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Abstract

We describe a technique for robust recognition of
reverberated speech using the ‘missing data’ paradigm.
Modulation filtering is used to identify time-frequency
regions of the speech signal which are relatively
uncontaminated by reverberation and contain strong
speech energy; only these ‘reliable’ acoustic features are
made directly available to the recogniser. The proposed
system is evaluated on a connected digit recognition task
using a range of reverberation conditions. Our approach
improves recognition performance when the T60
reverberation time is longer than 0.7 sec., relative to a
baseline system which uses acoustic features derived
from perceptual linear prediction and the modulation
filtered spectrogram.

1. Introduction

Much progress has been made in the field of automatic
speech recognition (ASR) in recent years, but significant
problems still remain; in particular, the performance of
ASR systems is far below that of human listeners when
speech is presented in noisy or reverberant conditions
(see [7] for a review). 

Cooke et al. [1] note that human speech perception is
robust even when speech is band limited or partially
masked by noise. Accordingly, they propose a missing
data approach to ASR, in which a hidden Markov model
(HMM) classifier is adapted to deal with acoustic
features which are known to be missing or unreliable.
However, the missing data approach was conceived as a
way of handling additive noise in ASR; as a result, little
consideration has been given to its ability to handle
convolutional interference, such as reverberation. In this
paper, we propose a number of modifications to a missing
data ASR system which allow it to perform robustly in
the presence of reverberation.

A typical room impulse response consists of two
components. Initially, sparse early reflections occur
which are highly correlated with the speech signal. These
may spectrally distort the speech, because the absorptive
properties of room surfaces tend to vary with frequency.
Following this, higher-order reflections produce dense

late reverberation, which is poorly correlated with the
speech signal and therefore behaves more like additive
noise. The speech spectrum is also shaped by the eigen-
modes of the room, which emphasize some frequencies
in preference to others. Hence, the missing data approach
can be applied in reverberant conditions as follows; we
use conventional missing data techniques to handle late
reverberation (since it resembles additive noise) and
employ spectral normalisation to deal with the distortion
caused by early reflections and eigenmodes of the room.

Conventional approaches to robust ASR in the
presence of reverberation either perform dereverberation
using multiple microphones or employ robust acoustic
features. Such features include mel-frequency cepstral
coefficients (MFCC) with cepstral mean subtraction [2],
cepstral coefficients obtained by perceptual linear
prediction (PLP) [3], and modulation spectrogram
(MSG) features [5], [6]. The latter have proven to be
particularly effective. 

A schematic diagram of our proposed system is
shown in Fig. 1. In the remainder of this paper, we review
the missing data approach to ASR in Section 2 and
describe a system for reverberation processing in Section
3. Our approach is evaluated in Section 4 using a number
of reverberant conditions, and is compared against a
system which uses MSG and PLP features [5], [6]. The
paper concludes with a discussion in Section 5.

2. Speech recognition with missing features

2.1. Acoustic features

The missing data approach to ASR requires that regions
of the time-frequency plane are labelled as reliable or
unreliable evidence of the speech source. Accordingly,
the recogniser used here employs spectral features
derived from an auditory model, rather than conventional
features for ASR such as cepstral coefficients. 

Here, spectral features are derived from a model of
cochlear frequency analysis, consisting of an array of 32
bandpass ‘gammatone’ filters. The centre frequencies of
the filters were spaced uniformly between 50 Hz and
3850 Hz on the equivalent rectangular bandwidth (ERB)
scale (see [1]). The instantaneous Hilbert envelope is



computed at the output of each filter, and smoothed by a
first-order lowpass filter , with a
chosen to give a time constant of 8 ms. The smoothed
envelope is sampled at 10 ms intervals and compressed
by raising to the power 0.3 to give a rate map, which may
be regarded as a crude simulation of auditory nerve firing
rate. Henceforth, we denote the rate map by where
i indexes the time frame and j is the frequency channel.

2.2. Missing data speech recognition

In ASR, classification is usually performed by finding a
class of speech sound C which maximises ,
where Y is an observed acoustic vector. However, the
likelihood cannot be computed if some elements
of Y are known to be missing or unreliable. In the missing
data approach, this problem is addressed by partitioning
Y into reliable and unreliable components, YR and YU.
The reliable components are directly available to the
recogniser via the marginal distribution .
Furthermore, the unreliable components are often known
to lie within certain bounds; this additional constraint is
exploited by integrating over the range of possible
values. This technique is known as ‘bounded
marginalisation’ [1]. Here, Y is a vector of simulated
auditory nerve firing rates: hence the lower bound of YU
is zero and the upper bound is the observed firing rate.

In practice, a time-frequency mask  is used to
indicate whether the spectral feature j at time frame i is
reliable. Here, mask values are taken to be 0 or 1, so that
a binary judgment is made as to whether the acoustic
evidence is reliable or unreliable. 

3. Reverberation processing

3.1. Reverberation mask estimation

For reverberant conditions, we estimate a missing data
mask in which reliable elements correspond to features
that contain strong speech energy, and are relatively
unaffected by reverberation. Regions containing strong
speech energy are identified by a finite impulse response
(FIR) modulation filter of the form

(1)

where is a linear phase lowpass component and 
is a differentiator. The symbol 

 

⊗ denotes convolution
and the time index n is measured in frames. The lowpass
filter was designed using the MATLAB fir2 command

[8], and is intended to detect and smooth modulations in
the speech range. The differentiator emphasizes abrupt
onsets, which are likely to correspond to direct sound and
early reflections. Overall,  has a passband between
3dB cutoff frequencies of 2 Hz and 13 Hz, which is in
agreement with the range of modulation frequencies
known to be important for speech perception [4]. 

The modulation filter is applied to each channel j of
the rate map , giving a filtered rate map :

(2)

Following this, a threshold is applied to the modulation-
filtered rate map in order to produce a binary mask:

(3)

Note that filtering by  introduces a delay, which
causes the mask  and rate map  to become
misaligned. We compensate for this by shifting the mask
backwards in time by an amount corresponding to the
delay at which  reaches its peak value. 

The value of the threshold  should depend upon
the degree to which the speech is reverberated. In our
previous study [9],  was hand-tuned to different
reverberation conditions; however, we now estimate it
directly from an utterance. Specifically,  is set
according to a ‘blurredness’ metric, which exploits the
fact that reverberation tends to smooth the rate map by
filling the gaps between speech activity with energy
originating from reflections. Blurredness B is given by

(4)

where N = 32 is the number of frequency channels and M
is the number of time frames in the rate map. In practice,
it is desirable for the threshold to depend not only on B,
but also on the mean value over time in each channel of
the modulation-filtered rate map. Hence, we compute an
average firing rate  for each channel j according to:

(5)
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Figure 1: Schematic diagram of the speech recognition system. 
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Note that the minimum value in each channel is
subtracted in order to remove any negative values arising
from application of the modulation filter in Eqn. (2).

Finally, the threshold  is set according to a
sigmoidal function of and B,

(6)

where 

 

γ = 16 is the slope, 

 

δ = 0.42 is the centre point and

 

λ = 1.3 determines the width of the sigmoid. Note that the
sigmoidal form of Eqn. (6) allows  to saturate at high
blurredness values (i.e., long reverberation times).

3.2. Spectral normalisation

In order to compensate for convolutional distortion,
spectral features are usually normalised by the mean and
variance in each frequency band (for example, see [6]). A
potential problem with this approach is that clean regions
of an utterance may be normalised by a mean and
variance that are computed when both speech and noise
are present. This is very problematic for missing data
ASR, because reliable features presented to the
recogniser must be scaled in the same way as the clean
speech features used for training. 

Here, we derive a normalisation factor from the L
largest reliable features in each frequency channel.
Scaling based on these regions should minimise the
mismatch between (clean) training and (reverberated)
testing conditions, because the corresponding acoustic
features are likely to be relatively uncorrupted by
reverberation. Specifically, we compute a scaling factor

 as follows,

(7a)

(7b)

where  is a set containing the indices of the L largest
values of  in channel j. During training and
recognition, rate maps are normalised by dividing each
channel j by . Note that in the training case,

 for all i and j, i.e. .
Generally, we set L to , where M is the number

of time frames in the rate map and D is a constant whose
value is tuned empirically (we use D=5). However, if
channel j does not contain any speech-dominated
features, i.e. when , the scaling factor  is
interpolated from adjacent channels (or extrapolated in
the case of the lowest and highest frequency channels).

4. Evaluation

4.1. Missing data recogniser

We evaluated the proposed missing data ASR system on
a subset of the Aurora 2 connected digit corpus [10]. Rate
maps and their first-order deltas were computed for the

clean training section of the Aurora corpus, and were
used to train 12 word-level HMMs (a silence model, ‘oh’,
‘zero’ and ‘1’ to ‘9’), each consisting of 16 no-skip,
straight-through states with observations modelled by a
seven component diagonal Gaussian mixture. The test set
consisted of 1001 utterances drawn from the clean1 test
set of the Aurora corpus. All speech data was sampled at
a rate of 8 kHz. 

4.2. Missing data recogniser with a priori masks

An upper bound on the performance of the missing data
approach can be obtained by considering its performance
when given a priori information about the reliability of
acoustic features. Specifically, we define an a priori
mask as follows:

(8)

Here, and  represent the rate maps for the
reverberated and dry (unreverberated) utterances
respectively: note that these are computed without the
compression described in Section 2.1. The threshold 
was tuned to give optimal performance for each
reverberation condition. 

4.3. Baseline HMM-MLP system

For comparison, we also re-implemented Kingsbury’s
hybrid HMM-MLP (hidden Markov model multi-layer
perceptron) recogniser and evaluated it on the Aurora
corpus (see [5], pages 148-152). His system combines
likelihood estimates from two kinds of reverberation-
robust features; cepstral coefficients (plus their deltas and
double deltas) obtained by PLP, together with MSG
features. 

Kingsbury’s system was implemented using the
STRUT speech recognition toolkit [11]. Acoustic models
for 23 phonemes, silence and unknown (required by
STRUT) were obtained from the training part of the
Aurora corpus. Durational information was included in
the HMM model for each phone by setting the number of
states to be proportional to the average duration of the
phone, computed from the training set (see page 45 of [5]
for details). 

4.4. Results

Test utterances were reverberated by convolving them
with six different room impulse responses. Four of these
were used by Kingsbury [5], and were recorded in a
varechoic chamber with two different configurations of
the wall panels. In one configuration the T60
reverberation time was 0.7 sec. and the distances between
the source and microphone were 2.35 m and 3.05 m. In
the second configuration, the T60 was 1.2 sec. and the
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source-microphone distances were 2.0 m and 3.05 m. A
further two impulse responses (not used by Kingsbury)
were recorded in a larger room, with a T60 of 1.5 sec. and
source-microphone distances of 6.1 m and 18.3 m.

The results shown in Table 1 indicate that the
proposed missing data system outperforms Kingsbury’s
hybrid recogniser in the most reverberant test cases.
However, the performance of the hybrid recogniser using
MSG and PLP features was better than that of the missing
data system for the shortest T60 condition, and when no
reverberation was present. We also note that the missing
data approach is very robust when reliable regions are
known a priori. Further improvements to the mask
estimation process could yield recognition performance
that approaches this theoretical upper limit. 

5. Discussion and conclusions

The reverberation masking technique proposed here has
some parallels with the modulation spectrogram (MSG)
[5], since both exploit modulation frequencies in the
speech range. However, we believe that our approach has
some advantages. Robust acoustic features such as MSG
represent a compromise; they are intended to work in a
wide variety of acoustic environments, but in any
particular environment their performance may not be
optimal. In contrast, our algorithm can be adapted
quickly to different acoustic environments by changing
the mask estimation rule. It may therefore offer
advantages for ASR in mobile devices. 

In practice, the baseline HMM-MLP system
outperformed our missing data system in the least
reverberated conditions. This may be because our method
of estimating the amount of reverberation present in a
speech sample is not sufficiently sensitive to distinguish
between anechoic and mildly reverberant conditions. In
the most reverberant cases, however, the missing data
approach has a clear advantage over the baseline system. 

Furthermore, our experiments with a priori masks
suggest that there is considerable potential for further
development of the missing data technique. Our future
work will focus on improving the mask estimation
process, with the expectation that this will yield a
performance closer to that obtained with a priori masks.
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 T60 and Source-
Receiver Distance

HMM-
MLP

MD-AP MD-RM

1.5 sec., 18.3 m 59.8 88.5 63.2

1.5 sec., 6.1 m 64.0 92.4 67.6

1.2 sec., 3.05 m 69.5 88.5 75.6

1.2 sec., 2.0 m 71.5 89.9 77.6

0.7 sec., 3.05 m 93.5 94.2 91.9

0.7 sec., 2.35 m 95.1 95.0 93.0

Unreverberated 98.5 97.5 97.0

Table 1: Recognition accuracy (percent) for seven
reverberation conditions. Results are shown for the
baseline system (HMM-MLP), missing data recogniser
with a priori masks (MD-AP) and missing data with the
proposed reverberation masking scheme (MD-RM).


