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Mask Estimation for Missing Data
Speech Recognition Based on Statistics

of Binaural Interaction
Sue Harding, Member, IEEE, Jon Barker, and Guy J. Brown

Abstract—This paper describes a perceptually motivated com-
putational auditory scene analysis (CASA) system that combines
sound separation according to spatial location with the “missing
data” approach for robust speech recognition in noise. Missing
data time–frequency masks are created using probability distri-
butions based on estimates of interaural time and level differences
(ITD and ILD) for mixed utterances in reverberated conditions;
these masks indicate which regions of the spectrum constitute
reliable evidence of the target speech signal. A number of experi-
ments compare the relative efficacy of the binaural cues when used
individually and in combination. We also investigate the ability of
the system to generalize to acoustic conditions not encountered
during training. Performance on a continuous digit recognition
task using this method is found to be good, even in a particularly
challenging environment with three concurrent male talkers.

Index Terms—Automatic speech recognition, binaural, compu-
tational auditory scene analysis (CASA), interaural level differ-
ences (ILD), interaural time differences (ITD), missing data, re-
verberation.

I. INTRODUCTION

DESPITE much progress in recent years, robust automatic
speech recognition (ASR) in noisy and reverberant envi-

ronments remains a challenging problem. This is most apparent
when one considers the relative performance of ASR systems
and human listeners on the same speech recognition task. Word
error rates for ASR systems can be an order of magnitude greater
than those for human listeners, and the differences are largest
when the speech is contaminated by background noise or room
reverberation [1]. What aspects of the auditory system give rise
to this advantage, and can the underlying mechanisms be incor-
porated into our computational systems in order to improve their
robustness?

One obvious characteristic of human listeners is that they
have two ears, whereas ASR systems typically take their input
from a single audio channel. Binaural hearing underlies a
number of important auditory functions (see [2] for a review).
First, human listeners are able to localize sounds in space prin-
cipally by measuring differences between the time of arrival
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and sound level at the two ears. These cues are referred to as in-
teraural time differences (ITDs) and interaural level differences
(ILDs). Second, binaural mechanisms suppress echoes and,
therefore, counteract the effects of reverberation [3]. Finally,
binaural hearing contributes to the ability of listeners to attend
to a target sound source in the presence of other interfering
sources. Evidence for this has come from psychophysical
studies, which show that the intelligiblity of two overlapping
speech signals increases as the spatial separation between them
increases [4]. A number of processes appear to be involved in
this respect. For example, listeners may simply attend to the ear
in which the signal-to-noise ratio (SNR) is most favorable. In
addition, more complex mechanisms may be involved, in which
binaural comparisons are used to cancel interfering sound
sources [5] or actively group acoustic energy which originates
from the same location in space [6].

The notion of auditory grouping is a key component of
Bregman’s theory of auditory scene analysis (ASA), an influ-
ential account of the processes by which listeners segregate a
target sound source from an acoustic mixture [7]. Bregman’s
work has stimulated interest in the development of computa-
tional auditory scene analysis (CASA) systems, which attempt
to mimic the sound separation abilities of human listeners. A
number of these systems have exploited binaural cues in order
to separate a desired talker from spatially separated interferers
[8]–[12].

In this paper, we describe a CASA system which exploits spa-
tial location cues in order to improve the robustness of ASR in
multisource, reverberant environments. Our approach is imple-
mented within the “missing data” framework for ASR [13], and
consists of two processing stages. In the first stage, acoustic fea-
tures (spectral energies) and binaural cues (ITD and ILD) are de-
rived from an auditory model. The binaural cues are used to es-
timate a time–frequency mask, in which each element indicates
whether the corresponding acoustic feature constitutes reliable
evidence of the target speech signal or not. In the second stage,
the acoustic features and the time–frequency mask are passed to
a missing data ASR system, which treats reliable and unreliable
features differently during decoding.

The approach described here extends our previous work in
a number of respects. First, our previous systems [12], [14],
used heuristic rules to estimate time–frequency masks. Here,
we adopt a more principled approach in which masks are es-
timated from probability density functions for binaural cues,
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which are obtained from a corpus of sound mixtures. In this re-
spect, our current work is representative of the current trend in
CASA for applying statistical rather than heuristic methods (for
example, see [11], [15], [16]). Second, we consider the problem
of a multisource environment with realistic room reverberation.
This represents a much greater challenge than the anechoic or
very mildly reverberant conditions used in some of our previous
studies [11], [12]. Finally, whereas our previous approach used
ITD only, here we investigate the relative effectiveness of ITD,
ILD, and a joint ITD–ILD space. The latter approach is related
to the binaural speech segregation system of Roman et al. [11].
Their system determines the relative strength of a target and in-
terferer (and, hence, estimates a binary mask) by measuring the
deviation of observed ITD and ILD in each frequency band of
a binaural auditory model. Specifically, a supervised learning
method is used for different spatial configurations and frequency
bands within an ITD–ILD feature space. Given an observation

in the ITD–ILD feature space for a frequency band, two hy-
potheses are tested; whether the target is dominant and
whether the interferer is dominant . Using estimates of the
bivariate densities and , classification is then
performed using a maximum a posteriori probability (MAP) de-
cision rule.

Although our approach is similar to that of Roman et al.,
there are important differences. Here, we estimate probability
distributions for ITD, ILD, and ITD–ILD directly from training
data, rather than using a parametric method. We also assume
that the target is located at a known azimuth, which simplifies
subsequent processing. Most importantly, we have evaluated our
system in reverberant conditions. Reverberation remains a sub-
stantial problem for both ASR and CASA systems. In the case of
ASR, it is well known that recognition accuracy falls as the
reverberation time increases and the ratio of direct sound to re-
verberation decreases [17]. Similarly, the performance of CASA
systems is degraded by reverberation (e.g., [12]), to the extent
that many CASA systems are only evaluated on anechoic mix-
tures. Here, we evaluate our combined CASA and ASR system
using the same speech recognition task as Roman et al., and ob-
tain accuracies in reverberant conditions which are similar to
those obtained by Roman et al. for anechoic mixtures.

Our approach also differs from speech recognition systems
that use multiple microphones (for example, see [18]). Such
systems typically perform spatial filtering using adaptive beam-
forming, in order to preserve the signal emanating from a target
direction while suppressing noise and reverberation that orig-
inate from other directions. Here, we do not use spatial infor-
mation to derive filtered acoustic features; rather, spatial cues
are used to select acoustic features that are representative of
the target speech signal. Similarly, we use spectral acoustic fea-
tures rather than those that are intended to confer robustness
against noise and reverberation, such as relative spectral percep-
tual linear prediction (RASTA-PLP) [19] or mean-normalized
mel-frequency cepstral coefficients (MFCC) [20]. Our previous
work suggests that such “noise robust” features do not perform
well in conditions where both interfering sounds and reverbera-
tion are present [12]. We also note that our approach is a purely

TABLE I
REVERBERATION TIMES (SECONDS) FOR TWO SURFACES

data-driven one, as opposed to model-based approaches such as
parallel model combination [21] and hidden Markov model de-
composition [22].

The remainder of the paper is organized as follows. Section II
explains the methods used (signal spatialization and reverber-
ation, missing data ASR, and mask estimation using binaural
cues). Section III describes a number of experiments, which ex-
amine the effects of cue selection and other training parameters
on ASR performance. Section IV concludes the paper with a
general discussion.

II. GENERAL METHODS

A. Signal Spatialization and Reverberation

Input data for the CASA system consisted of utterances from
the TI digits corpus [23], to which reverberation and spatial-
ization were applied. It was assumed that the source of interest
was at azimuth 0 , although another azimuth could have been
used. Signals consisting of two concurrent utterances by male
speakers were used to test the system; similar acoustic mixtures
were used as training data when generating the probability dis-
tributions used to create the missing data masks. Each utterance
consisted of a speaker saying from one to seven digits, with each
digit selected from the list “one two three four five six seven
eight nine zero oh.” The mixed utterances consisted of a target
utterance at azimuth 0 mixed with another masking utterance at
a different azimuth.

In order to add reverberation and spatial location to the orig-
inal monaural utterances, impulse responses were created using
the Roomsim simulator1 with a simulated room of size

m. The receiver was a KEMAR head2 in the center of
the room, 2 m above the ground, and the source was at azimuth
0 , 5 , 7.5 , 10 , 15 , 20 , 30 , or 40 at a radial distance of
1.5 m from the receiver. All surfaces of the room were assumed
to have identical reverberation characteristics. Two reverbera-
tion surfaces were used, “acoustic plaster” and “platform floor
wooden, ” with mean estimated reverberation times of 0.34
and 0.51 s, respectively (reverberation times at standard fre-
quencies are shown in Table I): note that the latter surface was
used only for generating training data, not test data. The room
impulse responses were convolved with monaural signals to pro-
duce binaural reverberated data.

B. Auditory Model

Each signal was processed using a 64-channel gammatone
filterbank with center frequencies spaced between 50 Hz and

1http://media.paisley.ac.uk/~campbell/Roomsim/
2http://sound.media.mit.edu/KEMAR.html
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Fig. 1. Segments of auditory spectrograms for the utterance “one two eight
oh” at azimuth 0 mixed at SNR 0 dB with utterance “five three” at azimuth 40,
both by male speakers. Left, anechoic; middle, reverberated, surface “acoustic
plaster.” Right, reverberated, surface “platform floor wooden.”

8 kHz on the equivalent rectagular bandwidth (ERB) scale [24].
An analysis window of 20 ms and frame shift of 10 ms was
applied to data sampled at 20 kHz to create an auditory spectro-
gram for each signal (Fig. 1). Auditory spectrogram frames con-
catenated with interframe differences (delta features) provided
the 128-dimensional acoustic feature vectors for the recognizer.

In order to find the ITD and ILD for the mixed utterances, a
cross-correlogram was created by passing each of the binaural
inputs through the auditory filterbank described above and com-
puting the cross-correlation between each frequency channel for
each time frame. The biggest peak in each channel was selected
and the estimate of ITD was improved by fitting a quadratic
curve to the peak. The ILD was calculated by summing the en-
ergy over each frequency channel and converting the ratio of the
energy for the right and left ears to decibels. Further details can
be found in [12].

C. The “Missing Data” Speech Recognizer

The missing data recognizer uses hidden Markov models
(HMMs) trained on spectrotemporal acoustic features. During
testing, the recognizer is supplied with features for an acoustic
mixture and a time–frequency mask, that indicates which parts
of the input constitute reliable evidence for the target source.
The missing data mask may be discrete, i.e., each time–fre-
quency element is either 0 (meaning the target is masked), or
1 (meaning the target is dominant); alternatively, “soft” masks
may be used [25] in which each element takes a real value
between 0 and 1 indicating the probability that the element is
dominated by the target.

The HMM emission distributions are based on Gaussian mix-
ture models (GMMs), with each component having a diagonal
covariance matrix. During recognition, the soft missing data
technique adapts the usual state-likelihood computation to com-
pute state scores, , which take account of the unreliable
data as follows:

(1)

Fig. 2. Missing data masks for the mixed utterances in Fig. 1, reverberation
surface “acoustic plaster.” Top left: a priori mask. Top right: localization mask
produced using ILD only. Bottom left: localization mask produced using ITD
only. Bottom right, localization mask produced using ILD and ITD combined.
Lighter areas have lower probability; darker areas higher probability.

where is the mixture weight for GMM component , and
is a score for each mixture component, given by forming

a product over the spectral features of the form

(2)
Here, is the soft mask value for the th feature and
are the univariate Gaussian distributions

(3)

where and represent the standard deviation and mean,
respectively, of mixture component .

Equation (2) can be interpreted as an interpolation between
a present data term and a missing data term, where the missing
data term is formed by averaging the likelihoods for all possible
values that the masked speech could have had. The mask value

biases the interpolation toward either the present or missing
data term. This implementation of soft missing data is identical
to that used in [25]; though clearly, the current work uses a dif-
ferent technique for computing the soft mask.

It is possible to produce an “ideal” mask using a priori knowl-
edge of the source and masker (Fig. 2, top left); such a priori
masks can be used to provide an expected upper limit for recog-
nition performance for the missing data approach. The main
challenge for this approach is how to determine a mask from
a mixed signal without prior knowledge; in this paper we use
localization cues for this purpose.

A set of eight-state ten-mixture HMMs with delta coeffi-
cients were used for recognition, and were trained using clean
reverberated speech (i.e., without any background noise or
other speakers added). A set of 4228 clean speech utterances



HARDING et al.: MASK ESTIMATION FOR MISSING DATA SPEECH RECOGNITION 61

by 55 male speakers, spatialized at azimuth 0 and with rever-
beration applied for surface “acoustic plaster,” were processed
as described above to create the acoustic features and used to
train the recognizer.

D. Missing Data Mask Estimation Using ILD and ITD
Probability Distributions

Soft missing data masks were determined from probability
distributions which indicated the probability that a given ILD,
ITD, or combination of ILD and ITD, found for a mixed test
utterance, was produced by a target source at azimuth 0.

In order to create the probability distributions, ILD and ITD
were identified for each time–frequency element of a set of
mixed training utterances (described in Section II-A above).
Probability distributions were produced for a range of training
data, which was always selected from a set of 120 pairs of utter-
ances, matched for length, for reverberation surface “acoustic
plaster” or “platform floor wooden.” One utterance was at az-
imuth 0 and the other at 5 , 10 , 20 , or 40 , or at 5 , 10 ,

20 , or 40 , and the utterances were mixed at SNR 0, 10,
and 20 dB. The choice of reverberation surface and SNR used
in each training set depended on the experiment, but all of the
eight azimuth separations listed above were always included.

After each ILD and ITD was determined for each time–fre-
quency element of a training utterance, it was assigned to a bin.
The bin sizes were selected according to the range of values ob-
served for ILD and ITD in the training data and were set to 0.1
for ILD and 0.01 for ITD. These values were found during pre-
liminary investigations to provide sufficient resolution for the
probability distributions.

Two histograms were produced from the binned ILD and ITD
values. The first histogram, , counted the number of obser-
vations of each ILD/ITD combination in all of the training data
(i.e., including observations produced by both the target source
and the masking source); the second, , counted the number
of observations of each ILD/ITD combination produced by the
target source alone. Observations likely to have been produced
by the target source were identified using an a priori mask (Sec-
tion II-C) created for each mixed training utterance: only those
time–frequency elements of the a priori mask that were identi-
fied as belonging to the target source were included in histogram

.
The probability distribution was modeled using a Bayesian

approach. Given an observation ILD ITD for a time–fre-
quency element of a mixed utterance, the probability that the
observation was produced by a target source at azimuth zero is
given by

(4)

where

(5)

(6)

(7)

Fig. 3. Examples of ILD/ITD probability distributions for a source at azimuth
0 , for channels with center frequency 99 Hz (top left), 545 Hz (top right),
1599 Hz (bottom left), and 4090 Hz (bottom right). Lighter areas have lower
probability; darker areas higher probability.

Then, (4) simplifies to

(8)

which can be found from the histograms obtained from the
training data as described previously.

Observations were counted separately for each frequency
channel due to the large variation in the probability distributions
for different channels.

A further step was performed to reduce the effect of insuffi-
cient training data for certain observations. Any time–frequency
elements for which the number of observations was less
than a threshold value were treated as if no data were present.
Using a threshold reduced the chance of an unrealistically high
probability occurring when only a few elements were present
but were allocated to the target; for example, a single target ele-
ment would result in a probability of 1. When the denominator

was zero, the numerator was also zero, and the
corresponding probability was set to zero. This smoothed the
progression from regions of low probability (where fewer ob-
servations occurred) to high probability (where larger numbers
of observations occurred) (Fig. 3). The choice of threshold was
determined heuristically, as described in Section III-B, in order
to find a balance between including excessively high probabili-
ties due to lack of training data, and excluding probabilities re-
sulting from small amounts of training data that would never-
theless have been valid.

A missing data mask was created for each mixed test signal by
identifying the ILD and ITD for each time–frequency element,
and using the probability distribution as a look-up table for these
two cues to determine the probability that each element was
dominated by the target at azimuth 0.

Fig. 3 shows examples of probability distributions obtained in
this way for four of the 64 frequency channels, for training data
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TABLE II
SUMMARY OF EXPERIMENTAL CONDITIONS

with a combination of SNRs and histogram threshold 10. The
examples are for a probability distribution based on both ILD
and ITD cues, but distributions were also produced for each cue
independently.

Examples of missing data masks created from probability dis-
tributions determined from ILD alone, ITD alone, and ILD and
ITD combined are shown in Fig. 2.

E. Evaluation

The accuracy of the masks and the localization process was
evaluated by measuring the recognition accuracy for a set of
mixed test utterances for which missing data masks had been
produced using each probability distribution. Only one rever-
beration surface, “acoustic plaster,” was used for the test set.
The test utterances consisted of 240 target utterances, different
from those in the training set, with reverberation added, spatial-
ized at azimuth 0 and mixed at an SNR of 0, 5, 10, 15, or 20
dB with one of a set of 240 masking male utterances, matched in
length to the original 240 utterances. The masking speech was
reverberated and spatialized at azimuth 5 , 7.5 , 10 , 15 , 20 ,
30 , or 40 . The resulting mixture was processed to form an
auditory spectrogram as for the training data. The SNR was cal-
culated from data spatialized at azimuth 0 ; the mixed speech
signal entering the ear furthest from the masking speech was
used for recognition.

A number of experiments were performed to investigate the
importance of each of the two localization cues (ILD and ITD)
together with the effect of different properties (such as rever-
beration surface and SNR) of the training data used to create
the probability distribution. A further experiment investigated
whether the method was successful in more difficult test con-
ditions, using two masking utterances. These experiments are
summarized in Table II.

III. EXPERIMENTS

A. Experiment 1—Effect of Cue Selection

Experiment 1 investigated the effects of selecting a single
localization cue (ITD or ILD) and of combining both cues
together. Probability distributions were created for each of
these three conditions, using training data for reverberation
surface “acoustic plaster” and for all three SNRs (0, 10, and
20 dB) combined together. When creating the probability
distributions, the histogram threshold value was set to 10
(see also Experiment 2).

Fig. 4 shows the recognition accuracy for the 240 mixed test
utterances for each of the three conditions, together with base-
line results for a priori masks. A recognizer was also trained and

tested using MFCCs derived from the same training and testing
data. For this approach, the data was processed using an analysis
window of 25 ms and frame shift of 10 ms, with 23 frequency
channels, 12 cepstral coefficients plus an energy term, delta and
acceleration coefficients, and energy and cepstral mean normal-
ization. The recognizer did not perform well under noisy condi-
tions as can be seen from the MFCC results included in Fig. 4.

A separate plot is shown for each of the five SNRs used in
the test data. The different effect of the cues was most pro-
nounced for lower test SNR, but, overall, using both ILD and
ITD produced better results than when only a single cue was
used. Using ILD alone produced the worst performance in all
cases, showing that this cue was not sufficient to define the prob-
ability distribution, especially for smaller azimuth separation of
the two sources. When both cues were used, performance lev-
elled out above azimuth separation of 10 . This experiment also
confirmed that the approach generalized successfully to SNRs
and azimuth separations which were not included in the training
data.

B. Experiment 2—Effect of Histogram Threshold

During the production of the probability distribution, a
threshold was applied to the histogram elements making up
the denominator to avoid attaching significance to ILD
or ITD values for which there was insufficient training data.
Any ILD/ITD combinations that had a denominator below the
threshold were treated as if no data were present (see Sec-
tion II-D). Increasing the threshold prevents combinations with
few examples from having an excessively high probability, but
setting the threshold too high may remove useful information
from the probability distribution and, hence, from the local-
ization masks. Experiment 2 tested the effect of varying the
threshold on the performance for probability distributions using
combined ILD/ITD cues and training data as in Experiment 1,
to ensure that the most suitable threshold value was being used.
Threshold values of 5, 10, and 50 were compared, together with
no threshold (denoted threshold 0). For this experiment, only
the test data with SNR 0 dB was used.

Fig. 5 shows the performance for each of the four threshold
values; the results for threshold 10 (also shown in Fig. 4, top left)
are emphasised. As the threshold increased, the performance
improved for azimuth separation below 15 , but decreased for
high azimuth separation, especially for the highest threshold
(50). At low azimuth separation, ILD and ITD estimation is
more difficult and, therefore, the probabilities are less accurate,
especially when low threshold values allow more elements with
little training data to be included in the probability distribution.
At higher azimuth separation, ILD and ITD estimates are more
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Fig. 4. Results of Experiment 1, showing the effect of varying localization cues (ILD and ITD). Training data: surface “acoustic plaster,” SNR 0, 10, and 20 dB
(combined together). Histogram threshold: 10. Test data: surface “acoustic plaster,” SNR 0, 5, 10, 15, or 20 dB. One plot is shown per test data SNR. (Note that
the ordinate scale varies.)

reliable, but higher threshold values will remove some of the re-
liable probabilities and cause poorer masks to be produced, as
can be seen for threshold 50. These issues are discussed further
in Section IV.

Although the shape of the curve differed for threshold 10 and
50 due to the factors mentioned above, the mean performance
was similar (92.85% and 92.89%, respectively). However, per-
formance decreased for threshold 5 (mean 92.23%) and deteri-
orated when no threshold was used (mean 85.23%), especially
for azimuth separations of 15 and 30 for which there was no

training data. In general, a lack of training data is likely to re-
sult in unreasonably high probability values and hence unreli-
able masks.

A threshold of 10 was considered to be the most suitable
value, since the mean performance was high and there was no
deterioration in performance with increasing azimuth.

C. Experiment 3—Effect of Training Data Surface

Experiment 1 showed that the method generalized well over
azimuth separations and SNRs that were not in the training data
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Fig. 5. Results of Experiment 2, showing the effect of varying histogram
threshold for combined ILD/ITD cues. Training data: surface “acoustic plaster,”
SNR 0, 10, and 20 dB (combined together). Histogram threshold: 0, 5, 10, or
50. Test data: surface “acoustic plaster,” SNR 0 dB.

set. Experiments 3 and 4 tested the importance of a match or
mismatch between other parameters of the training and testing
data. In Experiment 3, a training data set was used for a rever-
beration surface (“platform floor wooden”) that did not match
the test data; this was compared with the results for the com-
bined ILD and ITD cues from Experiment 1.

Fig. 6 shows the performance for the two training sets,
“acoustic plaster” (previously shown in Fig. 4) and “platform
floor wooden.” The reverberation surface used for the training
data had little effect on the results, with a maximum difference
between the surfaces of less than 1% for each condition (SNR
and azimuth separation) in the test data.

D. Experiment 4—Effect of Training Data SNR

Experiment 4 examined whether using training data with an
SNR that matched that of the test data might improve the per-
formance. In the previous experiments, training data for each
of three SNRs (0, 10, and 20 dB) was combined to produce
the histograms used to create the probability distributions. For
Experiment 4, a separate probability distribution was produced
for each SNR and the performance compared for each training
condition. The threshold was reduced from 10 to 3 when cre-
ating these three distributions to allow for the reduced quantity
of training data compared with the distribution for the combined
SNRs.

Fig. 7 shows the results plotted separately for each of the five
test SNRs. For the lower test SNRs (0, 5 and 10 dB), there was
an increase in performance of up to 3% for the smaller azimuth
separations (5 and 7.5 ) when the training SNR was also low
(0 dB). However, this was offset by a small decrease in perfor-
mance of around 0.5% for the higher azimuth separations. The
inverse occurred when a higher training SNR (10 or 20 dB) was
used: performance decreased by up to 3% or 5%, respectively,
for smaller azimuth separations, but there was a corresponding
small increase in performance for higher azimuth separations.

Fig. 6. Results of Experiment 3, showing the effect of varying the training
data reverberation surface for combined ILD/ITD cues. Training data: surface
“acoustic plaster” or “platform floor wooden,” SNR 0, 10 and 20 dB (combined
together for each surface). Histogram threshold: 10. Test data: surface “acoustic
plaster,” SNR 0, 5, 10, 15, or 20 dB.

For the higher test SNRs (15 and 20 dB), the training data SNR
had little effect. Overall, there was a small mean improvement
when using a training SNR of 0 dB, suggesting that it is more
important to use training data for the more difficult conditions.

E. Experiment 5—Using Multiple Masking Sources

The method used in these experiments can be applied to data
that has more than one masking source. In Experiment 5, ad-
ditional test data was produced for which two masking sources
(both male speakers) were present, to check that good perfor-
mance could be obtained in more difficult test conditions.

The first masker was at 5 , 7.5 , 10 , 15 , 20 , 30 , or 40
azimuth; the second was at 10 or 10 . The two maskers
were mixed at SNR 0 dB, and then this mixture was combined
with the target at SNR 0 dB. Missing data masks were created
using the ILD/ITD probability distribution for training data with
surface “acoustic plaster” and a combination of SNR values (0,
10, and 20 dB). The signal entering the ear furthest from the first
masker was used for recognition.

Fig. 8 shows the results of this experiment, together with the
results for a priori masks for the one masker and two masker
conditions. Performance was still good considering the diffi-
culty of the task, although reduced by 3%–5% (compared with
the single masker case) when both maskers were on the same
side of the head, and by 4%–7% when maskers were on op-
posite sides of the head. Performance using the a priori masks
was also reduced for the two maskers compared with a single
masker.

IV. DISCUSSION

We have shown, via the experiments summarized in Table I,
that a target speech signal can be recognized in the presence of
spatially separated maskers in a reverberant environment, using
the statistics of binaural cues to estimate missing data masks.
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Fig. 7. Results of Experiment 4, showing the effect of varying the signal-to-noise ratio of the training data for combined ILD/ITD cues. Training data: surface
“acoustic plaster,” SNR 0, 10, or 20 dB (each used separately). Histogram threshold: 3. Test data: surface “acoustic plaster,” SNR 0, 5, 10, 15, or 20 dB. One plot
is shown per test data SNR.

The system generalized well to acoustic conditions that were
not encountered during training.

Experiment 1 showed that the binaural source separation
problem was most effectively addressed within a joint ITD–ILD
space, rather than by using ITD or ILD alone. This finding
is compatible with the theoretical analysis and simulations
given by Roman et al. [11]. Additionally, we found that ILD
alone was a far less effective cue than ITD alone in reverberant
conditions. This result is consistent with predictions from
psychophysics. For example, Ihlefeld and Shinn-Cunningham

[26] show that reverberation decreases the mean magnitude of
the ILD, making it an unreliable indicator of source azimuth.
However, they suggest that the variation of the short-term ILD
over time may still provide some indication of lateral position
in reverberant conditions. Information about the temporal
variation of binaural cues is not explicitly used in our current
system, and will be investigated in future work.

As might be expected, in all experiments, recognition per-
formance was lower when the test data were at smaller azimuth
separation or had lower SNR. Both these conditions reduced the



66 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2006

Fig. 8. Results of Experiment 5, using two masking sources, for combined
ILD/ITD cues. Training data: surface “acoustic plaster,” SNR 0, 10 and 20
dB (combined together). Histogram threshold: 10. Test data: surface “acoustic
plaster,” SNR 0 dB.

accuracy of the missing data masks, but for different reasons.
When the azimuth separation between the sources is small, it
is harder to obtain a reliable estimate of the ILD and ITD for
the target and masker. At the smallest angular separation used
(5 ), the ILD is small and the ITD (measured as 0.045 ms from
the KEMAR head-related impulse response) lies close to the
smallest time lag detectable by our cross-correlation algorithm
(which is limited by the sample period of 0.05 ms). When the
SNR is lower, more elements will be dominated by the masker,
and, therefore, the regions of the mask assigned to the target will
be smaller.

The masks are affected in a similar way by the accuracy
of the probability distributions, which is influenced by the
training data used. Although Experiment 4 showed that the
choice of reveberation surface used for training has little effect,
the selection of training data for lower SNR is important, as
discussed in Section III-D. Performance is also rather sensitive
to the histogram threshold, as illustrated in Experiment 2. As
the threshold increases, performance tends to increase for lower
azimuth separation, but there is a corresponding decrease for
higher azimuth separation. When the threshold is low, some of
the probabilities in the distribution (and, hence, in the masks)
may be excessively high; when the threshold is high, more of
the probabilities will be zero. A low threshold results in more
unreliable data in the mask, especially for the more difficult
smaller azimuth separations, but the easier test conditions are
less affected since the more reliable (higher probability) data
also gets through. In contrast, a high threshold prevents some of
the reliable data being included in the probability distribution
and masks, but also reduces the quantity of unreliable data,
which improves the performance for smaller azimuth separa-
tions but reduces performance for larger azimuth separations
(Fig. 9). Using more training data, especially for the more diffi-
cult test conditions, would be expected to reduce the sensitivity
of the system to the histogram threshold.

Fig. 9. Missing data masks for the mixed utterances in Fig. 1, reverberation
surface “acoustic plaster,” showing the effect of histogram threshold for two
azimuth separations.

The method worked well in more challenging conditions,
when multiple maskers were present (Experiment 5). The re-
duced performance for the a priori masks was probably due to
the reduced variance in the combined maskers compared with
a single masker, and a similar effect would be expected in the
masks produced using localization cues. In the case of maskers
on opposite sides of the head, two additional factors are likely
to have been responsible for the reduced performance: first, the
signal used for recognition was close to the second of the two
maskers, so the ear advantage was reduced or removed; second,
interactions between the two maskers would be expected to
complicate the pattern of ILDs and ITDs and produce more
confusions between the target and maskers.

Further work is required to separate the effects mentioned
above, and to investigate whether extending the training data
(for example, using more training utterances, additional rever-
beration surfaces and multiple maskers) improves performance
under all test conditions. We will also use other reverberation
surfaces for testing, and train and test the system with targets
at other azimuths. It would also be interesting to compare the
performance of this system with those of humans under similar
conditions.
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