") 
includes the term abstraction of the simply typed lambda calculus [Chur40], the 
type abstraction of the second-order lambda calculus [Gira72, Reyn74] and the 
possibility of type operators mapping from kind to kind.  A kind is the extra level 
introduced to describe the spaces inhabited by ordinary types and type 
operators.  Thus, F is higher-order rather than third-order.  Various extensions 
to F have been proposed, based mainly on Cardelli's power kinds [Card88b], 
to include higher-order subtyping.  The extension of the subtype relation to type 
operators in F ("F-omega-sub") was developed formally by Cardelli and 
Mitchell [Card90, Mitc90] although the same intuitions are present in the earlier 
works [CCHO89a, CCHO89b, CHC90].  Whereas Pierce and Turner proceeded 
to model objects using existential types instead of recursive types in F [PT92, 
PT93], Compagnoni and Pierce [Pier92a, CP93] gave an extension to F to 
include finitary intersection types and Bruce and Mitchell developed a more 
powerful model including recursive types [BM92].  This model turned out to 
describe the F-bounded quantification of Cook et al. [CCHO89a, CCHO89b, 
CHC90] which was originally thought to be a variant of F but which actually 
may be constructed to reflect the kind of higher order polymorphism necessary 
to deal properly with the interactions between subtyping and type recursion.

While the second-order fragment F of F had been studied in detail, relatively 
little was known about -order calculi until recently.  The analysis of 
F was expected to be significantly more challenging than that of F; and 
questions regarding the decidability of subtyping and typechecking were 
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completely open.  Compagnoni and Pierce [CP93, Comp94] have extended 
their calculus of intersection types, known as F ("F-omega-meet") and prove 
that subtyping in F is decidable, which a fortiori gives the decidability of 
subtyping in the F fragment.  Independently, Steffen and Pierce [SP94], by 
eliminating the "cut rule" of transitivity from the subtype relation in F, have 
proven the soundness, completeness and termination of algorithms for 
subtyping and typechecking.

4.4.6 Towards a Theory of Classification

A -calculus framework has been presented, within which different models of 
type inheritance were compared.  These included a naïve model, a subtyping 
model, a model using bounded quantification and a model using F-bounded 
quantification.  For reasons of brevity in the exposition, the -calculus 
presentation was restricted to type functions and type generators.  This was 
apposite, since the focus of our treatment was to emphasise the points of 
similarity and difference between alternative typings of inheritance.  Clearly, a 
fuller treatment must also take into account the modifications to object structure 
achieved by implementation inheritance.

The next chapter develops a full model of objects, classes and polymorphic 
inheritance.  Unlike the separate treatments of type and implementation given 
in TOOPL [Bruc94] and PolyTOIL [BSG94], objects are to be linked directly to 
their types, in the style proposed by [CHC90].  The implementation and type 
constraints of the class hierarchy are to be combined in a single model.  The 
goal is to provide a complete theory of classification. 


