
Chapter 2

Views of Classification

_______________________________________________________________

Classification lies at the heart of object-oriented programming.

By way of exposition, the object-oriented paradigm is introduced as one of the 
five major programming paradigms.  The object-oriented approach is that which 
emphasises component-centred software construction.  Historically, many 
different areas of computer science and software engineering have been 
touched by object-oriented programming; the newly-appearing languages are 
reviewed according to their changing emphases.  A definition of what makes a 
language 'object-oriented' is given, cataloguing the essential distinctive 
language features:  objects, classes, inheritance and polymorphism.  Despite 
this consensus on language features, the primary notion of classification is 
deeply misunderstood.  Some unhelpful ways in which classification has been 
analysed motivate the need to develop an integrated formal treatment of types, 
classes, inheritance and polymorphism.

_______________________________________________________________

2.1 The Object-Oriented Paradigm

What started out as an interesting set of new programming techniques 
[BDMN73] that subsequently revolutionised user-interface design [GR83, 
Gold85] has now invaded the software mainstream [Stro86, Stro91, Cox86, 
CN91, Meye88, Meye92, Keen89].  Object-oriented programming is a maturing 
technology, increasingly supported by dedicated analysis and design methods 
[RBPE91, Booc94, WWW90, JCJÖ92].  Useful overviews of languages and 
techniques may be found in [Budd91, Hend92].  

Initially, object-oriented programming was acclaimed chiefly for its conceptual 
modelling power, offering a more natural framework for decomposing software 
systems using human-centred metaphors [GR83, Gold85].  More recent work 
has identified improved system modularisation effects obtained by imposing an 
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object-oriented perspective during the design phase [Cox86, Meye88, RBPE91, 
Booc94].  The current popular focus seeks to exploit the potential of this 
technology for reducing development costs in the software industry.  Cox sees 
the migration from conventional to object-oriented methods as having the same 
impact on software development as the industrial revolution had on 
manufacturing.  The transition is seen as equivalent to elevating a cottage craft 
designing expensive bespoke products to a mass manufacturing industry 
producing cheap interchangeable components [Cox86, CN91].

2.1.1 The Language Spectrum

There is a wide spectrum of programming languages available to software 
developers today.  From a purely technical standpoint, it is possible to classify
them into five groups according to the main structuring concept behind their 
design:

 command-oriented - a program is a sequence of imperative statements to 
update the global state of the system;  exemplars include the imperative 
languages:  Fortran, Cobol, Algol, Pascal, C;

 expression-oriented - a program is a nested set of mathematical 
expressions to be evaluated;  exemplars include the functional languages:  
Scheme, ML, Hope, Miranda, Haskell and the functional subset of Lisp;

 constraint-oriented - a program is a collection of logical equations to be 
solved; exemplars include the predicate language Prolog, some rule-based 
expert sytem languages and the database query language SQL;

 process-oriented - a program is a choreographed dance between 
communicating processes executing in parallel; exemplars include the 
MIMD-architecture languages, particularly Occam;

 object-oriented - a program is an assembly of interacting components, each 
hiding local state and offering a set of external services; exemplars include 
the languages:  Simula, Smalltalk, Self, C++, Objective C, CLOS, Eiffel, 
Beta, Sather, Trellis, Oberon, Ada-95 and Modula-3.

Each of these groups represents a distinct programming paradigm, or 
conceptual mind-set, which emphasises certain aspects of computation while 
de-emphasising others.  For example, the pure functional languages promote 
expression evaluation and suppress the notion of state modification.  Some 
languages fall naturally into one or other category; others are hybrids which 
straddle more than one category.  For example, whereas Smalltalk [GR83] and 
Eiffel [Meye88] are thoroughbred object-oriented languages, C++ [Stro91] may 
be considered an imperative language with object-oriented extensions and 
CLOS [Keen89] supports a dual function/object perspective.  Hybrid languages 
tend to take a weaker theoretical stance, offering a less disciplined collection of 
heterogenous language features.  Pure languages support a smaller set of 
programming idioms in a clear and consistent way.



Views of Classification 8

2.1.2 Software Components

Object-oriented languages are those which emphasise a component-centred 
approach to software construction [CH86, Cox86, CN91].  The objects 
themselves are the software components, each providing a well-specified set of 
services to client programs or to other objects.  While it is possible to argue that 
all the above approaches support program decomposition of one kind or 
another, the object-oriented approach has the peculiar advantage that it draws 
boundaries around useful, reusable parts of a system.  One could not easily 
imagine removing individual commands, predicates or processes from one 
program and using them directly in another.  The effect of a single imperative 
statement depends too much on the current global system state.  Adding a 
single predicate may affect the inferencing behaviour of a logic program in an 
unexpected way, since the execution model is implicit and apparently non-
deterministic.  Adding an extra process to a concurrent system may require 
changes to the synchronisation strategy to avoid deadlock.  Only objects and 
functions succeed in isolating local system behaviour and therefore may serve 
as system components.  They are contrasted below.

Functions have the property of referential transparency, that is, the relationship 
between a function's result and the values supplied as its arguments is 
constant.  Repeated invocation on the same values always yields the same 
result.  This guarantees predictable behaviour when a function is reused in a 
new context.  However, expression-oriented languages exclude the notion of 
state and there are many computational tasks such as input, output and long-
term storage which are difficult to model without some notion of state.

An object encapsulates a set of related functions and state variables in a single 
cohesive package.  Objects partition the global state of a system.  Each object 
controls a few state variables, to which it restricts access through its functions.  
The behaviour of an object is locally predictable, but not referentially 
transparent, since the result of requesting a service from an object is partly 
dependent on the object's local state, which may change over time.  However, 
from a practical point of view, objects are more useful units of modularity than 
single functions.  Since an object's functions may act upon its state and interact 
with each other, it makes sense to include or exclude whole objects.  While it is 
possible to import a single function, or an entire subroutine library into a 
program, these units of modularity are either too fine-grained or too coarse-
grained by comparison [Meye88].

2.1.3 Software Architectures

The traditional function-centred development approach [YC79, Myer78, 
Page88] known as top-down design with step-wise refinement [DDH72, Wirt83] 
is best suited to one-off systems.  This is because decomposing a system ab 
initio around its main functions commits you to major system boundaries which 
are difficult to move subsequently.  Meyer points out [Meye88] that subroutine-
sized units of modularity are vulnerable to changes in data formats and difficult 
to excise from their original context for adaptation in new systems.  This is 
because procedures are tightly-coupled through their parameter lists; the 
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inclusion of an extra parameter usually initiates a global edit session to update 
each procedure in a call-graph.  His slogan:  "Real systems have no top" 
emphasises the client's perpetually changing top-level requirements during 
system development, which may have severe knock-on effects to the calling 
sequence of procedures and the number and types of arguments passed down.

Object-oriented programming promotes design techniques for adapting objects 
to new requirements.  Classification is a means of grouping object designs 
according to their common functions, allowing rapid selection of an appropriate 
design.  Inheritance is a way of extending and modifying a design.  
Polymorphism is a means of generalising over several compatible designs.  
These techniques support the ready adaptation and reuse of plug-in software 
components [Cox86].  Object designs are the product of analysing three or 
more separate systems [Booc94], ensuring a degree of generalisation.  Objects 
carry their state with them, so changes to data formats have localised effects, 
especially since object interfaces are standardised, allowing easier substitution.  
Programs may be event-driven, allowing easier modification to the collection of 
top-level services.  Objects are compact, but multi-functional, allowing systems 
to be adapted to more than one use.  The only vulnerability of object-oriented 
systems is to a major restructuring of the communication pattern among objects 
[JCJÖ92, p135-141].

In contrast to functional decomposition with step-wise refinement, there is no 
simple handle-turning strategy for object-oriented development.  The focus of 
object-oriented design is a dual one:  the developer should ideally keep one eye 
on the requirements of the system at hand and the other eye on the available 
components in his library.  The iterative refinement of a design is neither wholly 
top-down, nor bottom-up.  Booch has called this approach "round-trip Gestalt 
design" [Booc94].  Object-oriented software architectures are a compromise 
between specific and general designs.  Several hundred common design 
clichés, known as patterns [GHJV95], have been identified - an example is the 
concept of an iterator that visits every element of a collection to perform an 
operation on it.  On a larger scale, frameworks [JF88, WJ90, Wirf91] provide a 
reuseable domain-specific harness, or control structure, from which application-
specific details have been removed - an example is an event-driven user 
interface.  Whereas a pattern is merely a reusable design, a framework is the 
dual of a library component - a reusable implementation.

2.1.4 Software Development

Object-oriented programming (OOP) is increasingly supported by commercial 
object-oriented analysis and design methods.  Object-oriented analysis (OOA) 
elicits required system behaviours and allocates these to collaborating groups 
of objects; object-oriented design (OOD) directs system decomposition towards 
minimally-coupled software components with encapsulated state and supports 
integration with existing reusable library components.  While some advocate 
hybrid development strategies [WPM90] and contend that one or more stages 
in the OOA/OOD/OOP cycle may be replaced by conventional development 
techniques, others emphasise the seamless transition between the different 
phases of object-oriented development [WN94, CY91a, CY91b].  It seems clear 
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from the above discussion that functional analysis may prove inappropriate for 
object-oriented development, insofar as this draws system module boundaries 
in the wrong places.  On the other hand, adopting a conceptual approach with 
OOA/OOD may provide a useful discipline for programmers implementing in a 
conventional language [Meye88].  The full benefits of reuse are only achieved 
with the complete OOA/OOD/OOP development path:  whereas a design 
pattern may be portable to a conventional language, a framework depends on 
specific object-oriented language features such as polymorphism and dynamic 
binding to couple component parts with the application harness.

Despite fierce commercial competition over the last five years, no single object-
oriented development methodology has yet reached a level of maturity 
comparable with the older functional decomposition methods [DeMa79, Your89, 
GS79].  All published methods have something to offer.  The state of the art is 
strong on notations and heuristics but generally weak on process.  

Premature attempts have merely reworked static entity-relationship modelling 
techniques [SM88, SM91, CY91a, CY91b, RBPE91], suppressing the important 
behavioural aspects of objects until too late; or they have reworked dataflow 
techniques [RBPE91, WPM90] without acknowledging the different directions in 
which function- and object-based decomposition directs analysis.  Synthetic 
approaches [WPM90, CABD94] do not always apply their borrowed techniques 
appropriately.  The well-established market leaders create a popular appeal 
[CY91a, CY91b, RBPE91, Booc91, Booc94] by providing diagrammatic 
notations in which to record detailed designs and program implementation 
information.  These tend to capture and fix the developer's first intuitions about 
his design and so fail to promote an effective process of discovery, evolution 
and refinement.  Those with greatest industrial experience [RBPE91, Booc94] 
compensate by offering sets of heuristics and desiderata for well-designed 
systems.  A more imaginative strand [BC89, WW89, WWW90, Gibs90, 
JCJÖ92, RG92] emphasises the behavioural aspects of objects, striving to 
retain the plasticity of early analysis and to provide refinement strategies for 
reworking designs.  These have yet to reach critical mass in a commercial 
context.  Other methods are starting to incorporate metrics [HE94] and the 
wider management perspectives [Lore93, Jaco87, JCJÖ92].  The culture of 
reuse is still new in software houses.  New roles and styles of reward need to 
be established, to encourage investment in, and reuse of, library components 
[Booc94, Booc95].

At the time of writing, a horizontal rationalisation is taking place, effectively 
signalling an end to the "methodology wars" of the early 1990s.  For economic 
reasons, Booch and Rumbaugh agreed from October 1994 to collaborate on 
synthesising their two popular notations [Booc94, RBPE91].  From October 
1995, Booch's company, Rational, bought out Jacobson, effectively bringing 
Objectory [JCJÖ92] under the same umbrella.  Henderson-Sellers is building a 
competing consortium to include the Moses and BON methods [HE94, WN94] 
and which may attract the behaviour-centred school.
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2.2 An Object-Oriented Perspective

Object-oriented products have achieved market penetration in user interfaces, 
CAD/CAM modelling, databases, office information systems, heterogenous
cooperating systems and communications.  There are three major world 
conferences dedicated to object technology (OOPSLA, ECOOP, TOOLS) of 
which the largest (OOPSLA) attracts some 3000 delegates annually.  We 
expect the fascination with object-oriented programming to continue, not least 
because the object-concept has proved a powerful concrete metaphor, both in 
grounding and packaging abstract programming concepts.  Different useful 
aspects of object-orientation have been highlighted as it has migrated from field 
to field.  This is reflected in the diversity and subtly changing emphasis of 
representative languages as they have appeared over the last 30 years.

2.2.1 Simulation and Distributed Control

When Simula [BDMN67, ND81] was designed by the Norwegian Computing 
Centre, it was originally intended to support discrete-event simulation.  With 
little revision, it actually proved to be a very effective general-purpose language.  
Simula introduced all the important original features of what eventually became 
known as the object-oriented languages, such as encapsulation, classification 
and inheritance.  Syntactically similar to the Algol-family, Simula exercised a 
strong influence on the later design of Ada [IBHK79] and CLU [Lisk87, 
LABM81] which adopted its data abstraction, a now recognised technique for 
reducing software complexity, but not its class inheritance.  Simula also 
introduced objects encompassing their own thread of control and supported 
synchronised coroutines, inspiring later research into parallel and distributed 
computing.  The Actor family  [Agha86, Agha88, AH87] and POOL family 
[Amer87, Amer90] of languages later exploited asynchronous concurrency and 
distribution more fully.  Simula therefore established trends both in data 
abstraction and parallel computing.

2.2.2 Conceptual Modelling and Interfaces

Developed during the late 1970s at XEROX PARC, Smalltalk [Gold81, GR83, 
Gold85] is chiefly famous for grounding object-oriented concepts in the world's 
first graphical programming environment.  Striving to lessen the abstract 
conceptual load on the programmer, Smalltalk generated a new vocabulary of 
half-familiar sounding software components, such as windows, icons, menus, 
pointers (collectively, WIMP), streams and controllers, many of which had a 
direct visual representation in the environment.  Smalltalk expressions, styled 
as messages sent to objects, are executed immediately in a type-free, 
dynamically interpreted way.  The language cheerfully suffers abuse from the 
novice programmer and the environment goes to any lengths to offer feedback 
on the consequences of his actions.  

Smalltalk was responsible for generating widespread interest in object-oriented 
concepts [Gold81]; indeed it first coined the phrase object-oriented.  Its other 
impact is felt in the industry-wide adoption of graphical user interfaces as a 
standard.  Smalltalk's WIMP-style interface was copied by Apple Computer for 
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the Lisa workstation and subsequently distributed more widely on the hugely 
popular Mac; which in turn influenced Microsoft's Windows and the OpenLook
and Motif variants of X-Windows.  Development environments for other 
languages have taken more than ten years to reach the standard set by 
Smalltalk; witness the current fascination with Visual Basic and Visual C++.  To 
this day, Smalltalk remains the language of choice for exploratory programming, 
especially in the commercial sector in the USA.  OOPSLA 1994 reported a 
large increase in the number of consultancy companies dealing exclusively in 
Smalltalk.

2.2.3 Artificial Intelligence

Classification has been an enduring topic of interest in the field of Artificial 
Intelligence, where researchers have investigated property inheritance in 
taxonomic hierarchies [Quil68, Mins75, Brac83, BL85, Tour86].  In the early 
1980s, the AI language of choice was Lisp and soon object-oriented extensions 
were appearing.  The MIT language Flavors [Cann80, Moon86] provided the 
first models for multiple inheritance and the combination of inherited functions, 
whereas XEROX's LOOPS [SBMC83, BS83, SB86] explored the mixing of 
functional, object, rule-based and data-driven approaches.

A rationalisation of these experimental languages appears in the Common Lisp 
Object System (CLOS) [BDGK88, Keen89, GWB91], which was the first 
language to balance the dual function/object perspective.  CLOS also has the 
most sophisticated reflective facility, whereby the language's execution model is 
handled by a self-describing kernel of meta-objects [KRB91].

2.2.4 Systems Programming

In the mid 1980s, the focus moved to mainstream programming.  Objective C
[Cox86, CN91] and C++ [Stro84, Stro86, Stro87, ES90, Stro91] were both 
extensions to the systems programming language C, but had different 
emphases.

Objective C provides a Smalltalk-like interpreter on top of C.  With its 
commitment to open-ended interfaces, it was the first language to support the 
widespread exchange and sale of pre-compiled software components on 
standard hardware platforms; this potential has been dramatically realised with 
the adoption of Objective C at the heart of the NeXTStep operating system 
[NeXT93] and the exponential growth in applications generated and exchanged 
within the NeXT user community.  Objective C was responsible for the creation 
of the first market in compiled objects; the name applets (mini applications) was 
coined for products which could be sold or traded over the Internet and 
executed immediately on the local host machine.

C++ was designed to be "a better C" and incorporated independent extensions 
for data abstraction and object-orientation at a much lower level [Stro84, 
Stro88].  C++ is a statically compiled language, offering greater efficiency but 
less open-ended compatibility than Objective C.  C++ affords a more finely-
tuned control over program behaviour and the use of resources than its rivals.  
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The features of C++ all act independently - most combinations have a legal 
meaning.  The language is so complex and adaptable, that strict house style 
guidelines become necessary [Lipp91, DS89].  The widespread commercial 
migration to C++ has mostly to do with existing heavy investments in C as the 
systems programming language of choice.  For good or ill, the use of C++ has 
reached critical mass and the language is likely to dominate systems 
programming for the forseeable future.

2.2.5 Software Engineering

In the late 1980s, the emphasis moved to software quality issues, such as 
correctness and robustness.  More streamlined languages appeared, having 
fewer features that were used in more disciplined ways.  These were intended 
to enforce regular programming practices and so reduce the scope for 
introducing software errors.

Influenced equally by Simula and Ada, Eiffel [Meye88, Meye92] is the best 
exemplar of this approach.  Statically compiled, it retains a Smalltalk-like open-
ended flexibility and has an Ada-like parametric polymorphism.  It is chiefly 
famous for incorporating executable specifications, the pre- and post-conditions 
and data type invariants [Hoar72] found in formal methods such as VDM
[Jone86] and Z [Spiv89].  Objects enter into contracts with each other, 
guaranteed by the terms of specifications.  These have a dual role:  firstly, they 
document the intended semantics of functions and secondly they determine 
responsibility for exception handling if a contract is broken.  Eiffel is slightly less 
efficient than C++ but much more secure.

Trellis [SCBK86] adopted an even more conservative strong typing scheme in 
the wake of the first formal analysis of classification as a kind of subtyping.  
Sather [Omoh94] is an Eiffel-like language with a Trellis-like type system.  C++ 
intends to incorporate an Eiffel-like exception-handling mechanism from version 
4.0.  Ada 95 [ABBD95], which is properly object-oriented by virtue of having 
added inheritance to the original Ada definition, may also be considered a 
member of this group of languages.

2.2.6 Database Technology and Hybrids

One significant hybrid group are the object-oriented database languages 
[Fish87, MSOP86, AHS89].  The main impetus behind this group is the desire 
to extend the modelling power of the long-held relational model.  The 
normalising force of the latter has the advantage of reducing data-dependency, 
but the disadvantage of splitting logical entities over many files.  A functional 
query model [Ship81] is used as an alternative to SQL to address whole 
objects.  Furthermore, the query language dovetails more closely with the 
programming language in which the database is embedded.

For reasons of space, we do not discuss here in detail a wide variety of other 
hybrid approaches, such as the hybrid concurrent and distributed languages, 
hybrid logical languages and object-oriented extensions to conventional 
imperative languages.  The concurrent and distributed languages focus on the 
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local encapsulation of objects that communicate over wide area networks via 
message passing.  Typically, a coarse-grained parallelism is adopted, with 
proxy objects acting as local shadows for remote objects.  Research concerns 
include object access and migration, locking strategies and authorisation.  The 
hybrid logical languages mix object access styles:  query-by-value is mixed with 
navigation-based access.  The extensions to conventional languages, such as 
Object-Oriented COBOL, can be regarded mostly as attempts to keep up with 
the latest fashion, rather than any serious attempt at language redesign.

2.2.7 Experimentation and Minimalism

Finally, three languages worthy of particular mention for their experimentation 
and originality are Self [US87] Beta [Mads93] and Java [Sun95].

Self was intended as a stripped-down Smalltalk.  It diverges from all the 
languages above in that it has no classification and no fixed notion of 
inheritance.  Objects are cloned from each other and may delegate requests to 
any object of their choice.  The dynamic nature of Self forced the development 
of most known strategies for the automatic optimisation of object-oriented 
programs [CUL89, CU90].

Beta is a successor to Simula.  It is remarkable in that it generalises over every 
programming language abstraction.  It has only one construct:  the pattern.  A 
pattern may declare data (a record) or functions (an encapsulated type); it may 
define a body (a procedure) or have all of these things (an object 
encompassing its own thread of control).

Java [Sun95] was developed by Sun Microsystems as a minimal object-
oriented language in the style of C++ (but not restricted by the requirement to 
be compatible with C).  Java is unusual in that it is an interpreted language, 
designed to interact with multimedia components over the World Wide Web on 
the Internet.  A specialised Web browsing tool, Hot Java, allows Java programs, 
known as applets to be pulled from any remote source and interpreted on the 
local host machine.

2.3 Defining 'Object-Oriented'

Later chapters will discuss the technical merits of object-oriented language 
features, especially their amenability to formal analysis.  The question arises as 
to what features constitute an object-oriented language [Stro88].  In his seminal 
analysis [Wegn87], Wegner initially classified languages into groups such as:  
object-based, class-based, prototype-based, inheritance-based, delegation-
based and object-oriented; particularly relevant to us is one contrast:

 object-based - having the notion of objects, but not inheritance; exemplars 
include Modula-2 [Wirt82], Ada [IBHK79] and CLU [LABM81];

 object-oriented - having the notion of objects and class-based inheritance; 
exemplars include Smalltalk [GR83], C++ [Stro91] and Eiffel [Meye88].
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This more or less established a de facto standard for canonical object-oriented 
languages, which should support the classification paradigm.  This breaks down 
into the features:  objects, classes, inheritance and, as a consequence, 
polymorphism.

2.3.1 Objects

An object is a perceptual entity with crisp boundaries [Booc94].  In the real 
world, we call things objects if they are tangible or physical things which we can 
manipulate.  Although object-oriented languages may vaunt their ability to 
model real-world entities, or to provide physical metaphors for software 
concepts, having a tangible counterpart is not especially what constitutes a 
software object.

In computer science, the term variable, denoting a static, compile-time program 
text concept, is sometimes contrasted with object, a dynamic run-time software 
concept.  As a result of assignment or binding, the relationship between 
variables and the objects they contain may change over time during program 
execution.  Although we may refer variously to things such as integer objects or 
functional objects in languages which have such concepts, object-oriented 
languages denote something more specific by the term.

An object is a software entity possessing the properties:  identity, state and 
behaviour [Booc94].  The identity of an object is the unique handle on that 
particular object.  It is often implemented as a memory address, but this is not 
inevitable.  Smalltalk, for example, supports a virtual memory system.  All object 
references are unique indices into a table, which may translate to a memory 
address, or to an offset in a file - the identity of an object is therefore location-
independent.  The state of an object is its private memory store, holding the 
data which it controls.  This is realised as a block of memory (or disk space) 
accessed by its identity.  The behaviour of an object is the set of external 
services it offers, or tasks it is capable of performing.  These services are 
implemented as functions owned by the object, which may access or modify its 
state.  The association of functions to objects is something which may exist only 
at compile-time; or else an object may store an additional pointer to a table of 
its functions.  Objects are analogous to machines [Meye88] responding to 
requests to inspect, and commands to update, their internal state.

The formal significance of programming with objects is often missed.  The 
properties of identity and state distinguish objects from values (in expression-
oriented languages) and the property of identity distinguishes objects from 
tuples (in constraint-oriented languages).  McLennan suggested that the key 
distinguishing property of an object is its mutable state [MacL82].  Mathematical 
values do not change over time, in the sense that 3 may never become 4.  
Functional expressions also disregard identity - it is immaterial whether a value 
is passed as 3, or as the different but equivalent (1 + 2).  By contrast, it is 
immensely significant which of two objects are being manipulated, even if they 
temporarily have the same state.  The loss of identity has no effect in 
expression-oriented languages, but may have one in constraint-oriented 
languages.  The tuples of a relation are accessed by content only, some state 
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values constituting a key index.  As a result, two tuples having the same state 
may accidentally be merged, since they are considered identical.  By contrast, 
an object's identity is unique and independent of its state.

2.3.2 Classes

A class is a collection of things grouped according to some external criterion.  
Classification carries with it the idea of a hierarchy of subdivisions, for example 
the familiar biological taxonomy of animal genera and species.

Objects are grouped by their external behaviour into classes.  A class describes 
a family of objects, up to a certain level of generalisation, which have the same 
observable behaviour.  For example, the class COMPARABLE describes all 
objects that have the inequality functions {<, >, <=, >=}.  This may include 
objects with strictly more functions, such as integers or reals.  The objects 
whose behaviour is wholly described by a given class are called instances of
that class.  Objects may otherwise be considered members of a series of 
increasingly more general classes, each one subsuming the last.  For example, 
3 may be an instance of the class SMALL_INTEGER, but may also be 
considered a member of the more general classes INTEGER, COMPARABLE 
and OBJECT.

Nearly all languages overlay the term class with additional meanings.  The 
class construct is chiefly a program text concept [Meye88] for defining objects.  
In this respect, a class functions variously as:

 a record template, defining the data storage required by its instances;

 a type specification, defining the functional interface respected by its 
instances;

 a table of values, defining data and functions shared by all its instances;

 a module, packaging data and function definitions and controlling their 
visibility.

Figure 2.1 illustrates an example primitive CIRCLE class, using Eiffel syntax for 
clarity.  A class definition usually encompasses a set of variable declarations 
(defining state) and a set of function definitions (defining behaviour).  Some 
data declarations may be initialised with values to be shared by all instances.  
Smalltalk calls these class variables.  Most data declarations simply reserve 
storage space in each individual object.  Smalltalk calls these instance 
variables.  All instances of a class typically share the same functions (pace
[Keen89]).  Any shared material is hived off into a precomputed table by the 
compiler.  Access to data may be solely through functions [GR83, CN91, 
Keen89] or the language may supply a separate export mechanism [Meye92, 
Stro91].  The interface of a class is the set of signatures corresponding to its 
externally-available components.  Even type-free languages have the notion of 
class protocols [GR83, NeXT93].  The name of a class may be used as a type 
identifier in strongly-typed languages.  For all intents and purposes, type and 
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class are considered identical notions - this view comes under critical 
examination later.

class CIRCLE
creation make -- identify name of creation procedure(s)
feature { ANY } -- export to all with read/execute access 

-- data declarations
radius : REAL; -- allocated to each circle
pi : REAL is 3.1415926; -- shared by all circles

-- function declarations
make (r : REAL) is -- procedure to initialise a circle

do radius := r end;
diameter : REAL is -- function to compute diameter

do Result := 2*radius end;
circumference : REAL is -- function to compute circumference

do Result := 2*pi*radius end
area : REAL is -- function to compute area

do Result := pi*radius*radius end
end -- CIRCLE

Figure 2.1: Class Definition

Encapsulating data with access-functions is known as data abstraction.  
Languages with data abstraction allow user-defined (concrete) data types to 
have the same status as primitive in-built types [LZ74, LZ75, LZ77, Lisk80, 
Stro88].  Wegner called CLU class-based because it offered data abstraction 
[Wegn87].  Clearly, data abstraction derives from Simula's classes, however 
classification and data abstraction should really be considered distinct notions -
CLU has no class hierarchy [LABM81, Lisk87].  The notion of encapsulation
dates from Parnas' dictum on modularity [Parn72], in which highly cohesive 
components are assembled behind an abstraction barrier.  The main purpose 
of this is to reduce external dependency and thereby foster a loose coupling 
between modules.  Encapsulation has two faces:

 information-hiding - it relieves the module user of the need to know the 
details of a module's implementation; this measure is intended to counter 
complexity;

 protection - it prevents the module user from tinkering with the internal 
details of a module's implementation; this is a security measure.

Meyer identifies class with module in this sense [Meye88], since an object's 
state and functions are highly cohesive.  Furthermore, if a class defines a data 
type and a module controls the visibility of its operations, then type and module
must always be coincident (unlike Ada and Modula-2).  The notion of abstract 
data type was developed in a more mathematical direction by Guttag, Reynolds 
and others [Gutt75, Gutt77, GH78, Reyn74, Reyn75, Reyn83].  An abstract 
data type is an algebraic specification, in terms of function signatures and 
axioms.  In this context, it is misleading to refer to user-defined (concrete) types 
as abstract data types, where the phrase encapsulated data type is more 
appropriate.
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A further overlaid meaning arises from certain languages' admitting classes as 
first-class elements [GR83, Keen89].  Here, classes are themselves considered 
objects.  They exist at run-time and may respond to requests, particularly to 
generate new instance-objects on the fly.  Objective C distinguishes the notions 
of class (external descriptor) and factory object (run-time instance-object 
generator) [CN91].  The behaviour of class-objects is mediated through 
metaclasses, which recursively describe classes and themselves [KRB91].

2.3.3 Inheritance

Biological inheritance is the enjoyment of genetic qualities you did not strive to 
develop.  In probate law, inheritance is the disposition of acquired wealth you 
did not have to earn.  In both cases, it involves obtaining something from your 
forbears for free (but outside of your control).  By metaphorical transfer, the 
term is linked to classification schemes in AI, which propagate descriptive 
properties in inheritance graphs.

Taxonomic classification is based on the idea of subdividing groups according 
to a few properties that become salient at a given level of specialisation.  
Whereas the class of mammals is distinguished from birds or reptiles by having 
warm blood, giving birth to live young and suckling, the mammalian subclass of 
carnivores is further distinguished from herbivores by having forward-pointing 
ears and eyes and sharp teeth.  Early models of human memory organisation 
[Quil68] and knowledge representation [Mins75] adopted such a hierarchical 
network model for clustering information.  According to the principle of cognitive 
economy, only salient distinguishing properties were represented at each node 
and the remaining class properties were inherited implicitly from more general 
classes.

In object-oriented programming, a class may be defined to inherit from another, 
in which case it immediately obtains all the data and function declarations of its 
parent.  Inheritance is a short-hand mechanism for defining classes 
incrementally, based on existing parent classes.  The child class need only 
specify what makes it different from its parent.  A hallmark of a well-designed 
object-oriented library is the factoring of classes into an inheritance hierarchy, in 
which minimal additions are made at each level [GR83].  The process of 
abstracting out classes at intermediate levels of generalisation requires greater 
design effort, but provides more anchor-points from which to derive subsequent 
class variants.  Inheritance is regarded as crucial to software extensibility and 
flexible reuse.  A module that is already in use may be subsequently adapted 
and extended, without loss of security to existing clients, through inheritance; 
this is known as the open-closed principle [Meye88].

The mechanisms of inheritance are highly complex.  Inherited instance 
variables are implicitly added to those defined locally.  Together, they form a 
larger record template for generating instances of the child class.  Inherited 
class variables are still unique but  their scope extends to instances of the child 
class.  Inherited functions are typically not copied, but may be applied directly to 
instances of the child class.  Here, recompilation is avoided, either by 
preserving the linear order in which instance variables are added - with single 
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inheritance, inherited functions access the same offsets in child class instances 
[GR83, CN91]; or alternatively by providing an indirect indexing scheme 
[Stro87, Stro91, Meye92] or dynamic function access [Keen89] - this is usually 
necessary in languages having multiple inheritance, where a child class has 
more than one parent and therefore inherits the second and subsequent 
parents' instance template out of linear order.  Multiple inheritance gives rise to 
feature clashes, where a class may inherit the same named declaration from 
more than one parent.  Languages either force the disambiguation of clashes 
through name qualification [Stro91, Meye92] or determine that one declaration 
has priority [Moon86, BDGK88, Keen89] using automatic conflict-resolution 
schemes, or else they merge the declarations.

class CYLINDER 
inherit CIRCLE

redefine area -- to mean total surface area
creation make
feature { ANY }

-- additional data declarations
height : REAL; -- allocated to each cylinder

-- additional and modified functions
make (r, h : REAL) is -- procedure to initialise a cylinder

do radius := r; height := h end;
area : REAL is -- modified to compute total surface area

do Result := 2*pi*radius*(radius + height) end;
volume : REAL is -- additional function to compute volume

do Result := pi*radius*radius*height end
end -- CYLINDER

Figure 2.2: Class Definition with Inheritance

Inheritance is mostly used in an additive way, whereby a child class simply 
adds extra data and function declarations to those inherited from its parent.  
Inheritance may also be used to modify the behaviour of the parent class in the 
child.  An inherited function may be replaced by an alternative definition in the 
child class, either for efficiency's sake [Meye88] or because the operation has 
slightly changed in meaning [GR83].  This is called overriding or redefining, 
since the inherited function is typically hidden and no longer available.  An 
exception to this is where the replacement function incorporates, or invokes, the 
inherited version.  This is known as method combination [Moon86, GR83, 
Kee89].  Usually, replacement functions must respect the type signature or 
protocol of the functions replaced [Stro91, Meye92, NeXT93] but this is not 
always enforced in the language definition [GR83].  Smalltalk judges function 
compatibility by name equivalence only, opening the way to type-unsound 
substitution.  Programmers typically follow their own protocol disciplines.  In 
strongly-typed languages, data declarations usually have constant types 
[Stro91] but they may be retyped with a more restricted type in some languages 
[Meye92].  This is intended to reflect the specialisation of component parts 
along with the enclosing whole.

Figure 2.2 illustrates a simple example of inheritance in Eiffel.  In this example, 
CYLINDER inherits radius, pi, diameter, circumference from CIRCLE, replaces 
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area and adds height and volume.  Note how area and volume may use 
inherited features radius and pi directly.  Inheritance often has the effect of 
partitioning the parent class into one or more specialised subsets.  Here, it 
merely has the effect of extending and modifying the parent's structure and 
behaviour - it would be strange to think of cylinder-instances as members of a 
more general CIRCLE class.  We leave this example as a deliberate 
provocation!

2.3.4 Polymorphism

Coming from the Greek poly (many) and morphe (form), polymorphism is a term 
from type theory denoting a generalisation over types.  Traditionally, the 
strongly-typed programming languages are monomorphic, that is, variables are 
given exactly one type and may only be bound to values having this type.  A 
polymorphic language is one in which type constraints are systematically 
generalised.  Variables may be bound to values having more than one type.  
This opens the way to generic styles of programming, in which algorithms which 
behave systematically over families of types may be encoded in an economical 
way.

Strachey and others first identified families of types that were sufficiently similar 
in structure that one could write polymorphic functions acting uniformly over 
them [Strac67, Strac73, MS76, Tenn81, Reyn83].  These were typically the 
container types, such as lists and stacks, for which functions like cons, append, 
push and pop could be written irrespective of the type of element they 
contained.  Tennent [Tenn81] recommended the use of type parameters to 
abstract over the unknown parts of each type.  Elsewhere, Strachey noted a 
tendency in existing programming languages to provide functions with multiple 
definitions.  The operator + might be used to add integers and reals, but then 
also to concatenate strings and append lists.  He distinguished:

 parametric polymorphism - parameterised functions acting in a systematic 
way over a variety of types; this is usually known today as genericity
[Meye88];

 ad hoc polymorphism - the undisciplined adding of new meanings to old 
function names; this is usually known today as overloading [Stro91].

Strachey rejected ad hoc polymorphism on the grounds that it was not 
amenable to formal analysis.  No semantic correspondence need exist between 
the different definitions overloaded on a single function name.  Explicit 
parametric-polymorphic mechanisms later entered into the designs of ML
[Miln78, MTH90] Hope [BMS80] and Ada [IBHK79].  In ML, sophisticated type 
inference is used to propagate actual type information into type parameters at 
function call sites.  In Ada, generic packages must be instantiated with actual 
types before use - the compiler generates a separate image for each 
instantiation.

A further distinct kind of polymorphism results from inheritance.  This is 
sometimes referred to as inclusion polymorphism [CW85].  An inherited 
function is naturally polymorphic, since it is by definition applied to instances of 
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many classes.  However, a restriction is placed on these classes:  they must 
always inherit (directly, or transitively) from the class which defined the function.  
The inheritance hierarchy therefore defines a bound on polymorphic function 
application.  Object-oriented languages may combine inclusion with parametric 
[Meye88, Stro91] and ad hoc [Stro91] varieties.  Eiffel has a form of constrained
parametric polymorphism and a form based on type anchors [Meye92].  The 
model of type polymorphism described in later chapters seeks to harmonise 
these approaches insofar as they act in a systematic way.

Inclusion polymorphism defines a type-compatibility relationship in the strongly-
typed languages [Stro91, SCBK86, Meye92].  A variable with a class-type is 
considered inherently polymorphic.  It may be bound to an object of its declared 
type, or of some other inheriting type.  The declared type of the variable is the 
upper bound on the type of object it may receive.  This unidirectional relaxation 
of the type system is regarded as secure, since any descendent class is 
expected to have at least the functions declared in the parent's interface, either 
because it inherits the parent's functions, or provides its own replacement 
versions.  These security claims are reviewed in later chapters.

c : CIRCLE;
circ : CIRCLE;
cyli : CYLINDER;
...
!! circ.make(3.0); -- create instance of default type CIRCLE
!! cyli.make (4.0, 7.5); -- create instance of default type CYLINDER
c := circ;
...  c.area; -- dynamically select CIRCLE's area
c := cyli;
...  c.area; -- dynamically select CYLINDER's area

Figure 2.3: Polymorphism with Dynamic Binding

Related to polymorphism is the issue of binding.  The goal of polymorphism is 
to permit the writing of generalised algorithms.  In object-oriented programming, 
this is frequently realised by defining a basic function for a general class and 
reimplementing this function in more specific descendent classes.  As a result 
of function replacement during inheritance, there may exist many variants of the 
same basic function in descendent classes.  Programs are characterised by the 
use of dynamic binding, whereby a general algorithm is interpreted locally by 
objects in different ways.  Figure 2.3 illustrates both polymorphic assignment 
and the dynamic selection of different object responses, using the example 
Eiffel classes from figures 2.1 and 2.2.  Here, even though the polymorphic 
variable c has the static type CIRCLE, the language's binding mechanism 
ensures that an appropriate function is called for the dynamic type of each 
successive object stored there.

Smalltalk [GR83] was influential in establishing this style of programming.  
Adopting the message-passing model [Hewi77], Smalltalk distinguishes 
messages, the requests sent to objects, from methods, the functions 
implementing the objects' responses, defined in their classes.  The jargon uses 
the term method to emphasise the fact that a function is owned by a particular 
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class; it is not free-standing and may only be invoked by selecting it from its 
class.  This idea is further reinforced by the polymorphism of messages - each 
class has its own method for dealing with the request.

Message passing with dynamic binding is so characteristic of object-oriented 
programs that some treatments incorrectly use the term polymorphism to mean 
dynamic binding, especially where the language has no notion of types [GR83] 
or contrasts polymorphism with genericity [Meye88], the statically-bound variety.  
Hereafter, the typing and binding issues are properly distinguished.  
Polymorphism describes first and foremost a generalisation over types; how 
this affects binding is a secondary matter.  Message-based dynamic binding 
has the effect of confusing systematic and ad hoc varieties of polymorphism in 
object-oriented programming.  The introduction of functions with the same 
names [GR83, CN91] and same protocols [NeXT93] in disjoint parts of the 
hierarchy is open to the same abuses as arbitrary overloading.  Against this, 
good practice will impose a common type family [SCBK86, Meye92] on 
functions that are redefined below a given class, and advise against multiple 
reintroduction.

A particular use for this is found in the creation of deferred [Meye92] or abstract
[GR83] classes.  A deferred class has one or more deferred functions, whose 
signatures [Stro91] and specifications [Meye92] only are given.  The bodies of 
such functions are not supplied at this level of generalisation, but are defined in 
different forms in descendent classes.  The purpose of this mechanism is to 
provide a strong typing and semantics for a family of poymorphic functions.  
Program expressions containing variables typed in the deferred class may 
receive any descendent instance which implements these functions.  Deferred 
classes support the writing of generalised algorithms and the combination of 
polymorphic typing with dynamic binding supports plug-in software components.  
Properly speaking, an abstract class is one having all of its functions deferred 
[Meye88].  Such a construct may rightly be called an abstract data type, since it 
provides no concrete implementation.

Languages may use dynamic binding universally [GR83], frequently [CN91, 
Meye92], or rarely [Stro91].  An analysis of many programs has revealed that 
about 20% of object-oriented code needs dynamic binding [Booc91, Simo92].  
Strongly-typed languages can perform at least a partial static analysis of 
bindings.  Dynamic by default, Objective C will revert to static binding if static 
types are supplied [CN91].  C++ will only use dynamic binding if functions are 
marked virtual [Stro91].  Dynamic by default, Eiffel will optimise static bindings 
as a compiler post-process [Meye88].  Central to the efficient handling of 
dynamic binding is the creation of a dispatch table by the compiler.  This grows 
in the product of classes and methods that use dynamic binding.  In languages 
with a high commitment to dynamic binding, optimisation strategies must be 
found to reduce the size of the table.  This may be in the form of selector index 
colouring [DMSV89], or other table packing mechanisms [Dries93, AGS94, 
DH95].
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2.4 The Challenge of Classification

What is classification?  Object-oriented languages are confused in their formal 
appreciation of class.  This is somewhat alarming, since classification is 
arguably what makes a language distinctively object-oriented.  Rather than rise 
to the challenge, some past analyses have pushed this issue aside.  The issues 
are presented below, together with an argument for seeking a more satisfactory 
interpretation of class.

2.4.1 Class Ambiguity

Perhaps the biggest obstacle to formalising the notion of class comes from the 
multivalent use of the concept in existing languages.  By default, one is left to 
assume that class replaces the usual notion of type, especially in languages 
without strong typing [GR83].  Class names are used everywhere as type 
identifiers [CN91, Stro91, Meye92].  On the other hand, a class is different from 
a type in that it is open to extension - what are open-ended types?  Then again, 
a class is like a package or module [IBHK79, Wirt82], the concrete 
implementation of a type.  But what kind of construct is an open-ended 
implementation?  There are two main dimensions of ambiguity:

Concrete - Abstract Dimension 

 class as specification - providing the visible type, the signature interface 
(protocols) for a family of objects, its instances;

 class as implementation - providing the instance template, a class table of 
shared data, a collection of function definitions and modular packaging.

Monomorphic - Polymorphic Dimension

 class as monotype - providing the exact concrete type of its own instances, 
used when creating instances;

 class as polytype - providing the bounded polymorphic type for members of 
its larger family, used when attached to inherited functions.

The overloading of the term class has for long obstructed clear thinking.  To 
facilitate a better understanding, these meanings must first be unravelled.  The 
concrete-abstract dimension has been considered previously [Sakk89, PW89].  
It is examined in some detail below.

2.4.2 Convenience View

The convenience view [Simo93] treats the class purely as an implementation 
construct, a kind of extensible record.  It concentrates on the internal structure, 
in terms of storage for data attributes and methods.  Inheritance is a shorthand 
for defining larger records incrementally by extension; and is often used in 
preference to composition when creating structured classes.
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Relegating the class to a mere unit of implementation, while formally lax, does 
bring certain efficiency gains:

 maximum reuse of implementations;

 economy in levels of indirection in structures;

 economy in levels of nesting in call-graphs.

To illustrate and elaborate on these advantages, consider the derivation of 
RECTANGLE as a subclass of POINT, in figure 2.4 below:

RECTANGLE

width

height

POINT

x

y

RECTANGLE

width

height

x

y

TEMPLATE

Figure 2.4 Implementation Inheritance

By inheriting from POINT, the RECTANGLE class obtains all of POINT's data 
and functions in an unencapsulated way.  It may access the x and y
coordinates of its location directly, without having to go through POINT's 
interface.  Where object references are implemented through pointers, one 
level of indirection is removed by expanding all of POINT's contents at the top 
level.

However, such a design begs the question whether a RECTANGLE is truly a 
kind of POINT in any sensible taxonomy of geometric shapes.  A RECTANGLE 
could equally be composed of POINTs;  or perhaps a POINT might be thought 
of as a degenerate kind of RECTANGLE.  Maximising reuse of implementation 
can lead to strange, sometimes counter-intuitive abstractions.  Figure 2.2 above 
also adopted this convenient strategy when deriving a CYLINDER from a 
CIRCLE.

2.4.3 Ambitious View

The ambitious view [Simo93] treats the class as a kind of incremental 
specification.  It concentrates on the external, behavioural aspects, in terms of 
function signatures and, in the case of Eiffel [Meye92], the semantics of these 
functions.  Inheritance describes the evolution of a specification which is 
gradually made more concrete.

Elevating the class to a unit of specification brings with it a flavour of:
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 type development (adding new function signatures, extending behaviour);

 type reification (implementing deferred functions;  refining the definitions of 
existing implemented functions);

 type restriction (subclassing seen as forming disjoint subsets;  subtypes 
having alternative specialised behaviours).

Meyer's promotion of classes as specifications with deferred implementations 
[Meye88, Meye92] contrasts most strongly with the convenience view.  This is 
illustrated in figure 2.5 with abstract STACK and QUEUE classes which have 
multiple alternative concrete implementations:

       

push
pop
top

QUEUE push
pop
top

STACK

LIST

LINKED_

(deferred) (deferred)

STACK

LINKED_
QUEUE

FIXED_
QUEUE

FIXED_
STACK

ARRAY

Figure 2.5: Specification Inheritance

Here, inheritance corresponds almost exactly to a process of reification.  The 
STACK class provides deferred routines ( code stubs) for operations push(), 
pop() and top(), whose semantics are verified using axiomatic assertions.  The 
concrete LIST and ARRAY classes provide alternative implementations.  By 
inheriting jointly from STACK and LIST, the LINKED_STACK class identifies 
push() with LIST's cons() operation, pop() with tail(), and top() with head().  By 
contrast, FIXED_STACK inherits from STACK and ARRAY, adds another count
attribute and uses this as the index into ARRAY addresses in the alternative 
implementations of push(), pop() and top().  Both implementations have to 
conform to the LIFO semantics of STACK.  A similar treatment applies to the 
reification of QUEUEs.

Classes occupy a whole spectrum, from abstract to concrete.  Many are 
partially concrete specifications, subject to increasing refinement.  Inheritance is 
seen as expressing a type compatibility relationship between more refined 
classes and their ancestors.  Classes are considered to be types [Stro91, 
Meye92] with attached implementations.
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2.4.4 Tension Between Views

The tension between implementation and specification concerns was 
documented as early as 1987 [Lisk87].  This aspect was recognised as a 
contrast between essential and incidental inheritance [Sakk89] or strict and 
non-strict inheritance [PW89].  Whatever the nomenclature, the strong variety 
of inheritance implies at least a sharing of class specification by which all 
descendent classes must be bound.  The weak variety implies only 
implementation sharing, in terms of the opportunistic reuse of code and 
declarations for storage allocation.  The strong kind may occur with some 
implementation sharing, since most languages strive to map in a fairly 
straightforward way from abstract types onto their concrete counterparts.

However, opposing ambitious and convenience pressures can lead to divergent
designs.  Implementation concerns creep into abstract design in undesirable 
ways.  In figure 2.6 we illustrate a case from [Meye88], in which POLYGON is 
intended as the abstract super type of all geometric figures.  However it is also 
used to model concrete n-vertex polygons and, as such, defines a routine 
addVertex() to adjust its geometry to suit.  Now, the descendent class 
RECTANGLE should not be allowed to add to its vertices.  Eiffel has orthogonal 
inheritance and export mechanisms, so the inherited routine addVertex() is 
simply not exported in RECTANGLE.  

POLYGON

RECTANGLE

AddVertex

Figure 2.6: Selective Inheritance

This kind of selective inheritance was criticised in [SC92] since, in our view, it 
leads to type violation:  RECTANGLE does not respond to all the public 
functions of POLYGON, therefore it cannot be a kind of POLYGON.  Eiffel
version 3 [Meye92] now includes selective export and feature undefinition 
mechanisms which exacerbate this case.  The fault lies not so much with the 
incorrect export rules, but in expecting the POLYGON class to fulfil both 
abstract and concrete goals.  Enforcing proper type abstraction would lead to a 
separation of concerns into a deferred GEOMETRIC_FIGURE class and a 
concrete (n-vertex) POLYGON class.

In C++ [Stro91] there is the first recognition of strong and weak inheritance 
fulfilling different purposes.  Classes are considered types, but sometimes 
inheritance is not treated as subtyping.  The language supports both private
inheritance, in which a derived class inherits only the implementation of its 
parent, and public inheritance, in which a derived class also inherits the (entire) 
specification of its parent.  
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Figure 2.7: Private and Public Inheritance

In figure 2.7, INT_LIST and FLOAT_LIST inherit publicly from LIST;  as such, 
they are type compatible with LIST and respect all of LIST's functions.  
SORTED_COLLECTION inherits privately from LIST, to use its linked cell 
representation, but does not export any of LIST's functions;  rather it defines its 
own interface.  An object of type SORTED_COLLECTION is not type 
compatible with a LIST variable.

Rather than contend with these apparently conflicting semantic demands, some 
have sought to drive a wedge between the notions of class and type [Snyd86a, 
Snyd86b].  In languages like CommonObjects [Snyd87] and POOL-I [Amer87, 
Amer90] you can reason about class and type independently.  It is possible to 
design orthogonal class and type hierarchies, which maximise implementation 
reuse and type abstraction, respectively.  Figure 2.8 illustrates this.  On the left 
of the figure is a type hierarchy, in which a CIRCLE is considered a special 
case of ELLIPSE where the two foci are coincident;  and a SQUARE is treated 
as a special case of RECTANGLE where adjacent sides are of the same 
length.  On the right of the figure is a class (ie implementation) hierarchy, in 
which an ELLIPSE is constructed as an extension to the CIRCLE record with an 
extra focus and radius;  likewise a RECTANGLE is an extension to the 
SQUARE record with an extra side.  What is remarkable here is that the two 
hierarchies can be shown to link nodes in exactly the opposite order.
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Figure 2.8: Orthogonal Class and Type Hierarchies
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In a slightly different vein, the language Emerald [RL89, BHJL86] abandons the 
use of inheritance as a way of expressing implementation sharing, but retains a 
type hierarchy to capture the similarity and compatibility of software 
components.  In Emerald, all implementation reuse is achieved through fine-
grained composition, in which even the operations are treated as components 
with formal interfaces (requiring operands of the right type).

2.4.5 In Defence of Classification

Clearly, this segregation of class and type is a pragmatic success.  But in 
focussing too closely on the implementation strategies adopted by a generation 
of Smalltalk programmers, have we somehow lost sight of the notion of class
and classification?  Perhaps it would be better to use a different term, such as 
record or template to describe the implementation units used above.  It is a 
major contention of this thesis that the relegation of the class concept to such a 
mundane level constitutes a gross failure of nerve.  The false division of class
and type along concrete/abstract lines is a red herring.  Types always were 
considered from both the abstract and the concrete points of view, so why not 
classes?  Later chapters will develop a different view, which attempts to relate 
formally the notions of class and type, while preserving the possibility of 
attaching evolving implementations.

Consider in the first instance the philosophical argument, that classes and types 
aspire to the same goal, namely abstraction.  Classification is a natural activity 
in psychology, which underpins our more mathematical notion of types.  There 
is manifestly a strong desire to capture abstraction even in the type-free 
languages:  Smalltalk [GR83] would appear to have advocated the 
"implementable abstraction" to a generation of programmers more accustomed 
to arrays, variable counters and (just emerging) record types.  Flavors'
[Moon86] introduction of multiple inheritance provided much stronger support 
for the factorisation of the common behaviour of objects;  indeed one could 
argue that concept differentiation in AI is precisely the same task as that faced 
by designers of coerceable typing systems, a proposition recognised by the 
designers of CLOS [BDGK88] but not fully harmonised in its current 
specification.

A second philosophical argument is that type systems, as they are implemented 
in conventional strongly typed languages today, are far from complete in that 
they seldom venture to express systematic relationships between general, 
abstract types.  To draw an ethical analogy, these languages are not so much 
pure, as fortunate that they have not been tempted.  The Algol-68 experiment 
[VMPK75] in implicit type coercion was a notable exception, but proved to be so 
theoretically difficult that subsequent languages ceded this hard-won territory.  
They cannot claim to hold the high moral ground;  they have scarcely entered 
the battle.  Any language that seeks to implement a truly general system of 
polymorphic and abstract types will face exactly the same difficulties as those 
encountered in class-based type factorisation in object-oriented programming.

It has been said that inheritance is the property that chiefly distinguishes the 
object-oriented languages [Wegn87].  This thesis disagrees with that emphasis.  
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The key concept is classification, something not attempted in other languages.  
Classification must carry with it the notion of hierarchy and an ordering on 
families of objects having different types.  The kind of inheritance with 
polymorphism that occurs in object-oriented languages follows naturally from 
programming with classes, rather than with types.  In later chapters, it will 
become clearer how this notion of class is more sublime than type.

In any case, chapters 3-5 will soon demonstrate that simple type hierarchies of 
the kind illustrated in figure 2.8 are insufficient to explain the type behaviour of 
object-oriented languages.  Chapter 3 investigates object types and subtyping 
[Card84, CW85] as a first step in this direction; but later the focus shall return to 
polymorphic theories of classification.


