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Overview 

•  Summary of modelling results on AI corpus 
–  Issues with May system 
–  Matched training and semi-forced alignment 
–  Problems with modelling confusions 
–  Template-based recognition using “frozen” speech 

•  Speech recognition experiments using the L-shaped room 
–  MFCC baseline 
–  FDLP 
–  Reconstructed of reverberation-corrupted regions using 

missing data imputation (Kalle) 
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Modelling listener performance in 
Amy’s AI corpus study 
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Aims 

•  Aim to develop a ‘perceptual constancy’ front-end for 
automatic speech recognition (ASR). 

•  Should be compatible with Tony’s findings but also validated 
on a ‘real world’ ASR task. 
–  wider vocabulary 
–  range of reverberation conditions 
–  variety of speech contexts 
–  naturalistic speech 
–  consider phonetic confusions in reverberation in general 

•  Initial ASR studies using articulation index corpus 
•  Compare human performance (Amy experiment) and machine 

performance on same task 
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Initial work (May meeting) 

•  HMM-based phone recogniser  
–  implemented in HTK 
–  monophone models 
–  adapted from scripts by Tony Robinson/Dan Ellis 

•  Bootstrapped by training on TIMIT then further 10-12 iterations 
of embedded training on AI corpus 

•  Good performance on ‘clean’ test signals, but 

–  Mismatch between clean training data and the test signals, 
which are near (0.32m) reverberated, low-pass filtered to 
4kHz and have headphone correction applied 

–  High error (~40%) even in near-near condition  
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Matched training and semiforced alignment 

•  Training data for the ASR system is now matched to test 
conditions: 
–  Low pass filtered to 4kHz 
–  Reverberated with near (0.32m) impulse response 
–  Headphone correction filter applied 
–  Error cut by half (now ~20%) 

•  Semi-forced alignment is also used 
–  Errors in recognition of context words had knock-on effect 

on recognition of test words 
–  Now use semi-forced alignment in which ASR system 

knows the context words for each utterance and must only 
identify the test word 
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Evaluation metrics 

•  Model performance expressed in terms of 
–  Percentage test words correct 
–  1-RIT  

•  Relative information transmitted (RIT) is an information-
theoretic metric that reflects the distribution of errors in the 
confusion matrix: 

RIT = H(X:Y)/H(X) 
•  H(X:Y) is the average mutual information of the input X and 

output Y, and H(X) is the average self-information (entropy) of 
the input 
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Human performance vs. baseline ASR 
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Auditory model with efferent circuit 

•  Simplified 
version of Amy’s 
model in which 
efferent 
attenuation is 
manually tuned 

•  Full model 
involves a 
feedback loop in 
which efferent 
attenuation 
depends on 
dynamic range 
of AN response 
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Model performance in Amy’s test 
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But … pattern of confusions is different 
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Some thoughts 

•  For human listeners: 
–  Predominant confusions are STIR->SIR, SPUR->SIR 
–  a far context generally reduces confusions (particularly 

STIR->SIR) 
•  For the model: 

–  Predominant confusion is SIR->SKUR 
–  A far context reduces SIR->SKUR confusions but does not 

substantially improve identification of the consonant 
•  How to get a closer match to listener confusion patterns? 

–  Gender-dependent or speaker-dependent models 
–  Discriminative training 
–  Simpler recogniser that uses “frozen speech” 
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Possible approach – “frozen speech” 

•  The Oldenburg group1,2 have obtained a reasonable match to 
listener confusions by using “frozen speech” (testing on the 
training set) and a Euclidean distance metric. 

•  Quick test using our corpus: 
–  Auditory spectrograms derived from 40-channel 

gammatone filterbank output, 10ms frame rate, cube root 
compression 

–  Test word templates excised from all 80 of Amy’s subset of 
the AI corpus 

–  Matching using Euclidean distance 

 1 Holube, I., and Kollmeier, B. (1996) J. Acoust. Soc. Am. 100, 1703–1716. 
 2 T. Jürgens, T. Brand (2009) J. Acoust. Soc. Am. 126 (5), pp. 2635-2648.   
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Template matching with “frozen speech” 

•  Gives a better match to listener’s confusions (mostly -> SIR, 
although confusion rate much higher than listeners) 

•  Need to try this template-matching approach with Amy’s 
complete model 

•  Matching metric can incorporate a weight for each frequency 
region, can be optimised to fit confusions (using GA) 
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SIR SKUR SPUR STIR 

SIR 20 0 0 0 

SKUR 1 19 0 0 

SPUR 0 0 20 0 

STIR 1 0 0 19 

SIR SKUR SPUR STIR 

SIR 20 0 0 0 

SKUR 13 4 3 0 

SPUR 6 0 14 0 

STIR 11 1 1 7 

near-near near-far 



Comparison of ASR approaches on all 
L-shaped room conditions 
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Motivation 

•  Our eventual aim is to demonstrate a perceptual constancy 
front-end on a realistic ASR task 

•  Currently using the following task: 
–  Amy’s subset of the AI corpus, but scoring context words 

and test words (320 words in test set) 
–  All distances from L-shaped room 

•  Implemented two baseline systems for comparison: 
–  MFCC 
–  FDLP 

•  Also work (with Kalle) on using missing data techniques to 
reconstruct ‘unreliable’ time-frequency regions from 
statistical models of speech 
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MFCC baseline 

•  Conventional mel-frequency cepstral coefficient front-end 
–  Mel-scaled log filterbank (100Hz to 8kHz) 
–  Discrete cosine transform (12 coefficients) 

•  First and second order temporal differences (deltas and 
accelerations) 

•  No cepstral mean subtraction (will do this shortly) 

17 



Frequency domain linear prediction (FDLP) 

•  Frequency domain linear prediction (FDLP) as described by 
Thomas, Ganapathy and Hermansky: 

–  Linear prediction on a long window of DCT coefficients in 
order to derive an all-pole model of 96 sub-band temporal 
envelopes 

–  Gain normalisation of the sub-band FDLP envelopes 

–  Conversion to short-term cepstral features with 10ms 
frame rate 

–  Deltas and accelerations 

•  Got similar results from my own code and from code kindly 
supplied by Sriram Ganapathy (results shown for latter). 
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Imputation using statistical models (Kalle) 
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Imputation – details 

•  Imputation via clustering method proposed by Raj, Seltzer and 
Stern (Speech Communication 43, 275-296) 

–  10-component Gaussian mixture model (speech prior) 
trained using 2000 utterances from training set of AI 
corpus 

–  Missing features are estimated from the statistics of the 
speech prior and the reliable features for each analysis 
frame 

–  If the estimated values exceed the observed bounds, then 
the value is forced to the bounded value 
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ASR results 

•  FDLP better than 
MFCC in every 
condition except 
dry (not by much) 

•  Imputation should 
be turned off in dry 

•  Imputation gives 
largest benefit at 
large source-
receiver distance 

•  Imputation with a 
priori mask shows 
performance limit 
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Planned work 

•  Focus on improving the match between listener confusions 
and model confusions 
–  Improvements needed to recogniser architecture and 

matching metric 
–  Complete study on modelling Amy’s experimental data 

•  Compare within-band vs. across-band approaches to mask 
estimation for the imputation approach 

•  Incorporate more temporal context in imputation approach 
(currently using single frames) 

•  Could the imputation approach be applied to modelling Amy’s 
experimental data? 
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Imputation as a model of perceptual 
compensation (Kalle) 

•  Could missing data imputation be used to model Tony’s sir/stir 
data and also the data from Amy’s experiment? 

•  Proposed scheme: 
–  Use measure of context reverberation to determine 

threshold for missing data mask 
–  ‘near’ context, little evidence for reverberation tails that 

need to be reconstructed in the test word region -> SIR 
–  ‘far’ context, reverberation tails in test word region are 

marked as unreliable in the mask and reconstructed -> 
STIR 

•  Does imputation reconstruct a ‘stir’ from the speech model? 
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Reconstructed sir/stir step 1 (Kalle) 
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Reconstructed sir/stir step 8 (Kalle) 
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Reconstructed sir/stir step 11 (Kalle) 
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Comments? 
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