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Motivation

everybody loves my baby
but my baby don’t love nobody but me

(Doris Day)



Mechanised Reasoning

past: different systems/communities

• interactive theorem provers (Coq, HOL, Isabelle, Agda, Epigram, . . . )
• automated theorem provers (Prover9, Vampire, E, Spass, . . . )
• SAT/SMT solvers and other special purpose tools

future: mechanised reasoning environments that integrate these tools

these lectures:

• focus on automated theorem proving (ATP)
• outline ATP integration in Isabelle (”Sledgehammer”)



Overview

main goal: we will learn

• how ATP systems work (in theory)
• where ATP systems can be useful (in practice)

main topics: we will discuss

• solving equations: term rewriting and Knuth-Bendix completion
• saturation-based ATP
• conjecture and refutation games in mathematics
• logical modelling and problem solving with ATP systems and SAT solvers

tools used: Prover9, Mace4, Isabelle



Term Rewriting

example: (grecian urn) An urn holds 150 black beans and 75 white beans. You
successively remove two beans. A black bean is put back if both beans have the
same colour. A white bean is put back if their colour is different.
Is the colour of the last bean fixed? Which is it?

BB→ B WW→ B WB→W BW→W

BW→WB WB→ BW

questions:

• are these “good” rules?
• does system terminate?
• is there determinism?



Term Rewriting

example: (chameleon island) The chameleons on this island are either red, yellow
or green. When two chameleons of different colour meet, they change to the
third colour. Assume that 15 red, 14 yellow and 13 green chameleons live on
the island. Is there a stable (monochromatic) state?

RY → GG Y R→ GG GY → RR

Y G→ RR RG→ Y Y GR→ Y Y

questions:

• does system terminate?
• how can rewriting solve the puzzle?



Term Rewriting

example: Consider the following rules for monoids

(xy)z → x(yz) 1x→ x x1→ x

questions:

• does this yield normal forms?
• can we decide whether two monoid terms are equivalent?



Term Rewriting

examples: consider the following rules for the stack

top(push(x, y))→ x pop(push(x, y))→ y

empty?(⊥)→ T empty?(push(x, y))→ F

question: what about the rule

push(top(x), pop(x))→ x

which applies if empty?x = F ?



Terms and Term Algebras

terms: TΣ(X) denotes set of terms over signature Σ and variables from X

t ::= x | f(t1, . . . tn)

constants are functions of arity 0

ground term: term without variables

remark: terms correspond to labelled trees



Terms and Term Algebras

example: Boolean algebra

• signature {+, ·, , 0, 1}
• +, · have arity 2; has arity 1; 0,1 have arity 0
• terms

+(x, y) ≈ x+ y · (x,+(y, z)) ≈ x · (y + z)

intuition: terms make the sides of equations

(x+ y) + z= x+ (y + z) x+ y= y + x x= x+ y + x+ y

x · y= x+ y



Terms and Term Algebras

substitution:

• partial map σ : X → TΣ(X) (with finite domain)
• all occurrences of variables in dom(σ) are replaced by some term
• “homomorphic” extension to terms, equations, formulas,. . .

example: for f(x, y) = x+ y and σ : x 7→ x · z, y 7→ x+ y,

f(x, y)σ = f(x · z, x+ y) = (x · z) + (x+ y)

remark: substitution is different from replacement:
replacing term s in term r(. . . s . . . ) by term t yields r(. . . t . . . )



Terms and Term Algebras

Σ-algebra: structure (A, (fA : An → A)f∈Σ)

interpretation (meaning) of terms

• assignment α : X → A gives meaning to variables
• homomorphism Iα : TΣ(X)→ A

– Iα(x) = α(x) for all variables
– Iα(c) = cA for all constants
– Iα(f(t1, . . . , tn)) = fA(Iα(t1), . . . , Iα(tn))

equations: A |= s = t ⇔ Iα(s) = Iα(t) for all α.



Terms and Term Algebras

examples:

• BA terms can be interpreted in BA {0, 1} via truth tables; row gives Iα
• operations on finite sets can be given as Cayley tables

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

(N mod 4)



Deduction and Reduction

equtional reasoning: does E imply s = t ?

• Proofs:
1. use rules of equational logic

(reflexivity, symmetry, transitivity, congruence, substitution, Leibniz, . . . )
2. use rewriting (orient equations, look for canonical forms)
• Refutations: Find model A with A |= E and A |= s 6= t

example: equations for Boolean algebra

• imply x · y = y · x (prove it)
• but not x+ y = x (find counterexample)

question: does fff x = f x imply ff x = f x ?



Rewriting

question: how can we effectively reduce to canonical form?

• reduction sequences must terminate
• reduction must be deterministic

(diverging reductions must eventually converge)

examples:

• the monoid rules generate canonical forms (why?)
• the adjusted grecian urn rules are terminating (why?)
• the chameleon island rules are not terminating (why?)



Abstract Reduction

abstract reduction system: structure (A, (Ri)i∈I)
with set A and binary relations Ri

here: one single relation → with

• ← converse of →
• → ◦ → relative product
• ↔ = → ∪ ←
• →+ transitive closure of →
• →∗ reflexive transitive closure of →

remarks:

• →+ is transitive
• →∗ is preorder



Abstract Reduction

terminology:

• a ∈ A reducible if a ∈ dom(→)
• a ∈ A normal form if a ∈ dom(→)
• b nf of a if a→∗ b and b nf
• →∗ ◦ ←∗ is called rewrite proof

properties:

• Church-Rosser ↔∗ ⊆ →∗ ◦ ←∗
• confluence ←∗ ◦ →∗ ⊆ →∗ ◦ ←∗
• local confluence ← ◦ → ⊆ →∗ ◦ ←∗
• wellfounded no infinite → sequences
• convergence is confluence and wf



Abstract Reduction

theorems: (canonical forms)

• Church-Rosser equivalent to confluence
• confluence equivalent to local confluence and wf

intuition: local confluence yields local criterion for CR

termination proofs: let (A,<A) and (B,≤B) be posets with ≤B wf
then ≤A wf if there is monotonic f : A→ B

intuition: reduce termination analysis to “well known” order like N

proofs: as exercises



Term Rewriting

term rewrite system: set R of rewrite rules l→ r for l, r ∈ TΣ(X)

one-step rewrite: t(. . . lσ . . . )→ t(. . . rσ . . . ) for l→ r ∈ R and σ substitution
(if l matches subterm of t then subterm is replaced by rσ)

rewrite relation: smallest →R containing R and closed
under contexts (monotonic) and substitutions (fully invariant)

example: 1 · (x · (y · z))→ x · (y · z) is one-step rewrite with
monoid rule 1 · x→ x and substitution σ : x 7→ x · (y · z)



Term Rewriting

fact: convergent TRSs can decide equational theories

theorem: (Birkhoff) E |= ∀~x.s = t ⇔ s↔∗E t ⇔ cf(s) = cf(t)
(canonical forms generate free algebra TΣ(X)/E)

corollary: theories of finite convergent sets of equations are decidable

question: how can we turn E into convergent TRS?



Local Confluence in TRS

observation:

• local confluence depends on overlap of rewrite rules in terms
• if l1 → r1 rewrites a “skeleton subterm” l′2 of l2 → r2 in some t

then l1σ1 and l2σ2 must be subterms of t and l1σ1 = l′2σ2

• if variables in l1 and l′2 are disjoint, then l1(σ1 ∪ σ2) = l′2(σ1 ∪ σ2)
• σ1 ∪ σ2 can be decomposed into σ which “makes l1 and l′2 equal”

and σ′ which further instantiates the result

unifier of s and t: a substitution σ such that sσ = tσ

facts:

• if terms are unifiable, they have most general unifiers
• mgus are unique and can be determined by efficient algorithms



Unification

naive algorithm: (exponential in size of terms)

E, s = s ⇒ E

E, f(s1, . . . , sn) = f(t1, . . . , tn) ⇒ E, s1 = t1, . . . , sn = tn

E, f(. . . ) = g(. . . ) ⇒ ⊥
E, t = x ⇒ E, x = t if t 6∈ X
E, x = t ⇒ ⊥ if x 6= t and x occurs in t

E, x = t ⇒ E[t/x], x = t if x doesn’t occur in t



Unification

example:

f(g(x, b), f(x, z)) = f(y, f(g(a, b), c))

⇓
. . .

⇓
y = g(g(a, b), b), x = g(a, b), z = c



Critical Pairs

task: establish local confluence in TRS

question: how can rewrite rules overlap in terms?

• disjoint redexes (automatically confluent)
• variable overlap (automatically confluent)
• skeleton overlap (not necessarily confluent)

. . . see diagrams

conclusion: skeleton overlaps lead to equations that may not have rewrite proofs



Critical Pairs

critical pairs: l1σ(. . . r2σ . . . ) = r1σ where

• l1 → r1 and l2 → r2 rewrite rules
• σ mgu of l2 and subterm l′1 of l1
• l′1 6∈ X

example: x+ (−x)→ 0 and x+ ((−x) + y)→ y have cp x+ 0 = −(−x)

theorem: A TRS is locally confluent iff all critical pairs have rewrite proofs

remark: confluence decidable for finite wf TRS
(only finitely many cps must be inspected)



Wellfoundedness/Termination

fact: proving termination of TRSs requires complex constructions

lexicographic combination: for posets (A1, <1) and (A2, <2) define < of type
A1 ×A2 by

(a1, a2) > (b1, b2) ⇔ a1 >1 b1, or a1 = b1 and a2 > b2

then (A1 ×A2, <) is a poset and < is wf iff <1 and <2 are

proof: exercise (wellfoundedness)



Wellfoundedness/Termination

multiset over set A: map m : A→ N

remark: consider only finite multisets

multiset extension: for poset (A,<) define < of type (A→ N)× (A→ N) by

m1 > m2 ⇔ m1 6= m2 and

∀a ∈ A.(m2(a) > m1(a)⇒ ∃b ∈ A.(b > a and m1(b) > m2(b)))

this is a partial order; it is wellfounded if the underlying order is

proof: exercise (wellfoundedness)



Reduction Orderings

idea: for finite TRS, inspect only finitely many rules for termination

reduction ordering: wellfounded partial ordering on terms
such that all operations and substitutions are order preserving

fact: TRS terminates iff → is contained in some reduction ordering

nontermination: rewrite rules of form

• x→ t
• l(x1, . . . , xn)→ r(x1, . . . , xn, y) (why?)

in practice: reduction orderings should have computable approximations
(halting problem)

interpretation: reduction orderings are wf iff all ground instantiations are wf



Reduction Orderings

polynomial orderings:

• associate function terms with polynomial weight functions
with integer coeficients
• checking ordering constraints can be undecidable (Hilbert’s 10th problem)
• restrictions must be imposed



Reduction Orderings

simplification orderings: monotonic ordering on terms that contain
the (strict) subterm ordering

theorem: simplification orderings over finite signatures are wf

proof: by Kruskal’s theorem

example: ff x→ fgf x terminates and induces reduction ordering >

1. assume > is simplification ordering
2. f x is subterm of gf x, hence gf x > f x
3. then fgf x > ff x by monotonicity
4. so ff x > ff x, a contradiction
5. conclusion: wf not always captured by simplification ordering



Simplification Orderings

lexicographic path ordering: for precedence � on Σ define relation > on TΣ(X)

• s > x if x proper subterm of s, or
• s = f(s1, . . . sm) > g(t1, . . . , tn) = t and

– si > t for some i or
– f � g and s > ti for all i or
– f = g, s > ti for all i and (s1, . . . , sm) > (t1, . . . , tm) lexicographically

fact: lpo is simplification ordering, it is total if the precedence is

variations:

• multiset path ordering: compare subterms as multisets
• recursive path ordering: function symbols have either lex or mul status
• Knuth-Bendix ordering: hybrid of weights and precedences



Knuth-Bendix Completion

idea: take set of equations and reduction ordering

• orient equations into decreasing rewrite rules
• inspect all critial pairs and add resulting equations
• delete trivial equations
• if all equations can be oriented, KB-closure contains convergent TRS

extension: delete redundant expressions, e.g.
if r → s, s→ t ∈ R, then adding r → t to R makes r → s redundant

therefore:

• KB-completion combines deduction and reduction
• this is essentially basis construction



Knuth-Bendix Completion

rule based algorithm: let < be reduction ordering

• delete: E, t = t, R ⇒ E,R
• orient: E, s = t, R ⇒ E,R, s→ t if s > t
• deduce: E,R ⇒ E, s = t, R if s = t is cp from R
• simplify: E, r = s,R ⇒ E, r = t, R if s→R t
• compose: E,R, r → s ⇒ E,R, r → t if s→R t
• collapse: E,R, r → s ⇒ E, s = t, R if r →R t rewrites strict subterm

remark: permutations in s = t are implicit

strategy: (((simplify + delete)∗; (orient; (compose+ collapse)∗))∗; deduce)∗



Knuth-Bendix Completion

properties: the following facts can be shown

• soundness: completion doesn’t change equational theory
• correctness: if process is fair (all cps eventually computed) and all equations

can be oriented, then limit yields convergent TRS ”KB-basis”

main construction: use complex wf order on proofs to show that
all completion steps decrease proofs, hence induce rewrite proofs

observation: completion need not succeed

• it can fail to orient persistent equations
• it can loop forever

fact: if completion succeeds, it yields canonical TRS
(convergent and interreduced)



Knuth-Bendix Completion

observation:

• KB-completion always succeeds on ground TRSs
(congruence closure)
• KB-completion wouldn’t fail when < is total
• but rules xy = yx can never be oriented

unfailing completion: only rewrite with equations when this causes decrease

• let l1 → r1 and l2 → r2

• let l′1 be “skeleton” subterm of l1
• let σ be mgu of l′1 and l2
• let µ be substitution with l1σµ 6≤ r1σµ and l1σµ 6≤ l1σ(. . . r2σ . . . )µ

then l1σ(. . . r2σ . . . ) = r1σ is ordered cp for deduction



Knuth-Bendix Completion

remarks:

• unfailing completion is a complete ATP procedure for pure equations
• this has been implemented in the Waldmeister tool



Knuth-Bendix Completion

example: groups

• input: appropriate ordering and equations

1 · x = x x−1 · x = 1 (x · y) · z = x · (y · z)

• output: canonical TRS

1−1 → 1 x · 1→ x 1 · x→ x (x−1)−1 → x

x−1 · x→ 1 x · x−1 → 1 x−1 · (x · y)→ y

x · (x−1 · y)→ y (x · y)−1 → y−1 · x−1 (x · y) · z → x · (y · z)



Knuth-Bendix Completion

example: groups (cont.)
proof of (x−1 · (x · y))−1 = (x−1 · y)−1 · x−1

(x−1 · (x · y))−1 →R y−1

←R y−1 · 1

←R y−1 · ((x−1)−1 · x−1)

←R (y−1 · (x−1)−1) · x−1

←R (x−1 · y)−1 · x−1



Propositional Resolution

literals are either

• propositional variables P (positive literals) or
• negated propositional variables ¬P (negative literals)

clauses are disjunctions (multisets) of literals

clause sets are conjunctions of clauses

property: every propositional formula is equivalent to a clause set
(linear structure preserving algorithm)



Propositional Resolution

orders Let S be clause set

• consider total wf order < on variables
• extend lexicographically to pairs (P, π) on literals where
π is 0 for positive literals and 1 for negative ones
• compare clauses with the multiset extension of that order

consequence: S totally ordered by wf order <



Propositional Resolution

building models: partial model H is set of positive literals

• inspect clauses in increasing order
• if clause is false and maximal literal P , throw P in H
• if clause is true, or false and maximal literal negative, do nothing

question: does this yield model of S?

first reason for failure: clause set {Γ ∨ P ∨ P} has no model if P maximal

remedy: merge these literals (ordered factoring)

Γ ∨ P ∨ P
Γ ∨ P

if P maximal



Propositional Resolution

second reason for failure: literals ordered according to indices

clauses partial models
P1 {P1}

P0 ∨ ¬P1 {P1}
P3 ∨ P4 {P1, P4}

{P1, P4} 6|= P0 ∨ ¬P1, but {P0, P1, P4} |= P0 ∨ ¬P1

remedy: add clause P0 to set (it is entailed)

more generally: (ordered resolution)

Γ ∨ P ∆ ∨ ¬P
Γ ∨∆

if (¬)P maximal



Propositional Resolution

resolution closure: (saturation) R(S)

theorem: If R(S) doesn’t contain the empty clause then the construction
yields model for S

proof: by wf induction

1. failing construction has minimal counterexample C
2. either positive maximal literal occurs more then once, then factoring yields

smaller counterexample
3. or maximal literal is negative, then resolution yields smaller counterexample
4. both cases yield contradiction

corollary: R(S) contains empty clause iff S inconsistent



Propositional Resolution

resolution proofs: (refutational completeness) the empty clause can be derived
from all finite inconsistent clause sets

proof: by closure construction, the empty clause is derived after finitely many steps

theorem: (compactness) S is unsatisfiable iff some finite subset is

proof: use the hypotheses from refutation

theorem: resolution decides propositional logic

proof: the maximal clause C in S is the maximal clause in R(S)
and there are only finitely many clauses smaller than S



Propositional Resolution

alternative completeness proof:

• write rules as

Γ→ P ∨∆ Γ′ ∧ P → ∆′

Γ ∧ Γ′ → ∆ ∨∆′
Γ→ P ∨ P ∨∆

Γ→ P ∨∆

• read them as inequalities between nf terms in bounded distributive lattice
• understand resolution as cp computation for inequalities
• use wf proof order argument to prove existence of proof 1→ 0



A Resolution Proof

1 -A | B. [assumption].
2 -B | C. [assumption].
3 A | -C. [assumption].
4 A | B | C. [assumption].
5 -A | -B | -C. [assumption].
6 A | B. [resolve(4,c,3,b),merge(c)].
7 A | C. [resolve(6,b,2,a)].
8 A. [resolve(7,b,3,b),merge(b)].
9 -B | -C. [back_unit_del(5),unit_del(a,8)].
10 B. [back_unit_del(1),unit_del(a,8)].
11 -C. [back_unit_del(9),unit_del(a,10)].
12 $F. [back_unit_del(2),unit_del(a,10),unit_del(b,11)].



First-Order Resolution

idea:

• transform formulas in prenex form
(quantfier prefix followed by quantifier free formula)
• Skolemise existential quantifiers ∀~x∃y.φ ⇒ ∀~x.φ[f(~x)/y]
• drop universal quantifier
• transform in CNF

fact: Skolemisation preserves satisfiability

example: ∀x.R(x, x) ∧ (∃y.P (y) ∨ ∀x.∃y.R(x, y) ∨ ∀z.Q(z)) becomes
∀x.R(x, x) ∧ (P (a) ∨ ∀x.R(x, f(x)) ∨ ∀z.Q(z))



First-Order Resolution

motivation:

• the premises P (f(x, a) and ¬P (f(y, z) ∨ ¬P (f(z, y))
imply ¬P (f(a, x)
• this conclusion is most general with respect to instantiation
• it can be obtained from the mgu of f(x, a) and f(z, y) etc

first-order resolution:

• don’t instantiate, unify (less junk in resolution closure)
• unification instead of identification

Γ ∨ P ∆ ∨ ¬P ′

(Γ ∨∆)σ
Γ ∨ P ∨ P ′

(Γ ∨ P )σ
σ = mgu(P, P ′)



Lifting

question: are all ground inferences instances of non-ground ones?

theorem: (lifting lemma)

• let res(C1, C2) denote the resolvent of C1 and C2

• let C1 and C2 have no variables in common
• let σ be substitution

then res(C1σ,C2σ) = res(C1, C2)ρ for some substitution ρ

remark: similar property for factoring

consequences: (refutational completeness)

• if clause set is closed then set of all ground instances is closed
• resolution derives the empty clause from all inconsistent inputs



Redundancy

question:

• KB-completion allows the deletion of redundant equations
• is this possible for resolution?

idea: basis construction

• compute resolution closure
• then delete all clauses that are entailed by other clauses
• but model construction “forgets” what happened in the past
• clauses entailed by smaller clauses need not be inspected
• they can never contribute to model or become counterexamples
• can deletion of redundant clauses be stratified?
• can that be formalised?



Redundancy

idea: approximate notion of redundancy with respect to clause ordering

definition:

• clause C is redundant with respect to clause set Γ
if for some finite Γ′ ⊆ Γ

Γ′ |= C and C > Γ′

• resolution inference is redundant if its conclusion is entailed by one of the
premises and smaller clauses (more or less)

fact: it can be shown that resolution is refutationally complete up to redundancy

intuition: construction of ordered resolution bases



Redundancy

examples:

• tautologies are redundant (they are entailed by the empty set of clauses)
• clause C ′ is subsumed by clause C if

Cσ ⊆ C ′

clauses that are subsumed are redundant



A Simple Resolution Prover

rule-based procedure: N “new resolvents”, P “processed clauses”,
O “old clauses”

• tautology deletion if C tautology

N,C;P ;O ⇒ N ;P ;O

• forward subsumption if clause in P ;O subsumes C

N,C;P ;O ⇒ N ;P ;O

• backward subsumption if clause in N properly subsumes C

N ;P,C;O ⇒ N ;P ;O N ;P ;O,C ⇒ N ;P ;O



A Simple Resolution Prover

• forward reduction if ex. D ∨ L′ in P ;O such that L = L′σ and Cσ ⊆ D

N,C ∨ L;P ;O ⇒ N,C;P ;O

• backward reduction if ex. D ∨ L′ in N such that L = L′σ and Cσ ⊆ D

N ;P,C ∨ L;O ⇒ N ;P,C;O N ;P ;O,C ∨ L⇒ N ;P ;O,C

• clause processing
N,C;P ;O ⇒ N ;P,C;O

• inference computation N is closure of O,C

∅;P,C;O ⇒ N ;P ;O,C



ATP in First-Order Logic with Equations

naive approach:

• equality is a prediate; axiomatise it
• . . . not very efficient

but KB-completion is very similar to ordered resolution
deduction and reduction techniques are combined

idea:

• integrate KB-completion/unfailing completion into ordered resolution
• this yields superposition calculus



Superposition Calculus

assumption: consider equality as only predicate (predicates as Boolean functions)

inference rules: (ground case)

• equality resolution
Γ ∨ t 6= t

Γ
• positive and negative superposition

Γ ∨ l = r ∆ ∨ s(. . . l . . . ) = t

Γ ∨∆ ∨ s(. . . r . . . ) = t

Γ ∨ l = r ∆ ∨ s(. . . l . . . ) 6= t

Γ ∨∆ ∨ s(. . . r . . . ) 6= t

• equality factoring
Γ ∨ s = t ∨ s = t′

Γ ∨ t 6= t′ ∨ s = t′



Superposition Calculus

operational meaning of rules:

• red terms must be “maximal” in respective equations and clauses
• equality resolution is resolution with “forgotten” reflexivity axiom
• superpositions are resolution with “forgotten” transitivity axiom
• equality factoring is resolution and factoring step with “forgotten” transitivity

consequence: equality axioms replaced by focused inference rules

property: equality factoring not needed for Horn clauses

model construction: adaptation of resolution case, integrating critical pair criteria



Model Construction

idea:

• force canonical TRS in resolution model construction
• this effectively constructs a congruence with respect to input equations
• the model constructed is the resulting quotient algebra

building models: partial model is set of rewrite rules

• inspect equational clauses in increasing order
• if clause is false, maximal equation s = t (s > t), and s in nf,

then throw s = t into model
• otherwise do nothing



Model Construction

ordering: make negative identities larger than positive ones

• associate s = t with multiset {s, t}
• associate s 6= t with multiset {s, s, t, t}

consequence: each stage yields convergent TRS for clauses

• termination holds since all equations are oriented and > wf
• (local) confluence holds since only reduced lhs are forced into model



Model Construction

refutational completeness: (Horn clauses) if R(S) doesn’t contain
the empty clause then construction yields model for S

proof: by wf induction

1. failing construction has minimal counterexample C
2. C = Γ ∨ s = s impossible since C must be false
3. C = Γ ∨ s = t, hence s must be reducible by rule l→ r

generated by clause ∆ ∨ l = r and positive superposition yields
smaller counterexample Γ ∨∆ ∨ s(. . . r . . . ) = t

4. C = Γ ∨ s 6= s, then equality resolution yields smaller counterexample Γ
5. C = Γ ∨ s 6= t, then exists rewrite proof for s = t, hence s reducible

by rule l→ r generated by ∆ ∨ l = r and negative superposition
yields smaller counterexample Γ ∨∆ ∨ s(. . . r . . . ) 6= t



Example

let f � a � b � c � d

Horn clauses partial models
c = d

f(d) 6= d ∨ a = b
f(c) = d {c→ d}
c = d

f(d) 6= d ∨ a = b
f(c) = d
f(d) = d {c→ d, f(d)→ d}
c = d

f(d) 6= d ∨ a = b
f(c) = d
f(d) = d

d 6= d ∨ a = b {c→ d, f(d)→ d, a→ b}



Model Construction

non-Horn case: C = Γ ∨ s = t ∨ s = t′ false, t > t′ and t = t′ has rewrite proof,
then equality factoring yields smaller counterexample Γ ∨ t 6= t′ ∨ s = t′

non-ground case: (lifting)

• do construction at level of ground instances
• for skeleton overlaps use superposition etc
• for variable overlaps, maximal term can be instantiated

with rhs of reducing rule to obtain smaller counterexample



Redundancy

forward redundancy: simplify new clauses immediately after generation
(by subsumption, rewriting, . . . )

backward redundancy: simplify existing clauses by rewrite rules
that have been generated at later stage



Redundancy

example: consider lpo with precedence f � a � b and equations

f(a, x) = x

f(x, a) = f(x, b)



Redundancy

example:

f(a, x) = x

f(x, a) = f(x, b)

f(a, b) = a

is obtained by superposition



Redundancy

example:

f(a, x) = x

f(x, a) = f(x, b)

f(a, b) = a

b = a

then follows by rewriting the third equation by the first one. . .



Redundancy

example:

f(a, x) = x

f(x, a) = f(x, b)

a = b

. . . and the third equation can be deleted (forward redundancy)



Redundancy

example:

f(a, x) = x

f(x, a) = f(x, b)

a = b

f(x, b) = f(x, b)

then follows by rewriting the second equation by the third one. . .



Redundancy

example:

f(a, x) = x

a = b

. . . and the second and fourth identity can be deleted



Redundancy

example:

f(a, x) = x

a = b

f(b, x) = x

finally, the first equation can be rewritten by the second one. . .



Redundancy

example:

a = b

f(b, x) = x

. . . and then deleted



Redundancy

assign(order,lpo).

function_order([b,a,f]). % f>a>b

formulas(sos).

f(a,x)=x.
f(x,a)=f(x,b).

end_of_list.



Redundancy

given #1 (I,wt=5): 1 f(a,x) = x. [assumption].

given #2 (I,wt=7): 2 f(x,a) = f(x,b). [assumption].

given #3 (A,wt=3): 3 a = b. [para(2(a,1),1(a,1)),rewrite([1(3)]),flip(a)].

given #4 (T,wt=5): 5 f(b,x) = x. [back_rewrite(1),rewrite([3(1)])].

...

SEARCH FAILED



Redundancy

redundancy: same concepts as for ordered resolution

closure computation: only irredundant inferences

model construction: clause sets have models if they are closed
(up to redundant inferences) and don’t contain the empty clause

proof: as previously, but contradictions arising from inferences being redundant
example: positive superposition

Γ ∨ l = r ∆ ∨ s(. . . l . . . ) = t

Γ ∨∆ ∨ s(. . . r . . . ) = t

right premise has not been forced into model;
it is redundant by this inference (entailed by smaller premise and conclusion)



Redundancy

example: demodulation

P (f(a))

f(a) = a



Redundancy

example: demodulation

P (f(a))

f(a) = a

P (a)

by rewriting “Leibniz principle”



Redundancy

example: demodulation

f(a) = a

P (a)

first literal has been deleted since it is now redundant



Example

precedence: P � Q � f � a

clause set: initial clauses

Q(a)

Q(a)⇒ f(a) = a

¬P (a)

P (f(a))



Example

precedence: P � Q � f � a

clause set: fifth clause by resolution from first and second one

Q(a)

Q(a)⇒ f(a) = a

¬P (a)

P (f(a))

f(a) = a



Example

precedence: P � Q � f � a

clause set: fourth clause rewritten by last one

Q(a)

Q(a)⇒ f(a) = a

¬P (a)

P (a)

f(a) = a



Example

precedence: P � Q � f � a

clause set: empty clause by resolution from third and fourth one

Q(a)

Q(a)⇒ f(a) = a

¬P (a)

P (a)

f(a) = a

⊥



Example

assign(order,lpo).

predicate_order([Q,P]). % P>Q
function_order([a,f]). % f>a

formulas(sos).

Q(a).
Q(a)->f(a)=a.
-P(a).
P(f(a)).

end_of_list.



Example

% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 8.
% Level of proof is 4.
% Maximum clause weight is 6.
% Given clauses 2.

1 Q(a) -> f(a) = a # label(non_clause). [assumption].
2 Q(a). [assumption].
3 -Q(a) | f(a) = a. [clausify(1)].
4 -P(a). [assumption].
5 P(f(a)). [assumption].
6 f(a) = a. [hyper(3,a,2,a)].
7 P(a). [back_rewrite(5),rewrite([6(2)])].
8 $F. [resolve(7,a,4,a)].



Automated Theorem Proving in Isabelle

Isabelle: interactive theorem proving environment

• based on higher-order logics and sophisticated tactics
• integrates external ATP/SMT systems (Sledgehammer tactic)
• integrates counterexample generators (Nitpick)

benefits: proof power of ATP + expressivity of ITP

• theory hierarchies/repositories (class/locale mechanism)
• reasoning across hierarchies (theorem inheritance/instantiation)
• hypothesis learning (relevance filter)
• readable scripting language for interactive proofs (Isar)



Sledgehammer

main architecture:

1. Isabelle proof goal passed to relevance filter
2. potential hypothesis from across libraries are learned
3. hyps and goal passed to external ATP/SMT systems

(E, SInE-E, Spass, Vampire, Z3)
4. hypothesis set minimised
5. ATP proof output internally reconstructed

proof reconstruction: yields Isabelle-certified proof

• macro-step: internal saturation-based prover Metis
• micro-step: internal SMT-based approach in HOL

current work: micro-step proof reconstruction with Isar (Isar-proof)



Sledgehammer: Experience

empirical evaluation: ”Sledgehammer: Judgement Day” [Böhme, Nipkow]

• > 1000 proofs across Isabelle libraries
• ∼ 45% success on automating proof goals
• Metis fails with ∼ 10% of proof reconstructions
• hypothesis minimisation improves Metis’ chances by 1/3

own work: > 1000 proof goals in algebra

• Sledgehammer can automate ”textbook” theorems
• SMT often superiour to Metis in proof reconstruction
• Prover9 (not integrated) often better than Vampire
• relevance filter extremely good (for small scopes)
• how can provers learn the tricks of the trade?



Nitpick

proofs and refutations:

• finding counterexamples (algebra)
• debugging theories/specs
• developing hierarchies (”weakest” contexts for theorems)
• checking irredundance of axiom systems

with Prover9/Mace4:

• enumerating models
• finding weak hypothesis sets



Nitpick

architecture: link with Alloy

• translate HOL statements into first-order relational logic
• call Kodkod model search tool (which calls SAT solvers)

experience:

• very effective/fast in practice on algebra examples
• provides less information than Mace4
• falsified > 40% of all mutants in Isabelle benchmarks [Blanchette, Nipkow]

alternative: Quickcheck evaluates formulas for random assignments



Verification Examples

observation: ATP systems see increasing interest in formal methods/mathematics

own work:

• used ATP in Tarski-Kleene algebras
• verified refinement/termination theorems, simple graph algorithms
• developed Isabelle repository for algebraic methods
http://staffwww.dcs.shef.ac.uk/people/G.Struth/isa/

h


Semirings and Kleene Algebras

semiring: (S,+, ·, 0, 1) (as in exercises)

x+ (y + z)= (x+ y) + z x+ y= y + x x+ 0= x

x(yz)= (xy)z x1= x 1x= x

x(y + z)= xy + xz (x+ y)z= xz + yz

x0= 0 0x= 0

dioid: idempotent semiring (x+ x = x)



Semirings and Kleene Algebras

interpretation: S represents actions of some discrete dynamical system

• + models nondeterministic choice
• · models sequential composition
• 0 models abortive action
• 1 models ineffective action



Semirings and Kleene Algebras

Kleene algebras: idempotent semiring with star satisfying

• unfold axiom 1 + xx∗ ≤ x∗
• induction axiom y + xz ≤ z ⇒ x∗y ≤ z
• and their opposites 1 + x∗x ≤ x∗ and y + zx ≤ z ⇒ yx∗ ≤ z

omega algebras: KAs with omega satisfying

• unfold axiom xxω = xω

• coinduction axiom y ≤ xy + z ⇒ y ≤ xω + x∗z



Automating Bachmair and Dershowitz’s Termination Theorem

theorem: [BachmairDershowitz86] termination of the union of two rewrite
systems can be separated into termination of the individual systems
if one rewrite system quasicommutes over the other

formalisation: omega algebra

encoding:

• quasicommutation yx ≤ x(x+ y)∗

• separation of termination (x+ y)ω = 0⇔ xω + yω = 0

statement: termination of x and y can be separated if x quasicommutes over y



Automating Bachmair and Dershowitz’s Termination Theorem

results: ATP finds an extremely short proof in < 5min

(x+ y)ω= yω + y∗x(x+ y)ω (sum unfold)

≤ yω + x(x+ y)∗(x+ y)ω (strong quasicommmutation)

= yω + x(x+ y)ω (since zω = z∗zω)

≤ xω + x∗yω (coinduction)

= 0 (assumption xω = yω = 0)



Automating Bachmair and Dershowitz’s Termination Theorem

surprise: proof reveals new refinement law

yx ≤ x(x+ y)∗ ⇒ (x+ y)ω = xω + x∗yω

for separating infinite loops

remarks:

• reasoning essentially coinductive
• theorem holds in large class of models
• translation safe since relations form omega algebra

(formalised in Isabelle)



Automating Back’s Atomicity Refinement Law

demonic refinement algebra: [von Wright04] Kleene algebra

• with axiom x0 = 0 dropped
• extended by strong iteration ∞ encompassing finite and infinite iteration

remark: abstracted from refinement calculus [BackvonWright]

atomicity refinement law for action systems

• complex theorem first published by Back in 1989
• long proof in set theory analysing infinite sequences
• proof by hand in demonic refinement algebra still covers 2 pages
• automated analysis reveals some glitches and yields generalisation

first task: build up library of verified basic refinement laws for proof



Automating Back’s Atomicity Refinement Law

theorem: if (i) s ≤ sq (ii) a ≤ qa (iii) qb = 0 (iv) rb ≤ br
(v) (a+ r + b)l ≤ l(a+ r + b) (vi) rq ≤ qr (vii) ql ≤ lq
(viii) r∗ = r∞ (ix) q ≤ 1

then
s(a+ r + b+ l)∞q ≤ s(ab∞q + r + l)∞

two-step proof with “hypothesis learning”

1. assumptions imply s(a+ r + b+ l)∞q ≤ sl∞qr∞q(ab∞qr∞)∞

wait 60s for 75-step proof with Prover9
2. q ≤ 1 implies sl∞qr∞q(ab∞qr∞)∞ ≤ s(ab∞q + r + l)∞

wait < 1s for 30-step proof

remark: full proof succeeds for l = 0 (1013s for 46-step proof)



Automating Back’s Atomicity Refinement Law

equational proof can be reconstructed
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.



Example: Synthesis of Warshall’s Algorithm

Hoare logic: (simple while-programs)

1. invariant established by initialisation when precondition is true
2. executions of loop body preserve invariant when test of loop is true
3. invariant establishes postcondition when test of loop is false

synthesis: “program and correctness proof should be developed hand in hand”

• develop invariant as modification of postcondition
• incrementally establish proof obligations (synthesis of test/assignments)

approach: with Prover9/Mace4

• expand KA by domain operation



Initial Specification

spec: given finite binary relation x, find program with relational variable y
that stores transitive closure of x after execution

goal: instantiate template

... y:=x ...
while ... do
... y:=? ... od

pre/postcondition: (evident from spec)

pre(x) <-> x=x.
post(x,y) <-> y=tc(x).

task: use proof obligations to synthesise initialisation, test, body



Invariant, Initialisation and Test

invariant: inv(x,y,v) <-> (set(v) -> y=rtc(x;v);x).

initialisation: v := 0

test: v 6= d(x)

justification: in KA with domain

pre(x) -> inv(x,x,0). %no time
inv(x,y,v) & v=d(x) -> post(x,y). %no time



Termination and Synthesis of Loop

task: use preservation of invariant to find assignments

result: (development in KA with domain)

• v := v + p (increment set v by point p)
• y := y + y; p; y (increment y by y; p; y with p)

proof obligation: wpoint(w) & inv(x,y,v) & y!=d(x) -> inv(x,y+y;(w;y),v+w).

theorem: Warshall’s algorithm is (partially) correct:

y,v:=x,0
while v!=d(x) do
p:=point(v’)
y,v:=y+y;p;y,v+p od



Conclusion

observation: ATP/ITP integration makes mechanised mathematics much easier

• applications in program construction/verification
• useful for teaching
• developing/exploring new mathematical structures

program construction: combination ATP + algebras particularly powerful

• proof engines for formal methods
• support for languages like Agda/Epigram
• to free developers from pushing variables



Conclusion

future directions:

• theory engineering
– expand Isabelle repository
– domain specific algebras
– integration of tactics/decision procedures
– hypothesis learning for ATP
– integration of ordered reasoning into ATP
• applications

– mechanised mathematics
– more lightweight formal methods
– more lightweight dependently typed programming languages
– better ways of teaching formal mathematics
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