
Chapter 3

Object Types and Subtypes

_______________________________________________________________

This chapter explores what it means for an object to have type.

Two main schemes for describing object types are introduced.  The first is the 
algebraic method for characterising abstract types using existential 
quantification.  The second relies on primitive constructions in the typed lambda 
calculus, modelling objects as closures.  A key focus of interest is to discover 
under what conditions an object having one type may safely be bound to a 
variable expecting a different type.  Subtyping is considered as a potential 
model for classifying object types, offering a rudimentary kind of polymorphism.

_______________________________________________________________

3.1 Abstract Types

Types have for long been used to reason about the formal properties of 
computer programs.  What is a type?  There is more than one possible view.  
Types may be considered minimally as schemas for interpreting bit-strings in 
machine memory.  This is a concrete view, readily accepted by programmers 
working close to implementations.  For example, the bit-string:

01000001

is 'A' if interpreted as a CHARACTER; or else 65 if interpreted as an INTEGER.  
In this view, type schemas are tied closely to the values (bit-strings) they 
interpret.  This approach, while practical, is of limited formal use since it does 
not promote mathematical reasoning about type.

3.1.1 Constructive and Algebraic Approaches

The common mathematical treatments of type break down into the constructive
approaches, exemplified by the intuitionistic proofs of Martin-Löf [Mart80], and 
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the algebraic approaches, exemplified by Goguen's OBJ family of specification 
languages [FGJM85].

In constructive type theory, types are modelled by sets of values.  Program 
operations are modelled as functions and relations acting on these sets.  
Model-based specification methods such as VDM [Jone86] and Z [Spiv88, 
Spiv89] follow this approach up to a point.  Their common intuition is that 
programs whose formal properties are not known may be modelled in terms of 
simple mathematical constructs whose properties are known.  But whereas Z 
might use a non-computable equation to define a function (eg specifying the 
square root using its inverse y = x2), a constructive proof must have a 
computable algorithm (such as the Newton-Raphson method).  This is 
immediately appealing, since constructive proofs can always be implemented.  
A disadvantage is that certain desired constructive proof procedures may not 
exist; or else proofs may be so constrained by the need for computability that 
they distract from the theorem they assert (eg is it immediately obvious that the 
Newton-Raphson algorithm computes a square root?)

Algebraic type theory [Reyn74, Reyn75, Gutt75, Gutt77, GH78] strives to 
distance itself as much as possible from concrete and model-based notions.  A 
mathematical type - known as an algebra - is a pair of a sort and a set of 
functions acting on the sort.  For example, we might represent a BOOLEAN 
algebra as:

BOOLEAN  =  BOOL, {, , , , }

The notion sort will be defined in a moment.  The behaviour of the type is 
represented chiefly by the functions, and the meaning of the type is 
represented by equations linking certain invocations of these functions.  This 
has the advantage of being an entirely syntactic representation of type, not tied 
to any representation.

In model-based approaches, a system is represented using state variables 
standing for sets and sequences which are subject to modification.  Individual 
operations are defined in terms of their effects on the state model.  Proof 
procedures have a local validity, stated in terms of pre- and post-conditions to 
individual operations.  In algebraic approaches, the state of the system is 
recorded as some sequence of function applications.  It is easier to trace the 
series of operations that led to a given system state.

3.1.2 Sets, Sorts and Carriers

Reynolds has argued strongly [Reyn83] for the separate existence of types 
apart from computation, a view which we endorse since it concurs with our 
opinion that typing relates to other kinds of human classificatory activity.  Types 
are not constructed on sets of values, which would tie them too specifically to 
one domain in computation;  rather they are "syntactic disciplines for enforcing 
levels of abstraction".  
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Earlier, Morris [Morr73] showed that although it may often seem convenient to 
model types in terms of sets:

x : T    x  T

in principle a type can be represented, or implemented, by a variety of sets;  in 
this sense a particular set of values is insufficient to characterise a type.  
Consider two alternative representations for a simple ordinal type:

ORDINAL = {0, 1, 2, 3, ...}

ORDINAL = {a, b, c, d, ...}

and it is clear that either set is an appropriate carrier for the type - no one set 
deserves preeminence.  Furthermore, an early concrete representation for a 
type may introduce unwanted concerns:  is the set finite or infinite;  and 
therefore how do operations act on the least or greatest elements of the type?  
More precisely, there is no such thing as the set of simple ordinals;  rather the 
sort ORDINAL denotes an abstract collection of objects that can be realised by 
a variety of carrier sets.  We can think of a sort as:

"an uninterpreted identifier that has a corresponding carrier in the 
standard (initial) algebra"  [DT88], p52.

A sort has the force of an abstract set; its name acts as a syntactic placeholder 
awaiting the full definition of a type - in this sense it is an uninterpreted 
identifier.  Most mathematical theories of types construct primitive domains
[Scot76, Stoy77] of values, in which carrier sets exist for certain basic sorts.  
The standard algebra usually contains carriers for the natural number and 
boolean sorts:

NAT    {0, 1, 2, ...}
BOOL    {0, 1}

Each element in the carrier stands for an abstract object in the sort.  An initial
algebra is one whose constructions map onto all other algebras in the same 
family - an important property for the carrier to have universal validity.  This is a 
category-theoretic concept [BW94, SG82] which is not discussed further here. 

3.1.3 Function Signatures and Axioms

Abstracting away from concrete sets does not yet say anything precise about 
the way in which the ORDINAL type behaves.  If we choose NAT as the sort on 
which to base this type, it is clear that the carrier set has strictly more properties 
(such as addition) than we require.  It is more usual to define ORDINAL as the 
abstract type over which the functions first() and succ() are meaningfully 
applied:
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ORDINAL =  ord.{first :  ord, succ : ord  ord}

This specifies the external behaviour of the type as a set of functions.  The type 
definition is abstract, in the sense that it characterises its member objects only 
down to the level of detail that they may be generated or manipulated using 
first() and succ().  Such a definition is usually regarded as being existentially 
quantified [MP85], because the representation type is hidden.  In the body of 
the definition, the token ord is a syntactic placeholder for some set of values.  
Any sort whose carrier set offers the necessary properties may be used, such 
as:

ORD    {0, 1, 2, ...}
ORD    {a, b, c, ...}

It is common to categorise the functions of an abstract type as observers, 
constructors and extenders [GH78].  Observer functions simply inspect the 
type.  Extender functions describe its more elaborate behaviour, but do not 
generate any new or unique objects.  The constructor functions are a special 
category, because it must be possible to generate every member object of the 
type using them.  Both first() and succ() are constructors.

Function signatures alone are insufficient to characterise abstract types.  The 
intended meanings of first() and succ() are not yet captured through the 
syntactic discipline enforced by their type signatures.  Function applications 
might yield the following valid, albeit undesirable, results:

succ(1) = 1
succ(b) = first() = a

To express the sequentially-ordered property ORDINAL objects, logical axioms 
are needed to describe the semantics of functions operating on objects of the 
type.  In this case, the following axioms:

(x : ORDINAL).succ(x)  x  succ(x)  first() 
(succ(x) = succ(y)  x = y)

plus the principle of induction are exactly enough to ensure that the type 
behaves like an ORDINAL.  All potential object-object transitions are illustrated 
in the state diagram in figure 3.1, where those transitions actually permitted by 
the axioms are shown in bold, yielding a monotonic sequence of abstract 
objects xi:

X X X0 1 2first()

succ(x) succ(x) succ(x)

Figure 3.1: State diagram for ORDINAL
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The subscript number has no order-significance, though for convenience the 
distinct objects xi are indexed in order of generation.  The economy of this 
description is admirable.  The axioms governing succ() clearly rule out self-
transitions and regression to the first object; and the principle of induction takes 
care of the rest.  For example, succ() cannot map x2 back to x1, since by 
unrolling applications of succ() this would violate succ(x)  first().  As a result, 
first() will always generate a unique object and successive applications of succ()
are guaranteed to generate a new and distinct object each time.

The algebra ORDINAL is therefore a pair of a sort and a set of functions whose 
meaning is given by axioms:

ORDINAL = ORD, {first :  ORD, succ : ORD  ORD}

The constructor functions will generate every object of the type.  Once the 
algebra is defined, the carrier used to model the sort can be disregarded.  This 
is because it is now possible to represent every member of the type in a purely 
syntactic way:

first();  succ(first());  succ(succ(first())); ...

and these abstract descriptions are fully amenable to mathematical reasoning.  
Proof procedures merely have to rely on syntactic pattern-matching in order to 
perform substitutions and other syntactic manipulations.  Algebraic data types 
are both more general and more exact than concrete types.  The ORDINAL 
type shown here is inhabited by a monotonic sequence of abstract objects; and 
that is exactly all that the specification expresses.

3.2 Object Types

Here, we investigate ways of modelling the types of objects using similar 
techniques.  Objects have the properties of identity, state and behaviour.  
When modelling the types of objects, the most important property to capture is 
object behaviour, since we need to know how an object will react in a given 
situation when it is sent messages.  Type compatibility among objects depends 
crucially on their having conformant behaviours.

3.2.1 Encapsulation of Methods and State

Perhaps the most immediate syntactic distinction between the manipulation of 
ordinary values and objects is that object functions (known as methods) must 
be selected before they can be applied.  This is because objects encapsulate 
their methods along with their state.  Whereas in a conventional imperative 
language, moving a simple integer point is accomplished using a free-standing 
function:

p : INTEGER_POINT;
movePoint(p, 3, 4);
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called movePoint(), to which we may give the functional type:

movePoint : INTEGER_POINT  INTEGER  INTEGER
 INTEGER_POINT

in an object-oriented language we must select a method:

p : INTEGER_POINT;
p.move(3, 4);

called move(), from the point object and apply it to that object's state.  The 
move() method considered alone has the functional type:

move : INTEGER  INTEGER  INTEGER_POINT

alternatively, the type of the expression as a whole is considered to be:

INTEGER_POINT   (INTEGER  INTEGER  INTEGER_POINT)

Depending on the context, one or other notation will be preferred.  The longer 
notation takes into account the object from which the method is selected and 
therefore the type of the selection-function is modelled as well.  The shorter 
notation assumes that the owning object is already in scope.  It is also 
important to observe the correct proprieties when accessing an object's state.  
Either the state has to be in scope, or else an argument must be supplied 
representing the object's state.

3.2.2 Existential Types and Functional Closures

Reynolds [Reyn75, Cook91] identified two complementary approaches to 
modelling object encapsulation:  procedural abstraction, which relies on hiding 
state in private variables common to a collection of procedures, and type 
abstraction, which reveals the existence of state externally but prevents illegal 
access to it by hiding its type.  

The latter approach is especially of interest to those investigating existential 
types [MP85], those wishing to trace the mappings between abstract types and 
concrete representation types in order to model the packaging mechanisms of 
languages like Ada [CW85] and those wishing to do without recursive types 
[PT92, HP92].  In these schemes, a simple integer point type is modelled using 
existential quantification to protect the state from external access:

INTEGER_POINT =  Rep.{ state : Rep;  methods : {
new :  Rep,
x : Rep  INTEGER,
y : Rep  INTEGER,
move : Rep  INTEGER  INTEGER  Rep } }

The type is declared as a pair of state and methods, which is represented here 
as a record.  By a process of unpacking [CW85], the abstract state may be 
bound to any suitable representation type.  An advantage of this approach is 



Object Types and Subtypes 36

that types are not recursive [PT92], since the methods act on the abstract state, 
rather than on the type itself.  A disadvantage is that method invocation 
requires a cumbersome syntax to access state:

p : INTEGER_POINT
p.methods.move(p.state, 3, 4);

and for this reason, the alternative approach is preferred here.

The former line of research initiated by [Card84, Redd88, Cook89a] models 
simple objects as functional closures, encapsulating the state of objects in 
private variables accessible only through their methods.  In these schemes, 
objects are invariably elements of recursive record types [Mitc90, BL90], whose 
existence is established through the fixed point theory of recursion.  The same 
point type illustrated above is usually encoded as:

INTEGER_POINT =  pnt.{
new :  pnt,
x :  INTEGER,
y :  INTEGER,
move : INTEGER  INTEGER  pnt }

in which  is used to bind the recursion variable, pnt.  We shall expound this in 
more detail below, since significant problems arise when dealing with type 
recursion.

A closure is defined as a function with an environment [ASS85, Redd88].  
Functions are lexically scoped, making it possible to set up an environment by 
binding free variables at the time of function definition.  A simple example of a 
function with updatable state is store():

let state = 0 in
store = x.(if x = 0 then state else state := x)

store(5)  5; store(0)  5;
store(2)  2; store(0)  2;

Calling store() with 0 inspects the state; calling with any other value updates the 
state.  The advantage of this approach is that the state is completely hidden 
inside the function.  No complicated invocation syntax is needed; simply a value 
which serves as a tag or label to select one or other operation.  A function from 
labels to operations is exactly what we need to model objects with selectable
methods.

3.2.3 Objects as Records

A simpler interpretation of this model, due to [Wand87] and used by Cook et al.
[Cook89a, CCHO89a, CCHO89b, CHC90] to model certain behavioural 
properties of objects, ignores the issue of mutable state altogether.  Again,
objects are modelled as records of functions, representing methods.  Access to 
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state attributes is handled as the invocation of nullary functions (ie functions 
accepting no arguments) and state update is bypassed by creating new objects, 
thereby ensuring a straightforward pure functional calculus.

The sources cited above take for granted that a record can be modelled in the 
-calculus as a finite function from labels to methods.  A simple -calculus 
strategy for constructing records is to build tuples of values, protected by a -
abstraction:

make_point = a.b.f.(f a b)

p = (make_point 3 4)    f.(f 3 4)

Using the technique of partial application, make_point() is applied to strictly 
fewer arguments than it expects.  The resulting function, p, is a closure binding 
two values 3 and 4.  The values are protected by the remaining -abstraction 
f.  This is the standard representation of a pair in the pure -calculus.  To 
release one or other value, it is necessary to apply p to projection functions:

x = a.b.a -- first projection
y = a.b.b -- second projection

(p x) = (f.(f 3 4) x)    (x 3 4) = (a.b.a 3 4)    (b.3 4)    3

(p y) = (f.(f 3 4) y)    (y 3 4) = (a.b.b 3 4)    (b.b 4)    4

The symbol "=" denotes the syntactic replacement of an abbreviation by its full 
-calculus form and "" denotes one level of -reduction (ie function 
application).  It should be obvious that the application (p x) mimics exactly the 
kind of record field selection process required.  The record braces can be 
considered a shorthand for the equivalent -calculus:

p = {x  3, y  4}    p = f.(f 3 4)

p.x    (p x)
p.y    (p y)

An object having n fields can be modelled by an n-tuple in the -calculus, 
having n associated labels which are modelled as the n different projection 
functions.  A serious restriction is that labels and tuples must have the same 
arity - projection functions are built in the knowledge of how many arguments 
they must consume.  This will present a problem when polymorphism is 
introduced, since the calculus will expect to use labels with objects of different 
size.  To get around this problem, a different construction in the -calculus must 
be adopted for records, for which selection is independent of record length or 
field-order.  This is easily done using pairs to build linked lists and associative 
maps.  Such a technique is described in Appendix 1.
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3.2.4 Recursive Record Types 

An object is modelled as a finite map from labels to functions, representing its 
methods.  The type of an object is a record type, that is, a finite map from (the 
same) labels to function signatures, representing the types of its methods. 

A simple non-recursive point object representing the coordinate (3, 4) and 
allowing access to its x and y values is modelled as a typed record of functions:

{x  u.3, y  u.4}  :  {x : UNIT  INTEGER, y : UNIT  INTEGER}

The nullary (zero-argument) access methods to the fields x and y are modelled 
as functions accepting the dummy value unit which is the sole element of the 
trivial type UNIT.  This is to observe the syntactic conventions of -functions, 
which require exactly one argument.  Hereafter, neither unit nor its type will be 
notated, since their presence can be reconstructed automatically:

{x  3, y  4}  :  {x : INTEGER, y : INTEGER}

An object's methods typically refer to each other.  To demonstrate this, the 
above point is now provided with an equality-testing method, equal(), from 
which calls are made to the x and y methods:

 self.{x  3, y  4, equal  other.(self.x = other.x  
  self.y = other.y)}

:   .{x : INTEGER, y : INTEGER, equal :   BOOLEAN}

The extended point is recursive at both the term- and type-level.  To handle the 
recursion, we introduce two variables:  self to stand for the whole object and 
to stand for the whole self-type, and we bind these using .  Note that self and 
 occur in different places in the object and type definitions.  Although the type 
 must clearly depend on the form of self, self-reference at term- and type-level 
are essentially independent.

It is not immediately apparent that recursive values and types can be proven to 
exist.  This is because a recursive definition merely expresses an equation 
which some suitable value should satisfy - there might be no solution, or else 
there might be many solutions, cf the roots of a polynomial.  The standard 
approach to providing recursive types with a denotational semantics appeals to 
Scott's domain theory [Scot76, Stoy77] in which partial orders are constructed 
among sets of values in the domain V of all computable values:

V = BOOLEAN + NATURAL + [V  V] + [V  V].

Certain sets of values in this domain, known as ideals, have the property of 
being downward closed and consistently closed under a complete partial 
ordering relationship , usually interpreted to mean less defined than.  Ideals 
form useful carriers for recursive types [MS82, MPS84] since they yield a set-
theoretic interpretation, in which induction is well-founded and recursive type 
equations have solutions [DT88].  The fixed point theory of recursion explains 
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how we can find solutions, called fixpoints, to recursive equations and pick out 
a unique, most natural one, namely the least defined one [Read89].  Such a 
fixpoint is then taken to be the real meaning intended by the recursive 
description, the least fixpoint corresponding to the most abstract denotation of 
the type.

In order to model recursive objects and types, we need to build domains such 
that fixpoints may be taken at both term- and type-level [Mitc90, BL90].  Bruce 
and Mitchell have constructed partial equivalence relation (PER) models which 
support this [BM92].  The only restriction is that an object may not contain a 
field with the value self.  This is an infinite construction which defeats the 
convergence theorem for fixpoints.  Fortunately, the fields of our objects consist 
only of functions and convergence is guaranteed under these conditions.

3.3 A Calculus of Subtyping

A major group of object-oriented languages [Stro91, Meye88, SCBK86] have 
identified the notion of class with type and subclassing with subtyping.  Clearly, 
the possibility of a direct translation of object-oriented concepts into standard 
type-theoretic constructs is appealing.  Others [Snyd86a, Amer90] have 
postulated the independent existence of type hierarchies.  In both approaches, 
subtyping is used to provide a rudimentary model for polymorphic binding.  A 
key notion is the oft-quoted substitutability criterion [CW85, Amer90], whereby 
an object of one type may be safely passed to a variable expecting a different 
type.  Most work in this area originates in Cardelli and Wegner's first-order 
theory of subtyping [Card84, CW85, Card88a, Card88b], the precursor to all the 
later second- and higher-order theories.  We explore here their mechanisms for 
determining syntactic subtypes and later make some additions of our own 
[Simo94b] to describe the effects of adding axioms to the model.

3.3.1 Subtyping for Set Types

According to Cardelli and Wegner:

"a type A is included in, or is a subtype of another type B when all the 
values of type A are also values of B, that is, exactly when A, considered 
as a set of values, is a subset of B"  [CW85, p508].

It is clear that subtyping in this model is identified with the subset relationship -
the assertion above is the axiomatic definition of a subset:

      x (x    x  ) [Rule 0:  subtype is subset]

This allows the construction of a complete partial order (CPO) relating all types 
(ie sets) in a lattice.  To illustrate this, if the domain of types is the powerset 
({a, b, c}) then there exists a lattice ordering all these types under the relation 
as in figure 3.2:
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{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{}

Figure 3.2:  CPO for Set Types

which is appealing, in that it models a multiple specialisation type hierarchy 
reminiscent of the "multiple inheritance" found in [Moon86, Stro87].

3.3.2 Subtyping for Subrange Types

Given the types BOOLEAN and NATURAL, subrange types s..t may be 
constructed, where s  NATURAL;  t  NATURAL;  and the ordering s  t
holds.  The set of all subranges has a useful partial order  among its 
elements:  if we approximate the limits of NATURAL as 1..3, this yields a partial 
order (PO) ordered by subrange inclusion, illustrated in figure 3.3:

1..3

1..2 2..3

2..21..1 3..3

Figure 3.3: PO for Subrange Types

This has fewer arcs than the CPO for set types, due to the fact that subranges 
may not contain discontinuous sequences, such as the set {1, 3}.  To express 
this constraint, the following equivalence is asserted:

s..t  ..    s    t  

which is the axiomatic definition of a subrange.  Henceforward, the (weaker) 
implication will be used, denoted using a sequent-calculus style of syntax:

 s  , t  
 [Rule 1:  subtyping for subranges]
  s..t  ..

The POs permit type inference for arbitrary objects of set- or subrange-type.  
For example, if x :  means x is of type , then we may infer increasingly more 
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general types for objects such as a or 2 by navigating upwards in the lattices, 
expanding the size of the type:

a : {a}  {a, b}  {a, b, c} ...

2 : (2..2)  (2..3)  (1..3) ...

3.3.3 Subtyping for Function Types

A similar navigation strategy is now employed to infer increasingly more general 
types for functions [CW85].  Functions are constructed using f :   , where 
is the domain type and  is the codomain type.  Here, subranges are used to 
model the types  and .  A function f having the type 2..4  3..5 can also be 
given a series of increasingly more general types constructed by expanding its 
codomain:

f : (2..4  3..5)  (2..4  2..5)  (2..4  2..6) ... 

since any function mapping NATURALs into the codomain 3..5 will also map 
them into 2..5 and 2..6.  However, a symmetrical expansion of the domain of a 
function does not result in more general function types:

g : (2..4  3..5)  (2..5  3..5)  (1..5  3..5) ... 

since a function accepting NATURALs in 2..4 will not accept values outside this
range, such as 5 or 1.  In fact, an antisymmetrical condition applies - the 
domain must shrink in order to obtain a more general function type:

h : (2..4  3..5)  (2..3  3..5)  (3..3  3..5) ... 

Combining both conditions, a function supertype is therefore one whose 
domain shrinks and whose codomain expands:

j : (2..4  3..5)  (2..3  2..5)  (3..3  2..6) ... 

Turning this around, a function subtype is one whose domain expands and 
whose codomain shrinks.  We formalise this as the function subtyping rule:

  s  ,  t  
 [Rule 2:  subtyping for functions]
 s  t    

This rule says that for two function types f and g, f  g if f is covariant with g in 
its result type (ie  the result of f  the result g) and f is contravariant with g in its 
argument type (ie  the argument of f  the argument of g).  This is an important 
result, whose significance for object-oriented programming we shall observe 
later.
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3.3.4 Subtyping for Record Types

Simple record types are constructed using { x1:1, ..., xn:n } where the xi are 
labels and the i are the types of the fields indexed by the corresponding label.  
Cardelli first identified record subtyping [Card84, Card88a] as a way of 
subsuming structures of one type in more general types.

Consider the relationship between two simple, non-recursive record types 
INTEGER_POINT and HOT_POINT, where HOT_POINT objects have an 
additional field indicating whether they are currently selected:

INTEGER_POINT = { x : INTEGER;  y : INTEGER }

HOT_POINT = { x : INTEGER;  y : INTEGER;  selected : BOOLEAN }

To determine the subtyping relationship, Cardelli appeals to the substitutability 
criterion.  Wherever a program expects an object of type INTEGER_POINT, a 
HOT_POINT object may be substituted, since it has at least all the fields of an 
INTEGER_POINT.  Or, put another way, it is always possible to construct an 
INTEGER_POINT object from a HOT_POINT object by omitting one of its 
fields.  This means that a HOT_POINT can be coerced to an 
INTEGER_POINT, but not vice-versa.  This suggests a subtyping relationship:

p : HOT_POINT  INTEGER_POINT

and leads to the first part of the record subtyping rule dealing with monotonic 
extensions to record types:

{ x1:1, ... xk:k, ... xn:n }  {x1:1, ... xk:k }
[Rule 3.1:  record extension]

which says that for two record types q and r, q  r if q has the same number, or 
strictly more fields than r and those fields that it shares with r are in the same 
types.  If two records simply share a common subset of fields, neither one is in 
a subtype relationship with the other, but both may be subsumed by a common 
super type.

The second part of the record subtyping rule comes from considering what 
happens if the fields of q are not in the same types as r.  Consider the type:

NATURAL_POINT = { x : NATURAL;  y : NATURAL }

which has the same structure as INTEGER_POINT, yet the types of its fields 
are different.  By plotting all INTEGER_POINTs in a Cartesian plane, it is easy 
to see that all NATURAL_POINTs form a subset of these which occupy the first 
quadrant, defined by:

NATURAL_POINT = { p  INTEGER_POINT | p.x  0  p.y  0 }
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and a subset has already been identified with a subtype.  Clearly, a relationship 
exists between two record types if the fields of one are either all super- or 
subtypes of the other's fields.  To see what happens in the remaining cases, 
consider specialising just the x or y field type, constructing the two new types: 

NAT_INT_POINT = { p  INTEGER_POINT | p.x  0 } 

INT_NAT_POINT = { p  INTEGER_POINT | p.y  0 }

neither of whose sets forms a subset of the other's;  although they intersect in 
the first quadrant.  This intuition leads to the second part of the record 
subtyping rule dealing with modifications to the field types:

              1  1, ... n  n
 [Rule 3.2:  record overriding]
{ x1:1, ... xn:n }  { x1:1, ... xn:n }

This rule says that for two record types q and r, q  r if they have the same 
number of fields and the type of each field i of q is a subtype of the 
corresponding field i of r.  There is no relationship between records whose 
fields are in a mixture of super- and subtype relationships.

The two parts of the rule are combined in the record subtyping rule:

                  1  1, ... k  k
 [Rule 3:  record subtyping]
{ x1:1, ... xk:k, ... xn:n }  { x1:1, ... xk:k }

which says that for two record types q and r, q  r if q has n-k more fields than 
r;  and the first k fields of q are subtypes of those in r.  The general rule reduces 
to rule 3.1 if the first k fields of q are in fact the same types as those in r
(allowed by the reflexivity of ) and reduces to rule 3.2 if n=k.

Strictly, this rule has not yet covered the case for recursive records.  However, 
a simple assumption will allow us to use Rule 3 in the context of recursive 
record types.  A subtyping rule for general recursive types is given by [Card86]:

, s  t       s free only in ,
REC  t free only in .

 s.  t.

which says that if the current type assumptions  extended by the assumption s
 t allow us to derive " " that    then the recursive type s. is a subtype of 
the recursive type t..  We can express subtyping between recursive record 
types on the assumption that their syntactic recursion variables enter into a 
subtyping relationship.  This almost provides us with enough machinery for 
inferring subtyping relationships between object types modelled as recursive 
records of functions.  The only area not addressed by [Card84, CW85, 
Card88a, Card88b] is the effect of axioms on types. 
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3.3.5 Axioms and Subtyping

Axioms help define the meaning of a type, by expressing invariant properties of 
the type in terms of relationships pertaining between executions of some of its 
functions.  This is a time-independent view, deliberately avoiding notions such 
as preconditions and postconditions [Jone86], which can have a time-
dependent interpretation in state-based computations.

If a base type is further qualified by an axiom, then the effect is always to 
generate a type whose objects form a subset of the base type.  Any set defined 
by comprehension has the property:

{ x  S | p(x) }  S

since p(x) is either already an axiom of S or restricts S to a proper subset.  
Conventionally, sets defined by comprehension must indicate the base type for 
which the restricting predicate is well defined.  Axioms are expressed in terms 
of operations that a given base type must possess;  otherwise their meaning is 
undefined.  Here, we examine the effect of adding or substituting axioms over a 
single base type.  Further examples are given in [Simo94b].

A certain primitive collection of objects might have the partial specification:

COLLECTION =  col.{
new :  col;
add : col  ELEMENT  col;
rem : col  ELEMENT  col;
has : col  ELEMENT  BOOLEAN }

d, e : ELEMENT, c : COLLECTION
 has(new(), e);
has(add(c, e), e);
add(add(c, d), e) = add(add(c, e), d);
rem(new(), e) = new();
rem(add(new(), e), e) = new();

This type of COLLECTION is empty when created, contains an element that 
has been added, is unordered and removes an initial element if one is present.  
The latter axiom deliberately underspecifies the behaviour of rem().  It is an 
open issue whether COLLECTIONs contain single, or multiple occurrences of 
each element;  or whether rem() removes one, or all occurrences of an 
element.

Consider now the type obtained by providing the additional axioms:

e : ELEMENT . { c  COLLECTION |
add(add(c, e), e) = add(c, e);
rem(add(c, e), e) = rem(c, e) }
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This definition comprehends only those COLLECTIONs which behave like 
SETs.  It rules out those for which a double application of add() results in a 
semantically different COLLECTION;  and rules out those for which an 
application of rem() leaves some occurrence of the element in the 
COLLECTION.

This leads to the first part of the axiom subtyping rule dealing with monotonic 
additions to the axioms of a type:

{ x  S | 1, ... k, ... n }  { y  S | 1, ... k }

[Rule 4.1:  axiom addition]

which says that for two types s and t defined by comprehension on S, s  t if s
has the same number, or strictly more, distinct axiomatic properties than t.  The 
axioms are implicitly conjoined with .  Distinctness means that the properties 
are judged primary and cannot be derived from other properties.

Consider now the type obtained by adding a different axiom:

e : ELEMENT . { c  COLLECTION | rem(add(c, e), e) = c }

which comprehends all those COLLECTIONs for which applications of add()
and rem() are symmetrical, ie those which behave like BAGs.  It turns out that 
this new axiom for BAGs actually subsumes a previous axiom of 
COLLECTION:

rem(add(c, e), e) = c    rem(add(new(), e), e) = new()

The previous axiom is in fact a ground instance of the new BAG axiom.  
Looking closer, it is apparent that one of the SET axioms introduced above also 
entails this formula by a two step proof involving another of COLLECTION's 
axioms:

rem(add(c, e), e) = rem(c, e)

rem(add(new(), e), e) = rem(new(), e)     rem(new(), e) = new()


rem(add(new(), e), e) = new()

Typically, axioms are selected for economy, with the aim of capturing precisely 
the semantics of a type.  It is undesirable to overspecify or to underspecify the 
semantics of types.  It would be redundant to include, in the specification of 
SETs or BAGs, any axiom from COLLECTION which was automatically 
entailed by other SET or BAG axioms.  Although subtyping always involves 
adding to the logical properties of a type, in some cases we may achieve this by 
modifying the syntactical form of axioms in order to subsume the axioms of the 
supertype.  This motivates the second part of the axiom subtyping rule 
governing substitution:
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{ 1, ... m }  { 1, ... n }
       [Rule 4.2:  axiom substitution]
{ x  S | 1, ... m }  { y  S | 1, ... n }

which says that for two types s and t defined by comprehension on S, s  t if 
the m syntactically modified axioms i of s necessarily entail the n original 
axioms i of t.  Axiom substitution is not one-to-one, but on the basis that the 
new set of axioms entails the original set.  The size m of the substituted set 
may therefore arbitrarily grow or shrink with respect to the size n of the original 
set, so long as the entailment  "" obtains.

The two parts of the rule are combined in the axiom subtyping rule:

    { 1, ... k }  { 1, ... n } [Rule 4:  axiom subtyping]

{ x  S | 1, ... k, ... m }  { y  S | 1, ... n }

which says that for two types s and t defined by comprehension on S, s  t if s
has m-k more distinct axiomatic properties than t and the first k axioms of s
necessarily entail all n axioms of t.  The general rule reduces to rule 4.1 if the 
first k axioms of s are in fact identical to the n axioms of t (allowed by the 
reflexivity of ) and reduces to rule 4.2 if m=k.

The axiom subtyping rule permits the derivation of syntactically similar, but 
semantically disjoint subtypes of a common, partially specified type.  Familiar 
examples of these include STACKs and QUEUEs [Amer90, Simo94b].  
However, it is more usual for axioms to be introduced at the same time as new 
operations.  In this case, the task at hand is to relate two sets defined by 
comprehension over two syntactically different base types:

{ x  S | 1, ... m }  { y  T | 1, ... n }, S  T

but provided these are also in the same relationship, subtyping is preserved.  
Consider that, in general, we may interleave the syntactic and semantic 
subtyping stages:

{ x  S | 1, ... m }  S  { y  T | 1, ... n }  T

T is a syntactic type whose semantics is then given by  = { y  T | 1, ... n }.  
The syntactic subtype S   is defined by adding one more operation f to 's 
interface.  So far, f has no semantics.  If a set  = { x  S | 1, ... m } is now 
defined to give f a meaning in relation to other operations, this in turn creates a 
subtype of the partially specified type S.

The correspondence between first-order logic and the typed -calculus has 
been known for a long time [CF58, Tait65, Howa80].  For example, the type 
elimination rule for  mirrors the modus ponens rule in logic:
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  f :    ,    v :      ,    
APP   MPO

  (f v) :   

As a result, it is not surprising that relationships can be found between 
axiomatic and syntactic ways of describing type.  Most of the existing literature, 
however, disregards axioms in its formulation of type rules.  What has been 
achieved here is to introduce such rules for the sake of those languages 
[Meye88, Meye92, Omoh94] which reason incrementally with axioms in order to
determine type compatibility relationships.

3.4 Object Subtyping

Chapter 2 described how object-oriented languages open up their type systems 
to allow systematic sets of relationships between types.  A key focus of interest 
is to discover under what conditions an object having one type may safely be 
bound to a variable expecting a different type - the so-called substitutability 
criterion [CW85], which offers a rudimentary kind of polymorphism.  More is at 
stake than this, however.  The theory that classes can be treated as types and 
subclassing can be modelled as subtyping [SCBK86, Stro86, Meye88] must be 
properly tested.  By integrating all the above subtyping rules, it is possible to 
formulate the conditions under which one object type is compatible with 
another.

3.4.1 Harmonising Existential Types and Closures

As a precursor to exposing the rules for object subtyping, we need to fine-tune 
some of the syntax, since we have used a mixture of data abstraction 
(existential types) and procedural abstraction (functional closure) techniques to 
motivate models of object behaviour and subtyping.  We presented the type 
effects of axioms using existential types for the sake of having a freestanding 
initial constructor new() for each type.  Clearly, such a constructor is vital for 
specifying boundary conditions on types.  A potential problem exists with the 
new() constructor in functional closure models.  

Firstly, it is arguable whether such a method occurs in the interface of objects, 
or whether it is external, used to create the closures which are the objects.  
Secondly, incorporating the new() method is technically difficult.  This is 
because the constructor for closures would have to contain an embedded call 
to itself in the new() method, which in turn would have to be fixed over a 
different self object.  While there are abstraction techniques to solve this 
[Harr91a, CHC90] which will also handle different numbers of instantiation 
parameters, we prefer for the moment to consider the object constructor as an 
external function.

This done, algebraic specifications may be converted into object-oriented 
specifications by changing the style of invocation to reflect the selection of 
methods.  For example, the unique element axioms for SETs would appear as:
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d, e : ELEMENT, s : SET
s.add(e).add(e) = s.add(e); -- unique elements
s.add(e).rem(e) = s.rem(e)

The axioms requiring an empty set would refer to the newSet constructor, an 
external function used to create closures representing sets.

Problems to do with recursion and binding occur again and again in object-
oriented programming.  This is the theme of later chapters.

3.4.2 Subtyping Rules for Objects

The subtyping Rules 1-4 given above are now combined and presented in a 
more practical and accessible format.  Any two related object types  and , 
modelled as records containing functions, are in a subtype relation     if:

 extension:   adds monotonically to the functions inherited from  (Rule 3); 
and

 overriding:   replaces some of 's functions with subtype functions (Rule 3); 
and

 restriction:   has a stronger data type invariant than  (Rule 4) or is a 
subrange (Rule 1) or subset (Rule 0) of .

A function .f is a legal subtype replacement for another .g only if:

 contravariance:  the arguments of .f are more general supertypes than 
those of .g (Rule 2); and therefore preconditions are weaker (Rule 4);

 covariance:  the result of .f is a more specific subtype than that of .g (Rule 
2); and therefore postconditions are stronger (Rule 4).

The ability to extend type structure and obtain a subtype is clearly a boon for 
object-oriented programming.  Intuitively, a variable may always safely receive 
a longer record than it expects, in which case it can only access some of the 
fields.  This kind of assignment is typically handled by copying a subset of the 
record's fields into the target variable [Stro91] or by copying a pointer to the 
subtype record [GR93, Meye88].  In either case, functions statically bound over 
the variable can only access supertype fields, which are guaranteed to be 
present in the subtype record.  The requirement always to extend structure and 
behaviour monotonically means that selective inheritance is illegal from a type-
theoretic viewpoint.

The ability to restrict type membership to obtain a subtype is well-known.  In 
conventional languages, it is common to declare integer subranges, whose 
elements are then correctly handled by the functions of the base integer type 
[Wirt82].  In this case, the result of such expressions has the base type and 
type information about the subrange is lost.  Type restriction is handled in 
another way in Eiffel [Meye88, Meye92], which introduces class axioms called 
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data type invariants [Hoar72], restricting the semantics of a syntactic type.  
Subtypes may strengthen this invariant, by the addition of axioms.  A function 
expecting its argument to have certain semantics will receive objects having at 
least the required semantics, if not stronger.

The ability to override parts of a type's structure is peculiar to object-oriented 
languages.  Chiefly, this is accomplished by replacing methods with new 
versions having modified type signatures.  The requirement to replace functions 
with subtype functions often strikes programmers as strange, especially the 
contravariant rule for function arguments.  This is a counter-intuitive result 
[Cook89b] for object-oriented programming, which wants to be able to replace a 
function f :    defined over one type  with another function g :    closed 
over the subtype   .  In a statically-bound language, this would present no 
problems, since a variable typed in  would always safely execute f(), even if it 
contained an object of type .  However, because of dynamic selection in 
object-oriented languages, a variable typed in  may sometimes execute g(), 
when it contains an object of type .  Such a function should not restrict its 
arguments any more than the function it replaces.  Dynamic dispatch has been 
compared with higher-order functional programming [Harr91b] in this respect.  
The covariant rule presents less of a problem; it allows function results and 
record field-types generally to be retyped with subtypes.

Whereas type axioms were introduced in the wholistic, algebraic way above, 
here they are unpacked into the more familiar pre- and postconditions and 
invariants encountered in specification languages [Jone86, Spiv88, Spiv89] and 
Eiffel [Meye88, Meye92].  It should be obvious that attaching a precondition to a 
function is like restricting the set of arguments it may accept; and that attaching 
a postcondition is like restricting the valid results it may yield.  In practice, 
programming languages have the choice of maintaining a smaller set of types, 
at the cost of admitting partial functions, which are not applicable to every 
element of the type - consider pop() and the empty stack - or introducing a 
much larger set of types having total functions, at the cost of admitting some 
dynamic typing.  OBJ specifies stacks using the sorts Stack and NeStack (ie
non-empty stack) for the sake of defining a total pop() function [FGJM85].  
Based on this insight, certain experimental languages have adopted the idea of 
dynamic reclassification, whereby state changes affecting the boundary 
conditions of an object result in it changing type.

3.4.3 A Language Survey 

Immediately it is clear that a large group of languages violate the requirements 
for subtyping.  It is impossible, in these languages, for classes to be considered 
types and subclassing as subtyping.  We have reviewed some of the more 
popular languages in this respect [Simo94a]:

Smalltalk [GR83, Digi92]:  Despite its informal commitment to class protocols, 
Smalltalk allows inheriting classes to provide replacement methods with 
arbitrarily changed argument lists - the number and types of argument need not 
have anything in common with the superclass's method.  Smalltalk's protocols 
are only checked for name-equivalence.
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Furthermore, a form of selective inheritance is practised whereby general 
methods are later derailed in subclasses for which they do not legitimately 
apply.  An example [Digi92] is Collection's add: method which is replaced by an 
error message in FixedSizeCollection.  This is a consequence of having only a 
single dimension in which to factor out behaviours.  With care, the need for 
method derailment can be avoided in languages with multiple inheritance.

Smalltalk only supports implementation inheritance in which a Dictionary class, 
a keyed lookup table that is implemented as a hash table of <key, value> pairs, 
can inherit the hash table implementation of a Set; and yet applications using 
Sets would behave quite differently if given Dictionaries instead [GJ90] .

C++ [Stro91, ES90]:  Notwithstanding its unprepossessing parent language, 
C++ is fairly consistent in its support for subtyping.  The types of data 
declarations may not be changed.  Derived classes may supply replacement 
functions only if their type signatures match those of their forerunners exactly.  
This rule does not include the type of the implicit argument (the owning class, 
whose type status is actually determined by application of the rule) and is in fact 
stricter than required.  However, the ability to provide overloaded functions 
(within the same class) can sometimes have the effect of hiding an inherited 
function by accident.

C++ provides alternative private and public inheritance mechanisms.  The 
former permits the sharing of implementation only - privately derived classes 
are barred from being treated as subtypes.  The latter provides both type and 
implementation inheritance.  This is upheld by the exporting mechanism, which 
is linked to public inheritance - any function declared public in a base class is 
also public in any publicly derived class.  Friend declarations, intended to give 
certain client classes privileged access to private information, have the effect of 
opening up the external interface on an ad hoc basis.  However, these may not 
be inherited.

In some other respects, C++ is less secure, in that type coercions can fairly 
easily be constructed in arbitrary directions and these can be invoked, without 
the programmer being aware, in expressions of mixed type.

Eiffel [Meye88, Meye92]:  A dedicated exponent of strong, axiomatised types, 
Eiffel nonetheless retains features which mitigate against subtyping.  For 
function replacement, Eiffel follows the covariant rule for function results, but 
curiously ignores the contravariant requirement for function arguments 
[Cook89b].  Meyer has vigorously defended this decision, on the basis of 
arguments explored later.  While he has provided a global patch to fix type 
aliasing problems arising from the violation of contravariance [Meye89, 
Meye95], this is not the correct mathematical solution.  Eiffel is unique in 
allowing object attributes to be retyped with a subtype [Meye88], which is 
allowed by the covariant rule, since it considers access to attributes as the 
invocation of a function, delivering a result.  In [Cook89b] Cook points out that 
attributes must also be initialised and gives an example where this fails.  We 
have subsequently analysed this case as another violation of contravariance:  
assignment is a function that is redefined for every new subtype  and has the 
signature  := :   UNIT.  Elsewhere, Eiffel's generic parameter mechanism is 
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theoretically neutral with respect to the type rules given here, but may interact 
unhelpfully with contravariance [Coo89b, Simo95].  Parametric polymorphism 
will be considered in much more detail later.

Version 2 [Meye88] provided orthogonal inheritance and export mechanisms, 
leading to a form of selective inheritance in which a feature exported in a parent 
class could be subsequently hidden in a child.  Version 3 [Meye92] added a 
finer-grained visibility mechanism:  each feature may list the client classes to 
which it is exported.  This means that a class has different public interfaces, 
depending on the client's perspective!  Fortunately, visibility declarations are 
observed in subclasses by default, although the option exists to change them.  
Version 3 provides a feature undefinition mechanism, which removes its 
effective implementation, but not its signature, from the class interface.  This is 
still equivalent to selective inheritance, since it is an error to invoke deferred 
features.

Eiffel is best known for its assertions, executable axiomatic statements defining 
the semantics of its routines.  Coincidentally, Eiffel obeys the rules for axioms, 
although this is justified in terms of Meyer's programming by contract metaphor, 
rather than from subtyping considerations [Meye88, p256-7].  All services that 
are guaranteed by one class must also be guaranteed by its descendants, 
therefore the postcondition on which the success of the service depends must 
not be weaker, but may be stronger.  On the other hand, all messages which 
one class understands must also be understood by its descendants, therefore 
the precondition on which acceptance of a message is contingent must not be 
stronger, but may be weaker.  Inconsistencies between Eiffel's syntactic and 
semantic type rules have been discussed on the Internet newsgroup 
comp.lang.eiffel.

Trellis [SCBK86] and Sather [Omoh94, SOM93] are two among the very few 
languages which correctly observe both the covariant rule for function results 
and the contravariant rule for arguments.  For Trellis, class is type and 
classification is subtyping;  Sather correctly recognises cases when inheritance 
supports subtyping and disallows polymorphic aliasing when subtyping is 
contravened.  The independent type hierarchies of POOL-I [Amer90] and of 
Emerald [BHJL86] also respect the subtyping rules as we have given them.  
However, as the following chapter demonstrates, a strict adherence to 
subtyping eventually paralyses object-oriented languages.  The problem is that 
classes are not types at all, but something else altogether.


