News

I am lecturing for the 4th Baltic-Nordic Summer School on Neuroinformatics (BNNI 2016), with the theme ”Understanding neurons, cognition and behavior through neuroinformatics”.

Member of the Lab Alvin Pastore took part in Sheffield’s hackathon. His team won Top Prize from Databowl.


Short Bio

I am Associate Professor (Senior Lecturer) in Computer Science, Faculty of Engineering, University of Sheffield and Visiting Professor (Gastprofessor) at the Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp. I also serve as Academic Editor for the scientific journals PLOS ONE and PeerJ and I am one of the directors of the Organisation for Computational Neurosciences. Within the group of Machine Learning, I lead the Computational Neuroscience Laboratory.

Prior to my Academic appointment in Sheffield, I was Scientific Collaborator in the groups of Prof. Wulfram Gerstner at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and Prof. Walter Senn at the University of Bern. I hold a PhD in Computer Science and Artificial Intelligence (University of Sussex), a Masters in Microelectronics (University of Athens) and a Bachelors degree (with distinction) in Informatics & Telecommunications (University of Athens).


Research Focus

As a Computational Scientist and Engineer with extensive cross disciplinary experience, I contribute to the greater understanding of the brain’s wiring diagram via the use and development of unsupervised and reinforcement learning models, and their application to relevant research areas such as Neuromorphic Engineering and Robotics.

My expertise is best summarised under the term “synaptic plasticity", which describes the rules under which the connectivity of our brain is shaped. My approach is that simple models have the power to help us understand the mechanisms that shape the brain wiring. For instance, my collaborative work with EPFL published in Nature Neuroscience has shed light on a long debate regarding the communication code in the brain, and how this is reflected by the neural connectivity. More recently, my work jointly with the University of Antwerp aims to explain the formation of connectivity motifs. While not overlooking the power of other approaches, I chose to mainly contribute via the use of models that maintain a degree of biological realism (spiking neuron models) but are free from the complexity of biophysical details.


Selected Publications

Vasilaki, E., Fremaux, N.,Urbanczik, R., Senn, W, and Gerstner, W. (2009), Spike-based reinforcement learning in continuous State and Action Space: when policy gradient methods fail. PLOS Computational Biology, Vol.5(12):e1000586 doi:10.1371/journal.pcbi.1000586.

Clopath, C., Buesing, L., Vasilaki, E., and Gerstner, W. (2010), Connectivity reflects Coding: A Model of Voltage-based Spike-Timing-Dependant-Plasticity with Homeostasis. Nature Neuroscience

Vasilaki, E. & Gugliano, M. (2014),  Emergence of Connectivity Motifs in Networks of Model Neurons with Short- and Long-term Plastic Synapses, PLoS ONE, 9(1): e84626. doi:10.1371/journal.pone.0084626.

Esposito U., Giugliano M. and Vasilaki E. (2015) Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity. Frontiers in Computational Neuroscience 8:175. doi: 10.3389/fncom.2014.00175

Gehring, T. V., Luksys, G., Sandi, C., and Vasilaki, E. (2015) Detailed classification of swimming paths in the Morris Water Maze: multiple strategies within one trial. Scientific Reports, Nature Publishing Group, 5, 14562; doi: 10.1038/srep1456.

Berdan, R., Vasilaki, E. , Wei, S. L., Khiat, A., Indiveri, G., Serb, A., and Prodromakis, T. (2016), Emulating short-term synaptic dynamics with memristive devices. Scientific Reports, Nature Publishing Group, 6, 18639; doi:10.1038/srep18639


Current Grants

EPSRC, Green Brain Project, collaboration with the Univ. of Sussex (Oct 2012 - Sep 2016). Co-Investigator.

University of Sheffield Cross-cutting Network on Neuroeconomics (Oct 2013 - Sep 2016). Primary Supervisor. 

Welcome Trust, ‘The cortical representation of low-probability stimuli and its neuromorphic implementation’, Fellow Dr Vanattou-Saïfoudine, collaboration with the institute for NeuroInformatics ETHZ/University of Zurich (Sep 2016 - Aug 2019). Supervisor. 

© Dr Eleni Vasilaki 2015