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Background
•	Watkins (2005) has shown that listeners use information 

about the preceding context of a reverberated test word to 
help them identify it.

•	This suggests a mechanism of perceptual constancy that 
confers robustness in reverberant environments.

•	Watkins’ experiments focused on one particular speech 
identification task (‘sir’ or ‘stir’), and used a synthesised 
continuum to measure the ‘sir’/’stir’ category boundary.

•	Beeston et al (2010) extended Watkins findings using natu-
ral speech and a wider range of consonants (/p/, /t/, /k/).

•	Here we focus on the development of a computer model, 
which aims to replicate the pattern of consonant confu-
sions observed in Beeston et al’s data.

Aims of the current study
•	To implement a computer model of perceptual compensa-

tion for reverberation based on acoustic model selection.

•	To determine whether the computer model is able to 
match the pattern of confusions evident in human data.

•	To compare the performance of a fully autonomous model 
with one in which ‘oracle’ information is given about the ap-
propriate acoustic model to use.

Perceptual experiment
•	Test material was drawn from the Articulation Index (AI)

corpus (Wright, 2005), 80 utterances of the form 

CW1 CW2 TEST CW3

•	Context words (CW) were drawn from a limited set and 
the test word was SIR, SKUR, SPUR or STIR.

•	The reverberation of the context words and test words was 
varied independently, as described by Watkins (2005).

•	The reverberation was varied according to the source-re-
ceiver distance in an L-shaped conference room (impulse 
responses recorded by Watkins).

Test word distance

0.32m 10m

Context  
distance

0.32m near-near near-far

10m far-near far-far

•	A perceptual compensation effect is observed; confu-
sions with a ‘far’ test word and ‘near’ context are reduced if 
the context is also reverberated at the ‘far’ distance.

Conceptual model
•	Perceptual compensation for the effects of reverberation 

could be viewed as an acoustic model selection process.

•	Analysis of the speech preceding a test word informs selec-
tion of an appropriate acoustic model. 

•	Performance is optimal when the reverberation conditions 
of the context speech and test word are the same.

•	When the reverberation applied to the context speech and 
target word differs, a mismatch occurs and consonant con-
fusions increase.

Computer model
•	The simulation is based on a hidden Markov model (HMM) 

automatic speech recognition system.

•	40 monophone models and a silence model. Initial training 
on TIMIT corpus, then adaptation on the subset of the AI 
corpus used by Beeston et al.

•	Acoustic features were 12 mel-frequency cepstral coeffi-
cients (MFCCs) + deltas + accelerations.

•	The recogniser was trained with feature vectors consist-
ing of two blocks of 36 acoustic features, obtained from 
speech filtered with the ‘near’ and ‘far’ room impulse re-
sponses.

•	The HMMs for the combined features were then split after 
training to give separate ‘near’ and ‘far’ acoustic models.

Combining feature streams
•	During decoding, for each feature vector x(t) at time t, 

the observation state likelihoods are computed from the 
HMMs for both feature streams.

•	We use p(x(t)|λn) and p(x(t)| λf) to denote the likelihood 
computed from the ‘near’ and ‘far’ acoustic models respec-
tively.

•	The combined near-far observation state likelihood is a 
weighted sum of likelihoods in the log domain:

		  log [ p(x(t)| λn,f ] = a(t) log [ p(x(t)| λn) ] + 

											           (1-a(t)) log [ p(x(t)| λf) ]

•	The weighting factor α(t) is adjusted dynamically accord-
ing to the acoustic conditions, α(t)→0 if reverberant and 
α(t)→1 if dry. 

Determining the weighting factor
•	Simplest approach: use an ‘oracle’ value of α(t), assuming 

that context reverberation condition is known.

•	Fully autonomous model: estimate the value of α(t) from 
the context speech.

•	Here, we use the mean-to-peak ratio (MPR) of the context 
speech envelope as a measure of the amount of reverbera-
tion present.

•	A Gaussian classifier detects a ‘near’ or ‘far’ context using 
the MPR as input (83% correct classification on test set).

Analysis of confusions
•	Pearson’s phi-squared statistic used to determine similarity 

of human and model confusions (Jurgens & Brand, 2009).

•	Each row of human and model confusion matrices com-
pared as 2x4 contingency table. For identical distributions 
φ² = 0, for non-overlapping distributions φ² = 1.

Oracle feature stream selection

•	The model reproduces the main confusions evident in the 
human data; φ² ≤ 0.1 in all but one condition.

Human near-near Oracle model near-near
φ²

SIR SKIR SPIR STIR SIR SKIR SPIR STIR

SIR 19 0 0 1 SIR 16 0 0 4 0.0514

SKIR 0 20 0 0 SKIR 0 19 0 1 0.0256

SPIR 0 1 18 1 SPIR 1 0 19 0 0.0757

STIR 0 0 0 20 STIR 0 1 0 19 0.0256

Human near-far Oracle model near-far
φ²

SIR SKIR SPIR STIR SIR SKIR SPIR STIR

SIR 18 0 0 2 SIR 18 1 1 0 0.1000

SKIR 3 15 0 2 SKIR 3 17 0 0 0.0531

SPIR 7 2 10 1 SPIR 3 1 15 1 0.0733

STIR 8 1 1 10 STIR 9 3 0 8 0.0570

Human far-far Oracle model far-far
φ²

SIR SKIR SPIR STIR SIR SKIR SPIR STIR

SIR 16 1 1 2 SIR 11 2 2 5 0.0720

SKIR 0 16 0 4 SKIR 1 18 0 1 0.0729

SPIR 2 1 14 3 SPIR 2 0 18 0 0.1125

STIR 1 0 0 19 STIR 0 0 0 20 0.0256

•	Few confusions in the near-near condition. In the near-far 
condition, the predominant confusion is STIR → SIR.

•	The STIR → SIR confusion is resolved in the far-far condi-
tion in both the human and model confusion matrices.

Feature stream selection based on MPR of envelope

•	Again, predominant human confusions are well-reproduced 
by the model, but overall recognition rate is lower.

Human near-near MPR model near-near
φ²

SIR SKIR SPIR STIR SIR SKIR SPIR STIR

SIR 19 0 0 1 SIR 16 0 0 4 0.0514

SKIR 0 20 0 0 SKIR 0 19 0 1 0.0256

SPIR 0 1 18 1 SPIR 1 0 17 2 0.0590

STIR 0 0 0 20 STIR 1 1 1 17 0.0811

Human near-far MPR model near-far
φ²

SIR SKIR SPIR STIR SIR SKIR SPIR STIR

SIR 18 0 0 2 SIR 18 0 1 1 0.0333

SKIR 3 15 0 2 SKIR 3 17 0 0 0.0531

SPIR 7 2 10 1 SPIR 5 1 14 0 0.0583

STIR 8 1 1 10 STIR 8 3 0 9 0.0513

Human far-far MPR model far-far
φ²

SIR SKIR SPIR STIR SIR SKIR SPIR STIR

SIR 16 1 1 2 SIR 14 1 2 3 0.0167

SKIR 0 16 0 4 SKIR 2 16 0 2 0.0667

SPIR 2 1 14 3 SPIR 3 0 16 1 0.0583

STIR 1 0 0 19 STIR 0 0 0 20 0.0256

Conclusions
•	The model gives a good match to the pattern of confusions 

in the human perceptual compensation data.

•	The ‘oracle’ and fully-autonomous models give similar con-
fusion patterns, although the overall word recognition rate 
is lower for the latter.
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