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Course content: Formal specification and verification of security
protocols using a suitably modified process calculus

Lecture 1: Security protocols

Lecture 2: The Applied Pi-Calculus

Lecture 3: Verification of Security properties in the Applied
Pi-Calculus

Lecture 4: Tools for automating this verification
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Security Protocols

Security protocols are exchange of messages between parties in the
presence of adversaries
Want to achieve security properties like

confidentiality: Who can access the information?

authenticity: Who has sent the information?

integrity: Has the message been modified in transit?

privacy: How much private information can other parties
learn?

Require cryptography to achieve these properties
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Examples

Authentication protocols
Verify credentials of users without without the attacker
obtaining them (eg login)

Confidential data transfer
Only sender and receiver can learn data (eg https)

Key exchange protocols
Establish session keys between participants
Design of such protocols surprisingly difficult
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Capabilities of attacker

Protocol is exchange of messages between various parties
Unless otherwise specified, have adversary which is able to

read all messages

modify all messages

inject any message (including previously read ones)

delete any message
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In this course, consider only attacks caused by incorrectly specified
protocols
Do not consider attacks based on

exploiting weaknesses in cryptography
(ie we assume perfect cryptography)

timing attacks
(eg attacks to obtain keys stored on smart cards)

weak random number generators (we assume random numbers
are unguessable)

social engineering (eg getting the keys by pretending to be
someone else)

So-called Dolev-Yao attacker
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Examples of attacks on Security protocols

Security protocols often consist only of small number of messages
Surprising number of attacks have been found, often years after
being defined:

Needham-Schroder authentication protocol:
flaw found 17 years(!!) after definition

Single Sign-on for Google apps
Authentication failed

Linkability in Mobile phones
Can trace mobile phone users without their knowledge
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Basic Cryptographic operations

Will use both symmetric and asymmetric cryptography

Symmetric cryptography
Have one key k and two operations:

enc(M, k) encrypts message M using key k ;

dec(M, k) decrypts message M using key k

such that
dec(enc(M, k), k) = M

Important property: Given dec(M, k) it is computationally
infeasible to deduce M without knowing k
Have fast implementations in SW and HW (eg AES)
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Asymmetric cryptography

Big disadvantage of symmetric crytography:
key must be known to both parties
Can relax this assumption by using asymmetric cryptography
Idea: Replace common key by public/private key pair
public key known to everybody
private key must not be revealed
Have operations adec and aenc, pk such that

pk generates public key from private key
adec(aenc(M, pk(k)), k) = M
adec(aenc(M, k), pk(k)) = M

First equation used for encryption, second one for signing
Asymmetric cryptography is expensive
⇒ use it to establish shared key, then use symmetric encryption
Example: SSL/TLS
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Protocol Notation

Write Alice, Bob for honest participants
Write Eve for passive attacker (cannot modify or inject messages)
Write Mallory for general attacker
Write A→ B : m for message m sent over public channel from
Alice to Bob
Write pkA for Alice’s public key
Write nc for nonce (large unguessable random number, usually
assumed to be fresh)
use {M}k for encryption (symmetric or asymmetric) of message M
with key k
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Example: Needham-Schroder protocol

Purpose: Establish shared session key between Alice and Bob
Protocol (1978):

A→ B : {(A, ncA)}pkB
B → A : {(ncA, ncB)}pkA
A→ B : {ncB}pkB

Now A and B share nonces ncA and ncB which they can use to
generate shared session key
Security property: Only A and B know ncA and ncB
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The flaw in the Needham-Schroder protocol

Consider the following interaction between Alice, Bob and Mallory:

A→ M : {(A, ncA)}pkM
M → B : {(A, ncA)}pkB
B → A : {(ncA, ncB)}pkA
A→ M : {ncB}pkM
M → B : {ncB}pkB

Result: B thinks he has established common secrets with A but in
fact secrets are known to Mallory
so-called Man-in-the-middle Attack
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Fix

proposed by Lowe (1995) (!!)

A→ B : {(A, ncA)}pkB
B → A : {(ncA, ncB ,B)}pkA
A→ B : {ncB}pkB

How do we know that this is now secure?
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Another example: Voting

Want to achieve privacy property:
No-one (not even election officers) can link particular vote with
voter
Need further cryptographic primitive: Blind Signatures
Have operations blind, unblind, sign such that

unblind(sign(blind(M, r), k), r) = sign(M, k)

(text M blinded with factor r signed with k and then unblinding
with factor r produces signed text)
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Have following protocol:

V → O : sign(blind((v , n), r), skV )
O → V : sign(blind((v , n), r), skO)
Synchronisation
V → O : sign((v , n), skO)(Submitted anonymously)

Protocol achieves vote privacy (but otherwise inadequate)
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Intuition

Want formal languages to model security protocols so that
automatic verifiation can be done
Here: use Applied Pi-Calculus, a suitable adaptation of process
calculi
Intuition:
Processes correspond to agents (Alice, Bob, Mallory etc.)
Sending messages modelled as communication in process calculus
Attacker modelled as arbitrary process which runs in parallel with
processes modelling Alice and Bob
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Applied pi calculus: Grammar

Terms

M,N ::=
a, b, c , k ,m, n, s, t, r , . . . name
x , y , z variable
g(M1, . . . ,Ml) function

Equational theory
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Applied pi calculus: Grammar

Processes

P,Q,R ::= processes
0 null process
P | Q parallel comp.
!P replication
ν n.P name restriction
u(x).P message input
u〈M〉.P message output
if M = N then P else Q cond’nl

A,B,C ::= extended processes
P plain process
A | B parallel comp.
ν n.A name restriction
ν x .A variable restriction
{M/x} active substitution

(attacker knowledge)
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Structural equivalence

Par-0 A ≡ A | 0
Par-A A | (B | C ) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P |!P

New-0 ν n.0 ≡ 0
New-C ν u.ν w .A ≡ ν w .ν u.A
New-Par A | ν u.B ≡ ν u.(A | B)

where u 6∈ fv(A) ∪ fn(A)

Alias ν x .{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x}

where M =E N
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Internal reductions

Intuition: Describes dynamic behaviour of processes

Comm u〈x〉.P | u(x).Q −→ P | Q

Then if N = N then P else Q −→ P

Else if L = M then P else Q −→ Q
for ground terms L,M where L 6=E M
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Observational Equivalence

Idea: two processes are observationally equivalent if they have the
same behaviour when run in parallel with any other process

Definition

An evalution context C is a process with a hole not under a
replication, a conditional, an input or an output.

We write A ⇓ a when A can send an arbitrary message on channel
a.
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Definition

Observational equivalence (≈) is the largest symmetric relation R
between closed extended processes such that A R B implies

(i) if A ⇓ a, then B ⇓ a;

(ii) if A→∗ A′, then B →∗ B ′ and A′ R B ′

(iii) C [A] R C [B] for all closing evalution contexts C [ ]
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Verification of observational equivalence

Key problem: have to consider all contexts when veryfying
observational equivalence
Better strategy: characterise all possible ways of interaction
between process and environment
Interactions captured by notion A

α−→ A′

Define labelled bisimulation as a relation which is satisfied if
processes have the same way of interacting with the environment
Finally show: labelled bisimilarity and observational equivalence
coincide
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Static Equivalence

Intuition: Active substitutions {M1/x1, . . . ,Mn/xn} (shortcut for
{M1/x1} | · · · {Mn/xn}), represent intruder knowledge
Important concept: when do two active substitutions represent the
same intruder knowledge (called static equivalence, written ≈s)
Key point: If two active substitutions are statically equivalent,
intruder cannot apply any test to distinguish them
Example:

νk .{enc(a, k)/x} ≈s νk .{enc(b, k)/x}

but
{enc(a, k)/x} 6≈s νk .{enc(b, k)/x}
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Definition

(i) A frame φ is a process ν~n.{M1/x1, . . . ,Mn/xn};
(ii) Two terms M and N are called equal in the frame φ, written

(M = N)φ if φ = ν~n.σ and Mσ = Nσ and
~n ∩ (FN(M) ∪ FN(N)) = ∅;

(iii) Two frames φ = ν~n.σ and ψ = ν~n.τ are called statically
equivalent if for all terms M and N, (M = N)φ iff (M = N)ψ.
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Labelled reductions

Intuition: model interaction of process with environment

In u(x).P
u(M)−−−→ P{M/x}

Out-Atom u〈x〉.P u〈x〉−−→ P

Scope
A

α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

Struct
A ≡ B B

α−→ B ′ B ′ ≡ A′

A
α−→ A′
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Labelled reductions, continued

Open-Atom
A

u〈x〉−−→ A′ x 6= u

ν x .A
ν x .u〈x〉−−−−−→ A′

Derived rule u〈M〉.P νx . u〈x〉−−−−−→ P | {M/x}
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Labelled bisimulation

Definition

Labelled bisimilarity (≈l) is the largest symmetric relation R
between closed extended processes such that A R B implies

(i) A ≈s B;

(ii) if A→ A′, then B →∗ B ′ and A′ R B ′;

(iii) if A
α−→ A′ then B →∗ α−→→∗ B ′ and A′ R B ′ (subject to some

sanity conditions on bound variables)
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Main theorem

Theorem

Observational equivalence and labelled bisimilarity coincide.

Proof.

Non-trivial but standard in process calculi.
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Automatic verification of protocol

One tool available, called Proverif
may be used to check both reachability properties as well as
(limited) observational equivalences
Have input language modelled closely on applied pi-calculus

Eike Ritter Process Calculi for Protocol Verification 30



Outline
Security Protocols

The Applied Pi-Calculus
Proverif

A different presentation of the applied Pi-calculus

Capabilities of Proverif

Can verify

Reachability properties: Is a certain event reachable (eg
leaking secret keys to the attacker)

Correspondence assertions: If event e has been executed, then
event e ′ has been previously been executed

Observational equivalences: same as in applied Pi-calculus
However, Proverif can only verify special cases, namely where
processes differ only via terms used and behave in an identical
way
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Limitations of Proverif

Translation of applied Pi-calculus into Horn clauses is only
approximation
⇒ Proverif may report false attacks
Sources of false attacks:

Private names in one session may be re-used in next session

synchronisation using private channels not modelled

Proverif may also not terminate
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How Proverif works

Proverif translates protocol into Horn clauses specifying the power
of the attacker
Key predicates:

att(M) means attacker knows term M

mess(c ,M) means message M was sent on channel c

Protocol rules are translated into Horn clauses
input generates hypothesis
output of M on channel c generates clause stating that current
hypotheses implies mess(c ,M)
Reachability checked by testing whether predicate att(M) is
derivable
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Definition

We define a plain process by

P,Q ::= 0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if M = N then P else Q conditional
u(x).P input
u〈M〉.P output
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Definition

We define a canonical process, ranged over by A,B,C , to be an
expression

ν~n.(σ,P)

where

ν~n is a set of bound names;

σ is a substitution {{M1/x1}, . . . , {Mn/xn}}
P is a multiset {P1, . . . ,Pk} where Pi is a plain process

A canonical process ν~n.(σ,P) is called closed if each variable is
either bounded or defined by σ.
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Structural reductions:

ν~n.(σ,P ∪ {!P}) → ν~n.(σ,P ∪ {!P,P})
ν~n.(σ,P ∪ {P | Q}) → ν~n.(σ,P ∪ {P,Q})

ν~n.(σ,P ∪ {0}) → ν~n.(σ,P)
ν~n.(σ,P ∪ {νm.P}) → ν~n,m.(σ,P ∪ {P})

if m 6∈ ~n ∪ FV (σ) ∪ FV (P)
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Internal reductions:

ν~n.(σ,P ∪ {a(x).P)} ∪ {a〈M〉.Q}) → ν~n.(σ,P ∪ {(P {M/x} ,Q}))
ν~n.(σ,P ∪ {if M = N then P else Q}) → ν~n.(σ,P ∪ {P})

if M =Σ N
ν~n(σ,P ∪ {if M = N then P else Q}) → ν~n(σ,P ∪ {Q})

if M 6=Σ N and M,N ground terms
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Labelled transitions:

ν~n.(σ,P ∪ {uσ(x).P}) u(M)→ ν~n.(σ,P ∪ {(P {Mσ/x}})
if (fn(M) ∪ {u}) ∩ ~n = ∅

ν~n.(σ,P ∪ {uσ〈M〉.P}) (u,x)→ ν~n.(σ ∪
{
{M/x}

}
,P ∪ {P})

if u 6∈ ~n and
x 6∈ dom(σ) ∪ FV (σ) ∪ FV (P)
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Proverif translates protocol into Horn clauses specifying the power
of the attacker
Key predicates:

att(M) means attacker knows term M

mess(c ,M) means message M was sent on channel c
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Translation uses

ρ is environment (mapping names and variables of process
language to terms of clause language)

H is a set of formulae containing hypotheses

` accumulates variables that have been input. Used to
partially differentiate new names in different sessions
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[[0]]ρH` = ∅
[[P|Q]]ρH` = [[P]]ρH` ∪ [[Q]]ρH`

[[!P]]ρH` = [[P]]ρH`
[[νa.P]]ρH` = [[P]](ρ ∪ {a 7→ a[`]})H`

[[u(x).P]]ρH` = [[P]](ρ ∪ x 7→ x)(H ∧ mess(uρ, x)(x :: `)
[[u〈M〉.P]]ρH` = {H ⊃ mess(uρ,Mρ)} ∪ [[P]]ρH`

[[if M = N then P
else Q]] = [[P]](ρω)H(ω)(`ω) ∪ [[Q]]ρH`

ω mgu of Mρ and Nρ
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Formulation of attacker knowledge:

for each function symbol f with arity n, we have a rule

(att(x1) ∧ · · · ∧ att(xn)) ⊃ att(f (x1, . . . , xn)

(attacker can apply functions)

(mess(x , y) ∧ att(x)) ⊃ att(y)

(attacker can observe messages on channels he knows)

(att(x) ∧ att(y)) ⊃ mess(x , y)

(attacker can construct messages if he knows channel and
value)

Reachability properties (eg secrecy) is now question whether
att(M) is derivable
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