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ABSTRACT 

Imaging  populations  of  cells  is  important  in  a  wide  range  of  experimental  work. 
Although averaging of the whole-field image is sometimes appropriate, in many cases it 
is the response of individual cells that is of interest.  Extracting this information is a 
challenging image segmentation problem where single cells must be delineated from 
their  neighbours.  As  an  example,  we  examine  data  from  whole-field 
immunofluorescence  images  of  normal  human  urothelial  (NHU) cells  in  monolayer 
culture. These cells are loaded with ratiometric calcium-binding fluorescent dyes and 
stimulated  by  application  of  ATP,  resulting  in  changes  in  the  cytosolic  calcium 
concentration. Typically, a region of interest (ROI) around each cell is defined by hand. 
These ROIs are then used to calculate time profiles of cytosolic calcium concentration 
for  individual  cells.  Although  straightforward,  this  process  is  time  consuming  and 
introduces  a strong selection  bias  towards  cells  that  experience  a  large elevation  of 
cytosolic calcium. Selection bias is of particular importance to us as population-level 
behaviours such as wound closing are believed to be strongly dependent on the context-
dependent  cued  response  of  individual  cells,  which  gives  rise  to  population 
heterogeneity. In order to eliminate this bias, we have developed an algorithm designed 
to  automatically  extract   ROIs  from  images  of  urothelial  cells.  This  algorithm  is 
specialised to the nature of the images we process but is fast and achieves a high success 
rate. We compare the results of this algorithm to those generated by picking out cells by 
hand.  We  show  that,  far  from  being  homogeneous,  a  wide  range  of  intrinsically 
different cell responses are identified and these cells would be likely be missed using 
more conventional methods of image analysis.
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INTRODUCTION

Analysis of cell imaging data is central to a wide range of experimental work. If the cell  
population is homogeneous the simplest approach to analysing this data is to examine 
the image as a whole, for example by calculating the average intensity of all the pixels 
in  the  image.  Averaging  images  is  fast,  guarantees  that  all  cells  in  the  image  are 
included,  and  reduces  the  impact  of  noise.  The  main  drawback  is  that  there  is  no 
distinction  between  individual  cells.  In  other  words,  this  technique  rests  on  an 
assumption of homogeneity that permits the information derived from the cells to be 
averaged in a meaningful  way. However,  even genetically  identical  cell  populations 
may display heterogeneous behaviours, for example reflecting cell cycle stage in non-
synchronised populations, or relative position in the colony. A common approach to 
dealing  with  heterogeneity  to  define  a  set  of  regions-of-interest  (ROIs)  around 
individual  cells  in  the  image.  The use of  ROIs  removes the  background pixels  and 
distinguishes individual cells, although at the expense of higher noise due to the smaller 
number of pixels captured by each ROI. The simplest way of defining a set of ROIs is 
to  identify cells  by eye and draw a ROI around each cell  by hand. This method is 
accurate but time consuming and also introduces an element of human error in judging 
the boundary of a cell. A better solution is to automate the process which, whilst not 
eliminating these effects entirely, removes subjectivity and at the same time is faster and 
captures a greater proportion of cells in the image. A common approach is to identify 
cell boundaries based on intensity, texture or gradient features and use this information 
to segment the image. Examples include seeded-watershed methods (Vincent and Soille, 
1991),  and watershed and mean shift  (Cheng,  1995;  Yang et  al.,  2005a,  2005b).  A 
combination  of  region-based detection,  which  uses  pre-segmentation  to  estimate  the 
intensity  distributions  present  in  the  image  and  level  set  segmentation  (Osher  and 
Sethian, 1998) to localise individual cells, and edge-detection has been shown to work 
well with phase contrast microscopy (Li et al, 2008). Another popular set of techniques 
is based on particle filtering (Smal et al., 2006; Godinez et al., 2007; Docuet and Ristic, 
2002), an approach which has been successfully applied  to tracking of cells imaged 
using fluorescence microscopy (Smal et al., 2007). 

Although  progress  has  been  made  using  these  approaches,  a  method  of  robustly 
automating the extraction of ROIs remains elusive, in particular with cells that are not 
well  separated  (Bahnson  et  al.,  2005),  that  move  between  frames,  or  that  divide 
(Kirubarajan  et  al.,  2001).  There  is  also  a  great  deal  of  variation  in  the  image 
characteristics derived from different experiments. Perhaps the greatest problem with 
any method of defining ROIs is selection bias. When working by eye there is a natural 
tendency to focus on the brightest cells in the image. With an automated algorithm there 
is typically a bias towards cells which can easily be delineated from their neighbours 
and  the  background.  This  selection  bias  presents  a  problem.  If  the  population  is 
intrinsically  heterogeneous  then  selection  bias  will  lead  to  certain  subgroups  being 
preferentially selected over others. Entire sub-populations could even be missed if those 
cells  respond  poorly  to  the  stimulation  protocol  used.  A  lack  of  rigor  during  the 
selection process could therefore lead to misleading results that overstate the importance 
of  the  sub-groups  within  the  larger  population,  which  could  have  significant 
consequences for the conclusions drawn from the data. Our own experiments involve 
imaging normal human urothelial cells grown in culture and the analysis of the wound 
closing behaviour  that is  observed in response to scratch wounding. In one class of 
experiments, stimulation by application of agonists such as ATP results in changes in 



Figure 1: flow chart showing the operation of the custom algorithm we use to automate 
ROI extraction. n refers to the number of ROIs identified, which is compared to a target  
number specified by the user. Details of each step are given in the main text.

fluorescence   over  time  that  correspond  to  changes  in  the  cytosolic  calcium 
concentration. The issue of selection bias is of particular importance to this work as the 
subsequent  wound closing behaviour  is  believed to  depend,  in  part,  on the intrinsic 
heterogeneity of the population. 

EXPERIMENTAL AND COMPUTATIONAL SETUP

At the beginning of the experiment we describe here the urothelial cells are seeded onto 
glass coverslips and loaded with two fluorescent dyes, fluo4-AM and fura red-AM. The 
cells are then placed in a laminar flow perfusion chamber and imaged at one frame per 
second. The cells are stimulated with 100 micromolar ATP, which triggers an elevation 
in cytosolic calcium concentration. The two fluorescent dyes generate two channels of 
information, one red and one green. When the cytosolic calcium concentration rises the 
intensity of the green channel increases and the intensity of the red channel decreases. 
The time course of the intracellular  calcium found by taking the ratio  of these two 
channels.  ROIs are  identified either  by eye or by using an algorithm that  combines 
information  from the red and green channels.  For this  algorithm we use the 1st red 
frame, in which cells which initially take up a lot of dye appear very bright, and the 70th 

green frame, in which cells that respond strongly to the application of ATP appear very 
bright. In both cases, the ROIs are then used as a mask to examine the time course of the 
ratio of the intensity of the red and green channels within each ROI in the full set of 120 
ratioed  images.  An  outline  of  the  automated  algorithm  is  shown  in  Figure  1.  The 
algorithm and can be divided into three phases: pre-processing, ROI extraction, and user 
checking. During the pre-processing step the 1st red and 70th green images are combined 
and smoothed using Gaussian blurring. The image is then masked by setting all pixels 
below a specified threshold to zero. The mean brightness of a region around each pixel 
is calculated and pixels whose brightness is below a specified fraction of this mean 
brightness  are  set  to  zero.  This  creates  clearer  borders  between cells  by identifying 
pixels where the local intensity gradient is zero. In the  ROI extraction step the pixel 
with the highest intensity  in the image is identified.  The region around this  pixel is 
selected using a water-shed with an adaptive threshold under the constraint that each 



Figure 2: Comparison of ROIs identified by eye and using the automated algorithm. 
(A) ROIs identified by hand, shown overlayed onto the 70th green image. 15 cells are 
identified, which is typical for an experiment of this nature.  (B) ROIs identified using 
the algorithm, shown overlayed onto the combined red 1st - green 70th image. 200 cells 
are identified covering a much greater proportion of the image. 

pixel is within a maximum radius of the initial pixel. These pixels become the ROI. A 
second  water-shed  is  then  applied  using  a  lower  intensity  threshold.  These  pixels 
become the  “halo”  region  and are  set  to  zero,  removing  them from the  image  and 
helping to separate the cells from one another. The ROI is rejected if it is too large or 
too small in which case all pixels in the region are set to zero. This process is repeated 
until a number of ROIs specified by the user has been identified. In the user checking 
step the set of ROIs are displayed and individual ROIs can be selected and deleted by 
the user, as required.

RESULTS

We compare the time course of cytosolic calcium in the urothelial  cells using ROIs 
selected by eye with those identified by the automated algorithm outlined above. A set 
of 15 ROIs defined by hand is shown in Fig. 1A. This is representative of the number of 
ROIs typically defined during analysis of this kind of experiment. The ROIs are shown 
overlayed onto the 70th green image, which was used for this process as many cells 
appear  very  bright  in  this  image  and  so  can  easily  be  identified.  However,  this 
introduces a strong bias towards cells that respond strongly to the ATP. The result of 
applying the custom algorithm is shown in Fig. 1B.  Once the process is automated a 
much larger number of cells is identified, and in this example case 200 are shown. The 
algorithm uses information combined from the 1st red and 70th green images. This novel 
approach enables the algorithm to identify both cells which respond readily to ATP and 
cells that initially take up lots of dye. Furthermore, the adaptive threshold used in the 
algorithm can identify cells in the image across a wide range of intensities. Fig 2 shows 
the calcium transients generated from these two sets  of ROIs.  For the hand-defined 
ROIs the time profiles are all qualitatively very similar, with all 15 cells experiencing a 
large change in cytosolic calcium. This strongly suggests that the cells are largely 



Figure 2: Time course of cytosolic calcium concentration extracted from the images 
using the ROIs shown in Fig. 1.  (A) The 15 ROIs identified by hand all experience a 
large elevation following application of ATP. The conclusion would be that the cell 
population is largely homogeneous. (B) The set of 200 ROIs identified using the custom 
algorithm provides a much more accurate impression of the range of responses elicited 
in the cells and shows that the population has a high degree of heterogeneity.

homogeneous in  their  response to  ATP.  However,  when the ROIs identified  by the 
automated algorithm are analysed, a much wider range of responses is observed. Some 
cells undergo large elevations in cytosolic calcium and others respond little or not at all. 
In  fact,  the  population  appears  to  form  a  continuum  with  the  middle  and  lower 
responding cells  being equally  represented  in  terms  of  cell  numbers  as  the strongly 
responding cells. This removes the subjectivity of selection and demonstrates that the 
cell population is not homogeneous, an important observation that would be missed if 
the analysis were carried out using the ROIs defined by hand.

CONCLUSION

Here  we  have  examined  the  impact  of  selection  bias  when  analysing  fluorescence 
microscopy data using images generated from our own experiments on urothelial cells. 
We have compared a conventional “by hand” method of identifying ROIs with a custom 
algorthim designed to minimise selection bias. When ROIs are identified by hand very 
few cells  are  identified  and a  strong selection  bias  is  introduced towards  cells  that 
experience a large elevation of cytosolic calcium. With the automated algorithm a much 
larger  proportion  of  cells  are  captured.  We find  that  a  broad range of  responses  is 
present within the cell population with approximately equal representation of low, mid 
and highly responding cells. The algorithm we have used is specialised for our images 
and may not generalise well to other cases. However, it is not the performance of this 
algorithm that is our primary concern; it is the impact that selection bias has on the 
conclusions drawn from the data. If the data we have shown here were analysed using 
only  the  ROIs  identified  by  hand  the  population  would  appear  to  be  largely 
homogeneous. Such a finding could be used as a justification for whole-field analysis of 
the images, which would further mask the heterogeneity in the responses of the cells by 
averaging the entire  population.  Selection  bias  when identifying  ROIs can therefore 
strongly influence conclusions drawn from a data set, in particular when the population 
is intrinsically heterogeneous. 
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