
Chapter 5

A Theory of Classification

_______________________________________________________________

A simple theory of classification is presented.  The theory is "simple" in the 
sense that classes are considered second-order generalisations over recursive 
types.  Classes are defined using generators which abstract over the 
polymorphic type of self, but all other types are assumed to be simple, static 
types.  For completeness' sake, the theory expounds the properties of objects 
from both the implementation and type perspective.  First, classification is 
defined in terms of ordering relationships between type- and implementation-
generators.  Then, the process of deriving classes incrementally through 
inheritance is examined in greater detail .

_______________________________________________________________

5.1 Classification and Hierarchy

Classification inevitably carries with it the notion of hierarchy, the subdivision of 
sets of objects into smaller sets.  Classification therefore admits of an ordering 
relationship between classes.  Here, the first part of our theory seeks to 
establish the exact nature of that ordering relationship.

The notion of class cannot be properly developed without considering the 
properties of objects from both the implementation and type perspectives.  In 
the same way that types can be considered from a concrete or abstract point of 
view, we see no reason why these two aspects of class cannot be treated 
together, in contrast with [Snyd87, Amer90].  It is reasonable to suppose that 
transformations upon an object's structure will be reflected by transformations 
in its type.  Our model eventually links the type of an object with its 
implementation, in the style proposed in [CHC90].   
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5.1.1 Typed Objects

We adopt a Cook-style [Cook89a, CCHO89b, CHC90] typed functional model 
to represent objects and their associated types.  An object is written as a 
labelled record of functions, representing methods, which has a corresponding 
type:

{a1  e1, ... an  en} : {a1: t1, ... an: tn}

Here, the ai are labels and the ei are method expressions having the types ti, 
which are released from the record by application of an object to a label.  A 
record is essentially an associative map from unique labels to values, which can 
be modelled using finite functions in the -calculus (see Appendix 1).

Access to encapsulated object data is handled through unary methods, which in 
turn are modelled using nullary functions of the form:  unit  v, where v is the 
value to be returned.  For the sake of uniformity, all methods are assumed to 
expect an argument of the trivial type UNIT and method invocation is assumed 
implicitly to apply the selected method to the sole element of this type.  Where 
a1 is a unary method and a2 is a binary method expecting one argument v, we 
assume the following implicit translations:

 obj.a1    obj.a1 (unit)

 obj.a2 (v)    obj.a2 (unit, v)

In general, an object's methods are mutually recursive, since they may refer to 
the object as a whole, which we denote by self.  Methods may accept 
arguments or return results in the type of self, which we denote by .  A 
recursive object is written using  to bind the recursion variable self; similarly 
binds the recursion variable  in recursive types:

self.{a1  e1, ... an  en} : .{a1: t1, ... an: tn}

The methods ei may contain free occurrences of self and the type signatures of 
the methods ti may contain free occurrences of the self-type .  The recursions 
at term- and type-level are essentially independent, since it is possible for a 
method to use self but not accept or return a value in the type ; similarly a 
method may not refer to self but still accept or return another object in the same 
type  as the self-type.  

Recursive structures exhibit an unrolling or unfolding property.  A recursive 
object is equivalent to its infinite expansion; likewise a recursive type:

self.f(self)  f(self.f(self))

.F()  F(.F())
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where f(self) and F() are term- and type-expressions standing respectively for 
the record body and type of an object.  Abstracting over the recursive structure 
of objects and types yields recursive object generators and recursive type 
generators, which are written as functions of self and the self-type :

self.f(self) .F()

These are functionals whose fixpoints (ie least fixed points) correspond to the 
original recursive objects and types.  In order to motivate fixpoints at both the 
term- and type-level, our theory appeals to Bruce and Mitchell's partial 
equivalence relations [BM92] for its semantic domains.  In order to preserve the 
convergence of recursive functions representing objects, it must avoid 
constructing the object containing only the identity value.  Using the technique 
described in chapter 3 involving the trivial type UNIT, all object fields are written 
as functions, in which case convergence is guaranteed.

With these assumptions, generators may be related to objects and types in the 
following way:

self.f(self) = ( self.f(self))

.F() = ( .F())

where  is the fixpoint finder.  The treatment below deals mainly with object 
generators and type generators; it is assumed that the exact recursive structure 
and recursive type of an object can always be recovered by application of the 
fixpoint finder.

5.1.2 Object Classes

In object-oriented programming, a class describes a family of objects bearing 
some similarity in structure and type.  The exact nature of this similarity will be 
motivated below by appealing to intuitive notions about class membership.  For 
the moment, let us assert that a class may contain objects having different 
types.  So, whereas the two truncated types:

INT = {identity: INTEGER, equal: INTEGER  BOOLEAN}

CHAR = {identity: CHARACTER, equal: CHARACTER  BOOLEAN} 

do not stand in any simple type relationship with each other, they both belong to 
the same class.  A class defines an implementation and an interface for the 
methods of its objects.  These are represented using generators to abstract 
over any particular self and self-type:

object = self.{identity  self, equal  other.(self = other)}

OBJECT = .{identity: , equal:   BOOLEAN}

which capture the shared implementation and specification of INT and 
CHAR.  The simple structure and behaviour of an object of the truncated type 
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INT can be recovered by application of the generators to an object, 3, of type 
INTEGER:

obj = object (3); INT = OBJECT [INTEGER];
obj.identity  3; INT.identity: INTEGER;
obj.equal(4)  false; INT.equal [INTEGER] : BOOLEAN;

similarly, an object of the truncated type CHAR can be constructed by 
applying the generators to 'a' and CHARACTER.  It is clear from the 
correspondence between terms and types that a straightforward relationship 
exists between objects created using object and types created using 
OBJECT.

Application of generators produces objects and types which share the same 
implementation strategy and offer the same operations in their interfaces.  For 
example, the body of equal() uses a primitive state comparison operator = 
which is assumed to work uniformly over any concrete representation.  The 
types INT and CHAR offer exactly the same operations in their interfaces, 
with homomorphic type signatures (although these function types do not stand 
in any straightforward typing relationship with each other).

The truncated type INT is not exactly the same as the type INTEGER, which 
possesses other operations; this is evident from the fact that the expression:

obj : INT;
obj.identity.plus(4)

is legal if INTEGER possesses a plus() operation; whereas INT does not 
possess such an operation.  The application of generators does not, in general, 
produce results that are closed over their arguments.  However, a special case 
is found by taking the fixpoints of the generators:

object = ( object) OBJECT = ( OBJECT)

and applying the generators to these fixpoints produces results that are closed 
over their arguments, by the unrolling property of recursive types:

object  object (object) OBJECT  OBJECT [OBJECT]

The type OBJECT is considered the least defined type of its class and the 
instance object is a member of exactly this type.  The property of being least 
defined comes from 's making minimal assumptions when fixing the structure 
and behaviour of a recursive type.  The types INT and CHAR are more 
defined, since they place additional constraints on the types of their fields and 
exhibit more structure after one level of unfolding.  These are called pre-
fixpoints of the generator.  The instances of all three types are pairwise 
incomparable, since they have different types.  The type OBJECT is also 
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considered the most general type of its class, since there exist other types, 
possessing more operations than OBJECT, that one may reasonably expect to 
include in the class.

5.1.3 Class Membership

Class membership is determined in object-oriented programming according to 
the services objects provide.  An object belonging to a class must provide at 
least the services described by the class.  This places an upper bound on the 
kinds of object that may be considered members of a class.  An object satisfies 
the requirements for class membership if it implements equivalent, or strictly 
more methods than those expected by the class.  An equivalent method is one 
with a compatible type signature which computes the same operation as the 
method it replaces.  This is the substitutablility criterion for two object 
implementations, guaranteeing that one object may be substituted in place of 
another and still execute correctly all requests made of it.

To model extended objects with some replaced methods, we assume the 
existence of , a record combination operator with override, such that:

obj = base  extra

constructs the record obj from all the fields of base and extra, where fields in 
extra replace (ie override) fields of the same name in base.  Given this 
operator, we can define  as the substitutability criterion between two object 
implementations:

obj  imp    (imp  obj) = obj

which says that obj respects implementation imp if obj has at least all the 
named fields defined in imp, some of which may have been replaced.  The 
equality constraint ensures that every field in imp is present, or replaced, in obj.

Class membership may now be formalised in two parts:  firstly, as a constraint 
on method implementations; secondly as a constraint on method type 
signatures.

A method implementation constraint is introduced that allows instances x to 
belong to our example object class if:

x  object(x)

which says that any object x must respect the implementation of the truncated 
record object(x).  The application of the generator here ensures that 
occurrences of self in recursive records are co-referential for the purposes of 
field-by-field comparison.
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A method type signature constraint is introduced that allows types  to belong to 
our example object class if:

  OBJECT []

which says that any type  belonging to a class must be a subtype of the 
truncated type OBJECT [].  This construction is the F-bound, or functional 
bound [CCHO89a, CHC90] introduced in section 4.4 above.  Subtyping 
between record types [CW85] was introduced in section 3.3.4 above.

Together, these constraints formalise the notion of a class as a family of objects 
sharing a minimum common recursive structure and recursive type.  We may 
combine the implementation and type constraints by moving from an untyped 
object calculus (with separate types) to a typed calculus.  Given the type 
generator function OBJECT:

OBJECT = .{identity: , equal:   BOOLEAN}

we may replace the untyped object generator object by a typed object 
generator object 1 having the following type signature and definition:

object : (t  OBJECT [t]).t  OBJECT [t]

object = (t  OBJECT [t]).(self: t).
{identity  self, equal  (other: t).(self = other)}

and so provide a well-typed definition in the F-bounded second-order -calculus 
for the class of all objects having identity and equality.  The function 
object is a generator of polymorphic objects that maps objects in the type t to 
records in the constructed type OBJECT [t].  The exact type of t is unknown -
it is supplied later when objects are created.  For example:

object [INTEGER] (3)    
{identity  3, equal  (other: INTEGER).(3 = other)} : INT

constructs a truncated integer record, whereas:

( object [ OBJECT])    object : OBJECT 

= self.{identity  self, equal  (other: OBJECT).(self = other)}
 : OBJECT

constructs a recursive instance of exactly the type OBJECT.  The latter syntax 
formalises the recovery of the simple recursive structure and type of objects 
when they are created in programs.  Such objects are understood to be 
instances of the most general, least defined type of their class.  The former 
syntax is not used explicitly in object-oriented languages, but is useful in our 

                                           

1 ie we use lower-case  for untyped and upper-case  for typed object generators.
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model, since it allows partial records to be modified in structure and type when 
they are combined with additional fields in subclass objects.

5.1.4 Class Hierarchy

In object-oriented programming, classes are hierarchically ordered according to 
the services they provide.   A class is ordered below another if it provides more 
services and so describes a subset of the objects that may possibly be included 
in the other.  Classes lower in the order are sometimes said to inherit the 
structure and type of the classes above them.  Formally, inheritance is rightly to 
be considered as a separate notion from the ordering on classes; for the 
moment, let us focus on the properties of this order.

A simple Cartesian point class is introduced, bearing a deliberate similarity to 
our earlier object class.  It provides the identity and equal() methods as before, 
with extra methods x and y to access the location of points (by default, the 
origin [0, 0]).  For the moment, we shall ignore issues such as initialisation 
parameters and state update for the x and y fields of point objects.  The typed 
definition for a point class is given by:

POINT = .{x: INTEGER, y: INTEGER, 
identity: , equal:   BOOLEAN}

point : (t  POINT [t]).t  POINT [t] 

point = (t  POINT [t]).(self: t).{x  0, y  0, identity  self, 
equal  (other: t).(self.x = other.x  self.y = other.y)}

It is clear that this point class provides more services than our earlier object
class; and that it replaces the earlier definition of equal() by a new version.  The 
separate untyped object generator and type generator for this class are given 
by:

point = self.{x  0, y  0, id  self, 
eq  other.(self.x = other.x  self.y = other.y)}

POINT = .{x: int, y: int, id: , eq:   bool}

and these will be used to motivate an ordering relationship between our point
class and object class by considering implementation and type issues 
independently.

The ordering relationship for object implementations is now formalised as a 
constraint linking the generators point and object:

(x  point(x)).point(x)  object(x)
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which says that for all objects x with at least the methods of point(x), it must be 
the case that point(x) has at least the methods of object(x).  From this it is 
intuitively apparent that any conceivable object x with at least the methods of 
point(x) will also have at least the methods of object(x).  We deliberately 
restrict the scope of quantification to (x  point(x)) in order to permit the 
immediate inference:  x  object(x).  If we expressed the constraint linking 
generators in an unrestricted pointwise fashion, we might still infer that x is a 
member of the object class using a rule:

  x  f(x),   y.f(y)  g(y)


      x  g(x)

Put another way, we are not interested in whether the constraint  linking 
generators point(x)  object(x) holds for those objects which do not respect 
the implementation of the point class.

Similarly, the ordering relationship for object types is formalised as a constraint 
linking the type generators POINT and OBJECT:

(t  POINT [t]).POINT [t]  OBJECT [t]

which is a pointwise subtyping constraint requiring the generator POINT to be 
type-for-type in a subtype relationship with the generator OBJECT for all types 
that are legal members of the point class [CHC90].  Given this, it is clear from 
the transitivity of  that any conceivable type t satisfying t  POINT [t] will also 
satisfy t  OBJECT [t].  Cardelli has a more general pointwise subtyping rule 
linking generators in [AC95] without the restriction imposed above:  (t  
POINT [t]); this requires a further rule of the form:

  t  F[t],     s.F[s]  G[s]


  t  G[t]

in order to infer that t  OBJECT [t].  Bruce gives a proof of soundness for 
such a rule in [Bruc94, p158], Lemma 4.3.  Again, we are not especially 
interested in whether the pointwise constraint holds between two F-bounds for 
types not satisfying the more restrictive F-bound.

Our theory deliberately relates the subclass generators to the superclass 
generators, so that important properties such as transitivity, reflexivity and 
antisymmetry may be preserved.  Attempts to describe this ordering by relating 
the subclass objects directly to the superclass generators [Bruc94] results in a 
loss of transitivity [AC95] when seeking to compose ordering relations.  We 
cannot infer with any certainty that the following holds:
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(F  G[F])  (G  H[G])  (F  H[F])

since there exist counter examples of the form:

F = .{p :   INTEGER, q : INTEGER}
G = .{p :   INTEGER}
H = .{p : G  INTEGER}

where the antecedents hold, but not the consequent:

F  G[F]    {p : F  INTEGER, q : INTEGER}  {p : F  INTEGER}
G  H[G]    {p : G  INTEGER}  {p : G  INTEGER}
F  H[F]    {p : F  INTEGER, q : INTEGER}  {p : G  INTEGER}

because G  F violates contravariance.  Rather than make the membership of 
subclass objects in superclasses a primary assertion, our theory chooses 
instead to derive this property from an ordering rule linking the pointwise 
instantiation of the two class generators.

In consequence, the class hierarchy is a partial order which preserves the 
properties of reflexivity, transitivity and antisymmetry.  First, the properties of 
implementations are listed:

Implementation reflexivity:

 (x  f(x)).f(x)  f(x)

because x.(x  x) from definition of .

Implementation transitivity:

 (x  f(x)).f(x)  g(x),   (x  g(x)).g(x)  h(x)


 (x  f(x)).f(x)  h(x)

because  x.y.z.(x  y)  (y  z)  (x  z) from the monotonicity of 
overriding in the  record combination operator.

Implementation antisymmetry:

 (x  f(x)).(f(x)  g(x))  (g(x)  f(x))


 (x  f(x)).f(x) = g(x)

because x.y.(x  y)  (y  x)  (x = y)  from the monotonicity of 
overriding in the  record combination operator;  we assume that the 
order of record fields is not significant when judging equality.
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These are the properties that a partial order on implementations must observe.  
Similar properties apply to types:

Type reflexivity:

 (t  F[t]).F[t]  F[t]

because t.t  t is true.

Type transitivity:

 (t  F[t]).F[t]  G[t],  (t  G[t]).G[t]  H[t]


 (t  F[t]).F[t]  H[t]

since t.(t  F[t])  (F[t]  G[t])  (t  G[t]) from the first 
antecedent; and therefore the two antecedents are composable.

Type antisymmetry:

 (t  F[t]).(F[t]  G[t])  (G[t]  F[t])


 (t  F[t]).F[t] = G[t]

because s.t.(s  t)  (t  s)  (s = t) by definition;  we assume that 
the ordering of record fields is not significant when judging equality.

These are the properties that a partial order on types must observe.

Since the orders on implementations and types have been modelled separately, 
the effect of their combination must be considered.  We assert that an ordering 
on typed object generators can only exist if both the orders on types and 
implementations are observed.  Fortuitously, it is never possible to create 
antisymmetric ordering conditions on implementation and type, since the type of 
a record is dependent on the number of fields it possesses: adding a field will 
produce a subtype.  However, it is theoretically possible to define a subclass 
which overrides one method, but whose type is unchanged.  Similarly, it is 
theoretically possible to define a subclass whose self-type is specialised, but 
whose implementation is unchanged.

5.2 Classification and Derivation

The chief advantage of inheritance in object-oriented languages is that it 
supports incremental classification, the derivation of a subclass from an existing 
class.  Starting with the typed model of inheritance given by Cook et al in 
[CHC90], our theory illustrates how classes derived through inheritance may be 
shown nonetheless to observe the ordering properties of the class hierarchy.
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Later, our theory extends Cook's approach, devising a more general typing for 
his record combination operator .  Our operator differs from earlier 
formulations by being fully polymorphic rather than simply-typed.  In order to 
support this, the notion of dependent second-order types is first introduced.  
Later, this will allow incremental extensions to be decoupled from the classes 
they extend.

5.2.1 Typed Inheritance

Inheritance is a shorthand mechanism for defining a subclass with respect to 
some chosen class.  The new class extends, or simply reimplements, the 
services of the other and so describes a subset of the objects that may possibly 
be included in the other.  Inheritance requires an ability to derive subclass 
object and type generators by modifying existing generators in order to make 
them refer to the new subclass and at the same time incorporate an extension 
record of additional typed fields.

Consider a child point-instance that is somehow derived from the parent object
generator.  When inheriting the parent's methods, occurrences of self must be 
redirected to refer to the child.  This is important, because inherited methods 
may refer to self and we should want this to mean the child point-instance and 
not an instance of the parent.  To achieve this, occurrences of self may be 
bound in the parent's generator, object, to the eventual child point-instance:

object(point)    {identity  point, equal  other.(point = other)}

This produces a partial record for a point object.  So far, identity has been 
specialised to return the point instance, but equal() has the wrong 
implementation.  Using  this partial record may now be combined with extra 
fields.  New fields for x and y are added and the field equal() is replaced with 
the new desired implementation:

object(point)  
{x  0, y  0, equal  other.(point.x = other.x

 point.y = other.y)}

  {x  0, y  0, identity  point, 
equal  other.(point.x = other.x  point.y = other.y)}

This yields a record having the intended structure of a recursive point instance 
after one level of unfolding.  Generalising this technique, a child object 
generator may be derived from a parent generator by abstracting over self in 
the result: 

point = self.(object(self)  
{x  0, y  0, equal  other.(self.x = other.x  self.y = other.y)})

= self.{x  0, y  0, identity  self, 
equal  other.(self.x = other.x  self.y = other.y)}



A Theory of Classification 87

This construction binds the parent generator's self to the resulting child's self, 
before combining this record with the extension record, which may also contain 
free references to self, bound only in the resulting generator.

A similar process binds the parent's self-type to the resulting child's self-type, 
before combining the partial record type with the remaining field types:

POINT = .(OBJECT []    {x: INTEGER, y: INTEGER, 
equal:   BOOLEAN})

= .{x: INTEGER, y: INTEGER, identity: , equal:   BOOLEAN}

This ensures that the new self-type  has the bound (t  POINT [t]) in the 
point class, rather than the bound (t  OBJECT [t]); and this illustrates in 
turn how an inherited function like identity may change in type even when its 
implementation is not changed.  For the moment, it is assumed that  replaces 
the types of record fields along with their values.

Combining the two approaches, typed inheritance may be modelled by 
specialising the inherited type and structure of the parent in one operation, 
before combining this with new methods.  This is achieved by distributing both 
the self-type and self of the child class to the typed form of parent generator:

point : (t  POINT [t]).t  POINT [t] 

point = (t  POINT [t]).(self: t).
(object [t] (self)    {x  0, y  0, 

equal  (other: t).(self.x = other.x  self.y = other.y)})

= (t  POINT [t]).(self: t).
{x  0, y  0, identity  self, 

equal  (other: t).(self.x = other.x  self.y = other.y)}

which produces exactly the desired form of typed object generator for the point
class.  It is also clear by inspection that combining the record implementations 
yields a result with the desired type (t  POINT [t]).t  POINT [t], where:

POINT = .{x: INTEGER, y: INTEGER, identity: , 
equal:   BOOLEAN}

Since we are now dealing with a typed system, it is important to ensure that this 
style of derivation for inheritance is type correct.  The internal type application 
object [t] is correct, because POINT [t]  OBJECT [t] and therefore any 
type satisfying point's type generator will also satisfy the bound on object's type 
generator.  The internal self-application object [t] (self) is also correct since 
object's generator has now been specialised to point's self-type and will accept 
an argument in this type.  
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5.2.2 Typed Record Combination

The record combination operator  must also be demonstrably type correct.  
Cook considered that  joins values whose types are constant [CHC90].  In this 
case, each occurrence of  has a particular simply-typed form:

 :     t

for each eventual record type t, in which the types of the base record  and 
extra extension record  are related to the type of the result, due to the 
presence of the self-type t in the fields of  and .  Whereas extra is always a 
truncated version of the result, base may legally contain fields that are 
supertypes (allowed by overriding).  Accordingly, this relationship may be 
qualified as:

t =       (t  )  (t  )

making t the greatest lower bound on the types  and .  This suggests the 
notion of an intersection type [Pier92, CP93] derived from the usual notion of 
subtyping.  To have a Cook-style simply-typed record combination operator, we 
must assume that there are many different versions of , each typed over a 
different t and then over different supertypes  and  of t, such that t =   .  

This is not especially satisfying.  Instead, we wish to generalise  to a second-
order typed operator, combine.  However, this requires resolving the mutual 
type dependency between ,  and t:

letrec t =    in

combine : (  t).(  t).    t

combine = (  t).(  t).(base: ).(extra: ).
{ label  value | (label  dom(base)  dom(extra))

 (if label  dom(extra) 
then value = extra.label 
else value = base.label) }

Our aim is to prohibit the combination of two types  and  which cannot be 
related to a common subtype t.  Unfortunately, a type derivation may not be 
specified in this way.  It is not clear that we could make a type assumption 
about the result and discharge it later, since we would have to invoke the rule 
we are defining to discharge the assumption on which it depends.

The mutually recursive type dependency is curious but necessary.  Without the 
type constraints on its arguments, the result of combine is not guaranteed to 
have an intersection type.  To see this, consider overriding a base record with 
an extra record having incomparable types in some common fields.  The result 
is not a subtype of base.  Critically, we want to preserve the pointwise subtyping 
relationship between child and parent classes and in particular the result of 
combine must be a subtype of the base argument for any pair of record types.
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To avoid the mutually recursive type dependency, this condition may be re-
expressed as a more complex type constraint linking the types  and .  Since 
 is not commutative, every field of extra is always present in base  extra.  
Therefore, the result is always a subtype of extra.  To ensure that the result is 
also always a subtype of base, we require that base fields can only ever be 
replaced by subtype fields taken from extra.  This may be expressed as a type 
introduction rule for :

  b: {a1: s1, ... aj: sj, ... ak: sk},  
  e: {aj: tj, ... ak: tk, ... an: tn},  provided that  is uniform

  tj  sj, ... tk  sk in b, e and b  e

  b  e: {a1: s1, ... aj: tj, ... ak: tk, ... an: tn}

Since  is always used in a context where occurrences of self are co-
referential, type complications due to non-uniform self-types  are avoided.  
Otherwise, records could be constructed using  whose self was not uniform:  
occurrences of self in extra always refer to the result, but ocurrences of self in 
the result might refer either to the result or to the base record.  It would still be 
possible to preserve record subtyping, but only at the cost of restricting 
overriding further:  we could not replace any method having the self-type as an 
argument, since this would violate contravariance.  Fortunately, an F-bounded 
type system promotes uniform self-types through the application of generators.

A type override constraint  is now defined, linking the record types  and .  
is used below to provide a regular typing for second-order record combination:

    (a  dom()  dom()). .a  .a

combine : .( |   ).    

combine = .( |   ).(base: ).(extra: ).
{ label  value | (label  dom(base)  dom(extra))

 (if label  dom(extra) 
then value = extra.label 
else value = base.label) }

This condition is sufficient to type record combination for both uniform and non-
uniform self-reference.  We shall continue to use  as a convenient 
abbreviation with the meaning:

 = { , | .( |   ).
, :         , = combine [ ] }

5.2.3 Typed Method Combination

A further feature of object-oriented languages is the ability to extend the 
behaviour of inherited methods [Moon86, Keen89].  Instead of replacing the 
parent's method, a child class may combine this with additional code.  The child 
class defines a code wrapper [Cook89a, CP89, CCHO89b] for the extended 
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method, in which a call is made to the inherited version.  This is best illustrated 
through an example.

Suppose that a three-dimensional point class were required to have the 
following specification:

3DPOINT = .{x: INTEGER, y: INTEGER, z: INTEGER, 
identity: , equal:   BOOLEAN}

A natural way to provide this would be through inheritance, basing the new 
class on the existing two-dimensional Cartesian point class, which has the 
specification:

POINT = .{x: INTEGER, y: INTEGER, identity: , 
equal:   BOOLEAN}

This class already provides much of the desired behaviour:

point : (t  POINT [t]).t  POINT [t] 

point = (t  POINT [t]).(self: t).
{x  0, y  0, identity  self, 

equal  (other: t).(self.x = other.x  self.y = other.y)}

except that the new class requires an additional z method and a modified 
version of equal() that compares all three scalar values of a three-dimensional 
coordinate.  This new version is only minimally different from the old version.

Rather than replace equal() wholesale, it would be preferable to make use of 
the existing version using a technique for method combination.  Accordingly, a 
wrapper method is written for the modified equal().  Inside the wrapper, two 
recursion variables are used - self denotes the child and super denotes the 
parent, through which the inherited method super.equal() may be accessed:

equal  (other: t).(super.equal(other)  self.z = other.z)

In order to be meaningful, super.equal() must be equivalent to its inline 
expansion in the wholesale replacement of the equal() method:

equal  (other: t).(self.x = other.x  self.y = other.y  self.z = other.z)

in which self-reference is uniform, such that the combined parts of the method 
refer to the same object.  

This in turn requires a more detailed consideration of the binding of self and 
super, with their associated types.  It is clear that all occurrences of self in a 
combined method should be co-referential, irrespective of whether they appear 
in the inherited method or wrapper.  The desired goal is for super to refer to a 
version of the parent record in a context where self has been rebound to refer 
to the child.  This may be achieved by distributing the new self and self-type of 
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the child to the parent generator.  Inside the 3D point class, super must have 
the form:

point [t] (self)

= {x  0, y  0, identity  self, 
equal  (other: t).(self.x = other.x  self.y = other.y)}

for (t  3DPOINT [t]) and self : t.  This is essentially a retyped form of the 
parent record.  The method equal() has the desired implementation of the 
parent, in which self refers to the child, having the type (t  3DPOINT [t]).

During inheritance, an object of exactly this type is routinely obtained on the 
left-hand side of the record combination operator , before these fields are 
combined with the extension record.  The method combination technique must 
simply maintain a handle on this object so that the original method 
implementations are available after record combination.  This is achieved by 
abstracting over super internally during inheritance:

3dpoint : (t  3DPOINT [t]).t  3DPOINT [t] 

3dpoint = (t  3DPOINT [t]).(self: t).
((super: POINT [t]).

super  {z   0, equal  (other: t).
(super.equal(other)  self.z = other.z)}

(point [t] (self)))

This construction binds super to the value point [t] (self).  This value has the 
derived type:  POINT [t], which can be inferred from the type of self.  The 
internal super variable is therefore given exactly this type.

This construction is provably equivalent to the simpler form of inheritance in 
which references to super are expanded inline.  By reducing the internal 
abstraction over super, we obtain the usual expression generating a modified 
form of the parent record, in which self denotes the child.  This record also 
becomes available in the body of the wrapper method equal().  The sub-
expression super.equal(other) is therefore reducible and will select a method 
from the parent record, applying it to the variable other, yielding an expression:

 (self.x = other.x  self.y = other.y) 

in which self denotes the child.  All references to super may therefore be 
eliminated, yielding directly the simpler form of inheritance:

3dpoint = (t  3DPOINT [t]).(self: t).
point [t] (self) 

{z   0, equal  (other: t).
(self.x = other.x  self.y = other.y  self.z = other.z)}
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 in which the equal() method is replaced wholesale by a redefined version and 
all references to self are coreferential, denoting the child.

Any super method may be invoked inside a wrapper method, not just the 
inherited version of the combined method concerned.  The effect of invoking a 
super method is always to leapfrog any locally-redefined version.  In cases 
where no locally-redefined version exists, the inherited method is selected, 
since there is then no difference between the self and super versions.  It is a 
static type error to invoke a non-existent super method.

5.3 Classification and Components

The breaking down of classification into incremental steps now makes it 
possible to describe independently a component extension.  The earliest object-
oriented language with such a notion was Flavors [Moon86], which referred to 
component extensions as mixins.  Following the ice-cream metaphors used in 
the language, a mixin represented a particular set of behaviours that could be 
added to a basic, or vanilla flavoured2 class.  In practice, a mixin looked like any 
other class, with the distinction that it was not intended to be instantiated 
independently.

Bracha and Cook [BC90] revived interest in mixins when it became clear that 
models of inheritance for languages as diverse as Smalltalk [GR83], Beta 
[Mads93] and CLOS [Keen89] could all be mapped onto a simpler model based 
on the composition of mixins.  A mixin is described as an abstract subclass, or

"a subclass definition that may be applied to different superclasses to 
create a related family of modified classes" [BC90, p303].

More correctly, a mixin is a free-standing object extension function that 
abstracts over its own parent.  It is not itself abstract, since it provides concrete 
services.  Cook was unable to type mixins in [CHC90], because his record 
combination operator was not expressive enough to combine free-standing 
record extensions.  Our theory replaces Cook's simply-typed operator with a 
polymorphic operator which has the required properties.  In the unfinished Abel 
report [Harr91a] an attempt is made to type mixins using a higher-order kinded
calculus.  Here, a simpler way to type mixins is presented that requires only the 
notion of type dependency in a second-order calculus.

5.3.1 Typed Extension Records

In the model of inheritance given above, extension records are only defined 
within the scope of the enclosing inheritance expression - they have no 
independent existence.  The self occurring in an extension record is bound only 
in the result of record combination , and refers to the result, rather than to the 
extension itself.  Now, we choose to decompose inheritance further, by 

                                           

2 "Flavors" is a trademarked name.  Elsewhere British spelling is used.  
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abstracting over the self of extension records.  This aims to give extension 
records a certain limited independent existence.  

Abstracting over self yields a free-standing generator for a family of extension 
records, to which we may give a polymorphic type.  Such a generator looks 
much like a class, except that its methods are intended to supplement the 
methods of other classes.  An extension generator destined to provide a two 
dimensional coordinate system for any class has the form:

XYCOORD = .{x: INTEGER, y: INTEGER, equal:   BOOLEAN}

xycoord : (  XYCOORD []).  XYCOORD []

xycoord = (  XYCOORD []).(self: ).
{x  0, y  0, equal  (other: ).

(self.x = other.x  self.y = other.y)}

By convention, typed extension record generators are indicated using -
prefixes, to distinguish them from the -prefixes of class generators.  The 
constraint on the type of self arises from the fact that any class with which 
xycoord is combined will have at least the methods x, y and equal.

To illustrate the use of this record extension generator during inheritance, it is 
combined with the object class to derive the Cartesian point class shown above.  
Since object and xycoord are now both generators, it is necessary to apply 
them to arguments standing for self before combining the resulting records 
using .  In particular, combination must ensure that references to self in the 
base and extension record are co-referential.  To achieve this, inheritance must 
distribute the self-type and self of the result to both object and xycoord
generators:

point : (t  POINT [t]).t  POINT [t] 

point = (t  POINT [t]).(self: t).
object [t] (self)    (xycoord [t] (self))

 = (t  POINT [t]).(self: t).
{identity  self, equal  (other: t).(self = other)}  
{x  0, y  0, equal  (other: t).

(self.x = other.x  self.y = other.y)}

= (t  POINT [t]).(self: t).
{x  0, y  0, identity  self, 

equal  (other: t).(self.x = other.x  self.y = other.y)}

This has a pleasing symmetry.  The application xycoord [t] (self) is correct, 
because we can assert (t  POINT [t]).t  XYCOORD [t].  This follows from 
the observation (t  POINT [t]).POINT [t]  XYCOORD [t], which is a 
straightforward generalisation of the simple subtyping t   that obtains 
between any particular result and extension in record combination, where 
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t =   .  The above construction is very similar to the idea of multiple 
inheritance, which is explored later in chapter 6.  Although this strategy gives 
independence to extension records, the type of the result, (t  POINT [t]), is 
still used to demonstrate that record combination is well-typed according to the 
polymorphic definition of .  

5.3.1 Typed Free Mixins

A genuine mixin cannot use the type of the result in this way, rather it must 
derive the result type from its own type and the type of the class it is mixed with.  
A mixin is an object extension function which abstracts over the super object 
with which it is mixed.  Since objects are in general recursive, we define a mixin 
as a function of both self and super:

xycoord : (  XYCOORD []).(  ).    

xycoord = (  XYCOORD []).(  ).(self: ).(super: ).
super    {x  0, y  0, equal  (other: ).

(self.x = other.x  self.y = other.y)}

By convention, -prefixes are used to distinguish mixins from the extension 
record generators, which have -prefixes.  In the type signatures for mixins, the 
order of quantification for the base and extension record types is deliberately 
reversed.  This is in order to force the type of super to depend directly on the 
type of self, reflecting the earlier strategy for typing super during method 
combination.  The minimum type of self may be quantified independently of 
super, since self does not depend on any of super's methods.  Although this 
mixin may be combined with any parent class, the eventual type of super must 
be a supertype of self, so that record combination is well-typed internally.  To 
preserve this condition, it is important to prohibit subsumption in the values 
supplied for super and self:  once the types  and  are given, super and self
must have exactly these types.  The result is an intersection type respecting the 
interfaces of both the base class and the extension record.

The xycoord mixin function may be applied to any suitable parent class, such 
as object, to derive extended object generators.  Since the final value and type 
of self are unknown, these are distributed as parameters in the resulting mixed 
class, which is temporarily called mixed1.  We distribute to xycoord two 
types, standing for the types of self and super, followed by two values in these 
types.  If  is the type of self, then OBJECT [] is the appropriate super type 
adapted for  and object [] (self) is the super record.

mixed1 = .(self: ).
xycoord [, OBJECT []] (self, object [] (self))

= .(self: ).
{identity  self, equal  (other: ).(self = other)}

  {x  0, y  0, equal  (other: ).
(self.x = other.x  self.y = other.y)}
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= .(self: ).
{x  0, y  0, identity  self, 

equal  (other: ).(self.x = other.x  self.y = other.y)}

This has exactly the form of the typed object generator point, but lacks the F-
bound on the self-type .  Looking at the type constraints in xycoord, we know 
that   XYCOORD [] must hold for the self-type and that   OBJECT [] 
must then hold for the super-type.  The minimum type satisfying this is given by 
the intersection OBJECT []  XYCOORD [] = POINT [], to give this 
type a name.  The result is therefore well-typed for (  POINT []) and this 
condition can be constructed from the result type of xycoord.

The kind of mixin shown here is called a free mixin, since it makes few 
assumptions about the class with which it is to be combined.  None of the 
methods in the extension record interact with base class methods.  It is also 
possible to provide bound mixins, which depend on their base class having 
certain methods, often because they wish to specialise these methods.

5.3.2 Typed Bound Mixins

A bound mixin is also a free-standing object extension function that abstracts 
over both self and super.  However, the super recursion variable refers to an 
object which possesses one or more methods on which self's methods depend.  
The type of super expresses a minimum requirement on the interface of the 
base generator, such that combining this with the extension generator yields 
meaningful methods.

This can be illustrated by converting the earlier example of method combination 
into a free-standing bound mixin.  Before, a class 3dpoint was derived by 
extending the point class with a record providing a new z method and 
specialising the equal() method inherited from its parent.  The freestanding 
version of this extension record is a generator:

(self: ).(super: ).{z  0, equal  (other: ).
(super.equal(other)  self.z = other.z)}

for which the types  and  must be established.  Even though self's method 
equal() depends on super's inherited method, the super type  is unusual in 
that it never appears in the interface (references to self appearing in the 
interface of inherited super methods will have the rebound type  rather than ).  
This suggests that  may be bound independently of .  Furthermore, it is clear 
that  depends directly on , since the super record is always constructed by 
applying a parent generator to self.  Based on these insights,  is bound before 
.

In order to constrain the type  of self independently, we appeal to the existence 
of an extension record type generator ZCOORD:

ZCOORD = .{z: INTEGER, equal:   BOOLEAN}
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This is the type generator for an extension record generator in which references 
to super have been expanded inline.  We may always suppose that such a 
generator exists, since its type signature does not depend on the type of super.  
Accordingly, self may now be given the polymorphic type:

self :   ZCOORD []

It was established above that the type  of super is dependent on .  It is also 
clear that  must possess a minimum interface containing those super methods 
that are invoked within the extension generator.  Since super.equal() is the only 
super method invoked in the extension generator, any valid parent class must 
have some type t  EQUAL [t], where:

EQUAL = .{equal:   BOOLEAN}

If  is the type of self, then super must have at least the type EQUAL [], since 
it must specialise the inherited self-type to ; in fact super may take any 
dependent type  in the range:

super : ( |     EQUAL [])

This allows the bound mixin zcoord finally to be given a type:

zcoord : (  ZCOORD []).( |     EQUAL []).
    

zcoord = (  ZCOORD []).( |     EQUAL []).
(self: ).(super: ).

super    {z  0, equal  (other: ).
(super.equal(other)  self.z = other.z)}

The   EQUAL [] constraint ensures that super has at least an equal()
method retyped in the self-type .  The    constraint ensures that super still 
has a more general type than self.  This is often overlooked - if  = , this does 
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not produce sensible method combination, but wraps methods which have 
already been wrapped.  If   , the record combination operator  is supplied 
with arguments having the wrong types and fails to type-check.  Generally, the 
lower bound on the type of super prevents a mixin from being combined 
incorrectly with a proper subclass.

zcoord may be applied to any suitable parent, such as point, to turn a two-
dimensional coordinate object into a three-dimensional one:

mixed2 = .(self: ).
zcoord [, POINT []] (self, point [] (self))

= .(self: ).
{x  0, y  0, identity  self, 

equal  (other: ).(self.x = other.x  self.y = other.y)}
  {z  0, equal  (other: ).

(self.x = other.x  self.y = other.y)  (self.z = other.z)}

= .(self: ).
{x  0, y  0, z  0, identity  self, equal  (other: ).

(self.x = other.x  self.y = other.y  self.z = other.z)}

The result has exactly the form of 3dpoint.  As before, the type of the result 
may be inferred.  The self-type must obey   ZCOORD [] and then the 
super-type must obey   POINT []  EQUAL [].  The minimum type 
satisfying both is given by ZCOORD []  POINT [] = 3DPOINT [], to 
give it a name.  The result is well-typed for (  3DPOINT []).

It is sometimes illuminating to verify this using actual types.  The least type in 
the result class is the fixpoint 3DPOINT.  It clearly satisfies the type constraints 
on self and super in zcoord:

3DPOINT  ZCOORD [3DPOINT],

3DPOINT  POINT [3DPOINT]  EQUAL [3DPOINT].

Clearly, the first relationship ensures that 3DPOINT has at least the methods 
provided in the mixin.  The second relationship has two parts:  the first part 
ensures that 3DPOINT is a proper subtype of the super type with which it was 
combined;  the second part ensures that the super type chosen has at least an 
equal() method, without which the super.equal() call would be incorrect.

5.3.3 On Dependent Second-Order Types

The Abel typing of mixins quantified over classes, rather than over types.  
[Harr91a] allowed variables to range over the self- and super-generators.  This 
is because the super-interface apparently ranges over a set of classes and 
therefore the type of self, which is assumed to depend on the particular super
chosen, must also range over a family of classes.  Our approach avoids higher-
order complications in two stages.  Firstly, a second-order typing is provided for 
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the freestanding self of the extension record, irrespective of whatever type is 
eventually given to super.  Secondly, a second-order type expression is 
constructed for super that depends directly on the self-type; we are therefore 
not forced to quantify over class generators, as in [Harr91].  The typing given 
here is technically more accurate than a proposed typing of the super-interface 
in [BC90], which makes no distinction between class and type, resulting in 
fragmented notions of self after record combination.  A related compositional 
model for extending classes is given in [Hauc93].  Like [CHC90], the scheme 
adopted is not expressive enough to type mixins, although self-reference is 
properly handled.

For simple theories of classification, in which the type of self is polymorphic but 
other types are static, dependent second order types provide a useful 
mechanism for typing programs.  Dependent types are of the form:

.( |   ) where "" denotes a relational constraint.

This kind of typing is a simple extension of the idea of functional bounds; and it 
is no more difficult to implement.  Both F-bounds and the kinds of dependent 
second-order types shown here require a typechecking algorithm that compares 
interfaces for structural subsumption.  It is relatively easy to type-check 
expressions with dependent type.  In the scheme for polymorphic record-
combination, the base type is made available before the dependent type has to 
be checked.  In the scheme for mixins, a minimum type for the base type must 
be calculated from the constraint provided by the chosen super class.

More flexible theories of classification may not be amenable to this kind of 
checking.  Chapter 6 reintroduces polymorphic attributes and functions bound 
over other polymorphic types than the self-type.  While quantifying over single-
argument type constructors may only require a third-order theory, the arbitrary 
stacking of type parameter arguments seems to indicate that a higher-order 
treatment is more suitable.


