
A computer model of perceptual compensation 
for reverberation: evaluation on a consonant 
identification task
Guy J. Brown and Amy V. Beeston
Department of Computer Science, University of Sheffield
{g.brown,a.beeston}@dcs.shef.ac.uk

Introduction
• Watkins (2005) has shown that listeners use informa-

tion about the preceding context of a reverberated 
test word to help them identify it.

• This suggests a mechanism of perceptual constancy 
that confers robustness in reverberant environments.

• Watkins’ experiments focused on one particular 
speech identification task (‘sir’ or ‘stir’), and used a 
synthesised continuum to measure the ‘sir’/’stir’ cat-
egory boundary.

• Here we address the following research questions:
• Is perceptual compensation for the effects of reverbera-

tion also apparent in a more naturalistic consonant dis-
crimination task (/p/, /t/, /k/)?

• How does the reverberation-robustness of a conventional 
automatic speech recognition (ASR) system compare with 
human listeners?

• Does an auditory model with an efferent processing cir-
cuit effect compensation for reverberation in a similar 
manner to human listeners?

• Our eventual aim is to build a human-like ‘constancy 
front-end’ for ASR.

Test Material
• Test material was drawn from the Articulation Index 

(AI) corpus (Wright, 2005).
• 80 utterances of the form 

CW1 CW2 TEST CW3

• Context words (CW) were drawn from a limited set 
and the test word was SIR, SKUR, SPUR or STIR.

• All utterances were low-pass filtered to 4 kHz to avoid 
ceiling effect when testing for consonant confusions.

• Perceptual constancy was investigated by varying re-
verberation of the context words and test words in-
dependently, as described by Watkins (2005).

• The reverberation was varied according to the 
source-receiver distance in an L-shaped conference 
room (impulse responses recorded by Watkins).

Test word distance
0.32m 10m

Context  
distance

0.32m near-near near-far
10m far-near far-far

• After low-pass filtering and convolution with the 
room impulse response, a filter was applied to cor-
rect for the response of the headphones used in lis-
tening tests.

• Detailed perceptual studies are reported in a com-
panion poster.

Speech Recogniser
• A speech recogniser was developed using the hidden 

Markov model toolkit (http://htk.eng.cam.ac.uk/).
• Phone-level (rather than word-level) recognition was 

required in order to assess consonant confusions.
• 39 monophone models were trained, with observa-

tions modelled with 20 Gaussian mixtures per state.
• In the AI corpus, phonetic transcripts are only provid-

ed for the target words. The context words were ex-
panded to a phone sequence using the CMU pronun-
ciation dictionary (http://www.speech.cs.cmu.edu/
cgi-bin/cmudict).

• The recogniser was initially trained on the TIMIT cor-
pus (which is provided with detailed phonetic tran-
scriptions) and then further embedded training was 
performed on the AI corpus.

• A baseline ASR system was trained using 12 MFCC fea-
tures or 13 DCT-transformed auditory features, plus 
deltas and accelerations.

• Semi-forced alignment was used; the recogniser was 
told the identity of the context words and was re-
quired to identify the test word only.

Auditory Model
• The auditory model is a modification of the Ferry & 

Meddis (2007) model of auditory efferent processing.

• Efferent activity is modelled as an attenuation in the 
nonlinear path of a dual-resonance nonlinear filter-
bank (DRNL).

• The amount of efferent attenuation is determined 
by measuring the dynamic range of the preceding 
speech context.

• The model has previously been shown to give a good 
match to listener data in Watkins’ (2005) ‘sir’/’stir’ 
identification task (Beeston & Brown, 2010).

Evaluation
• Human and machine performance were compared in 

terms of percentage error and relative information 
transmitted (RIT).

• RIT is an information-theoretic metric that reflects 
the distribution of errors in the confusion matrix.

• The subject (human or ASR system) is regarded as a 
channel that accepts input and produces output, and 
RIT measures its information transfer characteristics:

RIT = H(X:Y)/H(X)

• H(X:Y) is the average mutual information of the input 
X and output Y, and H(X) is the average self-informa-
tion (entropy) of the input.

Results
Experiment 1: Comparison of human perform-
ance and baseline ASR system
• Human listeners show perceptual compensation; for 

a ‘far’ test word (10m) percentage error is high with a 
‘near’ context but lower with a ‘far’ context.  

• This pattern is also observed in the RIT metric (i.e, 
compensation is apparent as an improvement in the 
pattern of confusions made by listeners).
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• As expected the baseline ASR system has a higher 
overall error rate than human listeners and does not 
show compensation.

• For the ASR system, errors are directly related to the 
amount of reverberation in the test word (error in 
near-near < far-near < near-far < far-far).

Experiment 2: Auditory model performance 
with and without efferent circuit
• When the efferent circuit is not engaged, the auditory 

model behaves similarly to the baseline MFCC system.
• Percentage error is slightly higher, most likely due to 

nonlinear (level-dependent) behaviour of the DRNL.

• When the efferent circuit is engaged, ‘far’ context 
conditions cause 4dB attenuation in the test word.

• This leads to a small amount of compensation, meas-
ured as reduced percentage error in the far-far con-
dition compared to the near-far condition.

• However, compensation is not apparent when meas-
ured in terms of RIT.

• The confusion matrices show that for human listen-
ers, a far context generally reduces confusions (par-
ticularly STIR->SIR).

• The model shows a different pattern of behaviour; 
SIR->SKUR confusions are reduced but a far context 
does not substantially improve identification of the 
consonant. 

Conclusions and Future Work
• The effect of reverberation on a consonant identifica-

tion task has been assessed for human listeners and 
an ASR system.

• Human listeners use information about the preceding 
speech context to effect compensation for a rever-
berated test word; conventional ASR systems do not.

• A computer model in which efferent suppression is 
mediated by the dynamic range of the preceding con-
text shows limited perceptual compensation.

• Future work will focus on frequency-dependent effer-
ent suppresion in the computer model.

• We will extend this paradigm to study a wider range 
of consonant confusions.
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SIR SKUR SPUR STIR

SIR 18 0 0 2

SKUR 3 15 0 2

SPUR 7 2 10 1

STIR 8 1 1 10

Human near-far

SIR SKUR SPUR STIR

SIR 16 1 1 2

SKUR 0 16 0 4

SPUR 2 1 14 3

STIR 1 0 0 19

Human far-far

SIR SKUR SPUR STIR

SIR 5 12 0 3

SKUR 1 12 3 4

SPUR 1 14 5 0

STIR 2 4 3 11

Model near-far

SIR SKUR SPUR STIR

SIR 11 3 2 4

SKUR 3 12 1 4

SPUR 1 10 7 2

STIR 5 5 1 9

Model far-far


