
Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Process Calculi for Protocol Verification
Midlands Graduate School 2015

Eike Ritter

University of Birmingham

Eike Ritter Process Calculi for Protocol Verification 1



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Outline

Course content: Formal specification and verification of security
protocols using a suitably modified process calculus

Lecture 1: Security protocols

Lecture 2: The Applied Pi-Calculus

Lecture 3: Verification of Security properties in the Applied
Pi-Calculus

Lecture 4: Tools for automating this verification

Eike Ritter Process Calculi for Protocol Verification 2



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Security Protocols

Security protocols are exchange of messages between parties in the
presence of adversaries
Want to achieve security properties like

confidentiality: Who can access the information?

authenticity: Who has sent the information?

integrity: Has the message been modified in transit?

privacy: How much private information can other parties
learn?

Require cryptography to achieve these properties

Eike Ritter Process Calculi for Protocol Verification 3



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Examples

Authentication protocols
Verify credentials of users without without the attacker
obtaining them (eg login)

Confidential data transfer
Only sender and receiver can learn data (eg https)

Key exchange protocols
Establish session keys between participants
Design of such protocols surprisingly difficult

Eike Ritter Process Calculi for Protocol Verification 4



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Capabilities of attacker

Protocol is exchange of messages between various parties
Unless otherwise specified, have adversary which is able to

read all messages

modify all messages

inject any message (including previously read ones)

delete any message

Eike Ritter Process Calculi for Protocol Verification 5



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

In this course, consider only attacks caused by incorrectly specified
protocols
Do not consider attacks based on

exploiting weaknesses in cryptography
(ie we assume perfect cryptography)

timing attacks
(eg attacks to obtain keys stored on smart cards)

weak random number generators (we assume random numbers
are unguessable)

social engineering (eg getting the keys by pretending to be
someone else)

So-called Dolev-Yao attacker

Eike Ritter Process Calculi for Protocol Verification 6



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Examples of attacks on Security protocols

Security protocols often consist only of small number of messages
Surprising number of attacks have been found, often years after
being defined:

Needham-Schroder authentication protocol:
flaw found 17 years(!!) after definition

Single Sign-on for Google apps
Authentication failed

Linkability in Mobile phones
Can trace mobile phone users without their knowledge

Eike Ritter Process Calculi for Protocol Verification 7



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Basic Cryptographic operations

Will use both symmetric and asymmetric cryptography

Symmetric cryptography
Have one key k and two operations:

enc(M, k) encrypts message M using key k ;

dec(M, k) decrypts message M using key k

such that
dec(enc(M, k), k) = M

Important property: Given dec(M, k) it is computationally
infeasible to deduce M without knowing k
Have fast implementations in SW and HW (eg AES)

Eike Ritter Process Calculi for Protocol Verification 8



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Asymmetric cryptography

Big disadvantage of symmetric crytography:
key must be known to both parties
Can relax this assumption by using asymmetric cryptography
Idea: Replace common key by public/private key pair
public key known to everybody
private key must not be revealed
Have operations adec and aenc, pk such that

pk generates public key from private key
adec(aenc(M, pk(k)), k) = M
adec(aenc(M, k), pk(k)) = M

First equation used for encryption, second one for signing
Asymmetric cryptography is expensive
⇒ use it to establish shared key, then use symmetric encryption
Example: SSL/TLS

Eike Ritter Process Calculi for Protocol Verification 9



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Protocol Notation

Write Alice, Bob for honest participants
Write Eve for passive attacker (cannot modify or inject messages)
Write Mallory for general attacker
Write A→ B : m for message m sent over public channel from
Alice to Bob
Write pkA for Alice’s public key
Write nc for nonce (large unguessable random number, usually
assumed to be fresh)
use {M}k for encryption (symmetric or asymmetric) of message M
with key k

Eike Ritter Process Calculi for Protocol Verification 10



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Example: Needham-Schroder protocol

Purpose: Establish shared session key between Alice and Bob
Protocol (1978):

A→ B : {(A, ncA)}pkB
B → A : {(ncA, ncB)}pkA
A→ B : {ncB}pkB

Now A and B share nonces ncA and ncB which they can use to
generate shared session key
Security property: Only A and B know ncA and ncB

Eike Ritter Process Calculi for Protocol Verification 11



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

The flaw in the Needham-Schroder protocol

Consider the following interaction between Alice, Bob and Mallory:

A→ M : {(A, ncA)}pkM
M → B : {(A, ncA)}pkB
B → A : {(ncA, ncB)}pkA
A→ M : {ncB}pkM
M → B : {ncB}pkB

Result: B thinks he has established common secrets with A but in
fact secrets are known to Mallory
so-called Man-in-the-middle Attack

Eike Ritter Process Calculi for Protocol Verification 12



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Fix

proposed by Lowe (1995) (!!)

A→ B : {(A, ncA)}pkB
B → A : {(ncA, ncB ,B)}pkA
A→ B : {ncB}pkB

How do we know that this is now secure?

Eike Ritter Process Calculi for Protocol Verification 13



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Another example: Voting

Want to achieve privacy property:
No-one (not even election officers) can link particular vote with
voter
Need further cryptographic primitive: Blind Signatures
Have operations blind, unblind, sign such that

unblind(sign(blind(M, r), k), r) = sign(M, k)

(text M blinded with factor r signed with k and then unblinding
with factor r produces signed text)

Eike Ritter Process Calculi for Protocol Verification 14



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Have following protocol:

V → O : sign(blind((v , n), r), skV )
O → V : sign(blind((v , n), r), skO)
Synchronisation
V → O : sign((v , n), skO)(Submitted anonymously)

Protocol achieves vote privacy (but otherwise inadequate)

Eike Ritter Process Calculi for Protocol Verification 15



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Intuition

Want formal languages to model security protocols so that
automatic verifiation can be done
Here: use Applied Pi-Calculus, a suitable adaptation of process
calculi
Intuition:
Processes correspond to agents (Alice, Bob, Mallory etc.)
Sending messages modelled as communication in process calculus
Attacker modelled as arbitrary process which runs in parallel with
processes modelling Alice and Bob

Eike Ritter Process Calculi for Protocol Verification 16



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Applied pi calculus: Grammar

Terms

M,N ::=
a, b, c , k ,m, n, s, t, r , . . . name
x , y , z variable
g(M1, . . . ,Ml) function

Equational theory

Eike Ritter Process Calculi for Protocol Verification 17



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Applied pi calculus: Grammar

Processes

P,Q,R ::= processes
0 null process
P | Q parallel comp.
!P replication
ν n.P name restriction
u(x).P message input
u〈M〉.P message output
if M = N then P else Q cond’nl

A,B,C ::= extended processes
P plain process
A | B parallel comp.
ν n.A name restriction
ν x .A variable restriction
{M/x} active substitution

(attacker knowledge)

Eike Ritter Process Calculi for Protocol Verification 18



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Structural equivalence

Par-0 A ≡ A | 0
Par-A A | (B | C ) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P |!P

New-0 ν n.0 ≡ 0
New-C ν u.ν w .A ≡ ν w .ν u.A
New-Par A | ν u.B ≡ ν u.(A | B)

where u 6∈ fv(A) ∪ fn(A)

Alias ν x .{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x}

where M =E N

Eike Ritter Process Calculi for Protocol Verification 19



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Internal reductions

Intuition: Describes dynamic behaviour of processes

Comm u〈x〉.P | u(x).Q −→ P | Q

Then if N = N then P else Q −→ P

Else if L = M then P else Q −→ Q
for ground terms L,M where L 6=E M

Eike Ritter Process Calculi for Protocol Verification 20



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Observational Equivalence

Idea: two processes are observationally equivalent if they have the
same behaviour when run in parallel with any other process

Definition

An evalution context C is a process with a hole not under a
replication, a conditional, an input or an output.

We write A ⇓ a when A can send an arbitrary message on channel
a.

Eike Ritter Process Calculi for Protocol Verification 21



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Definition

Observational equivalence (≈) is the largest symmetric relation R
between closed extended processes such that A R B implies

(i) if A ⇓ a, then B ⇓ a;

(ii) if A→∗ A′, then B →∗ B ′ and A′ R B ′

(iii) C [A] R C [B] for all closing evalution contexts C [ ]

Eike Ritter Process Calculi for Protocol Verification 22



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Verification of observational equivalence

Key problem: have to consider all contexts when veryfying
observational equivalence
Better strategy: characterise all possible ways of interaction
between process and environment
Interactions captured by notion A

α−→ A′

Define labelled bisimulation as a relation which is satisfied if
processes have the same way of interacting with the environment
Finally show: labelled bisimilarity and observational equivalence
coincide

Eike Ritter Process Calculi for Protocol Verification 23



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Static Equivalence

Intuition: Active substitutions {M1/x1, . . . ,Mn/xn} (shortcut for
{M1/x1} | · · · {Mn/xn}), represent intruder knowledge
Important concept: when do two active substitutions represent the
same intruder knowledge (called static equivalence, written ≈s)
Key point: If two active substitutions are statically equivalent,
intruder cannot apply any test to distinguish them
Example:

νk .{enc(a, k)/x} ≈s νk .{enc(b, k)/x}

but
{enc(a, k)/x} 6≈s νk .{enc(b, k)/x}

Eike Ritter Process Calculi for Protocol Verification 24



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Definition

(i) A frame φ is a process ν~n.{M1/x1, . . . ,Mn/xn};
(ii) Two terms M and N are called equal in the frame φ, written

(M = N)φ if φ = ν~n.σ and Mσ = Nσ and
~n ∩ (FN(M) ∪ FN(N)) = ∅;

(iii) Two frames φ = ν~n.σ and ψ = ν~n.τ are called statically
equivalent if for all terms M and N, (M = N)φ iff (M = N)ψ.

Eike Ritter Process Calculi for Protocol Verification 25



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Labelled reductions

Intuition: model interaction of process with environment

In u(x).P
u(M)−−−→ P{M/x}

Out-Atom u〈x〉.P u〈x〉−−→ P

Scope
A

α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

Struct
A ≡ B B

α−→ B ′ B ′ ≡ A′

A
α−→ A′

Eike Ritter Process Calculi for Protocol Verification 26



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Labelled reductions, continued

Open-Atom
A

u〈x〉−−→ A′ x 6= u

ν x .A
ν x .u〈x〉−−−−−→ A′

Derived rule u〈M〉.P νx . u〈x〉−−−−−→ P | {M/x}

Eike Ritter Process Calculi for Protocol Verification 27



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Labelled bisimulation

Definition

Labelled bisimilarity (≈l) is the largest symmetric relation R
between closed extended processes such that A R B implies

(i) A ≈s B;

(ii) if A→ A′, then B →∗ B ′ and A′ R B ′;

(iii) if A
α−→ A′ then B →∗ α−→→∗ B ′ and A′ R B ′ (subject to some

sanity conditions on bound variables)

Eike Ritter Process Calculi for Protocol Verification 28



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Main theorem

Theorem

Observational equivalence and labelled bisimilarity coincide.

Proof.

Non-trivial but standard in process calculi.

Eike Ritter Process Calculi for Protocol Verification 29



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Automatic verification of protocol

One tool available, called Proverif
may be used to check both reachability properties as well as
(limited) observational equivalences
Have input language modelled closely on applied pi-calculus

Eike Ritter Process Calculi for Protocol Verification 30



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Capabilities of Proverif

Can verify

Reachability properties: Is a certain event reachable (eg
leaking secret keys to the attacker)

Correspondence assertions: If event e has been executed, then
event e ′ has been previously been executed

Observational equivalences: same as in applied Pi-calculus
However, Proverif can only verify special cases, namely where
processes differ only via terms used and behave in an identical
way

Eike Ritter Process Calculi for Protocol Verification 31



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Limitations of Proverif

Translation of applied Pi-calculus into Horn clauses is only
approximation
⇒ Proverif may report false attacks
Sources of false attacks:

Private names in one session may be re-used in next session

synchronisation using private channels not modelled

Proverif may also not terminate

Eike Ritter Process Calculi for Protocol Verification 32



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

How Proverif works

Proverif translates protocol into Horn clauses specifying the power
of the attacker
Key predicates:

att(M) means attacker knows term M

mess(c ,M) means message M was sent on channel c

Protocol rules are translated into Horn clauses
input generates hypothesis
output of M on channel c generates clause stating that current
hypotheses implies mess(c ,M)
Reachability checked by testing whether predicate att(M) is
derivable

Eike Ritter Process Calculi for Protocol Verification 33



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Definition

We define a plain process by

P,Q ::= 0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if M = N then P else Q conditional
u(x).P input
u〈M〉.P output

Eike Ritter Process Calculi for Protocol Verification 34



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Definition

We define a canonical process, ranged over by A,B,C , to be an
expression

ν~n.(σ,P)

where

ν~n is a set of bound names;

σ is a substitution {{M1/x1}, . . . , {Mn/xn}}
P is a multiset {P1, . . . ,Pk} where Pi is a plain process

A canonical process ν~n.(σ,P) is called closed if each variable is
either bounded or defined by σ.

Eike Ritter Process Calculi for Protocol Verification 35



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Structural reductions:

ν~n.(σ,P ∪ {!P}) → ν~n.(σ,P ∪ {!P,P})
ν~n.(σ,P ∪ {P | Q}) → ν~n.(σ,P ∪ {P,Q})

ν~n.(σ,P ∪ {0}) → ν~n.(σ,P)
ν~n.(σ,P ∪ {νm.P}) → ν~n,m.(σ,P ∪ {P})

if m 6∈ ~n ∪ FV (σ) ∪ FV (P)

Eike Ritter Process Calculi for Protocol Verification 36



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Internal reductions:

ν~n.(σ,P ∪ {a(x).P)} ∪ {a〈M〉.Q}) → ν~n.(σ,P ∪ {(P {M/x} ,Q}))
ν~n.(σ,P ∪ {if M = N then P else Q}) → ν~n.(σ,P ∪ {P})

if M =Σ N
ν~n(σ,P ∪ {if M = N then P else Q}) → ν~n(σ,P ∪ {Q})

if M 6=Σ N and M,N ground terms

Eike Ritter Process Calculi for Protocol Verification 37



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Labelled transitions:

ν~n.(σ,P ∪ {uσ(x).P}) u(M)→ ν~n.(σ,P ∪ {(P {Mσ/x}})
if (fn(M) ∪ {u}) ∩ ~n = ∅

ν~n.(σ,P ∪ {uσ〈M〉.P}) (u,x)→ ν~n.(σ ∪
{
{M/x}

}
,P ∪ {P})

if u 6∈ ~n and
x 6∈ dom(σ) ∪ FV (σ) ∪ FV (P)

Eike Ritter Process Calculi for Protocol Verification 38



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Proverif translates protocol into Horn clauses specifying the power
of the attacker
Key predicates:

att(M) means attacker knows term M

mess(c ,M) means message M was sent on channel c

Eike Ritter Process Calculi for Protocol Verification 39



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Translation uses

ρ is environment (mapping names and variables of process
language to terms of clause language)

H is a set of formulae containing hypotheses

` accumulates variables that have been input. Used to
partially differentiate new names in different sessions

Eike Ritter Process Calculi for Protocol Verification 40



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

[[0]]ρH` = ∅
[[P|Q]]ρH` = [[P]]ρH` ∪ [[Q]]ρH`

[[!P]]ρH` = [[P]]ρH`
[[νa.P]]ρH` = [[P]](ρ ∪ {a 7→ a[`]})H`

[[u(x).P]]ρH` = [[P]](ρ ∪ x 7→ x)(H ∧ mess(uρ, x)(x :: `)
[[u〈M〉.P]]ρH` = {H ⊃ mess(uρ,Mρ)} ∪ [[P]]ρH`

[[if M = N then P
else Q]] = [[P]](ρω)H(ω)(`ω) ∪ [[Q]]ρH`

ω mgu of Mρ and Nρ

Eike Ritter Process Calculi for Protocol Verification 41



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Formulation of attacker knowledge:

for each function symbol f with arity n, we have a rule

(att(x1) ∧ · · · ∧ att(xn)) ⊃ att(f (x1, . . . , xn)

(attacker can apply functions)

(mess(x , y) ∧ att(x)) ⊃ att(y)

(attacker can observe messages on channels he knows)

(att(x) ∧ att(y)) ⊃ mess(x , y)

(attacker can construct messages if he knows channel and
value)

Reachability properties (eg secrecy) is now question whether
att(M) is derivable

Eike Ritter Process Calculi for Protocol Verification 42


	Outline
	Security Protocols
	The Applied Pi-Calculus
	Proverif
	A different presentation of the applied Pi-calculus

