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Exercise Sheet 2

Please send me your solutions in English or French by email by December 9, 2024, including
executable Isabelle files.

Exercises 2.1–2.3 and parts of Exercise 2.5 and 2.6 require Isabelle. Please provide detailed
human-readable Isar proofs if suitable, as you would normally write them on paper. Some
other exercises are not too hard with Isabelle either (I indicate which ones), but Isabelle proofs
are optional. Of course, Isabelle may still help checking your reasoning.

To find Isabelle/HOL’s theory for natural numbers with the relevant syntax and functions you
can, for instance, type a simple expression using a natural number type into Isabelle (e.g. asking
for the value of 5 :: nat), press command, hover over nat and click. Likewise, you can access
the Isabelle/HOL theory for functional lists asking e.g for the value of [a] :: ′a list.

Question 2.1 In Isabelle’s theory for natural numbers, using in particular its type class
nat and its addition and multiplication functions, (re)prove that multiplication is associative,
commutative and has a unit.

Question 2.2 The list map function discussed in class is called map in Isabelle’s list theory.
Using this theory, give step-by-step Isar proofs showing that

(i) map f (xs · ys) = (map f xs) · (map f ys) (where here I write · for list concatenation),

(ii) map (f ◦ g) = (map f) ◦ (map g),

(iii) map id = id .

Question 2.3 Use Isabelle to check that PX∗, the powerset of the free monoid X∗ on the set
X, forms a Kleene algebra. You can proceed by a series of instantiation proofs:

(i) The first shows that Isabelle’s functional lists (polymorphic and without a carrier set)
form multiplicative monoids with respect to list concatenation/append and the empty
list, using Isabelle’s monoid mult type class.

(ii) The second shows that for each multiplicative monoid M (again without carrier sets), PM
forms a multiplicative monoid. The instantiation proof that powersets form semilattices
in the file My Algebras .thy yields a template for this proof.

(iii) The third shows, incrementally to the second, that PM forms a dioid, using the dioid
type class in My Algebras .thy .

(iv) The fourth shows, incrementally to the third, that PM forms a Kleene algebra, using
the Kleene algebra type class in My Algebras .thy . Some auxiliary lemmas may be helpful
for this proof. You can instruct Isabelle to use such lemmas in apply-style proof steps
by adding them to the simplifier in a proof writing simp add : 〈name−of−lemma〉 or
unfolding 〈name−of−lemma〉. You can also suggest to Isabelle to use a particular lemma
writing using with the name of the lemma before calling auto, blast , force etc or Sledgham-
mer. The file My Algebras .thy , in particular he interpretation proof that relations form
Kleene algebras, shows several examples for this.



(v) Finally, try a simple Isabelle proof on PΣ∗ to test that Isabelle now “understands” that
PΣ∗ forms indeed a Kleene algebra.

Alternatively, you can give interpretation proofs instead of instantiation proofs, using the exam-
ples in My Algebras .thy as a template. The Isabelle documentation on type classes and locales
gives further guidance.

Question 2.4 Let (P,≤,⊥) be a poset with least element ⊥ in which each pair of elements
has a sup t, that is, for all x, y, z ∈ P ,

x t y ≤ z ⇔ x ≤ z ∧ y ≤ z.

Show that the algebraic laws for semilattices are derivable: for all x, y, z ∈ P ,

x t (y t z) = (x t y) t z, x t y = y t x, x t x = x, x t ⊥ = x.

If you want to use Isabelle to derive these identities, start with extending Isabelle’s type class
for partial orders to one for semilattices-as-orders.

Question 2.5 A modal semiring is a dioid (an additively idempotent semiring) (S,+, ·, 0, 1)
with domain and codomain operations dom, cod : S → S that satisfy, for all x, y, z ∈ S,

dom(x) · x = x, dom(x · dom(y)) = dom(x · y), dom(x) ≤ 1,

dom(0) = 0, dom(x + y) = dom(x) + dom(y),

x · cod(x) = x, cod(cod(x) · y) = cod(x · y), cod(x) ≤ 1,

cod(0) = 0, cod(x + y) = cod(x) + cod(y),

cod(dom(x)) = dom(x), dom(cod(x)) = cod(x).

Hence the domain and codomain axioms are the same as for modal quantales discussed in class,
up-to notation. Show that

(i) dom(dom(x)) = dom(x) and cod(cod(x)) = cod(x);

(ii) x ∈ dom(S) (the image of S under dom) if and only if x is a fixpoint of dom;

(iii) the set Sd of fixpoints of dom equals the set of fixpoints of cod ;

(iv) Sd forms a distributive lattice with least element 0 and greatest element 1 in which ·
coincides with binary inf;

(v) there are domain semirings in which the set of all subidentities (elements below 1) strictly
includes Sd. Define a type class for modal semirings extending the dioid class from
My Algebras .thy and refute a suitable statement using Nitpick.

The first three parts of this exercise are easy with Isabelle as well, if you want to try. Part four
is harder, but you can still easily check individual properties (individual closure conditions etc)
leading to this fact with Isabelle without fully formalising it (this would probably require a
subtype and other heavy machinery).

Question 2.6 Recall that a Kleene algebra is a dioid (K,+, ·, 0, 1) with a star operation
(−)∗ : K → K such that, for all x, y, z ∈ K,

1 + x · x∗ ≤ x∗, z + x · y ≤ y ⇒ x∗ · z ≤ y, 1 + x∗ · x ≤ x∗, z + y · x ≤ y ⇒ z · x∗ ≤ y.

Using relevant properties from My Algebras .thy , show (on paper or using Isabelle), that



(i) x∗∗ = x∗,

(ii) (x · y)∗ · x = x · (y · x)∗,

(iii) (x + y)∗ = x∗ · (y · x∗)∗.

(iv) Refute the generalised confluence property x∗ · y∗ ≤ y∗ · x∗ using Nitpick; show the mul-
tiplication tables.

Show detailed Isar proof if you choose to use Isabelle.

Question 2.7 Recall that a catoid is a structure (C,�, s, t) consisting of a set C, a mul-
tioperation � : C × C → PC and source and target maps s, t : C → C such that, for all
x, y, z ∈ C,⋃
v∈x�z

x�v =
⋃

u∈x�y

u�z, x�y 6= ∅ ⇒ t(x) = s(y), s(x)�x = {x}, x� t(x) = {x}.

Show that, for all x, y ∈ C,

(i) s ◦ s = s, t ◦ t = t, s ◦ t = t and t ◦ s = s,

(ii) s(x) = x if and only if t(x) = x,

(iii) s(x)� s(x) = {s(x)} and t(x)� t(x) = {t(x)},

(iv) s(x)� t(y) = t(x)� s(y),

(v) s(s(x)� y) = s(x)� s(y) and t(x� t(y)) = t(x)� t(y),

(vi) s(x� y) ⊆ s(x� s(y)) and t(x� y) ⊆ t(t(x)� y),

(vii) s(x� y) = {s(x)} and t(x� y) = {t(y)} whenever x� y 6= ∅.

Note that images of domain and codomain maps are taken tacitly in some statements. If a
statement is the opposite of another, in the sense that the arguments of � are swapped and s
and t exchanged, then it suffices to write “proof by opposition”. Once again, it is not very hard
to do Isar proofs, starting from a type class for catoids.

Question 2.8 Suppose you have constructed a modal powerset quantale PC on a catoid C,
with X ∗ Y =

⋃
{x � y | x ∈ X, y ∈ Y } for all X, Y ⊆ C, with dom the image of s, cod

the image of t and with monoidal identity C0 (the set of all fixpoints of s/t). Show that the
singleton sets in PC give rise to a catoid on the set C, defining

x ∈ y � z ⇔ {x} ⊆ {y} ∗ {z}.

Question 2.9 The shuffle operation ‖ : X∗ ×X∗ → PX∗ on the free monoid X∗ on the set
X is the multioperation defined, for all letters a, b ∈ X, words v, w ∈ X∗ and empty word ε, as

v‖ε = {v} = ε‖v, (a · v)‖(b · w) = {a} · (v‖(b · w)) ∪ {b} · ((a · v)‖w),

where the complex product · : PX∗×PX∗ → PX∗ is tacitly used in the right-hand side of the
second equation. Show that (X∗, ‖, s, t) forms a catoid. What are the source and target maps?
Extend the shuffle operation to sets and use it in the proof if helpful.



If you are planning to formalise this example with Isabelle, note that the simple induction proofs
we saw in class might not suffice. You can check the induction heuristics section of the Isabelle
document Programming and Proving in Isabelle/HOL for more advanced uses of induction.

The shuffle operation allows interleaving concurrent processes in computing systems, where
actions of concurrent processes are scheduled sequentially in time.

Question 2.10 We have defined functors as homomorphisms of single-set categories in class
(see also Chapter XII of Mac Lane’s book). How would you define natural transformations?


