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Abstract

Recent psychophysical studies suggest that human listeloer
not segregate concurrent sounds by grouping frequenaynegi
that have a common interaural timefdrence (ITD). However,
such an approach is adopted by most computational auditory
scene analysis (CASA) systems that use binaural cues. Here,
we propose a CASA system that separates a target speech sig-
nal from a noise interferer, but does not require the ITD ef th
two sources to be consistent across frequency. We compare
the CASA system with human performance on the same task,
in which the speech reception threshold (SRT) is measured fo
speech and noise stimuli which have consistent or incaist
ITDs in different frequency bands. The CASA system is shown
to be in qualitative agreement with human performance.

1. Introduction

Itis well known that listeners are better able to recognisesh

in the presence of a noise masker if the speech and noise orig-
inate from diferent locations in space. This observation has
motivated a number of computational auditory scene arslysi
(CASA) systems, which use binaural cues to segregate & targe
speech signal from spatially separated noise [1], [2], [3].

An assumption made by these computational systems is
that listeners segregate sound sources by grouping freguen
gions which share a common interaural tim&atience (ITD).
However, psychophysical studies suggest that human disten
do not adopt this strategy when segregating concurrentdsoun
A recent illustration of this is provided by Edmonds [4]. lish
experiment, target speech and an interfering sound weite spl
into high and low frequency bands and presented in three ITD
configurations (‘same’, ‘consistent’ and ‘swapped’), asvsh
in Fig. 1. Using a speech reception threshold (SRT) test, Ed-
monds confirmed that speech intellibility was improved ia th
‘consistent’ condition compared to the ‘same’ conditioraviH
ever, he found no dfierence in intelligibility between the ‘con-
sistent’ and ‘swapped’ conditions. This result is inconitgat
with a mechanism based on grouping by common ITD, which
should fail badly in the ‘swapped’ condition due to inappiep
ate grouping of speech and interferer bands that share e sa
ITD. It therefore appears that listeners can exploitfeedénce
in ITD between speech and noise, but it is not necessaryifor th
difference to be consistent across frequency.

An accurate model of human performance should be able
to replicate Edmonds’ findings, but as already noted the majo
ity of binaural CASA systems do not. Here, we address this
deficiency by proposing a CASA system which exploits the dif-
ference in ITD between a target speech source and noise inter
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Figure 1: Schematic of Edmonds’ swapped ITD experiment
(adapted from Figure 3.8 in [4]). The target and interfemer a
splitinto two frequency bands and presented with the sarbe IT
consistent ITD at opposite sides, or swapped ITD at opposite
sides. The splitting frequency is denoted by a dotted line.

ferer in independent frequency bands. The system is based on
the ‘missing data’ framework for automatic speech recagmit
(ASR), and we evaluate the system by using it as a ‘subject’ in
Edmonds’ SRT test.

2. Perceptual experiment

In order to compare our system directly with psychophysical
findings, we first replicate Edmonds’ SRT experiment using
speech data which is more suited to our ASR system (i.e., we
use spoken digits rather than the Harvard Sentence Listhysed
Edmonds [4]).

2.1. Corpus

The utterances employed in the SRT test were selected frem th
test set of the TiDigits connected digits corpus [5] acangdd

a number of criteria, which aimed to ensure that all trialsildo

be of equal diiculty. Firstly, the number of syllables in each
utterance was balanced by selecting only those four ditgt-ut
ances for which each digit contained a single syllable. ldenc
the digits ‘oh’, ‘one’ to ‘six’, ‘eight’ and ‘nine’ were usedand
‘zero’ and ‘seven’ were omitted. The suitability of monosyl
labic digits for estimating the SRT has previously beenfiesti

by Ramkissooret al. [6]. All utterances were verified for ap-
proximately equal intelligibility by informal listeningests con-
ducted by the authors. Talkers were drawn from a limited num-
ber of accent groups, and those with atypical accents orevhos
speech exhibited large variations in pitch or intensity evex-
cluded. The sampling rate of the speech signals was 20 kHz.



Speech-shaped noise was generated by passing Gaussiansoundproof room. Stimuli were presented to subjects via a

noise through a FIR filter. The filter was designed to have the

same magnitude response as the long-term spectrum of the se-

lected TiDigits utterances.

2.2. Method

Twelve native English speaking subjects, all of whom regmbrt
normal hearing, participated in a replication of Edmond®TS
experiment using spoken digits. From the speech material de
scribed above, 6 lists were constructed for the SRT tesh efac
which contained 19 utterances. Within each list, the utieza
originated from 19 dferent speakers and the order of speakers
was held constant across the lists. Four additional lis& wf
terances were constructed for familiarising the subjedts tive

test procedure. All utterances were presented only oncado e
subject to prevent memorisation of the speech material.

Experiments were conducted with a subset of the stimuli
used by Edmonds [4]. The target speech signal and speech-
shaped noise were split into two frequency bands, withtspit
frequencies at 750 Hz or 1500 Hz (see Fig. 1). The two bands
were separated by a gap of one ERB, centered on the splitting
frequency.

Three configurations of the speech and noise were used. In
the ‘same’ configuration, the speech and noise were prakente
with an ITD of+500us (i.e., to the right side of the head). In the
‘consistent’ configuration, the speech and noise were ptede
on different sides of the head, with ITDs €500 us and—500
us respectively. Finally, in the ‘swapped’ configuration tbe
frequency band of the speech and the high frequency band of
the noise were presented with an ITD-600us, and the low
frequency band of the noise and the high frequency band of the
speech were presented with an ITD-&00us.

The three ITD configurations and two splitting frequencies
gave a total of six experimental conditions. Since the noise
masker was not identical in all conditions, it was not pdssib
to balance the diculty of different utterance lists by adjusting
the initial noise level. Instead, the sequence of experiaien
conditions (which was initially chosen randomly) was retht
for each listener [4]. To achieve this, the 12 subjects wére d
vided into two groups of six, in order to match them with six
experimental conditions and six utterance lists. Eachesbj
heard the utterance lists in the same order, but the expetaine
conditions were rotated so that subject 1 in each group heard
condition 1 first, subject 2 in each group heard condition<2,fir
and so on.

In all tests, the noise was presented at a constant level of 70
dB SPL. Prior to the SRT test for each experimental condition
the speech was initially presented at a level at which it veas-c
pletely masked by the noise (the corresponding SNR w2
dB). The level of the speech was then incremented in steps of
4 dB until the subject achieved 50% recognition accuracys Th
procedure was repeated for twdfdrent utterances, and the av-
erage SNR obtained on the two attempts was used as a starting
point for the SRT test.

In the SRT test itself, the level of the speech was adjusted
adaptively using a 1 up 1 down tracking procedure [7]. If
subjects achieved a recognition accuracy of 75% then the lev
of the next utterance was reduced by 2 dB, otherwise the ddével
the speech was increased by 2 dB. The SRT for each subject and
experimental condition was achieved by averaging the SNRs
obtained after each level adjustment, with the exclusiothef
one originating from the initial level calibration.

The experiments were performed in an IAC single-walled

Tucker-Davis RP 2.1 headphone driver and Sennheiser HD 580
headphones. Subject’s responses were collected via a tompu
erised test procedure. No corrections or replications vaére
lowed once the subject had answered by typing on a computer
keyboard. Before the actual SRT tests, subjects practised t
test procedure over four lists of nine utterances, in whiah t
speech and noise were presented diotically without ERB.gaps

2.3. Results

Data from the psychoacoustic test were analysed usingtexpea
measures ANOVA with a two-way designffects of ITD con-
dition (same, consistent or swapped) and splitting frequen
(750 Hz or 1500 Hz) were investigated. The ITD condition had
a statistically significantféect on the SRTR[2, 22] = 359.91P

< 0.001), whereas thdfects of splitting frequency and the in-
teraction between ITD condition and splitting frequencyreve
nonsignificant P = n.s.). Tukey HSD Post hoc analyses for
the ITD condition revealed statistically significantfdrences
in all comparisonsR < 0.001), where the SRTs werd 6.6 dB
(SEM 0.29 dB) for consistent ITD;15.4 dB (SEM 0.16 dB)
for swapped ITD, and-9.9 dB (SEM 0.20) for same ITD.

Edmonds [4] did not find a significantfiiirence between
the swapped and consistent ITD conditions, as we do here.
Since our test procedures were essentially the same, itsis po
sible that our experiment was more discriminative becadise o
differences in the subjects and speech material that were used.
However, we confirm the key finding from Edmonds’ experi-
ment: listeners gain a substantial benefit from fiedénce in
ITD between the speech and the noise, regardless of whether
the ITD is consistent over frequency or not.

3. Computational model

The computational model consists of three stages; pedpher
frequency analysis, selection of acoustic features usimauial
and fundamental frequency (FO) cues, and speech recagnitio
by a ‘missing data’ ASR system.

3.1. Missing data recognition

The automatic speech recognition component of the model
utilises the ‘missing data’ technique with bounded margina
sation [8]. In this approach, acoustic features are treditéet-
ently during decoding depending on whether they are latbelle
as reliable or unreliable evidence for the target speectcsou

In practice, the recogniser is supplied with acoustic fiestand

a binary mask, in which values of zero and one indicate unre-
liable and reliable features respectively. Here, acotistitures

are provided by a model of the auditory periphery, and thekmas
is determined by binaural cancellation and monaural F@dbas
grouping.

Acoustic features were computed for the training section
of the TiDigits corpus [5], and used to train a silence model
and eleven word-level hidden Markov models (HMMs) as in
our previous study [3]. The models for ‘zero’ and ‘seven’
were not used during testing. Each HMM consisted of 8 no-
skip, straight-through states with observations modeligd
10-component diagonal covariance Gaussian mixture. Adl-mo
els were trained on clean speech.



3.2. Peripheral model

Peripheral auditory processing is modelled by two banks of
bandpass ‘gammatone’ filters. For each &bk 32 filters are
used, with centre frequencies uniformly spaced between%0 H
and 8 kHz on an ERB-rate scale. To provide acoustic features
for the recogniser, the instantaneous Hilbert envelop®iis-c
puted at the output of each filter, and smoothed by a firstrorde
lowpass filter with a time constant of 8 ms. The smoothed en-
velope is then sampled at 10 ms intervals and compressed by
raising it to the power of 0.3.

For subsequent computation of FO and binaural cues, a
crude simulation of auditory nerve (AN) activity is also ob-
tained from each filter by half-wave rectifying its outputend,
we denote the AN activity for the left and right earsaaét, f)
andag(t, f) respectively, wher¢indexes time and is the fre-
quency channel.

3.3. Mask estimation

The mask for missing data ASR is estimated using a combina-
tion of two approaches. Firstly, aftérence in ITD between the
speech and the noise is exploited by a binaural EC mechanism,
which estimates an ‘EC mask’ based on the amount of speech
energy present after cancellation of the noise backgro8ed-
ondly, FO-based grouping is used to derive a ‘pitch mask’, in
which harmonics of the target speech signal are selecteté No
that in the consistent and swapped conditions of Edmonds’ ex
periment, the model is able to exploit both ITD and FO cues. In
the ‘same’ condition, no dierence in ITD is present and hence
the model relies on FO-based grouping only.

The FO of the speech signal is estimated by computing the
autocorrelation of the simulated auditory nerve respomse f
each frequency channel. The resulting ‘correlogram’ farthea
eare e {L,R} is given by

T-1
acf(n, f,7y) = Z a(n—-t, flag(n—t—7q, F)w(t) (1)
t=0
wheren indexes the time frame; is the autocorrelation lag and
w(t) is a rectangular window of width 20 ms (i.&. = 400 sam-
ples). A composite correlogram is then obtained by summing
over both ears,

acf(n, f, 1) = Z act(n, f, 1)
e{L,R}

and a ‘summary’ correlogram is computed by pooling over all
frequency channels:

)

N
sin11) = )" acf(n, f,71) €)
f=1
The pitch periodp(n) corresponds to the lag, at which the
highest peak occurs in the summary correlogram,

p(n) = argrlnax s(n, 11) %)

For each fram@, we determine whether a voice pitch is present
by applying a thresholé, to s(n, p(n)). The latter is normalised
by the energy in the frame (i.e., the value of the summary cor-
relogram at zero lag). If the frame is unvoiced, then all elata

in the pitch maskn,(n, f) for that frame are set to zero. Other-
wise, the mask element for chanrfeis set to one if the activity

in the corresponding correlogram channel exceeds a tHoesho
valued, at the lagp(n):

_ | 1if §n, p(n)) > 6, A acf(n, f, p(n)) > 6,
mp(n. f) = {0 otherwise

()

&n. p(n)) = s(n, p(n))/s(n, 0) (6)

On the basis of experiments with a small validation set, we se
6, = 0.75 andg, = 0.75.

Binaural signal detection is performed by equalisation-
cancellation [9]. In the equalisation stage, the left amghtri
binaural signals in each frequency band are equalised ly-div
ing by their r.m.s. values, computed over the analysis windo
w(t). Cancellation is then performed on the equalised inputs
a () andér(t) by

T-1
ecf(n. f.7z) = ) (-t ) - &(n-t-m. HW®  (7)
t=0
wherer; is the interaural delay. By analogy with the correlogam
described above, we refer &z f(n, f,7,) as a ‘cancellogram’.
The ITD of the noise background is estimated by pooling the
cancellogram over the first ten frames of the acoustic sjgmal
which it is known that there is no speech energy:
10
eCfoisd f, 72) = Z ecf(n, f,72) (8)
n=1
The ITD of the noise background is then determined separatel
for each frequency channel as follows:

IT Droisd f) = argmin ec fisd f, 72) (9)
T2

The EC mask is then set to unity in those time-frequency reggio
where the residue from cancellation at the delay of the noise
exceeds a threshold value, i.e.

mee(n. f):{ 1 ifecf(n, f,1T Dpoisd f)) > Bec

0 otherwise
The parametef,. was set to 25.0 (model units) by inspection.
Finally, the mask for the recognisexn, f) is obtained by com-
bining the pitch maskny(n, f) and EC maskme(n, f) using
logical OR.

(10)

3.4. Across-channel processing

The above model employs a ‘within channel’ approach to noise
cancellation, in that the ITD of the noise is estimated farthea
frequency channel independently. For comparison, we also ¢
sider an ‘across channel’ approach which exploits the eotver
of ITD across frequency in order to segregate the targetckpee
from the background noise. As such, it is typical of a general
class of across-channel models including those of [2], [3].

The across-channel approach works as described above, ex-
cept that the interaural delay of the noiEEDyise iS estimated
from a summary cancellogram given by

10 N
ecosd™2) = ), > ecf(n, f,r2)

n=1 f=1
The number of minima that lie below the meaneaff,qise(12)
is determined. If one minimum is found (which would be ex-
pected in the ‘same’ condition of Edmonds’ experiment)nthe
IT Dnoise IS Set to the corresponding value of. If two min-
ima are located, thelT Dpoise may be set to either of the corre-
sponding interaural delays depending on the experimeaotal ¢
dition. In the ‘consistent’ condition, the noise is asstaiawvith
a negative value of, (see Fig. 1). In the ‘swapped’ condi-
tion, the high-frequency and low-frequency parts of thesaoi
are associated with positive and negative values,aespec-
tively. Mask estimation then proceeds as above, except that
the criterion for setting a mask element to unity in (10) is
ecf(n, f,IT Dnoise > Bec i-€. it is assumed that the noise has

(11)
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Figure 2: A. Human performance on the SRT test for the ‘san#g; (consistent’ @) and ‘swapped’ £) ITD conditions. Error bars
correspond ta-/- one standard deviatio®. Performance of the within-channel EC model on the SRT tshditions are labelled as
in the previous figureC. Performance of the across-channel EC model. Conditiocnsamne @), consistent ), and swapped ITD
with selection of the negative lag) or positive lag &) in the summary cancellogram.

the same ITD in all frequency channdils system as a tool for speech segregation, using a wider yariet
of speech and noise mixtures that are spatialised usinigtieal
3.5. Results head-related transfer functions. We therefore aim to deter

) ] ) whether a more accurate model of human processing can yield
The MATLAB scripts used to run the SRT test described in Sect.  jmproved performance in engineering applications.

2.2 were slightly modified to enable the computational mealel
act as a ‘subject’ in the test. Specifically, acoustic fesgiand a
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