
Chapter 5

A Theory of Classification

A simple theory of classification is presented. The theory is "simple" in the
sense that classes are considered second-order generalisations over recursive
types. Classes are defined using generators which abstract over the
polymorphic type of self, but all other types are assumed to be simple, static
types. For completeness' sake, the theory expounds the properties of objects
from both the implementation and type perspective. First, classification is
defined in terms of ordering relationships between type- and implementation-
generators. Then, the process of deriving classes incrementally through
inheritance is examined in greater detail .

5.1 Classification and Hierarchy

Classification inevitably carries with it the notion of hierarchy, the subdivision of
sets of objects into smaller sets. Classification therefore admits of an ordering
relationship between classes. Here, the first part of our theory seeks to
establish the exact nature of that ordering relationship.

The notion of class cannot be properly developed without considering the
properties of objects from both the implementation and type perspectives. In
the same way that types can be considered from a concrete or abstract point of
view, we see no reason why these two aspects of class cannot be treated
together, in contrast with [Snyd87, Amer90]. It is reasonable to suppose that
transformations upon an object's structure will be reflected by transformations
in its type. Our model eventually links the type of an object with its
implementation, in the style proposed in [CHC90].

A Theory of Classification 77

5.1.1 Typed Objects

We adopt a Cook-style [Cook89a, CCHO89b, CHC90] typed functional model
to represent objects and their associated types. An object is written as a
labelled record of functions, representing methods, which has a corresponding
type:

{a1 e1, ... an en} : {a1: t1, ... an: tn}

Here, the ai are labels and the ei are method expressions having the types ti,
which are released from the record by application of an object to a label. A
record is essentially an associative map from unique labels to values, which can
be modelled using finite functions in the -calculus (see Appendix 1).

Access to encapsulated object data is handled through unary methods, which in
turn are modelled using nullary functions of the form: unit v, where v is the
value to be returned. For the sake of uniformity, all methods are assumed to
expect an argument of the trivial type UNIT and method invocation is assumed
implicitly to apply the selected method to the sole element of this type. Where
a1 is a unary method and a2 is a binary method expecting one argument v, we
assume the following implicit translations:

 obj.a1 obj.a1 (unit)

 obj.a2 (v) obj.a2 (unit, v)

In general, an object's methods are mutually recursive, since they may refer to
the object as a whole, which we denote by self. Methods may accept
arguments or return results in the type of self, which we denote by . A
recursive object is written using to bind the recursion variable self; similarly
binds the recursion variable in recursive types:

self.{a1 e1, ... an en} : .{a1: t1, ... an: tn}

The methods ei may contain free occurrences of self and the type signatures of
the methods ti may contain free occurrences of the self-type . The recursions
at term- and type-level are essentially independent, since it is possible for a
method to use self but not accept or return a value in the type ; similarly a
method may not refer to self but still accept or return another object in the same
type as the self-type.

Recursive structures exhibit an unrolling or unfolding property. A recursive
object is equivalent to its infinite expansion; likewise a recursive type:

self.f(self) f(self.f(self))

.F() F(.F())

A Theory of Classification 78

where f(self) and F() are term- and type-expressions standing respectively for
the record body and type of an object. Abstracting over the recursive structure
of objects and types yields recursive object generators and recursive type
generators, which are written as functions of self and the self-type :

self.f(self) .F()

These are functionals whose fixpoints (ie least fixed points) correspond to the
original recursive objects and types. In order to motivate fixpoints at both the
term- and type-level, our theory appeals to Bruce and Mitchell's partial
equivalence relations [BM92] for its semantic domains. In order to preserve the
convergence of recursive functions representing objects, it must avoid
constructing the object containing only the identity value. Using the technique
described in chapter 3 involving the trivial type UNIT, all object fields are written
as functions, in which case convergence is guaranteed.

With these assumptions, generators may be related to objects and types in the
following way:

self.f(self) = (self.f(self))

.F() = (.F())

where is the fixpoint finder. The treatment below deals mainly with object
generators and type generators; it is assumed that the exact recursive structure
and recursive type of an object can always be recovered by application of the
fixpoint finder.

5.1.2 Object Classes

In object-oriented programming, a class describes a family of objects bearing
some similarity in structure and type. The exact nature of this similarity will be
motivated below by appealing to intuitive notions about class membership. For
the moment, let us assert that a class may contain objects having different
types. So, whereas the two truncated types:

INT = {identity: INTEGER, equal: INTEGER BOOLEAN}

CHAR = {identity: CHARACTER, equal: CHARACTER BOOLEAN}

do not stand in any simple type relationship with each other, they both belong to
the same class. A class defines an implementation and an interface for the
methods of its objects. These are represented using generators to abstract
over any particular self and self-type:

object = self.{identity self, equal other.(self = other)}

OBJECT = .{identity: , equal: BOOLEAN}

which capture the shared implementation and specification of INT and
CHAR. The simple structure and behaviour of an object of the truncated type

A Theory of Classification 79

INT can be recovered by application of the generators to an object, 3, of type
INTEGER:

obj = object (3); INT = OBJECT [INTEGER];
obj.identity 3; INT.identity: INTEGER;
obj.equal(4) false; INT.equal [INTEGER] : BOOLEAN;

similarly, an object of the truncated type CHAR can be constructed by
applying the generators to 'a' and CHARACTER. It is clear from the
correspondence between terms and types that a straightforward relationship
exists between objects created using object and types created using
OBJECT.

Application of generators produces objects and types which share the same
implementation strategy and offer the same operations in their interfaces. For
example, the body of equal() uses a primitive state comparison operator =
which is assumed to work uniformly over any concrete representation. The
types INT and CHAR offer exactly the same operations in their interfaces,
with homomorphic type signatures (although these function types do not stand
in any straightforward typing relationship with each other).

The truncated type INT is not exactly the same as the type INTEGER, which
possesses other operations; this is evident from the fact that the expression:

obj : INT;
obj.identity.plus(4)

is legal if INTEGER possesses a plus() operation; whereas INT does not
possess such an operation. The application of generators does not, in general,
produce results that are closed over their arguments. However, a special case
is found by taking the fixpoints of the generators:

object = (object) OBJECT = (OBJECT)

and applying the generators to these fixpoints produces results that are closed
over their arguments, by the unrolling property of recursive types:

object object (object) OBJECT OBJECT [OBJECT]

The type OBJECT is considered the least defined type of its class and the
instance object is a member of exactly this type. The property of being least
defined comes from 's making minimal assumptions when fixing the structure
and behaviour of a recursive type. The types INT and CHAR are more
defined, since they place additional constraints on the types of their fields and
exhibit more structure after one level of unfolding. These are called pre-
fixpoints of the generator. The instances of all three types are pairwise
incomparable, since they have different types. The type OBJECT is also

A Theory of Classification 80

considered the most general type of its class, since there exist other types,
possessing more operations than OBJECT, that one may reasonably expect to
include in the class.

5.1.3 Class Membership

Class membership is determined in object-oriented programming according to
the services objects provide. An object belonging to a class must provide at
least the services described by the class. This places an upper bound on the
kinds of object that may be considered members of a class. An object satisfies
the requirements for class membership if it implements equivalent, or strictly
more methods than those expected by the class. An equivalent method is one
with a compatible type signature which computes the same operation as the
method it replaces. This is the substitutablility criterion for two object
implementations, guaranteeing that one object may be substituted in place of
another and still execute correctly all requests made of it.

To model extended objects with some replaced methods, we assume the
existence of , a record combination operator with override, such that:

obj = base extra

constructs the record obj from all the fields of base and extra, where fields in
extra replace (ie override) fields of the same name in base. Given this
operator, we can define as the substitutability criterion between two object
implementations:

obj imp (imp obj) = obj

which says that obj respects implementation imp if obj has at least all the
named fields defined in imp, some of which may have been replaced. The
equality constraint ensures that every field in imp is present, or replaced, in obj.

Class membership may now be formalised in two parts: firstly, as a constraint
on method implementations; secondly as a constraint on method type
signatures.

A method implementation constraint is introduced that allows instances x to
belong to our example object class if:

x object(x)

which says that any object x must respect the implementation of the truncated
record object(x). The application of the generator here ensures that
occurrences of self in recursive records are co-referential for the purposes of
field-by-field comparison.

A Theory of Classification 81

A method type signature constraint is introduced that allows types to belong to
our example object class if:

 OBJECT []

which says that any type belonging to a class must be a subtype of the
truncated type OBJECT []. This construction is the F-bound, or functional
bound [CCHO89a, CHC90] introduced in section 4.4 above. Subtyping
between record types [CW85] was introduced in section 3.3.4 above.

Together, these constraints formalise the notion of a class as a family of objects
sharing a minimum common recursive structure and recursive type. We may
combine the implementation and type constraints by moving from an untyped
object calculus (with separate types) to a typed calculus. Given the type
generator function OBJECT:

OBJECT = .{identity: , equal: BOOLEAN}

we may replace the untyped object generator object by a typed object
generator object 1 having the following type signature and definition:

object : (t OBJECT [t]).t OBJECT [t]

object = (t OBJECT [t]).(self: t).
{identity self, equal (other: t).(self = other)}

and so provide a well-typed definition in the F-bounded second-order -calculus
for the class of all objects having identity and equality. The function
object is a generator of polymorphic objects that maps objects in the type t to
records in the constructed type OBJECT [t]. The exact type of t is unknown -
it is supplied later when objects are created. For example:

object [INTEGER] (3)
{identity 3, equal (other: INTEGER).(3 = other)} : INT

constructs a truncated integer record, whereas:

(object [OBJECT]) object : OBJECT

= self.{identity self, equal (other: OBJECT).(self = other)}
 : OBJECT

constructs a recursive instance of exactly the type OBJECT. The latter syntax
formalises the recovery of the simple recursive structure and type of objects
when they are created in programs. Such objects are understood to be
instances of the most general, least defined type of their class. The former
syntax is not used explicitly in object-oriented languages, but is useful in our

1 ie we use lower-case for untyped and upper-case for typed object generators.

A Theory of Classification 82

model, since it allows partial records to be modified in structure and type when
they are combined with additional fields in subclass objects.

5.1.4 Class Hierarchy

In object-oriented programming, classes are hierarchically ordered according to
the services they provide. A class is ordered below another if it provides more
services and so describes a subset of the objects that may possibly be included
in the other. Classes lower in the order are sometimes said to inherit the
structure and type of the classes above them. Formally, inheritance is rightly to
be considered as a separate notion from the ordering on classes; for the
moment, let us focus on the properties of this order.

A simple Cartesian point class is introduced, bearing a deliberate similarity to
our earlier object class. It provides the identity and equal() methods as before,
with extra methods x and y to access the location of points (by default, the
origin [0, 0]). For the moment, we shall ignore issues such as initialisation
parameters and state update for the x and y fields of point objects. The typed
definition for a point class is given by:

POINT = .{x: INTEGER, y: INTEGER,
identity: , equal: BOOLEAN}

point : (t POINT [t]).t POINT [t]

point = (t POINT [t]).(self: t).{x 0, y 0, identity self,
equal (other: t).(self.x = other.x self.y = other.y)}

It is clear that this point class provides more services than our earlier object
class; and that it replaces the earlier definition of equal() by a new version. The
separate untyped object generator and type generator for this class are given
by:

point = self.{x 0, y 0, id self,
eq other.(self.x = other.x self.y = other.y)}

POINT = .{x: int, y: int, id: , eq: bool}

and these will be used to motivate an ordering relationship between our point
class and object class by considering implementation and type issues
independently.

The ordering relationship for object implementations is now formalised as a
constraint linking the generators point and object:

(x point(x)).point(x) object(x)

A Theory of Classification 83

which says that for all objects x with at least the methods of point(x), it must be
the case that point(x) has at least the methods of object(x). From this it is
intuitively apparent that any conceivable object x with at least the methods of
point(x) will also have at least the methods of object(x). We deliberately
restrict the scope of quantification to (x point(x)) in order to permit the
immediate inference: x object(x). If we expressed the constraint linking
generators in an unrestricted pointwise fashion, we might still infer that x is a
member of the object class using a rule:

 x f(x), y.f(y) g(y)

 x g(x)

Put another way, we are not interested in whether the constraint linking
generators point(x) object(x) holds for those objects which do not respect
the implementation of the point class.

Similarly, the ordering relationship for object types is formalised as a constraint
linking the type generators POINT and OBJECT:

(t POINT [t]).POINT [t] OBJECT [t]

which is a pointwise subtyping constraint requiring the generator POINT to be
type-for-type in a subtype relationship with the generator OBJECT for all types
that are legal members of the point class [CHC90]. Given this, it is clear from
the transitivity of that any conceivable type t satisfying t POINT [t] will also
satisfy t OBJECT [t]. Cardelli has a more general pointwise subtyping rule
linking generators in [AC95] without the restriction imposed above: (t
POINT [t]); this requires a further rule of the form:

 t F[t], s.F[s] G[s]

 t G[t]

in order to infer that t OBJECT [t]. Bruce gives a proof of soundness for
such a rule in [Bruc94, p158], Lemma 4.3. Again, we are not especially
interested in whether the pointwise constraint holds between two F-bounds for
types not satisfying the more restrictive F-bound.

Our theory deliberately relates the subclass generators to the superclass
generators, so that important properties such as transitivity, reflexivity and
antisymmetry may be preserved. Attempts to describe this ordering by relating
the subclass objects directly to the superclass generators [Bruc94] results in a
loss of transitivity [AC95] when seeking to compose ordering relations. We
cannot infer with any certainty that the following holds:

A Theory of Classification 84

(F G[F]) (G H[G]) (F H[F])

since there exist counter examples of the form:

F = .{p : INTEGER, q : INTEGER}
G = .{p : INTEGER}
H = .{p : G INTEGER}

where the antecedents hold, but not the consequent:

F G[F] {p : F INTEGER, q : INTEGER} {p : F INTEGER}
G H[G] {p : G INTEGER} {p : G INTEGER}
F H[F] {p : F INTEGER, q : INTEGER} {p : G INTEGER}

because G F violates contravariance. Rather than make the membership of
subclass objects in superclasses a primary assertion, our theory chooses
instead to derive this property from an ordering rule linking the pointwise
instantiation of the two class generators.

In consequence, the class hierarchy is a partial order which preserves the
properties of reflexivity, transitivity and antisymmetry. First, the properties of
implementations are listed:

Implementation reflexivity:

 (x f(x)).f(x) f(x)

because x.(x x) from definition of .

Implementation transitivity:

 (x f(x)).f(x) g(x), (x g(x)).g(x) h(x)

 (x f(x)).f(x) h(x)

because x.y.z.(x y) (y z) (x z) from the monotonicity of
overriding in the record combination operator.

Implementation antisymmetry:

 (x f(x)).(f(x) g(x)) (g(x) f(x))

 (x f(x)).f(x) = g(x)

because x.y.(x y) (y x) (x = y) from the monotonicity of
overriding in the record combination operator; we assume that the
order of record fields is not significant when judging equality.

A Theory of Classification 85

These are the properties that a partial order on implementations must observe.
Similar properties apply to types:

Type reflexivity:

 (t F[t]).F[t] F[t]

because t.t t is true.

Type transitivity:

 (t F[t]).F[t] G[t], (t G[t]).G[t] H[t]

 (t F[t]).F[t] H[t]

since t.(t F[t]) (F[t] G[t]) (t G[t]) from the first
antecedent; and therefore the two antecedents are composable.

Type antisymmetry:

 (t F[t]).(F[t] G[t]) (G[t] F[t])

 (t F[t]).F[t] = G[t]

because s.t.(s t) (t s) (s = t) by definition; we assume that
the ordering of record fields is not significant when judging equality.

These are the properties that a partial order on types must observe.

Since the orders on implementations and types have been modelled separately,
the effect of their combination must be considered. We assert that an ordering
on typed object generators can only exist if both the orders on types and
implementations are observed. Fortuitously, it is never possible to create
antisymmetric ordering conditions on implementation and type, since the type of
a record is dependent on the number of fields it possesses: adding a field will
produce a subtype. However, it is theoretically possible to define a subclass
which overrides one method, but whose type is unchanged. Similarly, it is
theoretically possible to define a subclass whose self-type is specialised, but
whose implementation is unchanged.

5.2 Classification and Derivation

The chief advantage of inheritance in object-oriented languages is that it
supports incremental classification, the derivation of a subclass from an existing
class. Starting with the typed model of inheritance given by Cook et al in
[CHC90], our theory illustrates how classes derived through inheritance may be
shown nonetheless to observe the ordering properties of the class hierarchy.

A Theory of Classification 86

Later, our theory extends Cook's approach, devising a more general typing for
his record combination operator . Our operator differs from earlier
formulations by being fully polymorphic rather than simply-typed. In order to
support this, the notion of dependent second-order types is first introduced.
Later, this will allow incremental extensions to be decoupled from the classes
they extend.

5.2.1 Typed Inheritance

Inheritance is a shorthand mechanism for defining a subclass with respect to
some chosen class. The new class extends, or simply reimplements, the
services of the other and so describes a subset of the objects that may possibly
be included in the other. Inheritance requires an ability to derive subclass
object and type generators by modifying existing generators in order to make
them refer to the new subclass and at the same time incorporate an extension
record of additional typed fields.

Consider a child point-instance that is somehow derived from the parent object
generator. When inheriting the parent's methods, occurrences of self must be
redirected to refer to the child. This is important, because inherited methods
may refer to self and we should want this to mean the child point-instance and
not an instance of the parent. To achieve this, occurrences of self may be
bound in the parent's generator, object, to the eventual child point-instance:

object(point) {identity point, equal other.(point = other)}

This produces a partial record for a point object. So far, identity has been
specialised to return the point instance, but equal() has the wrong
implementation. Using this partial record may now be combined with extra
fields. New fields for x and y are added and the field equal() is replaced with
the new desired implementation:

object(point)
{x 0, y 0, equal other.(point.x = other.x

 point.y = other.y)}

 {x 0, y 0, identity point,
equal other.(point.x = other.x point.y = other.y)}

This yields a record having the intended structure of a recursive point instance
after one level of unfolding. Generalising this technique, a child object
generator may be derived from a parent generator by abstracting over self in
the result:

point = self.(object(self)
{x 0, y 0, equal other.(self.x = other.x self.y = other.y)})

= self.{x 0, y 0, identity self,
equal other.(self.x = other.x self.y = other.y)}

A Theory of Classification 87

This construction binds the parent generator's self to the resulting child's self,
before combining this record with the extension record, which may also contain
free references to self, bound only in the resulting generator.

A similar process binds the parent's self-type to the resulting child's self-type,
before combining the partial record type with the remaining field types:

POINT = .(OBJECT [] {x: INTEGER, y: INTEGER,
equal: BOOLEAN})

= .{x: INTEGER, y: INTEGER, identity: , equal: BOOLEAN}

This ensures that the new self-type has the bound (t POINT [t]) in the
point class, rather than the bound (t OBJECT [t]); and this illustrates in
turn how an inherited function like identity may change in type even when its
implementation is not changed. For the moment, it is assumed that replaces
the types of record fields along with their values.

Combining the two approaches, typed inheritance may be modelled by
specialising the inherited type and structure of the parent in one operation,
before combining this with new methods. This is achieved by distributing both
the self-type and self of the child class to the typed form of parent generator:

point : (t POINT [t]).t POINT [t]

point = (t POINT [t]).(self: t).
(object [t] (self) {x 0, y 0,

equal (other: t).(self.x = other.x self.y = other.y)})

= (t POINT [t]).(self: t).
{x 0, y 0, identity self,

equal (other: t).(self.x = other.x self.y = other.y)}

which produces exactly the desired form of typed object generator for the point
class. It is also clear by inspection that combining the record implementations
yields a result with the desired type (t POINT [t]).t POINT [t], where:

POINT = .{x: INTEGER, y: INTEGER, identity: ,
equal: BOOLEAN}

Since we are now dealing with a typed system, it is important to ensure that this
style of derivation for inheritance is type correct. The internal type application
object [t] is correct, because POINT [t] OBJECT [t] and therefore any
type satisfying point's type generator will also satisfy the bound on object's type
generator. The internal self-application object [t] (self) is also correct since
object's generator has now been specialised to point's self-type and will accept
an argument in this type.

A Theory of Classification 88

5.2.2 Typed Record Combination

The record combination operator must also be demonstrably type correct.
Cook considered that joins values whose types are constant [CHC90]. In this
case, each occurrence of has a particular simply-typed form:

 : t

for each eventual record type t, in which the types of the base record and
extra extension record are related to the type of the result, due to the
presence of the self-type t in the fields of and . Whereas extra is always a
truncated version of the result, base may legally contain fields that are
supertypes (allowed by overriding). Accordingly, this relationship may be
qualified as:

t = (t) (t)

making t the greatest lower bound on the types and . This suggests the
notion of an intersection type [Pier92, CP93] derived from the usual notion of
subtyping. To have a Cook-style simply-typed record combination operator, we
must assume that there are many different versions of , each typed over a
different t and then over different supertypes and of t, such that t = .

This is not especially satisfying. Instead, we wish to generalise to a second-
order typed operator, combine. However, this requires resolving the mutual
type dependency between , and t:

letrec t = in

combine : (t).(t). t

combine = (t).(t).(base:).(extra:).
{ label value | (label dom(base) dom(extra))

 (if label dom(extra)
then value = extra.label
else value = base.label) }

Our aim is to prohibit the combination of two types and which cannot be
related to a common subtype t. Unfortunately, a type derivation may not be
specified in this way. It is not clear that we could make a type assumption
about the result and discharge it later, since we would have to invoke the rule
we are defining to discharge the assumption on which it depends.

The mutually recursive type dependency is curious but necessary. Without the
type constraints on its arguments, the result of combine is not guaranteed to
have an intersection type. To see this, consider overriding a base record with
an extra record having incomparable types in some common fields. The result
is not a subtype of base. Critically, we want to preserve the pointwise subtyping
relationship between child and parent classes and in particular the result of
combine must be a subtype of the base argument for any pair of record types.

A Theory of Classification 89

To avoid the mutually recursive type dependency, this condition may be re-
expressed as a more complex type constraint linking the types and . Since
 is not commutative, every field of extra is always present in base extra.
Therefore, the result is always a subtype of extra. To ensure that the result is
also always a subtype of base, we require that base fields can only ever be
replaced by subtype fields taken from extra. This may be expressed as a type
introduction rule for :

 b: {a1: s1, ... aj: sj, ... ak: sk},
 e: {aj: tj, ... ak: tk, ... an: tn}, provided that is uniform

 tj sj, ... tk sk in b, e and b e

 b e: {a1: s1, ... aj: tj, ... ak: tk, ... an: tn}

Since is always used in a context where occurrences of self are co-
referential, type complications due to non-uniform self-types are avoided.
Otherwise, records could be constructed using whose self was not uniform:
occurrences of self in extra always refer to the result, but ocurrences of self in
the result might refer either to the result or to the base record. It would still be
possible to preserve record subtyping, but only at the cost of restricting
overriding further: we could not replace any method having the self-type as an
argument, since this would violate contravariance. Fortunately, an F-bounded
type system promotes uniform self-types through the application of generators.

A type override constraint is now defined, linking the record types and .
is used below to provide a regular typing for second-order record combination:

 (a dom() dom()). .a .a

combine : .(|).

combine = .(|).(base:).(extra:).
{ label value | (label dom(base) dom(extra))

 (if label dom(extra)
then value = extra.label
else value = base.label) }

This condition is sufficient to type record combination for both uniform and non-
uniform self-reference. We shall continue to use as a convenient
abbreviation with the meaning:

 = { , | .(|).
, : , = combine [] }

5.2.3 Typed Method Combination

A further feature of object-oriented languages is the ability to extend the
behaviour of inherited methods [Moon86, Keen89]. Instead of replacing the
parent's method, a child class may combine this with additional code. The child
class defines a code wrapper [Cook89a, CP89, CCHO89b] for the extended

A Theory of Classification 90

method, in which a call is made to the inherited version. This is best illustrated
through an example.

Suppose that a three-dimensional point class were required to have the
following specification:

3DPOINT = .{x: INTEGER, y: INTEGER, z: INTEGER,
identity: , equal: BOOLEAN}

A natural way to provide this would be through inheritance, basing the new
class on the existing two-dimensional Cartesian point class, which has the
specification:

POINT = .{x: INTEGER, y: INTEGER, identity: ,
equal: BOOLEAN}

This class already provides much of the desired behaviour:

point : (t POINT [t]).t POINT [t]

point = (t POINT [t]).(self: t).
{x 0, y 0, identity self,

equal (other: t).(self.x = other.x self.y = other.y)}

except that the new class requires an additional z method and a modified
version of equal() that compares all three scalar values of a three-dimensional
coordinate. This new version is only minimally different from the old version.

Rather than replace equal() wholesale, it would be preferable to make use of
the existing version using a technique for method combination. Accordingly, a
wrapper method is written for the modified equal(). Inside the wrapper, two
recursion variables are used - self denotes the child and super denotes the
parent, through which the inherited method super.equal() may be accessed:

equal (other: t).(super.equal(other) self.z = other.z)

In order to be meaningful, super.equal() must be equivalent to its inline
expansion in the wholesale replacement of the equal() method:

equal (other: t).(self.x = other.x self.y = other.y self.z = other.z)

in which self-reference is uniform, such that the combined parts of the method
refer to the same object.

This in turn requires a more detailed consideration of the binding of self and
super, with their associated types. It is clear that all occurrences of self in a
combined method should be co-referential, irrespective of whether they appear
in the inherited method or wrapper. The desired goal is for super to refer to a
version of the parent record in a context where self has been rebound to refer
to the child. This may be achieved by distributing the new self and self-type of

A Theory of Classification 91

the child to the parent generator. Inside the 3D point class, super must have
the form:

point [t] (self)

= {x 0, y 0, identity self,
equal (other: t).(self.x = other.x self.y = other.y)}

for (t 3DPOINT [t]) and self : t. This is essentially a retyped form of the
parent record. The method equal() has the desired implementation of the
parent, in which self refers to the child, having the type (t 3DPOINT [t]).

During inheritance, an object of exactly this type is routinely obtained on the
left-hand side of the record combination operator , before these fields are
combined with the extension record. The method combination technique must
simply maintain a handle on this object so that the original method
implementations are available after record combination. This is achieved by
abstracting over super internally during inheritance:

3dpoint : (t 3DPOINT [t]).t 3DPOINT [t]

3dpoint = (t 3DPOINT [t]).(self: t).
((super: POINT [t]).

super {z 0, equal (other: t).
(super.equal(other) self.z = other.z)}

(point [t] (self)))

This construction binds super to the value point [t] (self). This value has the
derived type: POINT [t], which can be inferred from the type of self. The
internal super variable is therefore given exactly this type.

This construction is provably equivalent to the simpler form of inheritance in
which references to super are expanded inline. By reducing the internal
abstraction over super, we obtain the usual expression generating a modified
form of the parent record, in which self denotes the child. This record also
becomes available in the body of the wrapper method equal(). The sub-
expression super.equal(other) is therefore reducible and will select a method
from the parent record, applying it to the variable other, yielding an expression:

 (self.x = other.x self.y = other.y)

in which self denotes the child. All references to super may therefore be
eliminated, yielding directly the simpler form of inheritance:

3dpoint = (t 3DPOINT [t]).(self: t).
point [t] (self)

{z 0, equal (other: t).
(self.x = other.x self.y = other.y self.z = other.z)}

A Theory of Classification 92

 in which the equal() method is replaced wholesale by a redefined version and
all references to self are coreferential, denoting the child.

Any super method may be invoked inside a wrapper method, not just the
inherited version of the combined method concerned. The effect of invoking a
super method is always to leapfrog any locally-redefined version. In cases
where no locally-redefined version exists, the inherited method is selected,
since there is then no difference between the self and super versions. It is a
static type error to invoke a non-existent super method.

5.3 Classification and Components

The breaking down of classification into incremental steps now makes it
possible to describe independently a component extension. The earliest object-
oriented language with such a notion was Flavors [Moon86], which referred to
component extensions as mixins. Following the ice-cream metaphors used in
the language, a mixin represented a particular set of behaviours that could be
added to a basic, or vanilla flavoured2 class. In practice, a mixin looked like any
other class, with the distinction that it was not intended to be instantiated
independently.

Bracha and Cook [BC90] revived interest in mixins when it became clear that
models of inheritance for languages as diverse as Smalltalk [GR83], Beta
[Mads93] and CLOS [Keen89] could all be mapped onto a simpler model based
on the composition of mixins. A mixin is described as an abstract subclass, or

"a subclass definition that may be applied to different superclasses to
create a related family of modified classes" [BC90, p303].

More correctly, a mixin is a free-standing object extension function that
abstracts over its own parent. It is not itself abstract, since it provides concrete
services. Cook was unable to type mixins in [CHC90], because his record
combination operator was not expressive enough to combine free-standing
record extensions. Our theory replaces Cook's simply-typed operator with a
polymorphic operator which has the required properties. In the unfinished Abel
report [Harr91a] an attempt is made to type mixins using a higher-order kinded
calculus. Here, a simpler way to type mixins is presented that requires only the
notion of type dependency in a second-order calculus.

5.3.1 Typed Extension Records

In the model of inheritance given above, extension records are only defined
within the scope of the enclosing inheritance expression - they have no
independent existence. The self occurring in an extension record is bound only
in the result of record combination , and refers to the result, rather than to the
extension itself. Now, we choose to decompose inheritance further, by

2 "Flavors" is a trademarked name. Elsewhere British spelling is used.

A Theory of Classification 93

abstracting over the self of extension records. This aims to give extension
records a certain limited independent existence.

Abstracting over self yields a free-standing generator for a family of extension
records, to which we may give a polymorphic type. Such a generator looks
much like a class, except that its methods are intended to supplement the
methods of other classes. An extension generator destined to provide a two
dimensional coordinate system for any class has the form:

XYCOORD = .{x: INTEGER, y: INTEGER, equal: BOOLEAN}

xycoord : (XYCOORD []). XYCOORD []

xycoord = (XYCOORD []).(self:).
{x 0, y 0, equal (other:).

(self.x = other.x self.y = other.y)}

By convention, typed extension record generators are indicated using -
prefixes, to distinguish them from the -prefixes of class generators. The
constraint on the type of self arises from the fact that any class with which
xycoord is combined will have at least the methods x, y and equal.

To illustrate the use of this record extension generator during inheritance, it is
combined with the object class to derive the Cartesian point class shown above.
Since object and xycoord are now both generators, it is necessary to apply
them to arguments standing for self before combining the resulting records
using . In particular, combination must ensure that references to self in the
base and extension record are co-referential. To achieve this, inheritance must
distribute the self-type and self of the result to both object and xycoord
generators:

point : (t POINT [t]).t POINT [t]

point = (t POINT [t]).(self: t).
object [t] (self) (xycoord [t] (self))

 = (t POINT [t]).(self: t).
{identity self, equal (other: t).(self = other)}
{x 0, y 0, equal (other: t).

(self.x = other.x self.y = other.y)}

= (t POINT [t]).(self: t).
{x 0, y 0, identity self,

equal (other: t).(self.x = other.x self.y = other.y)}

This has a pleasing symmetry. The application xycoord [t] (self) is correct,
because we can assert (t POINT [t]).t XYCOORD [t]. This follows from
the observation (t POINT [t]).POINT [t] XYCOORD [t], which is a
straightforward generalisation of the simple subtyping t that obtains
between any particular result and extension in record combination, where

A Theory of Classification 94

t = . The above construction is very similar to the idea of multiple
inheritance, which is explored later in chapter 6. Although this strategy gives
independence to extension records, the type of the result, (t POINT [t]), is
still used to demonstrate that record combination is well-typed according to the
polymorphic definition of .

5.3.1 Typed Free Mixins

A genuine mixin cannot use the type of the result in this way, rather it must
derive the result type from its own type and the type of the class it is mixed with.
A mixin is an object extension function which abstracts over the super object
with which it is mixed. Since objects are in general recursive, we define a mixin
as a function of both self and super:

xycoord : (XYCOORD []).().

xycoord = (XYCOORD []).().(self:).(super:).
super {x 0, y 0, equal (other:).

(self.x = other.x self.y = other.y)}

By convention, -prefixes are used to distinguish mixins from the extension
record generators, which have -prefixes. In the type signatures for mixins, the
order of quantification for the base and extension record types is deliberately
reversed. This is in order to force the type of super to depend directly on the
type of self, reflecting the earlier strategy for typing super during method
combination. The minimum type of self may be quantified independently of
super, since self does not depend on any of super's methods. Although this
mixin may be combined with any parent class, the eventual type of super must
be a supertype of self, so that record combination is well-typed internally. To
preserve this condition, it is important to prohibit subsumption in the values
supplied for super and self: once the types and are given, super and self
must have exactly these types. The result is an intersection type respecting the
interfaces of both the base class and the extension record.

The xycoord mixin function may be applied to any suitable parent class, such
as object, to derive extended object generators. Since the final value and type
of self are unknown, these are distributed as parameters in the resulting mixed
class, which is temporarily called mixed1. We distribute to xycoord two
types, standing for the types of self and super, followed by two values in these
types. If is the type of self, then OBJECT [] is the appropriate super type
adapted for and object [] (self) is the super record.

mixed1 = .(self:).
xycoord [, OBJECT []] (self, object [] (self))

= .(self:).
{identity self, equal (other:).(self = other)}

 {x 0, y 0, equal (other:).
(self.x = other.x self.y = other.y)}

A Theory of Classification 95

= .(self:).
{x 0, y 0, identity self,

equal (other:).(self.x = other.x self.y = other.y)}

This has exactly the form of the typed object generator point, but lacks the F-
bound on the self-type . Looking at the type constraints in xycoord, we know
that XYCOORD [] must hold for the self-type and that OBJECT []
must then hold for the super-type. The minimum type satisfying this is given by
the intersection OBJECT [] XYCOORD [] = POINT [], to give this
type a name. The result is therefore well-typed for (POINT []) and this
condition can be constructed from the result type of xycoord.

The kind of mixin shown here is called a free mixin, since it makes few
assumptions about the class with which it is to be combined. None of the
methods in the extension record interact with base class methods. It is also
possible to provide bound mixins, which depend on their base class having
certain methods, often because they wish to specialise these methods.

5.3.2 Typed Bound Mixins

A bound mixin is also a free-standing object extension function that abstracts
over both self and super. However, the super recursion variable refers to an
object which possesses one or more methods on which self's methods depend.
The type of super expresses a minimum requirement on the interface of the
base generator, such that combining this with the extension generator yields
meaningful methods.

This can be illustrated by converting the earlier example of method combination
into a free-standing bound mixin. Before, a class 3dpoint was derived by
extending the point class with a record providing a new z method and
specialising the equal() method inherited from its parent. The freestanding
version of this extension record is a generator:

(self:).(super:).{z 0, equal (other:).
(super.equal(other) self.z = other.z)}

for which the types and must be established. Even though self's method
equal() depends on super's inherited method, the super type is unusual in
that it never appears in the interface (references to self appearing in the
interface of inherited super methods will have the rebound type rather than).
This suggests that may be bound independently of . Furthermore, it is clear
that depends directly on , since the super record is always constructed by
applying a parent generator to self. Based on these insights, is bound before
.

In order to constrain the type of self independently, we appeal to the existence
of an extension record type generator ZCOORD:

ZCOORD = .{z: INTEGER, equal: BOOLEAN}

A Theory of Classification 96

This is the type generator for an extension record generator in which references
to super have been expanded inline. We may always suppose that such a
generator exists, since its type signature does not depend on the type of super.
Accordingly, self may now be given the polymorphic type:

self : ZCOORD []

It was established above that the type of super is dependent on . It is also
clear that must possess a minimum interface containing those super methods
that are invoked within the extension generator. Since super.equal() is the only
super method invoked in the extension generator, any valid parent class must
have some type t EQUAL [t], where:

EQUAL = .{equal: BOOLEAN}

If is the type of self, then super must have at least the type EQUAL [], since
it must specialise the inherited self-type to ; in fact super may take any
dependent type in the range:

super : (| EQUAL [])

This allows the bound mixin zcoord finally to be given a type:

zcoord : (ZCOORD []).(| EQUAL []).

zcoord = (ZCOORD []).(| EQUAL []).
(self:).(super:).

super {z 0, equal (other:).
(super.equal(other) self.z = other.z)}

The EQUAL [] constraint ensures that super has at least an equal()
method retyped in the self-type . The constraint ensures that super still
has a more general type than self. This is often overlooked - if = , this does

A Theory of Classification 97

not produce sensible method combination, but wraps methods which have
already been wrapped. If , the record combination operator is supplied
with arguments having the wrong types and fails to type-check. Generally, the
lower bound on the type of super prevents a mixin from being combined
incorrectly with a proper subclass.

zcoord may be applied to any suitable parent, such as point, to turn a two-
dimensional coordinate object into a three-dimensional one:

mixed2 = .(self:).
zcoord [, POINT []] (self, point [] (self))

= .(self:).
{x 0, y 0, identity self,

equal (other:).(self.x = other.x self.y = other.y)}
 {z 0, equal (other:).

(self.x = other.x self.y = other.y) (self.z = other.z)}

= .(self:).
{x 0, y 0, z 0, identity self, equal (other:).

(self.x = other.x self.y = other.y self.z = other.z)}

The result has exactly the form of 3dpoint. As before, the type of the result
may be inferred. The self-type must obey ZCOORD [] and then the
super-type must obey POINT [] EQUAL []. The minimum type
satisfying both is given by ZCOORD [] POINT [] = 3DPOINT [], to
give it a name. The result is well-typed for (3DPOINT []).

It is sometimes illuminating to verify this using actual types. The least type in
the result class is the fixpoint 3DPOINT. It clearly satisfies the type constraints
on self and super in zcoord:

3DPOINT ZCOORD [3DPOINT],

3DPOINT POINT [3DPOINT] EQUAL [3DPOINT].

Clearly, the first relationship ensures that 3DPOINT has at least the methods
provided in the mixin. The second relationship has two parts: the first part
ensures that 3DPOINT is a proper subtype of the super type with which it was
combined; the second part ensures that the super type chosen has at least an
equal() method, without which the super.equal() call would be incorrect.

5.3.3 On Dependent Second-Order Types

The Abel typing of mixins quantified over classes, rather than over types.
[Harr91a] allowed variables to range over the self- and super-generators. This
is because the super-interface apparently ranges over a set of classes and
therefore the type of self, which is assumed to depend on the particular super
chosen, must also range over a family of classes. Our approach avoids higher-
order complications in two stages. Firstly, a second-order typing is provided for

A Theory of Classification 98

the freestanding self of the extension record, irrespective of whatever type is
eventually given to super. Secondly, a second-order type expression is
constructed for super that depends directly on the self-type; we are therefore
not forced to quantify over class generators, as in [Harr91]. The typing given
here is technically more accurate than a proposed typing of the super-interface
in [BC90], which makes no distinction between class and type, resulting in
fragmented notions of self after record combination. A related compositional
model for extending classes is given in [Hauc93]. Like [CHC90], the scheme
adopted is not expressive enough to type mixins, although self-reference is
properly handled.

For simple theories of classification, in which the type of self is polymorphic but
other types are static, dependent second order types provide a useful
mechanism for typing programs. Dependent types are of the form:

.(|) where "" denotes a relational constraint.

This kind of typing is a simple extension of the idea of functional bounds; and it
is no more difficult to implement. Both F-bounds and the kinds of dependent
second-order types shown here require a typechecking algorithm that compares
interfaces for structural subsumption. It is relatively easy to type-check
expressions with dependent type. In the scheme for polymorphic record-
combination, the base type is made available before the dependent type has to
be checked. In the scheme for mixins, a minimum type for the base type must
be calculated from the constraint provided by the chosen super class.

More flexible theories of classification may not be amenable to this kind of
checking. Chapter 6 reintroduces polymorphic attributes and functions bound
over other polymorphic types than the self-type. While quantifying over single-
argument type constructors may only require a third-order theory, the arbitrary
stacking of type parameter arguments seems to indicate that a higher-order
treatment is more suitable.

