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Abstract

A challenging problem for research in computational auditory scene analysis is the integration of evidence derived

from multiple grouping principles. We describe a computational model which addresses this issue through the use of a

`blackboard' architecture. The model integrates evidence from multiple grouping principles at several levels of ab-

straction, and manages competition between principles in a manner that is consistent with psychophysical ®ndings. In

addition, the blackboard architecture allows heuristic knowledge to in¯uence the organisation of an auditory scene. We

demonstrate that the model can replicate listeners' perception of interleaved melodies, and is also able to segregate

melodic lines from polyphonic, multi-timbral audio recordings. The applicability of the blackboard architecture to

speech processing tasks is also discussed. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

According to Bregman's (1990) in¯uential ac-
count, auditory organisation may be regarded as a
two-stage process. In the ®rst stage, early auditory
processes decompose the mixture of sounds
reaching the ears into a collection of `sensory ele-
ments'. Subsequently, elements which are likely to
have arisen from the same environmental source
are grouped together, forming a mental represen-
tation of the sound source termed a `stream'. The
grouping process may involve the application of
knowledge about sound sources such as speech
and music (so-called `schema-driven' grouping), or
may involve mechanisms that operate indepen-

dently of the characteristics of the sound source
(so-called `data-driven' or primitive' grouping).

It has long been thought that principles similar
to those proposed by the Gestalt psychologists
underlie primitive auditory grouping (Miller and
Heise, 1950). Such principles include temporal and
frequency proximity, common onset and o�set,
harmonicity, coherent amplitude and frequency
modulation, and similarity of spatial location and
timbre (see (Bregman, 1990) for a review). Un-
doubtedly, the ability of the auditory system to use
such a diverse collection of heuristics contributes
importantly to its remarkable robustness. How-
ever, little is known about the organisational
framework within which these principles are ap-
plied. For example, several grouping principles
may suggest mutually exclusive organisations; how
does the auditory system resolve such a con¯ict?
This question is critically important to the
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development of computational auditory scene
analysis (CASA) systems ± indeed, it has been
suggested that the integration of evidence from
multiple grouping principles is one of the hardest
problems facing CASA (Bregman, 1998).

2. A framework for auditory organisation

The organisational framework proposed here is
motivated by the observation that auditory orga-
nisation is both context-sensitive and retroactive.
For example, consider the stimulus shown sche-
matically in Fig. 1, which is due to Bregman and
Tougas (1989). Listeners were presented with a
repeating cycle consisting of a tone A followed by
a pair of tones B and C. In some conditions a tone
D was also included, otherwise a silent gap was left
in each cycle which was the same duration as D.
Subjects were asked to judge how clearly A and B
could be heard as a repeating pair. They reported
that the AB grouping was more salient when tone
D was present; apparently, C and D tended to
form a group so that the fusion of B and C was
weakened, and hence it was easier for A to capture
B into a sequential stream. Clearly, then, the or-
ganisation of tones B and C is dependent upon the
context in which they are presented. Furthermore,
the organisation of B and C cannot be determined
until the presence of tone D has been con®rmed or
denied, suggesting that auditory organisations
may be formed retroactively.

Further evidence for retroactive auditory or-
ganisation has come from the study of perceptual
restoration, in which a sound is perceived as con-
tinuous even though a part of it has been replaced
with a noise burst (e.g. Warren, 1984). Perceptual
restoration will only occur when there is su�cient
evidence to suggest that the sound was occluded;
in particular, there must be no evidence that the
sound stopped before the noise burst and re-
started after it. Hence, the mechanism of percep-
tual restoration appears to operate retroactively.

Taken together, the context sensitivity and ret-
roactivity of auditory organisation suggest a
means by which con¯icts between grouping prin-
ciples may be resolved. When faced with contra-
dictory interpretations of the acoustic evidence,
the auditory system might simply postpone its
decision, with the expectation that disambiguating
evidence will emerge in the near future. Evidence
from studies of perceptual restoration suggest a
limit on this temporal delay; the longest noise
bursts that can induce perceptual restoration have
a duration of 250±300 ms (Kluender and Jenison,
1992; Warren, 1984).

Accordingly, the computational framework
described here introduces the concept of an orga-
nisation hypothesis region (OHR). The OHR is a
temporal window of width 300 ms, which slides
over the auditory scene. Within the window,
grouping principles interact to suggest alternative
organisations, and the grouping of acoustic ele-
ments remains mutable. However, once elements
pass beyond the limit of the temporal window, a
®xed organisation is imposed upon them. Addi-
tionally, organisations within the OHR are de-
bated at many levels of abstraction. At the lowest
levels, grouping principles operate directly upon
an early auditory representation of the acoustic
evidence in a source-independent manner (primi-
tive grouping). At higher levels, auditory organi-
sation is in¯uenced by knowledge about speci®c
sound sources (schema-driven grouping).

In the remainder of this article, we describe the
computer model and evaluate its performance on
several musical sound separation tasks. The study
extends our previous work (Godsmark and
Brown, 1996a,b, 1998) by integrating emergent
properties (pitch and timbre) and schema-driven

Fig. 1. Schematic illustration of one cycle of the stimulus used by

Bregman and Tougas (1989). The tendency of tone A and tone B

to be heard in the same perceptual stream is dependent on the

presence or absence of tone D, illustrating that auditory per-

ceptual organisation is both retroactive and context-sensitive.
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grouping principles (predictions of meter and
melody) into a coherent computational frame-
work. Where possible, the model is informed by
psychophysical ®ndings, although our approach
should be regarded as functional ± the model or-
ganises the acoustic input in a manner that is
consistent with the behaviour of human listeners,
but we do not make strong claims that the mech-
anisms of the model have a direct biological
counterpart.

3. The computer model

The computer model consists of two major
processing stages, corresponding to the two con-
ceptual stages of auditory scene analysis. The in-
put to the model is a single acoustic signal, which
represents the superimposed activity of several
sound sources. The acoustic waveform is sampled
at a frequency of 25 kHz with 16 bit resolution.
Initially, the sampled signal is processed by a
model of the auditory periphery, yielding a time-
frequency representation called synchrony strands
(Cooke, 1993). This representation provides the
substrate for the organisational phase of the
model, which is based upon the blackboard met-
aphor of problem solving (Erman et al., 1980;
Engelmore and Morgan, 1988). A blackboard
system can be thought of as a group of indepen-
dent knowledge sources (hereafter referred to as
experts) that are able to communicate only by
manipulating information on a globally accessible
data structure (the blackboard). Given the state of
the blackboard, an expert may indicate that it
wishes to perform an action (it ®res). Coordination
of experts is achieved by a scheduler, which de-
termines the sequence in which actions are exe-
cuted. Several properties of the auditory scene
analysis problem make it particularly suitable for a
blackboard-based approach; it involves a large
solution space, noisy and unreliable data, a need to
integrate diverse types of information, and many
semi-independent sources of knowledge are re-
quired to form a solution (see also (Nii, 1988)).

The organisational phase of the model can be
further divided into four stages: primary, primi-
tive, emergent and schema-driven grouping. Each

stage of organisation is associated with one or
more layers of abstraction on the blackboard (see
Fig. 2). The primary stage concerns the formation
of synchrony strands (level 1). Primitive stages
involve the formation of featured strands and note
hypotheses (levels 2 and 3). The emergent stage
relates to emergent properties (level 5) and hy-
pothesised melodic lines (level 6). At the highest
level of the blackboard (level 8), meter and motif
predictions relate to schema-driven organisation.
Additionally, the blackboard has levels for evalu-
ated primitive and emergent hypotheses (levels 4
and 7). These levels (strictly, they are meta-levels)
do not correspond to a particular organisation
process; rather, they are present for reasons of
computational convenience.

Following the organisation phase of the model,
the synchrony strands on the blackboard are ar-
ranged into groups, such that the strands in each
group are likely to have arisen from the same
sound source. This is the result of the CASA
process. Currently, we have quanti®ed the per-
formance of the model using a music transcription
task. A musical score is derived from the groups of
synchrony strands on the blackboard, and this is
matched against the score of the corresponding
acoustic input. Metrics have been devised to
quantify the success of segregation, i.e. whether
the system is able to segregate a polyphonic, multi-
timbral musical performance into its constituent
melodic lines.

Inevitably, much of the following discussion is
biased towards the segregation of musical sounds.
However, it should be stressed that the architec-
ture proposed here is quite general, and could
equally be applied to the segregation of speech
from interfering sounds. Similarly, other evalua-
tion techniques could be employed, such as re-
synthesis from groups of synchrony strands
(Cooke, 1993) or the comparison of signal-to-noise
ratio before and after processing by the model
(Brown and Cooke, 1994a).

3.1. Auditory periphery

Cochlear frequency selectivity is simulated by
passing the sampled acoustic signal through a
bank of bandpass ®lters with overlapping
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pass-bands. More speci®cally, we use a bank of
`gammatone' ®lters (Patterson et al., 1988) which
have the (complex) impulse response

g�t� � tnÿ1 exp�ÿbt� exp�ixt�: �1�
Here, x is the radian centre frequency of the ®lter,
n is the ®lter order and b is related to bandwidth.
We use fourth-order ®lters (i.e., n� 4) with centre
frequencies linearly distributed between 25 Hz and
11 kHz on the ERB-rate scale of Glasberg and
Moore (1990). Additionally, the gains of the
gammatone ®lters are adjusted to re¯ect the
transfer functions of the outer and middle ears,
using data from the ISO standard for equal-loud-
ness contours (ISO, 1988).

Cooke (1993) has demonstrated that the in-
stantaneous response frequency of an auditory
®lter can be modelled in terms of a relatively
slowly changing component which corresponds to
the dominant frequency, and a periodic compo-
nent which is correlated with the acoustic signal.

The slowly varying component (instantaneous
frequency), can be conveniently obtained from a
digital implementation of the gammatone ®lter as
the following quantity:

t�t� � 1

2p
x

"
� I�t� d

dtR�t� ÿR�t� d
dtI�t�

I2�t� �R2�t�

35: �2�

Here, t(t) is the instantaneous frequency and R�t�
and I�t� represent the outputs of the real and
imaginary parts of the gammatone ®lter. We com-
pute median-smoothed estimates of t(t) using a
window length of 10 ms. Since t(t) is relatively
slowly varying, a degree of data reduction
is introduced by calculating the median every 0.5 ms.

Similarly, the instantaneous amplitude e(t) at
the output of the gammatone ®lter is available as
the following quantity:

e�t� �
���������������������������
R2�t� � I2�t�

q
: �3�

Fig. 2. Schematic overview of the model.
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Again, e(t) is smoothed and downsampled by
computing the median within a 10 ms window at
intervals of 0.5 ms.

3.2. Calculating place-groups

Since adjacent ®lters in the gammatone ®lter-
bank have overlapping pass-bands, a highly syn-
chronised response is observed in sections of the
®lterbank that are excited by the same spectral
component (i.e., contiguous sections of the ®lter-
bank exhibit a nearly identical instantaneous fre-
quency). This redundancy can be exploited by
noting that ®lters with centre frequencies above a
dominant component respond with a frequency

below their centre frequency, and vice versa
(Cooke, 1993). More speci®cally, we compute the
function

E�t� � t�t; f � ÿ f ; �4�
where t�t; f � is the instantaneous frequency of the
®lter with centre frequency f at time t. Filter
channels which lie between successive maxima and
minima of E(t) are combined to form place-groups,
each of which represents a dominant spectral
component. Finally, a frequency is computed for
each place-group by forming a mean of t�t; f � over
the channels that comprise the group, weighted by
their instantaneous amplitudes. A typical place-
group representation is shown in Fig. 3.

Fig. 3. Acoustic waveform (upper panel) and place-group representation (lower panel) for a trumpet tone. The thickness of a place-

group is related to its amplitude.
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4. Implementation of the grouping strategy

The place-group representation of the acoustic
stimulus resides at the lowest level of the black-
board. During a primary organisation stage, place-
groups are aggregated to form synchrony strands
(Cooke, 1993), each of which represents a domi-
nant spectral component that extends through
time and frequency. As a representational sub-
strate for CASA, synchrony strands have an ad-
vantage over frame-based spectral representations
because temporal continuity is made explicit (see
also (Brown and Cooke, 1994a)). They are also
su�ciently few in number to allow grouping
strategies which attempt to explain every syn-
chrony strand in an auditory scene.

Subsequently, a primitive organisation stage
fuses synchrony strands that are likely to have
originated from the same environmental source.
For example, a group of strands might correspond
to the components of a musical note or a vowel.
Additional properties emerge as a consequence of
this grouping, including fundamental frequency
and timbre. An emergent organisation phase
combines groups of strands on the basis of these
emergent properties, forming structures that cor-
respond to Bregman's (1990) notion of a stream
(for example, a melodic line or a sequence of
speech sounds uttered by the same speaker).

Finally, properties of streams are identi®ed
through the application of source-speci®c know-
ledge. In our current implementation, this level of
the blackboard identi®es properties such as the
meter of a melody, and the presence of recurrent
musical phrases. In turn, this information is used
to generate predictions about future auditory
events, which are exploited at lower organisational
levels of the blackboard.

The organisational stages of the blackboard
architecture are driven by the OHR. At each time
frame, the OHR is stepped forward and any new
place-groups that are generated are added to the
blackboard. This may cause a number of experts
to ®re, leading to further changes in the state of the
blackboard that may activate other experts. In
some cases, movement of the OHR only leads to
changes at the lower levels of the blackboard; for
example, a single place-group might be appended

to an existing synchrony strand. Changes at the
higher levels of the blackboard occur when a
synchrony strand is terminated: new hypotheses
might be generated based on the o�set time of the
strand, or on its proximity in frequency to other
strands. The OHR is not advanced to the next time
frame until the blackboard has reached a state of
equilibrium; that is, there are no experts which are
able to ®re. Hence, the set of hypotheses on the
blackboard is refreshed every time the OHR is
progressed.

4.1. Primary organisation

As place-groups appear in the OHR, synchrony
strands are formed on the basis of three principles;
temporal continuity, frequency proximity and
amplitude coherence. More speci®cally, in order to
extend an existing strand a new place-group must
be temporally contiguous with the ®nal place-
group in the strand, and must also be within 3% of
its frequency. Place-groups that are unable to ex-
tend an existing synchrony strand become the ®rst
component of a new strand, and existing strands
that cannot recruit further place groups are ter-
minated.

The extension of synchrony strands by tempo-
ral continuity and frequency proximity allows
slowly-varying frequency components to be suc-
cessfully tracked. However, it is possible (particu-
larly for sounds such as polyphonic music) that
harmonics belonging to di�erent acoustic events
will be coincident. If there is no temporal gap be-
tween such harmonics, a single synchrony strand
may be inappropriately formed from them.

This problem can be resolved by noting that the
appearance of a new acoustic event will be ac-
companied by an increase in intensity. Hence, the
model also exploits a principle of amplitude co-
herence; we allow a place-group to start a new
strand if it would otherwise have caused an abrupt
increase in the amplitude of an existing strand.
Amplitude increases are detected by convolving
strands with a bipolar kernel, which simulta-
neously smooths and di�erentiates the input
(Mellinger, 1991). In practice, it is preferable to
search for amplitude increases on a number of
time-scales; accordingly, we use four kernels with
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widths between 5 ms and 20 ms, and start a new
strand if an onset is detected by any kernel.

Note that strongly amplitude-modulated
sounds may cause spurious onsets to be detected,
forming a sequence of short synchrony strands.
However, these fragments are likely to be re-
grouped by later organisational processes.

4.2. Feature detection

As synchrony strands are formed, features can
be computed from them. These include the onset
and o�set time, initial and ®nal frequency, and a
frequency transition history (computed by taking
the ratio between the frequencies of adjacent
place-groups in the strand). The onset and o�set
times of a strand are simply taken to be the times
at which the ®rst and last place groups occur; this
was found to be adequate in the current model,
although a more sophisticated scheme would be
needed if grouping by common onset and o�set
were applied at emergent levels of the blackboard
(e.g., the grouping of notes by common onset).

Features are detected by opportunistic experts;
in other words, an expert only ®res when the
blackboard contains su�cient evidence for the
presence of a feature. For instance, an expert that
detects the o�set time of synchrony strands will
not ®re if all the strands on the blackboard are still
evolving; it will only be activated when a strand
has been terminated.

4.3. Primitive organisation

Bregman (1990) has argued that fusion is the
default state of auditory organisation; for exam-
ple, although white noise contains a random col-
lection of fusion and segregation cues, it is still
perceived as a perceptual whole. Accordingly,
primitive organisation in our blackboard archi-
tecture begins by allocating all synchrony strands
to the same stream.

As strand features become available, alternative
organisations of the auditory scene can be con-
sidered. However, it is impractical to consider ev-
ery possible interpretation of the acoustic evidence
± even for a small number of synchrony strands,
exhaustive search is computationally intractable.

Hence, our model uses a number of heuristics to
generate only those organisational hypotheses
which are in some sense plausible. These heuristics
are embedded in hypothesis formation experts, such
that each expert represents a particular grouping
principle. Note that a hypothesised organisation
must account for all of the synchrony strands in
the OHR; accordingly, the hypotheses generated
by formation experts may be regarded as inde-
pendent.

The format of a hypothesis di�ers according to
the layer of abstraction on the blackboard (see
Fig. 2). Primitive hypotheses (level 3) are a logical
grouping of synchrony strands that overlap in
time; in the context of musical stimuli, a primitive
hypothesis corresponds to a note. At level 5 of the
blackboard, emergent properties such as funda-
mental frequency and timbre are added to these
note hypotheses. Grouping on the basis of these
emergent properties allows hypotheses to be
formed about sequences of acoustic events that are
separated in time; these are the emergent hypoth-
eses (melodic lines) represented at level 6 of the
blackboard.

4.3.1. Hypothesis formation experts
Each hypothesis formation expert operates in a

similar manner. Given a `target' strand with some
newly-derived features, the expert attempts to ®nd
another strand which is close (in some respect) to
the target. For example, in the case of an expert
that detects the common onset of acoustic events,
the closest strand will be the one whose start time
is most similar to the start time of the target
strand. If the relationship between the two strands
is nearly ideal (e.g., they have almost identical
onset times) then the expert will only generate
hypotheses in which the two strands are grouped.
Conversely, if the two strands conform to the
principle very weakly, the expert will only consider
hypotheses in which the two strands are segregat-
ed. If the relationship lies between these two ex-
tremes, the expert generates both sets of
hypotheses.

Since hypothesis formation experts operate
independently of one another, it is possible that
several experts will generate identical hypotheses;
in such cases, the hypotheses are merged to
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preserve uniqueness. In the current model, ex-
perts have been implemented for principles of
onset and o�set synchrony, temporal and fre-
quency proximity, harmonicity and common fre-
quency movement. A detailed description of the
function of each expert can be found in (Gods-
mark, 1998).

4.3.2. Local hypothesis evaluation
When place-groups pass beyond the limit of the

OHR, their organisation is ®xed according to the
`best' hypothesis on the blackboard. Hence, an
evaluation scheme is employed which ranks hy-
pothetical organisations according to their quality.
As before, evaluation schemes are embedded in the
experts for each grouping principle. Hypotheses
are evaluated under two situations; a synchrony
strand that forms part of an organisation may
have been moved to a di�erent stream by a hy-
pothesis formation expert, or a new strand feature
may have been detected.

Evaluation functions relate the likelihood that
two strands will be grouped to their degree of
conformance with a particular grouping principle.
For the majority of grouping principles, the eval-
uation function is two-dimensional; the only ex-
ception is the proximity principle, which combines
temporal and frequency proximity into a three-
dimensional function (Fig. 4). The output of each
evaluation function is a score between ÿ0.5 (indi-
cating that the organisation has weak support) and
+0.5 (indicating that the organisation has strong
support). This mapping ensures that weak group-
ing relationships actively penalise a hypothesis.

For strands that have already been segregated
into di�erent streams, an evaluation score is de-
rived by negating the evaluation function. For ex-
ample, consider two strands that have almost
identical onsets. A hypothesis that places these two
strands in the same stream will receive a score close
to +0.5 from the onset evaluation function, since
this organisation is consistent with grouping by a

Fig. 4. The evaluation function for proximity. Black represents a high score for hypotheses in which two strands are grouped, and

white represents a low score.

358 D. Godsmark, G.J. Brown / Speech Communication 27 (1999) 351±366



principle of common onset. Conversely, a hy-
pothesis that places the two strands in di�erent
streams will be penalised with a score close toÿ0.5.

When a strand is moved to a new organisation,
or when a new strand feature becomes available,
the relationship between this `target' strand and
every other strand in the OHR is evaluated by each
hypothesis evaluation expert. A local evaluation
score is then formed for the target strand, which is
simply the sum of the scores derived from each
evaluation expert.

4.3.3. Global hypothesis evaluation
In addition to the local evaluation score, each

hypothesis is also given a global evaluation score.
The global score is a cumulative sum of the local
scores which evolve for a hypothesis over time.
When a hypothesis is initially generated, the local
and global scores are identical. However, as new
place-groups appear in the OHR, the hypothesis is
modi®ed and a set of local evaluation scores are
generated for the new organisations. These local
evaluations are then incorporated into the global
evaluation score.

The global evaluation score is used to determine
the `best' organisation of a collection of acoustic
events. When the OHR passes beyond a place-
group, the current set of hypotheses is searched
and the one with the highest global score is se-
lected, e�ectively committing the place-group to a
particular stream. It should be noted, however,
that although place-groups eventually leave a hy-
pothesis, the hypothesis for that organisation
(which may contain other strands) continues to
evolve (and hence the global evaluation score con-
tinues to accumulate). Consequently, the grouping
process is highly context-sensitive; the global score
re¯ects an overall evaluation of the relationship
between a target strand and other strands not just
within the OHR, but across the entire history of
the acoustic signal.

A complication arises with this scheme when an
expert changes the organisation of a strand that
has been evaluated as part of another hypothesis.
For example, consider a case in which two strands
are harmonically related and have similar onset
times. These strands will be grouped on the basis
of both onset synchrony and harmonicity, and a

global evaluation score will evolve for this orga-
nisation. However, the strands may be segregated
at a later time if they become inharmonic; hence
the evaluation based on onset synchrony is no
longer valid, as the strands are no longer allocated
to the same stream. Consequently, when a strand
is moved to a new stream, it is necessary to remove
any contribution that it made to the global eval-
uation score of its previous organisational hy-
pothesis.

4.3.4. Parameter estimation
The parameters associated with the hypothesis

formation experts and hypothesis evaluation ex-
perts have been set to ensure that they are con-
sistent with known psychophysical data. Initially,
the evaluation function for the proximity principle
was estimated using alternating-tone sequences of
the form employed in van Noorden's early
streaming experiments (van Noorden, 1975) (see
Fig. 4). A hill-climbing optimisation was used, in
which the evaluation function of the proximity
expert was adjusted until the output of the model
matched van Noorden's perceptual data. Further
grouping principles were then added incrementally
and their parameters were estimated in a similar
fashion, using increasingly complex stimuli that
incorporated cues such as harmonicity and onset
asynchrony. For example, the sequence of tones
used by Bregman and Tougas (Fig. 1) was one of
several stimuli that were used to estimate param-
eters for the onset grouping expert.

By deriving parameters for the model from a
large range of psychophysical ®ndings, we avoid
some of the limitations of previous approaches.
For instance, Kashino and Tanaka (1992) derived
an evaluation function for an onset grouping
principle directly from a single psychophysical
experiment. As such, their approach describes the
behaviour of a grouping principle only in relation
to a speci®c acoustic stimulus, and does not ac-
knowledge the context-sensitivity of auditory or-
ganisation. Furthermore, it is di�cult to design
experimental paradigms which genuinely isolate
the behaviour of a single grouping principle; even
for simple stimuli, auditory organisation may re-
¯ect the operation of multiple grouping mecha-
nisms.
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4.4. Emergent organisation

The fusion of a group of synchrony strands al-
lows emergent properties to be derived ± in our
current implementation, we compute estimates of
fundamental frequency and timbre. The emergent
organisation stage of the model attempts to further
organise groups of strands on the basis of these
properties. For example, for a stimulus consisting
of musical sounds, the primitive organisation stage
determines which strands are part of the same
musical note, and emergent organisation deter-
mines which notes are part of the same melodic line.

The emergent organisation phase proceeds in a
similar manner to primitive organisation; a tem-
poral window is employed, and organisation within
the window remains mutable. Hypotheses are cre-
ated by hypothesis formation experts, which at-
tempt to identify groups of strands that are similar
in respect of an emergent property; the expert then
determines whether they should de®nitely group,
de®nitely segregate, or whether the organisation is
ambiguous. Finally, local and global evaluation
metrics are computed. Additionally, a close corre-
spondence is maintained between the emergent and
primitive levels of the blackboard. Since an event at
the emergent level is also represented as a group of
strands at the primitive level, any modi®cations to
the emergent organisation must be re¯ected at
lower levels of the blackboard. For instance, if a
musical note is moved to a di�erent stream at the
emergent level, the group of strands that constitute
that note must also be moved to the new stream at
the primitive level.

The main di�erence between primitive and
emergent organisation lies in the complexity of the
underlying representations and the length of the
organisational window. A single musical note
could be several seconds in duration, and hence
the window for emergent organisation must be
signi®cantly wider than the OHR. In our current
implementation, we use a window width of 5 s;
wider windows have little e�ect on the perfor-
mance of the model for the test stimuli used here.

4.4.1. Grouping by pitch proximity
The pitch proximity principle works in a similar

manner to the primitive proximity mechanism,

except that grouping decisions are made on the
basis of the pitch of a group of strands, rather than
the frequency of a single strand. In fact, our model
currently uses a very simplistic indicator of pitch;
the median frequency of the lowest-frequency
strand in a group (which is presumed to be the
fundamental frequency). For the stimuli used in
our current evaluation of the model, this approx-
imation is adequate; more principled schemes,
such as the time-frequency harmonic sieve pro-
posed by Cooke (1993), could be integrated into
the model in a straightforward manner.

4.4.2. Grouping by timbral similarity
Modelling the perception of timbre presents a

challenging problem, not least because the acous-
tical correlates of timbre are far from certain.
However, it is clear that timbre is multidimensional;
it is not correlated with a single acoustic property.
Currently, it is believed that properties such as at-
tack and decay transients, inharmonic noise and
changes in the distribution of spectral energy con-
tribute to the perception of timbre (Iverson and
Krumhansl, 1993; Handel, 1995). Accordingly, our
model employs a novel representation of timbre
that captures dynamic changes in amplitude and
spectral shape, termed a timbre track.

A timbre track is a representation of changes in
spectral centroid (which can be related to `bright-
ness') plotted against changes in amplitude. The
centroid frequency of a group of strands is calcu-
lated by summing the product of the frequency
and amplitude of each place-group, and dividing
this by the sum of the amplitudes (see also Iverson
and Krumhansl, 1993; Brown and Cooke, 1994b).
The centroid is computed within a 20 ms window
at 10 ms intervals, yielding a series of values that
may be thought of as a `brightness envelope'. A
similar approach is used to compute an amplitude
envelope for a group of strands; within the same
20 ms window, the average of all place-group
amplitudes is calculated. The amplitude and
brightness envelopes are then smoothed by poly-
nomial ®tting, and di�erentiated by convolution
with the ®rst derivative of a gaussian. Hence, a
three-dimensional representation of timbre is ob-
tained in which each point �b; a; t� represents the
brightness b and amplitude a at time t.
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In fact, it is convenient to project each point in
the timbre space onto two-dimensions by simply
taking the pair �b; a�. This stage is motivated by
the observation that many musical instrument
sounds have a sustained portion in which a re-
peating pattern of timbral change occurs. By
projecting onto two dimensions, these repetitive
changes become visible as loops in the timbre
track. Multiple instances of these loops are re-
moved, since they introduce a dependency on du-
ration that might confound the subsequent
matching of timbre tracks. Typical timbre track
representations are shown in Fig. 5. Elsewhere, we
have demonstrated that timbre tracks for a given
sound source (such as a musical instrument) are
relatively invariant over both fundamental fre-
quency and intensity (Godsmark and Brown,
1996b).

By treating each point in the timbre track as a
control point on a b-spline curve, it is possible to
ensure that each track contains a speci®c number
of points (Foley et al., 1996). Hence, the similarity
of two timbre tracks can be quanti®ed by com-
puting the sum of the Euclidean distances between
equivalent points on each track. Matching timbre
tracks in this way allows an evaluation function to
be speci®ed, which relates the similarity of two
timbre tracks to the likelihood that the corre-
sponding groups of strands will be placed in the
same stream.

4.5. Schema-driven organisation

At the highest level of the blackboard, organi-
sation of auditory events is in¯uenced by source-
speci®c knowledge. Currently we have evaluated
the model with musical stimuli, and have devel-
oped experts for identifying meter and repeated
melodic phrases. The information provided by
these experts is fed into a prediction mechanism
which is able to strengthen hypotheses at the
emergent level. For example, if a repeating musical
phrase is identi®ed, then the next musical note can
be anticipated; any organisational hypotheses at
the emergent level which support this prediction
will be strengthened. Similarly, by deriving the
meter of a musical piece, the model can predict
when the next note will arrive, and strengthen
hypotheses which support the presence of an
acoustic event at that temporal location.

In our current implementation, the experts for
meter and phrase identi®cation work in a rather
simplistic manner. Meter prediction is based upon
the scheme proposed by Rosenthal (1992), in
which the temporal location of future events is
predicted from the inter-onset-intervals of pre-
vious events. However, an additional complication
arises because the acoustic evidence on the black-
board may represent the activity of more than one
sound source. Accordingly, meter predictions are
made separately for each stream (recall that
groups of strands are partitioned into streams at
the emergent level of the blackboard).

A similar mechanism underlies the expert for
melody identi®cation, except that predictions are
made about the fundamental frequency of eventsFig. 5. Timbre tracks for a violin tone (A) and piano tone (B).
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as well as their timing. Predictions are based upon
the recognition of sequences of relative changes in
fundamental, and hence the expert is able to rec-
ognise transposed motifs. This approach is con-
sistent with the work of Deutsch (1980), who has
presented evidence that listeners memorise tonal
sequences using relative, rather than absolute,
changes in frequency. For monophonic input,
melody prediction is based on the fundamental
frequency of notes. For polyphonic music, melody
prediction is rather simplistic because the model
does not currently exploit knowledge about mu-
sical chords; the notes of a chord are grouped
(because they have a similar timbre), and the
fundamental frequency of this group as a whole is
used for melody prediction.

5. Evaluation

The computational model has been evaluated
by investigating its ability to reproduce data from
a wide range of psychophysical experiments.
Elsewhere, we have shown that the model is con-
sistent with phenomena such as the build-up of
streaming over time, context-sensitive and retro-
active organisation, and competition between se-
quential and simultaneous grouping (Godsmark
and Brown, 1996a,b). Here, we focus on two
rather challenging evaluation tasks; reproducing
listeners' perception of interleaved melodies, and
segregating polyphonic music into its constituent
melodic lines.

In the ®rst experiment, we investigate whether a
model whose parameters are derived from psy-
chophysical studies using simple tonal stimuli can
also predict listeners' performance in a more
complex melody identi®cation task. The second
experiment further investigates the scalability of
our model; can the principles and parameters de-
rived from psychophysical studies also be suc-
cessfully applied to the segregation of complex
musical sounds?

In the evaluations that follow, the same set of
model parameters were used for every condition;
furthermore, the stimuli used for evaluation were
not presented to the model during the parameter
estimation stage.

5.1. Identi®cation of interleaved melodies

Hartmann and Johnson (1991) have investi-
gated the ability of listeners to identify interleaved
melodies (i.e., a stimulus of the form
x1y1x2y2 . . . xnyn, where the xn are notes of one
melody and the yn are notes of a second melody).
The data for ®ve of their experimental conditions
are shown in Fig. 6. In the null condition, the two
melodies were played in the same pitch range, with
each note represented by a pure tone of equal
duration. No stream segregation was apparent in
this condition, and hence identi®cation of the in-
terleaved melodies was di�cult. However, identi-
®cation performance could be substantially
improved by transposing one of the melodies up
by an octave (condition 1). An improvement in
performance was also obtained by introducing a
di�erence in timbre between the two melodies; this
was achieved by sounding the notes of one melody
with a harmonic complex rather than a pure tone
(condition 3). Similarly, identi®cation was im-
proved when the notes of one melody had a long
attack and short decay, and the notes of the sec-
ond melody had a short attack and long decay
(condition 5). In the ®nal condition, a di�erence in
duration was introduced so that the notes of one
melody were twice as long as the notes of the
other.

Fig. 6. The performance of listeners (grey bars) and the com-

puter model (white bars) in identifying two interleaved melo-

dies. The details of each condition are explained in the text. The

data for listeners is from Hartmann and Johnson (1991).
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Fig. 6 also shows the performance of our model
for Hartmann and Johnson's stimuli. To enable
this comparison, a simple template-matching
mechanism for melody identi®cation was added to
the model. The model reproduces the overall pat-
tern of listeners responses, although it outperforms
human listeners in the ®rst four conditions. It is
likely that this performance di�erence arises be-
cause the model is able to identify melodies with

greater reliability than listeners; it cannot be due to
a di�erence in segregation ability, since the model
outperforms listeners in the null condition (in
which no cues for segregating the melodies are
available).

It should be noted that the model performs
poorly in condition 6; its performance in this
condition is below that for the null condition, a
result which is inconsistent with Hartmann and

Fig. 7. Extracts from three musical scores used to test the computer model. Each score was performed by a sample-based MIDI

synthesizer and recorded to a single-channel audio ®le, which was used as input to the model.
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Johnson's ®ndings. By increasing the duration of
notes in one melody, the temporal proximity be-
tween notes is reduced and the model erroneously
allocates consecutive notes (which belong to dif-
ferent melodies) to the same stream. In this con-
dition, it is possible that listeners exploit a
principle of similarity (Rogers and Bregman,
1993); more speci®cally, they group notes which
have similar durations. Currently our model does
not employ a principle of similarity, and hence
grouping by temporal proximity leads to an in-
appropriate organisation.

5.2. Segregation of musical sounds

The model has also been evaluated by investi-
gating its ability to segregate polyphonic music
into its constituent melodic lines. In order to
quantify the performance of the model, a metric is
used that matches the onset time and fundamental
frequency of notes (i.e., groups of strands) against
the original musical score. Using this metric, four
types of error may occur:
1. Either the onset time or fundamental frequency

do not correlate with a note in the score.
2. A note may be grouped with events belonging to

the wrong melodic line (i.e., the onset time and
fundamental frequency have been correctly
identi®ed, but the corresponding group of
strands has been allocated to the wrong stream).

3. A note may be deleted. This may occur when
there is considerable overlap between the spec-
tra of two simultaneous acoustic events, caus-
ing a single group of strands to be produced.

4. A note may be inserted; in other words, the or-
ganisational strategy may inappropriately par-
tition a set of synchrony strands into two
groups.

Three musical examples were used to test the
model: extracts from their scores are shown in
Fig. 7. The ®rst piece is a solo piano recording,
but the second is more complex, consisting of pi-
ano and double-bass parts. Although the latter
piece is polyphonic and multi-timbral, the two
instruments play in distinct registers. The ®nal
piece consists of four parts; piano and guitar
(playing in the same octave), bass and occasional
xylophone motif.

Fig. 8 shows the model performance for the
three musical examples. Each score was perform-
ed by a sample-based MIDI synthesizer and re-
corded to a single-channel audio ®le, which
provided the input to the model. The model per-
forms well in the ®rst two conditions, although a
number of insertion errors occur. These are due to
the limited high-frequency resolution of the gam-
matone ®lterbank, which may cause unrelated
harmonics to be integrated into a single strand.
Such strands oscillate between the frequencies of
the two harmonics, destroying harmonicity and
common frequency movement cues. As a result,
these spurious components do not group strongly
with other strands in the auditory scene, and are
interpreted as notes in a separate stream. Fur-
thermore, the incorrect grouping of these har-
monics may a�ect the timbre of remaining notes,
causing some of them to be allocated to inap-
propriate streams.

The ®nal condition is very challenging, and this
is re¯ected in the poor performance of the model;
there are many insertion and deletion errors. This
is not surprising, given that the piano and guitar
are playing in the same register; many of the guitar
notes are masked by the piano, causing the model
to miss them completely. Also, harmonic compo-
nents belonging to the guitar and piano occa-

Fig. 8. Segregation performance for three musical stimuli,

consisting of solo piano (black bars), piano and bass (grey bars)

and a complex four-part arrangement (white bars). Errors in

each category are expressed as a percentage of the number of

notes in the musical score.
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sionally fuse, producing a group of strands with a
novel timbre that is placed in a new stream.

6. Conclusions

This paper has presented an architecture for
CASA that accommodates the interaction of
context-sensitive and retroactive grouping mecha-
nisms at several levels of abstraction. Competition
between grouping principles is managed implicitly
using a blackboard metaphor; knowledge sources
in¯uence the score of hypothesised organisations,
and the hypothesis with the highest score is se-
lected when an organisation must be ®xed. It has
also been demonstrated that the model is able to
integrate top-down and bottom-up processing, by
allowing high-level predictions about meter and
melody to in¯uence the organisation at lower lev-
els of the blackboard.

Since the early work by Cooke et al. (1993), a
number of other workers have proposed black-
board architectures for CASA. In a recent thesis,
Ellis (1996) has described a `prediction-driven'
system, which reconciles acoustic evidence with an
internal model of environmental sound sources.
Ellis uses a blackboard to manage multiple hy-
potheses about the organisation of the auditory
scene, and to handle competition between them.
However, his approach does not fully exploit the
potential of blackboard systems to co-ordinate
processing at di�erent levels of abstraction, and his
evaluation is less concerned with psychophysical
plausibility than ours. Similarly, the multi-agent
system of Nakatani et al. (1998) and the Bayesian
network approach of Kashino et al. (1998) both
address the issue of combining evidence from
multiple grouping principles, but are di�erent in
their motivation to the system described here.
Other related work includes the IPUS sound-un-
derstanding system described by Lesser et al.
(1995), which employs a sophisticated blackboard
architecture. However, the IPUS system addresses
complex signal analysis in general, and is not
strongly motivated by an auditory account.

Where possible, the parameters of our model
have been estimated from available psychophysi-
cal data. Although this approach is principled, it

may prove problematic if there is inconsistency
between di�erent psychophysical ®ndings. In
practice, during parameter estimation for the
model there were no occasions where parameter
values could not be set to accommodate the rele-
vant psychophysical data. However, it is likely
that we will have to address this problem during
future development of the model; as more group-
ing principles are added, there will be a greater
likelihood of inconsistencies during parameter es-
timation.

Perhaps a unique aspect of our model is its
scalability, a property that Bregman (1998) has
identi®ed as crucial for CASA systems. The pa-
rameters associated with the models' grouping
principles have been estimated from psychophysi-
cal data. Consequently, the model is able to dem-
onstrate a qualitative match to a wide range of
psychophysical phenomena. However, the archi-
tecture can also be scaled up to process complex
musical stimuli. In short, the architecture allows us
to exploit principles derived from simple psycho-
physical experiments, and to investigate how those
same principles apply to the segregation of real-
world sounds.

Although the model has currently been evalu-
ated with musical signals, it is intended to be a
general architecture for CASA. Little modi®cation
of the model would be required in order to process
mixtures of speech and other environmental
sounds. For example, although the generation of
timbre tracks is currently optimised for musical
stimuli, a representation of timbre could provide
information about voice quality. The most signi-
®cant changes would be required at the highest
level of the blackboard, where speech-speci®c
knowledge sources would be provided (for exam-
ple, acoustic-phonetic models or higher-level
knowledge about semantics and pragmatics). Fu-
ture development of the model will focus upon the
implementation of such knowledge sources.
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