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Abstract
Recent psychophysical studies suggest that human listeners do
not segregate concurrent sounds by grouping frequency regions
that have a common interaural time difference (ITD). However,
such an approach is adopted by most computational auditory
scene analysis (CASA) systems that use binaural cues. Here,
we propose a CASA system that separates a target speech sig-
nal from a noise interferer, but does not require the ITD of the
two sources to be consistent across frequency. We compare
the CASA system with human performance on the same task,
in which the speech reception threshold (SRT) is measured for
speech and noise stimuli which have consistent or inconsistent
ITDs in different frequency bands. The CASA system is shown
to be in qualitative agreement with human performance.

1. Introduction
It is well known that listeners are better able to recognise speech
in the presence of a noise masker if the speech and noise orig-
inate from different locations in space. This observation has
motivated a number of computational auditory scene analysis
(CASA) systems, which use binaural cues to segregate a target
speech signal from spatially separated noise [1], [2], [3].

An assumption made by these computational systems is
that listeners segregate sound sources by grouping frequency re-
gions which share a common interaural time difference (ITD).
However, psychophysical studies suggest that human listeners
do not adopt this strategy when segregating concurrent sounds.
A recent illustration of this is provided by Edmonds [4]. In his
experiment, target speech and an interfering sound were split
into high and low frequency bands and presented in three ITD
configurations (‘same’, ‘consistent’ and ‘swapped’), as shown
in Fig. 1. Using a speech reception threshold (SRT) test, Ed-
monds confirmed that speech intellibility was improved in the
‘consistent’ condition compared to the ‘same’ condition. How-
ever, he found no difference in intelligibility between the ‘con-
sistent’ and ‘swapped’ conditions. This result is incompatible
with a mechanism based on grouping by common ITD, which
should fail badly in the ‘swapped’ condition due to inappropri-
ate grouping of speech and interferer bands that share the same
ITD. It therefore appears that listeners can exploit a difference
in ITD between speech and noise, but it is not necessary for this
difference to be consistent across frequency.

An accurate model of human performance should be able
to replicate Edmonds’ findings, but as already noted the major-
ity of binaural CASA systems do not. Here, we address this
deficiency by proposing a CASA system which exploits the dif-
ference in ITD between a target speech source and noise inter-
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Figure 1: Schematic of Edmonds’ swapped ITD experiment
(adapted from Figure 3.8 in [4]). The target and interferer are
split into two frequency bands and presented with the same ITD,
consistent ITD at opposite sides, or swapped ITD at opposite
sides. The splitting frequency is denoted by a dotted line.

ferer in independent frequency bands. The system is based on
the ‘missing data’ framework for automatic speech recognition
(ASR), and we evaluate the system by using it as a ‘subject’ in
Edmonds’ SRT test.

2. Perceptual experiment
In order to compare our system directly with psychophysical
findings, we first replicate Edmonds’ SRT experiment using
speech data which is more suited to our ASR system (i.e., we
use spoken digits rather than the Harvard Sentence List usedby
Edmonds [4]).

2.1. Corpus

The utterances employed in the SRT test were selected from the
test set of the TiDigits connected digits corpus [5] according to
a number of criteria, which aimed to ensure that all trials would
be of equal difficulty. Firstly, the number of syllables in each
utterance was balanced by selecting only those four digit utter-
ances for which each digit contained a single syllable. Hence
the digits ‘oh’, ‘one’ to ‘six’, ‘eight’ and ‘nine’ were used, and
‘zero’ and ‘seven’ were omitted. The suitability of monosyl-
labic digits for estimating the SRT has previously been verified
by Ramkissoonet al. [6]. All utterances were verified for ap-
proximately equal intelligibility by informal listening tests con-
ducted by the authors. Talkers were drawn from a limited num-
ber of accent groups, and those with atypical accents or whose
speech exhibited large variations in pitch or intensity were ex-
cluded. The sampling rate of the speech signals was 20 kHz.



Speech-shaped noise was generated by passing Gaussian
noise through a FIR filter. The filter was designed to have the
same magnitude response as the long-term spectrum of the se-
lected TiDigits utterances.

2.2. Method

Twelve native English speaking subjects, all of whom reported
normal hearing, participated in a replication of Edmond’s SRT
experiment using spoken digits. From the speech material de-
scribed above, 6 lists were constructed for the SRT test, each of
which contained 19 utterances. Within each list, the utterances
originated from 19 different speakers and the order of speakers
was held constant across the lists. Four additional lists of9 ut-
terances were constructed for familiarising the subjects with the
test procedure. All utterances were presented only once to each
subject to prevent memorisation of the speech material.

Experiments were conducted with a subset of the stimuli
used by Edmonds [4]. The target speech signal and speech-
shaped noise were split into two frequency bands, with splitting
frequencies at 750 Hz or 1500 Hz (see Fig. 1). The two bands
were separated by a gap of one ERB, centered on the splitting
frequency.

Three configurations of the speech and noise were used. In
the ‘same’ configuration, the speech and noise were presented
with an ITD of+500µs (i.e., to the right side of the head). In the
‘consistent’ configuration, the speech and noise were presented
on different sides of the head, with ITDs of+500µs and−500
µs respectively. Finally, in the ‘swapped’ configuration thelow
frequency band of the speech and the high frequency band of
the noise were presented with an ITD of+500µs, and the low
frequency band of the noise and the high frequency band of the
speech were presented with an ITD of−500µs.

The three ITD configurations and two splitting frequencies
gave a total of six experimental conditions. Since the noise
masker was not identical in all conditions, it was not possible
to balance the difficulty of different utterance lists by adjusting
the initial noise level. Instead, the sequence of experimental
conditions (which was initially chosen randomly) was rotated
for each listener [4]. To achieve this, the 12 subjects were di-
vided into two groups of six, in order to match them with six
experimental conditions and six utterance lists. Each subject
heard the utterance lists in the same order, but the experimental
conditions were rotated so that subject 1 in each group heard
condition 1 first, subject 2 in each group heard condition 2 first,
and so on.

In all tests, the noise was presented at a constant level of 70
dB SPL. Prior to the SRT test for each experimental condition,
the speech was initially presented at a level at which it was com-
pletely masked by the noise (the corresponding SNR was−26
dB). The level of the speech was then incremented in steps of
4 dB until the subject achieved 50% recognition accuracy. This
procedure was repeated for two different utterances, and the av-
erage SNR obtained on the two attempts was used as a starting
point for the SRT test.

In the SRT test itself, the level of the speech was adjusted
adaptively using a 1 up/ 1 down tracking procedure [7]. If
subjects achieved a recognition accuracy of 75% then the level
of the next utterance was reduced by 2 dB, otherwise the levelof
the speech was increased by 2 dB. The SRT for each subject and
experimental condition was achieved by averaging the SNRs
obtained after each level adjustment, with the exclusion ofthe
one originating from the initial level calibration.

The experiments were performed in an IAC single-walled

soundproof room. Stimuli were presented to subjects via a
Tucker-Davis RP 2.1 headphone driver and Sennheiser HD 580
headphones. Subject’s responses were collected via a comput-
erised test procedure. No corrections or replications wereal-
lowed once the subject had answered by typing on a computer
keyboard. Before the actual SRT tests, subjects practised the
test procedure over four lists of nine utterances, in which the
speech and noise were presented diotically without ERB gaps.

2.3. Results

Data from the psychoacoustic test were analysed using repeated
measures ANOVA with a two-way design. Effects of ITD con-
dition (same, consistent or swapped) and splitting frequency
(750 Hz or 1500 Hz) were investigated. The ITD condition had
a statistically significant effect on the SRT (F[2, 22]= 359.91;P
< 0.001), whereas the effects of splitting frequency and the in-
teraction between ITD condition and splitting frequency were
nonsignificant (P = n.s.). Tukey HSD Post hoc analyses for
the ITD condition revealed statistically significant differences
in all comparisons (P< 0.001), where the SRTs were−16.6 dB
(SEM 0.29 dB) for consistent ITD,−15.4 dB (SEM 0.16 dB)
for swapped ITD, and−9.9 dB (SEM 0.20) for same ITD.

Edmonds [4] did not find a significant difference between
the swapped and consistent ITD conditions, as we do here.
Since our test procedures were essentially the same, it is pos-
sible that our experiment was more discriminative because of
differences in the subjects and speech material that were used.
However, we confirm the key finding from Edmonds’ experi-
ment: listeners gain a substantial benefit from a difference in
ITD between the speech and the noise, regardless of whether
the ITD is consistent over frequency or not.

3. Computational model

The computational model consists of three stages; peripheral
frequency analysis, selection of acoustic features using binaural
and fundamental frequency (F0) cues, and speech recognition
by a ‘missing data’ ASR system.

3.1. Missing data recognition

The automatic speech recognition component of the model
utilises the ‘missing data’ technique with bounded marginali-
sation [8]. In this approach, acoustic features are treateddiffer-
ently during decoding depending on whether they are labelled
as reliable or unreliable evidence for the target speech source.
In practice, the recogniser is supplied with acoustic features and
a binary mask, in which values of zero and one indicate unre-
liable and reliable features respectively. Here, acousticfeatures
are provided by a model of the auditory periphery, and the mask
is determined by binaural cancellation and monaural F0-based
grouping.

Acoustic features were computed for the training section
of the TiDigits corpus [5], and used to train a silence model
and eleven word-level hidden Markov models (HMMs) as in
our previous study [3]. The models for ‘zero’ and ‘seven’
were not used during testing. Each HMM consisted of 8 no-
skip, straight-through states with observations modelledby a
10-component diagonal covariance Gaussian mixture. All mod-
els were trained on clean speech.



3.2. Peripheral model

Peripheral auditory processing is modelled by two banks of
bandpass ‘gammatone’ filters. For each ear,N = 32 filters are
used, with centre frequencies uniformly spaced between 50 Hz
and 8 kHz on an ERB-rate scale. To provide acoustic features
for the recogniser, the instantaneous Hilbert envelope is com-
puted at the output of each filter, and smoothed by a first-order
lowpass filter with a time constant of 8 ms. The smoothed en-
velope is then sampled at 10 ms intervals and compressed by
raising it to the power of 0.3.

For subsequent computation of F0 and binaural cues, a
crude simulation of auditory nerve (AN) activity is also ob-
tained from each filter by half-wave rectifying its output. Here,
we denote the AN activity for the left and right ears asaL(t, f )
andaR(t, f ) respectively, wheret indexes time andf is the fre-
quency channel.

3.3. Mask estimation

The mask for missing data ASR is estimated using a combina-
tion of two approaches. Firstly, a difference in ITD between the
speech and the noise is exploited by a binaural EC mechanism,
which estimates an ‘EC mask’ based on the amount of speech
energy present after cancellation of the noise background.Sec-
ondly, F0-based grouping is used to derive a ‘pitch mask’, in
which harmonics of the target speech signal are selected. Note
that in the consistent and swapped conditions of Edmonds’ ex-
periment, the model is able to exploit both ITD and F0 cues. In
the ‘same’ condition, no difference in ITD is present and hence
the model relies on F0-based grouping only.

The F0 of the speech signal is estimated by computing the
autocorrelation of the simulated auditory nerve response for
each frequency channel. The resulting ‘correlogram’ for each
eare ∈ {L,R} is given by

ac fe(n, f , τ1) =
T−1
∑

t=0

ae(n− t, f )ae(n− t − τ1, f )w(t) (1)

wheren indexes the time frame,τ1 is the autocorrelation lag and
w(t) is a rectangular window of width 20 ms (i.e.,T = 400 sam-
ples). A composite correlogram is then obtained by summing
over both ears,

ac f(n, f , τ1) =
∑

e∈{L,R}

ac fe(n, f , τ1) (2)

and a ‘summary’ correlogram is computed by pooling over all
frequency channels:

s(n, τ1) =
N
∑

f=1

ac f(n, f , τ1) (3)

The pitch periodp(n) corresponds to the lagτ1 at which the
highest peak occurs in the summary correlogram,

p(n) = argmax s(n, τ1)
τ1

(4)

For each framen, we determine whether a voice pitch is present
by applying a thresholdθv to s(n, p(n)). The latter is normalised
by the energy in the frame (i.e., the value of the summary cor-
relogram at zero lag). If the frame is unvoiced, then all elements
in the pitch maskmp(n, f ) for that frame are set to zero. Other-
wise, the mask element for channelf is set to one if the activity
in the corresponding correlogram channel exceeds a threshold
valueθp at the lagp(n):

mp(n, f ) =

{

1 if ŝ(n, p(n)) > θv ∧ ac f(n, f , p(n)) > θp

0 otherwise
(5)

ŝ(n, p(n)) = s(n, p(n))/s(n,0) (6)

On the basis of experiments with a small validation set, we set
θv = 0.75 andθp = 0.75.

Binaural signal detection is performed by equalisation-
cancellation [9]. In the equalisation stage, the left and right
binaural signals in each frequency band are equalised by divid-
ing by their r.m.s. values, computed over the analysis window
w(t). Cancellation is then performed on the equalised inputs
âL(t) andâR(t) by

ec f(n, f , τ2) =
T−1
∑

t=0

|âL(n− t, f ) − âR(n− t − τ2, f )|w(t) (7)

whereτ2 is the interaural delay. By analogy with the correlogam
described above, we refer toec f(n, f , τ2) as a ‘cancellogram’.
The ITD of the noise background is estimated by pooling the
cancellogram over the first ten frames of the acoustic signal, in
which it is known that there is no speech energy:

ec fnoise( f , τ2) =
10
∑

n=1

ec f(n, f , τ2) (8)

The ITD of the noise background is then determined separately
for each frequency channel as follows:

IT Dnoise( f ) = argmin ec fnoise( f , τ2)
τ2

(9)

The EC mask is then set to unity in those time-frequency regions
where the residue from cancellation at the delay of the noise
exceeds a threshold value, i.e.

mec(n, f ) =

{

1 if ec f(n, f , IT Dnoise( f )) > θec

0 otherwise (10)

The parameterθec was set to 25.0 (model units) by inspection.
Finally, the mask for the recogniserm(n, f ) is obtained by com-
bining the pitch maskmp(n, f ) and EC maskmec(n, f ) using
logical OR.

3.4. Across-channel processing

The above model employs a ‘within channel’ approach to noise
cancellation, in that the ITD of the noise is estimated for each
frequency channel independently. For comparison, we also con-
sider an ‘across channel’ approach which exploits the coherence
of ITD across frequency in order to segregate the target speech
from the background noise. As such, it is typical of a general
class of across-channel models including those of [2], [3].

The across-channel approach works as described above, ex-
cept that the interaural delay of the noise,IT Dnoise, is estimated
from a summary cancellogram given by

ec fnoise(τ2) =
10
∑

n=1

N
∑

f=1

ec f(n, f , τ2) (11)

The number of minima that lie below the mean ofec fnoise(τ2)
is determined. If one minimum is found (which would be ex-
pected in the ‘same’ condition of Edmonds’ experiment), then
IT Dnoise is set to the corresponding value ofτ2. If two min-
ima are located, thenIT Dnoise may be set to either of the corre-
sponding interaural delays depending on the experimental con-
dition. In the ‘consistent’ condition, the noise is associated with
a negative value ofτ2 (see Fig. 1). In the ‘swapped’ condi-
tion, the high-frequency and low-frequency parts of the noise
are associated with positive and negative values ofτ2 respec-
tively. Mask estimation then proceeds as above, except that
the criterion for setting a mask element to unity in (10) is
ec f(n, f , IT Dnoise) > θec, i.e. it is assumed that the noise has
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Figure 2: A. Human performance on the SRT test for the ‘same’ (�), ‘consistent’ (�) and ‘swapped’ (△) ITD conditions. Error bars
correspond to+/- one standard deviation.B. Performance of the within-channel EC model on the SRT test.Conditions are labelled as
in the previous figure.C. Performance of the across-channel EC model. Conditions are same (�), consistent (�), and swapped ITD
with selection of the negative lag (⊲) or positive lag (⊳) in the summary cancellogram.

the same ITD in all frequency channelsf .

3.5. Results

The MATLAB scripts used to run the SRT test described in Sect.
2.2 were slightly modified to enable the computational modelto
act as a ‘subject’ in the test. Specifically, acoustic features and a
mask were derived for the speech signal presented on each trial,
and these were decoded by the missing data recogniser. The
resulting transcription was scored in the same way as listeners
responses, and the SNR was adjusted adaptively as before.

Results are shown in Fig. 2. Overall, the digit recogni-
tion performance of the computational model is poorer than
that of human listeners, as indicated by its substantially higher
SRT. For example, in the baseline condition the model SRT is
about 15 dB greater than the human SRT. However, in terms of
relative performance in the three experimental conditions, the
within-channel EC model (panel B) provides a good match to
human data. Specifically, the within-channel EC model gains
the same SRT advantage from a difference in ITD between the
speech and noise, regardless of whether the ITDs are consistent
across frequency or swapped. The performance of the across-
channel EC model is shown in panel C of the figure. In the
swapped condition, the SRT was lower when the rightmost dip
in the summary cancellogram was selected rather than the left-
most dip (i.e., speech recognition performance was better when
the low-frequency part of the speech was selected as reliable
in the mask; see Fig. 1). However, the performance of the
across-channel EC model is seriously disrupted by swapping
the ITDs between frequency bands, and therefore does not cor-
rectly model human performance.

4. General discussion
We have shown that a binaural CASA system which exploits
within-channel differences in ITD between two sound sources
can qualitatively model psychophysical data relating to the per-
ception of spatially separated speech and noise mixtures. An
interesting feature of the proposed model is that it employsboth
cancellation (by ITD) and grouping (by F0) in order to estimate
a mask for a ‘missing data’ ASR system. A direct comparison
of human and machine performance was obtained by using the
CASA system as a ‘subject’ in the same computer-based SRT
test that was administered to human listeners.

Future work will assess the value of the proposed CASA

system as a tool for speech segregation, using a wider variety
of speech and noise mixtures that are spatialised using realistic
head-related transfer functions. We therefore aim to determine
whether a more accurate model of human processing can yield
improved performance in engineering applications.
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