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Background

* Perceptual constancy allows us to compensate for our surroundings and overcome
distortions of naturally reverberant environments.

* Prior listening in reverberant rooms improves speech perception [1, 2].

 Compensation is disrupted when reverberation applied to a test word and preceding
context is incongruous [1].

* Here we develop low-level and high-level computational models of perceptual
compensation in speech identification tasks.
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Perceptual experiments

* Watkins demonstrated a ‘sir/stir’ category boundary shift for reverberated test
words in response to reverberation distance of preceding context [1].

 He imposed the temporal envelope of ‘stir’ on ‘sir’ to give the impression of a ‘t’
stop at one end of an 11-step interpolated continuum of test words.

* He recorded impulse responses (IRs) of a room (volume 183.6 m3) at ‘near’ (0.32
m) and ‘far’ (10 m) distances, and independently reverberated test and context.

* The /t/ in a reverberated test word was more likely to be identified if preceding
context speech was similarly reverberated [1].

* We replicated and extended Watkins’ findings using natural speech, 20 talkers
(male and female), and a wider range of consonants (/p/, /t/, /k/) [3].

e 80 utterances of form CW1 CW2 TEST CW3 from Articulation Index Corpus [4],
each containing context words (CW) and TEST word SIR, SKUR, SPUR or STIR.

« Utterances were low-pass filtered (8" order Butterworth) to assess frequency-
dependent characteristics of compensation. Results shown for 4 kHz condition.

* CW and TEST independently reverberated using Watkins’ IRs [1] to give the
impression of speech at different distances in a room e.g., near CW — far TEST.

near-near near-far far-far
sir  skur spur stir sir  skur spur stir sir  skur spur stir
Sir 19 0 0 1 18 0 0 2 16 1 1 2
skur 0 20 0 0 3 15 0 2 0 16 0 4
spur 0 1 18 1 7 2 10 1 2 1 14 3
stir 0 0 0 20 8 1 1 10 1 0 0 19

 Compensation for reverberation was observed: increased reverberation on TEST
increased confusion rate, but errors reduced when CW similarly reverberated.

* Reverberation caused particular confusions to be made: most errors at near-far
were test words mistaken for ‘sir.’
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* Compensation reduced mistaken ‘sir’ responses at far-far, but confusions
persisted between ‘skur’, ‘spur’ and ‘stir.’

Comparable data to Watkins’ (‘sir’ and ‘not sir’) #sir  # not sir
resulted in a significant chi-squared value near-far| 36 44
(Bonferroni corrected), with ¥?=8.007, p=0.023. far-far 19 61
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Low-level model

* Auditory efferent system has been implicated in controlling dynamic range [5].

* Mean-to-peak ratio (MPR) of wideband speech envelope updates attenuation (ATT)

applied to nonlinear pathway of dual-resonance nonlinear (DRNL) filterbank [6].
* This helps to recover dips in the temporal envelope e.g., reverberated /t/.
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* Good match to Watkins’ sir-stir listener data using simple template recogniser [7].
» Effect of reverberation on test word: category boundary shifts up (more ‘sir’s).
 Compensation (forward reverberation cases): boundary shifts back (more ‘stir’s).

* Matching human listeners, compensation is abolished for reverse reverberation.
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» Simplified model with efferent circuit engaged (at fixed ATT) in ‘far’ context cases.
e ASR features: 13 DCT-transformed auditory features + deltas + accelerations.

e Pearson’s phi-squared metric denotes (here, lack of) similarity with human results
by comparing each row of confusion matrices as a 2 x 4 contingency table [8].

* For identical distributions, ®?= 0. For non-overlapping distributions, ®?%= 1.

near-near near-far far-far
sir k p t D2 sir k p ot D2 sir k p ot D2
Sir 16 0 1 3 0.0564 5 12 0 3 04887 11 3 2 4 0.0731
skur 0 13 1 6 0.2121 1 12 3 4 0.1250 3 12 1 4 0.1143
spur| 0 3 11 6 0.1565 1 14 5 0 0.4042 1 10 7 2 0.2558
stir O 1 2 17 0.0811 2 4 3 11 0.1612 5 5 1 9 0.3060

M P R * Mean-to-peak ratio (MPR) is tested as a metric to quantify reverberation.

* Reverberation fills dips in temporal envelope and dynamic range reduces.

* MPR increases with reverberation; inversely proportional to dynamic range.
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AS R * Hidden Markov model (HMM) recogniser implemented using HTK [9].

* HMMs initially trained on TIMIT, then adapted to subset of Al corpus.

* 39 monophone models + silence model [10].

* Al corpus prompts expanded to phone sequences using CMU dictionary [11].

* Semi-forced alignment: recogniser identified TEST only.
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High-level model

 Compensation for reverberation is viewed as an acoustic model selection process:

analysis of speech preceding TEST informs selection of appropriate acoustic model.

* Performance is optimal when reverberation of context and test word match.

* Wrong model is selected in mismatched CW/TEST reverberation conditions:

confusions increase.
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 ASR features: 12 MFCCs + deltas + accelerations.

e Feature vectors for ‘near’ and ‘far’ reverberated utterances were concatenated for
training to provide matching state segmentation to the likelihood weighting scheme

e Feature vectors subsequently split into separate ‘near’ and ‘far’ models for decoding.

* The combined near-far observation state likelihood is a weighted sum of parallel
likelihoods in the log domain:

log[p(x(t)|A, Al = a(t) log[p(x(t) |A,)] + (1-a(t)) log[p(x(t)[A,)]
* a(t) adjusted dynamically using near/far classifier based on MPR metric.
e a(t)=>0 if reverberant; a(t)—>1 if dry.

* Model reproduces main confusions evident in human data (P?< 0.1).
near-near near-far far-far

sir 'k p ot D2 sir  k p ot D2 sir  k p ot D2
Sir 16 0 O 4 0.0514 18 O 1 1 0.0333 14 1 2 3 0.0167
skur 0O 19 0 1 0.0256 3 17 O O 0.0531 2 16 O 2 0.0667
spur 1 0 17 2 0.0590 5 1 14 0 0.0583 3 O 16 1 0.0583
stir 1 1 1 17 0.0811 8 3 O 9 0.0513 O O O 20 0.0256

Discussion

The high-level computer model replicates compensation for reverberation in the Al
corpus speech identification task.

* Efferent model results are consistent with the proposal that auditory processes

controlling dynamic range might contribute to reverberant ‘sir/stir’ distinction.

* Efferent model helps to recover dips in temporal envelope, but not to recover the

more complex acoustic-phonetic cues for /p/, /t/, /k/ identification.

e Lack of training data may have contributed to poor performance of efferent-based

model on Al corpus task (for the high-level model, we adapted the recogniser on the
Al corpus test material).

e Future work will add frequency-dependent processing, since recent perceptual data
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suggests constancy occurs within individual frequency bands [12, 3]. We will also
address recent findings of [13] concerning compensation with silent contexts.
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